CSE 135: Introduction to Theory of Computation
(A taste of) Chomsky Hierarchy

Sungjin Im

University of California, Merced

04-02-2014
Grammars

Definition
A grammar is $G = (V, \Sigma, R, S)$, where
- V is a finite set of variables/non-terminals
- Σ is a finite set of terminals
- $S \in V$ is the start symbol
- $R \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$ is a finite set of rules/productions
Grammars

Definition
A grammar is $G = (V, \Sigma, R, S)$, where

- V is a finite set of variables/non-terminals
- Σ is a finite set of terminals
- $S \in V$ is the start symbol
- $R \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$ is a finite set of rules/productions

We say $\gamma_1 \alpha \gamma_2 \Rightarrow_G \gamma_1 \beta \gamma_2$ iff $(\alpha \rightarrow \beta) \in R$.
Definition

A grammar is $G = (V, \Sigma, R, S)$, where

- V is a finite set of variables/non-terminals
- Σ is a finite set of terminals
- $S \in V$ is the start symbol
- $R \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$ is a finite set of rules/productions

We say $\gamma_1 \alpha \gamma_2 \Rightarrow_G \gamma_1 \beta \gamma_2$ iff $(\alpha \to \beta) \in R$. And

$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$
Example

Consider the grammar G with $\Sigma = \{a\}$ with

\[
\begin{align*}
S & \rightarrow \$Ca\# \mid a \mid \epsilon \\
Ca & \rightarrow aaC \\
C\# & \rightarrow D\# \mid E \\
D & \rightarrow \$C \\
E & \rightarrow \epsilon \\
\end{align*}
\]

The following are derivations in this grammar

\[
\begin{align*}
S & \Rightarrow \$Ca\# \Rightarrow \$aaC\# \Rightarrow \$aaE \Rightarrow \$aEa \Rightarrow \$Eaa \Rightarrow aa \\
S & \Rightarrow \$Ca\# \Rightarrow \$aaC\# \Rightarrow \$aaD\# \Rightarrow \$aDa\# \Rightarrow \$Daa\# \Rightarrow \$Caa\# \\
& \Rightarrow \$aaCa\# \Rightarrow \$aaaaC\# \Rightarrow \$aaaaE \Rightarrow \$aaaEa \Rightarrow \$aaEaa \\
& \Rightarrow \$aEaaa \Rightarrow \$Eaaaa \Rightarrow aaaa
\end{align*}
\]
Example

Consider the grammar G with $\Sigma = \{a\}$ with

\[
S \rightarrow S a C \# \mid a \mid \epsilon \\
Ca \rightarrow a a C \\
C \# \rightarrow D \# \mid E \\
D \rightarrow S \\
E \rightarrow \epsilon \\
D \rightarrow a D a \\
E \rightarrow a E a \\
E \rightarrow a a E \\
E \rightarrow a a a E \\
E \rightarrow a a a a E \\
E \rightarrow a a a a a E \\
E \rightarrow a a a a a a E
\]

The following are derivations in this grammar

\[
S \Rightarrow S a C \# \Rightarrow a a C \# \Rightarrow a a E \Rightarrow a E a \Rightarrow E a a a \Rightarrow a a
\]

\[
S \Rightarrow S a C \# \Rightarrow a a C \# \Rightarrow a a D \# \Rightarrow a D a \# \Rightarrow D a a \# \Rightarrow S C a a \#
\Rightarrow a a C a a \# \Rightarrow a a a a C \# \Rightarrow a a a a E \Rightarrow a a a E a \Rightarrow a a E a a
\Rightarrow a E a a a \Rightarrow E a a a a \Rightarrow a a a a
\]

$L(G) = \{a^i \mid i \text{ is a power of } 2\}$
Grammars for each task

- What is the expressive power of these grammars?
Grammars for each task

What is the expressive power of these grammars?

Restricting the types of rules, allows one to describe different aspects of natural languages
Grammars for each task

What is the expressive power of these grammars?

Restricting the types of rules, allows one to describe different aspects of natural languages.

