CSE 135: Introduction to Theory of Computation Pushdown Automata and Context Free Languages

Sungjin Im

University of California, Merced

03-12-2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

<ロ>

So far we considered automata with finite memory or machines with infinite memory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The stack can contain an unlimited number of characters.

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access
- The stack can contain an unlimited number of characters. But

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

can read/erase only the top of the stack: pop

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access
- The stack can contain an unlimited number of characters. But

- can read/erase only the top of the stack: pop
- can add to only the top of the stack: push

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access
- The stack can contain an unlimited number of characters. But
 - can read/erase only the top of the stack: pop
 - can add to only the top of the stack: push
- On longer inputs, automaton may have more items in the stack

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ An automaton can use the stack to recognize {0ⁿ1ⁿ}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• An automaton can use the stack to recognize $\{0^n1^n\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

On reading a 0, push it onto the stack

▶ An automaton can use the stack to recognize {0ⁿ1ⁿ}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- On reading a 0, push it onto the stack
- After the 0s, on reading each 1, pop a 0

• An automaton can use the stack to recognize $\{0^n 1^n\}$

- On reading a 0, push it onto the stack
- After the 0s, on reading each 1, pop a 0
- (If a 0 comes after a 1, reject)

▶ An automaton can use the stack to recognize {0ⁿ1ⁿ}

- On reading a 0, push it onto the stack
- After the 0s, on reading each 1, pop a 0
- (If a 0 comes after a 1, reject)
- If attempt to pop an empty stack, reject

▶ An automaton can use the stack to recognize {0ⁿ1ⁿ}

- On reading a 0, push it onto the stack
- After the 0s, on reading each 1, pop a 0
- (If a 0 comes after a 1, reject)
- If attempt to pop an empty stack, reject
- If stack not empty at the end, reject

▶ An automaton can use the stack to recognize {0ⁿ1ⁿ}

- On reading a 0, push it onto the stack
- After the 0s, on reading each 1, pop a 0
- (If a 0 comes after a 1, reject)
- If attempt to pop an empty stack, reject
- If stack not empty at the end, reject
- Else accept

 An automaton can use the stack to recognize balanced parenthesis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 An automaton can use the stack to recognize balanced parenthesis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ e.g. (())() is balanced, but ())() and (() are not

 An automaton can use the stack to recognize balanced parenthesis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack

 An automaton can use the stack to recognize balanced parenthesis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack

 An automaton can use the stack to recognize balanced parenthesis

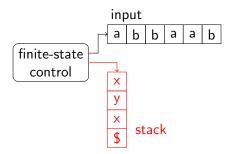
- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
 - If attempt to pop an empty stack, reject

 An automaton can use the stack to recognize balanced parenthesis

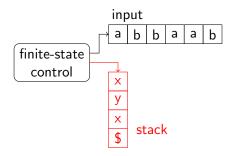
- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject

 An automaton can use the stack to recognize balanced parenthesis

- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject
 - Else accept

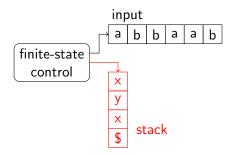


A Pushdown Automaton



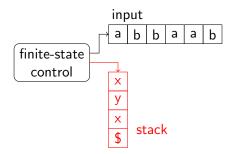
A Pushdown Automaton

• Like an NFA with ϵ -transitions, but with a stack



A Pushdown Automaton

- Like an NFA with ϵ -transitions, but with a stack
 - Stack depth unlimited: not a finite-state machine



A Pushdown Automaton

- Like an NFA with ϵ -transitions, but with a stack
 - Stack depth unlimited: not a finite-state machine
 - Non-deterministic: accepts if any thread of execution accepts

Has a non-deterministic finite-state control

Has a non-deterministic finite-state control

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

At every step:

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):

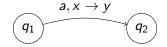
- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)

- Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - 1. push a symbol onto stack (or push none)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)

