
CSE 135: Introduction to Theory of Computation
Pushdown Automata and Context Free

Languages

Sungjin Im

University of California, Merced

03-12-2014

Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.
But

I can read/erase only the top of the stack: pop
I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack

Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.
But

I can read/erase only the top of the stack: pop
I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack

Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.
But

I can read/erase only the top of the stack: pop
I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack

Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.

But
I can read/erase only the top of the stack: pop
I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack

Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.
But

I can read/erase only the top of the stack: pop

I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack

Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.
But

I can read/erase only the top of the stack: pop
I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack

Restricted Infinite Memory: The Stack

I So far we considered automata with finite memory or
machines with infinite memory

I Today: automata with access to an infinite stack — infinite
memory but restricted access

I The stack can contain an unlimited number of characters.
But

I can read/erase only the top of the stack: pop
I can add to only the top of the stack: push

I On longer inputs, automaton may have more items in the
stack

Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}

I On reading a 0, push it onto the stack
I After the 0s, on reading each 1, pop a 0
I (If a 0 comes after a 1, reject)
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}
I On reading a 0, push it onto the stack

I After the 0s, on reading each 1, pop a 0
I (If a 0 comes after a 1, reject)
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}
I On reading a 0, push it onto the stack
I After the 0s, on reading each 1, pop a 0

I (If a 0 comes after a 1, reject)
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}
I On reading a 0, push it onto the stack
I After the 0s, on reading each 1, pop a 0
I (If a 0 comes after a 1, reject)

I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}
I On reading a 0, push it onto the stack
I After the 0s, on reading each 1, pop a 0
I (If a 0 comes after a 1, reject)
I If attempt to pop an empty stack, reject

I If stack not empty at the end, reject
I Else accept

Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}
I On reading a 0, push it onto the stack
I After the 0s, on reading each 1, pop a 0
I (If a 0 comes after a 1, reject)
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject

I Else accept

Keeping Count Using the Stack

I An automaton can use the stack to recognize {0n1n}
I On reading a 0, push it onto the stack
I After the 0s, on reading each 1, pop a 0
I (If a 0 comes after a 1, reject)
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Matching Parenthesis Using the Stack

I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not

I On seeing a (push it on the stack
I On seeing a) pop a (from the stack
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Matching Parenthesis Using the Stack

I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not

I On seeing a (push it on the stack
I On seeing a) pop a (from the stack
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Matching Parenthesis Using the Stack

I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not
I On seeing a (push it on the stack

I On seeing a) pop a (from the stack
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Matching Parenthesis Using the Stack

I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not
I On seeing a (push it on the stack
I On seeing a) pop a (from the stack

I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Matching Parenthesis Using the Stack

I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not
I On seeing a (push it on the stack
I On seeing a) pop a (from the stack
I If attempt to pop an empty stack, reject

I If stack not empty at the end, reject
I Else accept

Matching Parenthesis Using the Stack

I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not
I On seeing a (push it on the stack
I On seeing a) pop a (from the stack
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject

I Else accept

Matching Parenthesis Using the Stack

I An automaton can use the stack to recognize balanced
parenthesis

I e.g. (())() is balanced, but ())() and (() are not
I On seeing a (push it on the stack
I On seeing a) pop a (from the stack
I If attempt to pop an empty stack, reject
I If stack not empty at the end, reject
I Else accept

Pushdown Automata (PDA)

a b b a a b

x
y

x

$

finite-state
control

input

stack

A Pushdown Automaton

I Like an NFA with ε-transitions, but with a stack
I Stack depth unlimited: not a finite-state machine
I Non-deterministic: accepts if any thread of execution accepts

Pushdown Automata (PDA)

a b b a a b

x
y

x

$

finite-state
control

input

stack

A Pushdown Automaton

I Like an NFA with ε-transitions, but with a stack

I Stack depth unlimited: not a finite-state machine
I Non-deterministic: accepts if any thread of execution accepts

Pushdown Automata (PDA)

a b b a a b

x
y

x

$

finite-state
control

input

stack

A Pushdown Automaton

I Like an NFA with ε-transitions, but with a stack
I Stack depth unlimited: not a finite-state machine

I Non-deterministic: accepts if any thread of execution accepts

Pushdown Automata (PDA)

a b b a a b

x
y

x

$

finite-state
control

input

stack

A Pushdown Automaton

I Like an NFA with ε-transitions, but with a stack
I Stack depth unlimited: not a finite-state machine
I Non-deterministic: accepts if any thread of execution accepts

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control

I At every step:
I Consume next input symbol (or none) and pop the top symbol

on stack (or none)
I Based on current state, consumed input symbol and popped

stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none) and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none)

and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none) and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none) and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none) and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)

2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none) and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none) and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2

(any of
a, x , y may be ε)

Pushdown Automata (PDA)

I Has a non-deterministic finite-state control
I At every step:

I Consume next input symbol (or none) and pop the top symbol
on stack (or none)