These grammars form a hierarchy

Noam Chomsky
Type 0 Grammars

Definition
Type 0 grammars are those where the rules are of the form

\[\alpha \rightarrow \beta \]

where \(\alpha, \beta \in (\Sigma \cup V)^* \)

Example
Consider the grammar \(G \) with \(\Sigma = \{a\} \) with

\[
\begin{align*}
S & \rightarrow \$Ca\# \mid a \mid \epsilon \\
Ca & \rightarrow \text{aa}C \\
C\# & \rightarrow \text{D}\# \mid E \\
E & \rightarrow \epsilon \\
D & \rightarrow \$C \\
aD & \rightarrow \text{Da} \\
aE & \rightarrow \text{E}a
\end{align*}
\]
Theorem

L is recursively enumerable iff there is a type 0 grammar G such that $L = L(G)$.

Expressive Power of Type 0 Grammars
Expressive Power of Type 0 Grammars

Theorem

L is recursively enumerable iff there is a type 0 grammar G such that $L = L(G)$.

Thus, type 0 grammars are as powerful as Turing machines.
Type 1 Grammars

The rules in a type 1 grammar are of the form

\[\alpha \rightarrow \beta \]

where \(\alpha, \beta \in (\Sigma \cup V)^* \) and \(|\alpha| \leq |\beta| \).
The rules in a type 1 grammar are of the form

\[\alpha \rightarrow \beta \]

where \(\alpha, \beta \in (\Sigma \cup V)^* \) and \(|\alpha| \leq |\beta|\).

In every derivation, the length of the string never decreases.
Type 1 Grammars

The rules in a type 1 grammar are of the form

\[\alpha \rightarrow \beta \]

where \(\alpha, \beta \in (\Sigma \cup V)^* \) and \(|\alpha| \leq |\beta| \).
In every derivation, the length of the string never decreases.

Example
Consider the grammar \(G \) with \(\Sigma = \{a, b, c\} \), \(V = \{S, B, C, H\} \) and

\[
\begin{align*}
S &\rightarrow aSBC \mid aBC \\
HC &\rightarrow BC \\
bC &\rightarrow bc \\
CB &\rightarrow HB \\
aB &\rightarrow ab \\
CC &\rightarrow cc \\
HB &\rightarrow HC \\
bB &\rightarrow bb
\end{align*}
\]
Type 1 Grammars

The rules in a type 1 grammar are of the form

\[\alpha \rightarrow \beta \]

where \(\alpha, \beta \in (\Sigma \cup V)^* \) and \(|\alpha| \leq |\beta| \).

In every derivation, the length of the string never decreases.

Example
Consider the grammar \(G \) with \(\Sigma = \{a, b, c\} \), \(V = \{S, B, C, H\} \) and

\[
\begin{align*}
S & \rightarrow aSBC \mid aBC \\
HC & \rightarrow BC \\
bC & \rightarrow bc \\
CB & \rightarrow HB \\
aB & \rightarrow ab \\
bB & \rightarrow bb \\
HC & \rightarrow HC \\
cC & \rightarrow cc \\
\end{align*}
\]

\[L(G) = \{a^n b^n c^n \mid n \geq 0\} \]
Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form) G' such that $L(G) = L(G')$ and all the rules of G' are of the form

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

where $A \in V$ and $\beta \in (\Sigma \cup V)^*$
Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form) G' such that $L(G) = L(G')$ and all the rules of G' are of the form

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

where $A \in V$ and $\beta \in (\Sigma \cup V)^*$

So, rules of G' replace a variable A by β in the context $\alpha_1 \Box \alpha_2$.

Thus, the class of language described by Type 1 grammars are called context-sensitive languages.
Context Sensitivity

Normal Form for Type 1 grammars

For every Type 1 grammar G, there is a grammar (in normal form) G' such that $L(G) = L(G')$ and all the rules of G' are of the form

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

where $A \in V$ and $\beta \in (\Sigma \cup V)^*$

So, rules of G' replace a variable A by β in the context $\alpha_1 \Box \alpha_2$. Thus, the class of language described by Type 1 grammars are called context-sensitive languages.
Type 2 Grammars

The rules in a type 2 grammar are of the form

$$A \rightarrow \beta$$

where $A \in V$ and $\beta \in (\Sigma \cup V)^*$.

The rules in a type 2 grammar are of the form

$$A \rightarrow \beta$$

where \(A \in V\) and \(\beta \in (\Sigma \cup V)^*\).