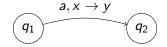
- Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - 1. push a symbol onto stack (or push none)
 - 2. change to a new state

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - 1. push a symbol onto stack (or push none)
 - 2. change to a new state



If at q_1 , with next input symbol *a* and top of stack *x*, then can consume *a*, pop *x*, push *y* onto stack and move to q_2

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - 1. push a symbol onto stack (or push none)
 - 2. change to a new state



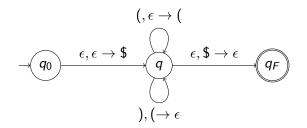
If at q_1 , with next input symbol *a* and top of stack *x*, then can consume *a*, pop *x*, push *y* onto stack and move to q_2 (any of a, x, y may be ϵ)

Pushdown Automata (PDA): Formal Definition

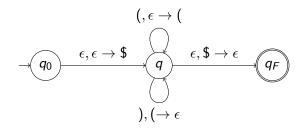
A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q = Finite set of states
- Σ = Finite input alphabet
- Γ = Finite stack alphabet
- ▶ q₀ = Start state
- $F \subseteq Q = \text{Accepting/final states}$
- $\blacktriangleright \ \delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\epsilon\}))$

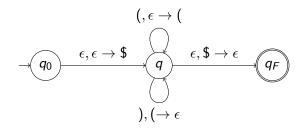
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

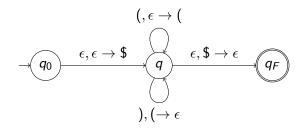


First push a "bottom-of-the-stack" symbol \$ and move to q



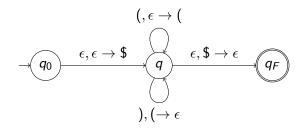
First push a "bottom-of-the-stack" symbol \$ and move to q

On seeing a (push it onto the stack



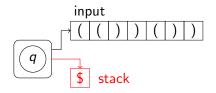
First push a "bottom-of-the-stack" symbol \$ and move to q

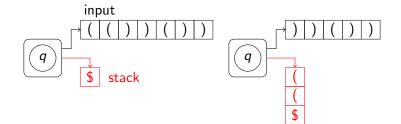
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack

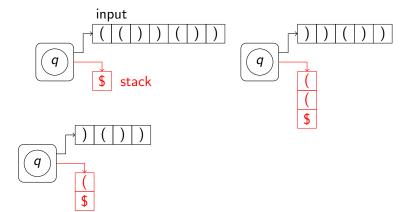


First push a "bottom-of-the-stack" symbol \$ and move to q

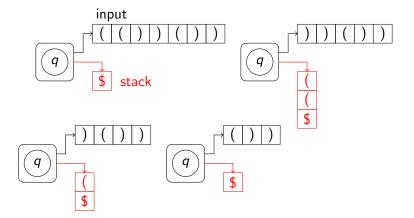
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack
- Pop \$ and move to final state q_F



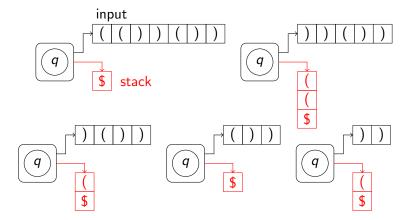




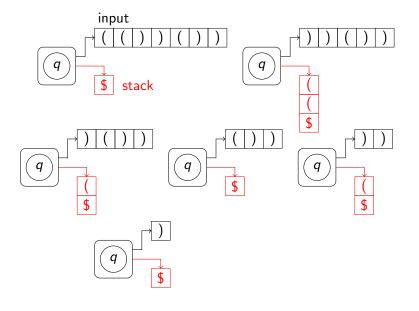
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

