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Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.
But

I can read/erase only the top of the stack: pop
I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack
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Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}

I On reading a 0, push it onto the stack
I After the 0s, on reading each 1, pop a 0
I (If a 0 comes after a 1, reject)
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept
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I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not

I On seeing a ( push it on the stack
I On seeing a ) pop a ( from the stack
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A Pushdown Automaton

I Like an NFA with ε-transitions, but with a stack
I Stack depth unlimited: not a finite-state machine
I Non-deterministic: accepts if any thread of execution accepts
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Pushdown Automata (PDA)

I Has a non-deterministic finite-state control

I At every step:
I Consume next input symbol (or none) and pop the top symbol

on stack (or none)
I Based on current state, consumed input symbol and popped

stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)
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Pushdown Automata (PDA): Formal Definition

A PDA P = (Q,Σ, Γ, δ, q0,F ) where

I Q = Finite set of states

I Σ = Finite input alphabet

I Γ = Finite stack alphabet

I q0 = Start state

I F ⊆ Q = Accepting/final states

I δ : Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q × (Γ ∪ {ε}))



Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a ( push it onto the stack

I On seeing a ) pop if a ( is in the stack

I Pop $ and move to final state qF



Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a ( push it onto the stack

I On seeing a ) pop if a ( is in the stack

I Pop $ and move to final state qF



Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a ( push it onto the stack

I On seeing a ) pop if a ( is in the stack

I Pop $ and move to final state qF



Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a ( push it onto the stack

I On seeing a ) pop if a ( is in the stack

I Pop $ and move to final state qF



Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a ( push it onto the stack

I On seeing a ) pop if a ( is in the stack

I Pop $ and move to final state qF



Matching Parenthesis: PDA execution

( ( ) ) ( ) )

$

q

input

stack

) ) ( ) )

(

(

$

q

) ( ) )

(

$

q

( ) )

$

q

) )

(

$

q

)

$

q

)

$

!



Matching Parenthesis: PDA execution

( ( ) ) ( ) )

$

q

input

stack

) ) ( ) )

(

(

$

q

) ( ) )

(

$

q

( ) )

$

q

) )

(

$

q

)

$

q

)

$

!



Matching Parenthesis: PDA execution

( ( ) ) ( ) )

$

q

input

stack

) ) ( ) )

(

(

$

q

) ( ) )

(

$

q

( ) )

$

q

) )

(

$

q

)

$

q

)

$

!



Matching Parenthesis: PDA execution

( ( ) ) ( ) )

$

q

input

stack

) ) ( ) )

(

(

$

q

) ( ) )

(

$

q

( ) )

$

q

) )

(

$

q

)

$

q

)

$

!



Matching Parenthesis: PDA execution

( ( ) ) ( ) )

$

q

input

stack

) ) ( ) )

(

(

$

q

) ( ) )

(

$

q

( ) )

$

q

) )

(

$

q

)

$

q

)

$

!



Matching Parenthesis: PDA execution

( ( ) ) ( ) )

$

q

input

stack

) ) ( ) )

(

(

$

q

) ( ) )

(

$

q

( ) )

$

q

) )

(

$

q

)

$

q

)

$

!



Matching Parenthesis: PDA execution

( ( ) ) ( ) )

$

q

input

stack

) ) ( ) )

(

(

$

q

) ( ) )

(

$

q

( ) )

$

q

) )

(

$

q

)

$

q

)

$

!



Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

I First push a “bottom-of-the-stack” symbol $ and move to a
pushing state

I Push input symbols onto the stack

I Non-deterministically move to a popping state (with or
without consuming a single input symbol)

I If next input symbol is same as top of stack, pop

I If $ on top of stack move to accept state
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Instantaneous Description

In order to describe a machine’s execution, we need to capture a
“snapshot” of the machine that completely determines future
behavior

I In the case of an NFA (or DFA), it is the state

I In the case of a TM, it is the state, head position, and tape
contents

I In the case of a PDA, it is the state + stack contents

Definition
An instantaneous description of a PDA P = (Q,Σ, Γ, δ, q0,F ) is a
pair 〈q, σ〉, where q ∈ Q and σ ∈ Γ∗
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Computation

Definition
For a PDA P = (Q,Σ, Γ, δ, q0,F ), string w ∈ Σ∗, and
instantaneous descriptions 〈q1, σ1〉 and 〈q2, σ2〉, we say
〈q1, σ1〉

w−→P 〈q2, σ2〉 iff there is a sequence of instanteous
descriptions 〈r0, s0〉, 〈r1, s1〉, . . . 〈rk , sk〉 and a sequence
x1, x2, . . . xk , where for each i , xi ∈ Σ ∪ {ε}, such that

I w = x1x2 · · · xk ,

I r0 = q1, and s0 = σ1,

I rk = q2, and sk = σ2,

I for every i , (ri+1, b) ∈ δ(ri , xi+1, a) such that si = as and
si+1 = bs, where a, b ∈ Γ ∪ {ε} and s ∈ Γ∗
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Acceptance/Recognition

Definition
A PDA P = (Q,Σ, Γ, δ, q0,F ) accepts a string w ∈ Σ∗ iff

for some
q ∈ F and σ ∈ Γ∗, 〈q0, ε〉

w−→P 〈q, σ〉

Definition
The language recognized/accepted by a PDA
P = (Q,Σ, Γ, δ, q0,F ) is L(P) = {w ∈ Σ∗ | P accepts w}. A
language L is said to be accepted/recognized by P if L = L(P).
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Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,
. . .

Theorem
For every CFG G , there is a PDA P such that L(G ) = L(P). In
addition, for every PDA P, there is a CFG G such that
L(P) = L(G ). Thus, L is context-free iff there is a PDA P such
that L = L(P).

Proof.
Skipped. �
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