Type 2 grammars describe context-free languages.
Type 2 Grammars

The rules in a type 2 grammar are of the form

$$A \rightarrow \beta$$

where $A \in V$ and $\beta \in (\Sigma \cup V)^*$. Type 2 grammars describe context-free languages.

Example
Consider G over $\Sigma = \{0, 1\}$ with rules

$$S \rightarrow \epsilon \mid 0S1$$
Type 2 Grammars

The rules in a type 2 grammar are of the form

\[A \rightarrow \beta \]

where \(A \in V \) and \(\beta \in (\Sigma \cup V)^* \). Type 2 grammars describe context-free languages.

Example
Consider \(G \) over \(\Sigma = \{0, 1\} \) with rules

\[S \rightarrow \epsilon | 0S1 \]

\(L(G) = \{0^n1^n | n \geq 0\} \)
The rules in a type 3 grammar are of the form

\[A \to aB \quad \text{or} \quad A \to a \]

where \(A, B \in V \) and \(a \in \Sigma \cup \{\epsilon\} \).
Type 3 Grammars

The rules in a type 3 grammar are of the form

\[A \rightarrow aB \quad \text{or} \quad A \rightarrow a \]

where \(A, B \in V \) and \(a \in \Sigma \cup \{\epsilon\} \).

Example
Consider the grammar over \(\Sigma = \{0, 1\} \) with rules

\[S \rightarrow 1S \mid 0A \quad A \rightarrow \epsilon \mid 1A \mid 0S \]
The rules in a type 3 grammar are of the form

\[A \rightarrow aB \quad \text{or} \quad A \rightarrow a \]

where \(A, B \in V \) and \(a \in \Sigma \cup \{\epsilon\} \).

Example

Consider the grammar over \(\Sigma = \{0, 1\} \) with rules

\[
S \rightarrow 1S \mid 0A \quad \quad A \rightarrow \epsilon \mid 1A \mid 0S
\]

\(L(G) = \{w \in \{0, 1\}^* \mid w \text{ has an odd number of } 0s\} \)
Proposition

L is regular iff there is a Type 3 grammar G such that $L = L(G)$.
Proposition

\(L \) is regular iff there is a Type 3 grammar \(G \) such that \(L = L(G) \).

Proof.

Let \(G = (V, \Sigma, R, S) \) be a type 3 grammar. Consider the NFA \(M = (Q, \Sigma, \delta, q_0, F) \) where

\[\delta(q_F, a) = \emptyset \text{ for all } a. \]
Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that $L = L(G)$.

Proof.

Let $G = (V, \Sigma, R, S)$ be a type 3 grammar. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ where

1. $Q = V \cup \{q_F\}$, where $q_F \notin V$
Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that $L = L(G)$.

Proof.
Let $G = (V, \Sigma, R, S)$ be a type 3 grammar. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = V \cup \{q_F\}$, where $q_F \notin V$
- $q_0 = S$
Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that $L = L(G)$.

Proof.

Let $G = (V, \Sigma, R, S)$ be a type 3 grammar. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = V \cup \{q_F\}$, where $q_F \notin V$
- $q_0 = S$
- $F = \{q_F\}$
Proposition

L is regular iff there is a Type 3 grammar G such that $L = L(G)$.

Proof.
Let $G = (V, \Sigma, R, S)$ be a type 3 grammar. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = V \cup \{q_F\}$, where $q_F \notin V$
- $q_0 = S$
- $F = \{q_F\}$
- $\delta(A, a) = \{B \mid A \rightarrow aB \in R\} \cup \{q_F \mid A \rightarrow a \in R\}$ for $A \in V$. And $\delta(q_F, a) = \emptyset$ for all a.

$\Rightarrow L(M) = L(G)$ as $\forall A \in V, \forall w \in \Sigma^*, A \Rightarrow_G w \iff q_F \in \hat{\Delta}(A, w)$.

\Leftarrow $L(M) = L(G)$ as $G = (V, \Sigma, R, S)$ is a type 3 grammar.
Type 3 Grammars and Regularity

Proposition

L is regular iff there is a Type 3 grammar G such that $L = L(G)$.

Proof.