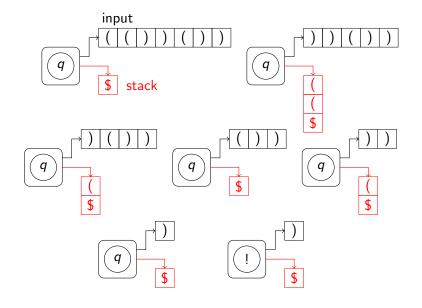


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

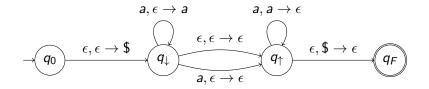


▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

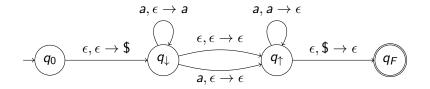




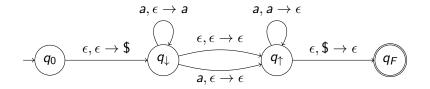
▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - 釣��



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

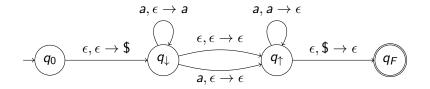


First push a "bottom-of-the-stack" symbol \$ and move to a pushing state



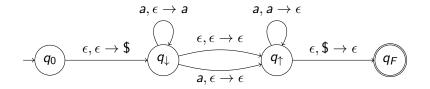
 First push a "bottom-of-the-stack" symbol \$ and move to a pushing state

Push input symbols onto the stack



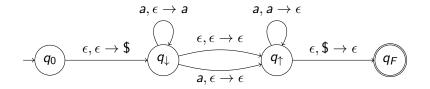
 First push a "bottom-of-the-stack" symbol \$ and move to a pushing state

- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)

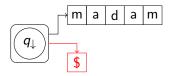


 First push a "bottom-of-the-stack" symbol \$ and move to a pushing state

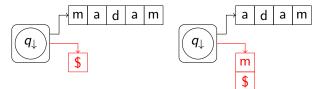
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop

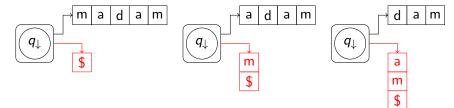


- First push a "bottom-of-the-stack" symbol \$ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop
- If \$ on top of stack move to accept state

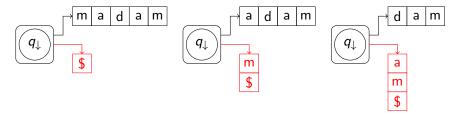


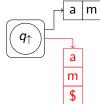
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

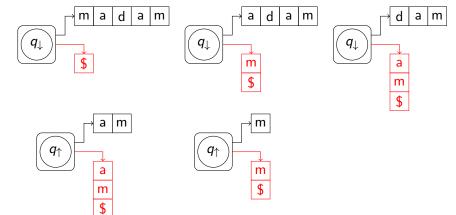


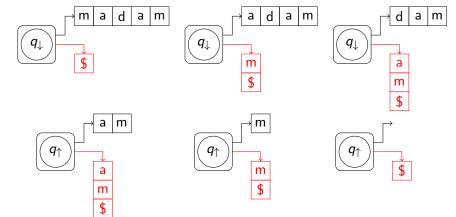


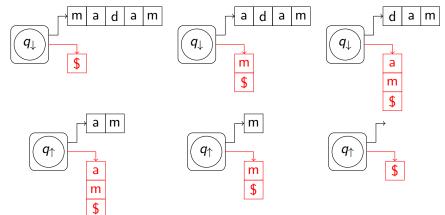
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ











▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ In the case of an NFA (or DFA), it is the state

- ▶ In the case of an NFA (or DFA), it is the state
- In the case of a TM, it is the state, head position, and tape contents

- ▶ In the case of an NFA (or DFA), it is the state
- In the case of a TM, it is the state, head position, and tape contents

In the case of a PDA, it is the state + stack contents

- ▶ In the case of an NFA (or DFA), it is the state
- In the case of a TM, it is the state, head position, and tape contents
- In the case of a PDA, it is the state + stack contents

Definition

An instantaneous description of a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a pair $\langle q, \sigma \rangle$, where $q \in Q$ and $\sigma \in \Gamma^*$