Let $G = (V, \Sigma, R, S)$ be a type 3 grammar. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = V \cup \{q_F\}$, where $q_F \not\in V$
- $q_0 = S$
- $F = \{q_F\}$
- $\delta(A, a) = \{B \mid A \to aB \in R\} \cup \{q_F \mid A \to a \in R\}$ for $A \in V$. And $\delta(q_F, a) = \emptyset$ for all a.

$L(M) = L(G)$ as $\forall A \in V, \forall w \in \Sigma^*, A \xrightarrow{G} w$ iff $q_F \in \hat{\Delta}(A, w)$. \[\rightarrow\]
Proof (contd).
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a NFA recognizing L. Consider $G = (V, \Sigma, R, S)$ where
Proof (contd).

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a NFA recognizing L. Consider $G = (V, \Sigma, R, S)$ where

- $V = Q$
Proof (contd).

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a NFA recognizing L. Consider $G = (V, \Sigma, R, S)$ where

- $V = Q$
- $S = q_0$
Proof (contd).

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a NFA recognizing L. Consider $G = (V, \Sigma, R, S)$ where

- $V = Q$
- $S = q_0$
- $q_1 \rightarrow aq_2 \in R$ iff $q_2 \in \delta(q_1, a)$ and $q \rightarrow \epsilon \in R$ iff $q \in F$.

Thus, $L(M) = L(G)$.

□
Proof (contd).

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a NFA recognizing L. Consider $G = (V, \Sigma, R, S)$ where

- $V = Q$
- $S = q_0$
- $q_1 \rightarrow aq_2 \in R$ iff $q_2 \in \delta(q_1, a)$ and $q \rightarrow \epsilon \in R$ iff $q \in F$.

We can show, for any $q, q' \in Q$ and $w \in \Sigma^*$, $q' \in \hat{\Delta}(q, w)$ iff $q \Rightarrow_G^* wq'$. Thus, $L(M) = L(G)$. □
Grammars and their Languages

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Rules</th>
<th>Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 3</td>
<td>$A \rightarrow aB$ or $A \rightarrow a$</td>
<td>Regular</td>
</tr>
<tr>
<td>Type 2</td>
<td>$A \rightarrow \alpha$ $\alpha \rightarrow \beta$ with $</td>
<td>\alpha</td>
</tr>
<tr>
<td>Type 1</td>
<td>$\alpha \rightarrow \beta$</td>
<td>Context Sensitive</td>
</tr>
<tr>
<td>Type 0</td>
<td>$\alpha \rightarrow \beta$</td>
<td>Recursively Enumerable</td>
</tr>
</tbody>
</table>

In the above table, $\alpha, \beta \in (\Sigma \cup V)^*$, $A, B \in V$ and $a \in \Sigma \cup \{\epsilon\}$.
Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.
Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.
Chomsky Hierarchy

Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar.
Chomsky Hierarchy

Theorem
Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

Proof.
Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar ($L = \{0^n1^n \mid n \geq 0\}$),
Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

Proof.

Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar \((L = \{0^n1^n \mid n \geq 0\})\), a language that has a Type 1 grammar but no Type 2 grammar
Theorem

Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

Proof.
Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar \((L = \{0^n1^n \mid n \geq 0\}) \), a language that has a Type 1 grammar but no Type 2 grammar \((L = \{a^n b^n c^n \mid n \geq 0\}) \),
Theorem
Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

Proof.
Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.
Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar \((L = \{0^n1^n | n \geq 0\})\), a language that has a Type 1 grammar but no Type 2 grammar \((L = \{a^n b^n c^n | n \geq 0\})\), and a language with a Type 0 grammar but no Type 1 grammar. □
Overview of Languages

- **Regular Languages** (Type 3)
- **Context-Free Languages** (Type 2)
- **Context-Sensitive Languages** (Type 1)
- **Recursively Enumerable Languages** (Type 0)

Languages

- $L_{d, LBA}$
- L_{anbncn}
- L_{0n1n}

- Decidable
 - L_d, A_{TM}

- Recursively Enumerable
 - A_{TM}

- **Regular Languages** (Type 3)

- **Context-Free Languages** (Type 2)

- **Context-Sensitive Languages** (Type 1)

- **Recursively Enumerable Languages** (Type 0)