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

•
$$w = x_1 x_2 \cdots x_k$$

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

•
$$w = x_1 x_2 \cdots x_k$$

•
$$r_0 = q_1$$
, and $s_0 = \sigma_1$,

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots, \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

•
$$w = x_1 x_2 \cdots x_k$$

•
$$r_0 = q_1$$
, and $s_0 = \sigma_1$,

•
$$r_k = q_2$$
, and $s_k = \sigma_2$,

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots, \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

$$\blacktriangleright w = x_1 x_2 \cdots x_k$$

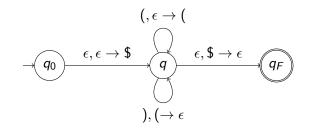
•
$$r_0=q_1$$
, and $s_0=\sigma_1$,

•
$$r_k = q_2$$
, and $s_k = \sigma_2$,

▶ for every *i*, $(r_{i+1}, b) \in \delta(r_i, x_{i+1}, a)$ such that $s_i = as$ and $s_{i+1} = bs$, where $a, b \in \Gamma \cup \{\epsilon\}$ and $s \in \Gamma^*$

Example of Computation

Example

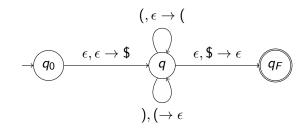


$$\langle q_0, \epsilon \rangle \xrightarrow{(())} \langle q, ((\$) \text{ because} \rangle$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ(?)

Example of Computation

Example



 $\langle q_0, \epsilon \rangle \xrightarrow{(()()} \langle q, ((\$) \text{ because})$ $\langle q_0, \epsilon \rangle \xrightarrow{x_1 = \epsilon} \langle q, \$ \rangle \xrightarrow{x_2 = (} \langle q, (\$) \xrightarrow{x_3 = (} \langle q, ((\$) \xrightarrow{x_4 =)} \langle q, (\$) \xrightarrow{x_5 = (} \langle q, ((\$) \xrightarrow{x_5 = (} \langle q, (() \xrightarrow{x_5 = (} \langle q, (() \xrightarrow{x_5 = (} \langle q, () \xrightarrow{x_5 = (} \land \xrightarrow{x_5 = (} \langle q, () \xrightarrow{x_5 = (} \land \xrightarrow{x_5 = (} \boxtimes \xrightarrow{x_5 = (} \land \xrightarrow{x_5 = (} \xrightarrow{x_5 = (} \boxtimes \xrightarrow{x_5 = (} \boxtimes \xrightarrow{x_5 = (} \xrightarrow{x_5 = (}$

ヘロト 人間ト 人間ト 人間ト

-

Definition A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$

Definition

The language recognized/accepted by a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is $L(P) = \{w \in \Sigma^* \mid P \text{ accepts } w\}.$

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$

Definition

The language recognized/accepted by a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is $L(P) = \{w \in \Sigma^* \mid P \text{ accepts } w\}$. A language L is said to be accepted/recognized by P if L = L(P).

CFGs and PDAs have equivalent expressive powers. More formally,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

. . .

CFGs and PDAs have equivalent expressive powers. More formally, \ldots

Theorem

For every CFG G, there is a PDA P such that L(G) = L(P). In addition, for every PDA P, there is a CFG G such that L(P) = L(G).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CFGs and PDAs have equivalent expressive powers. More formally, \ldots

Theorem

For every CFG G, there is a PDA P such that L(G) = L(P). In addition, for every PDA P, there is a CFG G such that L(P) = L(G). Thus, L is context-free iff there is a PDA P such that L = L(P).

CFGs and PDAs have equivalent expressive powers. More formally, \ldots

Theorem

For every CFG G, there is a PDA P such that L(G) = L(P). In addition, for every PDA P, there is a CFG G such that L(P) = L(G). Thus, L is context-free iff there is a PDA P such that L = L(P).

Proof.

Skipped.