I Based on current state, consumed input symbol and popped
stack symbol, do (non-deterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

q1 q2

a, x → y

If at q1, with next input symbol a and top of stack x , then can
consume a, pop x , push y onto stack and move to q2 (any of
a, x , y may be ε)

Pushdown Automata (PDA): Formal Definition

A PDA P = (Q,Σ, Γ, δ, q0,F) where

I Q = Finite set of states

I Σ = Finite input alphabet

I Γ = Finite stack alphabet

I q0 = Start state

I F ⊆ Q = Accepting/final states

I δ : Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q × (Γ ∪ {ε}))

Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a (push it onto the stack

I On seeing a) pop if a (is in the stack

I Pop $ and move to final state qF

Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a (push it onto the stack

I On seeing a) pop if a (is in the stack

I Pop $ and move to final state qF

Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a (push it onto the stack

I On seeing a) pop if a (is in the stack

I Pop $ and move to final state qF

Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a (push it onto the stack

I On seeing a) pop if a (is in the stack

I Pop $ and move to final state qF

Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

I First push a “bottom-of-the-stack” symbol $ and move to q

I On seeing a (push it onto the stack

I On seeing a) pop if a (is in the stack

I Pop $ and move to final state qF

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

)

$

q

)

$

!

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

)

$

q

)

$

!

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

)

$

q

)

$

!

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

)

$

q

)

$

!

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

)

$

q

)

$

!

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

)

$

q

)

$

!

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

)

$

q

)

$

!

Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

I First push a “bottom-of-the-stack” symbol $ and move to a
pushing state

I Push input symbols onto the stack

I Non-deterministically move to a popping state (with or
without consuming a single input symbol)

I If next input symbol is same as top of stack, pop

I If $ on top of stack move to accept state

Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

I First push a “bottom-of-the-stack” symbol $ and move to a
pushing state

I Push input symbols onto the stack

I Non-deterministically move to a popping state (with or
without consuming a single input symbol)

I If next input symbol is same as top of stack, pop

I If $ on top of stack move to accept state

Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

I First push a “bottom-of-the-stack” symbol $ and move to a
pushing state

I Push input symbols onto the stack

I Non-deterministically move to a popping state (with or
without consuming a single input symbol)

I If next input symbol is same as top of stack, pop

I If $ on top of stack move to accept state

Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

I First push a “bottom-of-the-stack” symbol $ and move to a
pushing state

I Push input symbols onto the stack

I Non-deterministically move to a popping state (with or
without consuming a single input symbol)

I If next input symbol is same as top of stack, pop

I If $ on top of stack move to accept state

Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

I First push a “bottom-of-the-stack” symbol $ and move to a
pushing state

I Push input symbols onto the stack

I Non-deterministically move to a popping state (with or
without consuming a single input symbol)

I If next input symbol is same as top of stack, pop

I If $ on top of stack move to accept state

Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

I First push a “bottom-of-the-stack” symbol $ and move to a
pushing state

I Push input symbols onto the stack

I Non-deterministically move to a popping state (with or
without consuming a single input symbol)

I If next input symbol is same as top of stack, pop

I If $ on top of stack move to accept state

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

Instantaneous Description

In order to describe a machine’s execution, we need to capture a
“snapshot” of the machine that completely determines future
behavior

I In the case of an NFA (or DFA), it is the state

I In the case of a TM, it is the state, head position, and tape
contents

I In the case of a PDA, it is the state + stack contents

Definition
An instantaneous description of a PDA P = (Q,Σ, Γ, δ, q0,F) is a
pair 〈q, σ〉, where q ∈ Q and σ ∈ Γ∗

Instantaneous Description

In order to describe a machine’s execution, we need to capture a
“snapshot” of the machine that completely determines future
behavior

I In the case of an NFA (or DFA), it is the state

I In the case of a TM, it is the state, head position, and tape
contents

I In the case of a PDA, it is the state + stack contents

Definition
An instantaneous description of a PDA P = (Q,Σ, Γ, δ, q0,F) is a
pair 〈q, σ〉, where q ∈ Q and σ ∈ Γ∗

Instantaneous Description

In order to describe a machine’s execution, we need to capture a
“snapshot” of the machine that completely determines future
behavior

I In the case of an NFA (or DFA), it is the state

I In the case of a TM, it is the state, head position, and tape
contents

I In the case of a PDA, it is the state + stack contents

Definition
An instantaneous description of a PDA P = (Q,Σ, Γ, δ, q0,F) is a
pair 〈q, σ〉, where q ∈ Q and σ ∈ Γ∗

Instantaneous Description

In order to describe a machine’s execution, we need to capture a
“snapshot” of the machine that completely determines future
behavior

I In the case of an NFA (or DFA), it is the state

I In the case of a TM, it is the state, head position, and tape
contents

I In the case of a PDA, it is the state + stack contents

Definition
An instantaneous description of a PDA P = (Q,Σ, Γ, δ, q0,F) is a
pair 〈q, σ〉, where q ∈ Q and σ ∈ Γ∗

Instantaneous Description

In order to describe a machine’s execution, we need to capture a
“snapshot” of the machine that completely determines future
behavior

I In the case of an NFA (or DFA), it is the state

I In the case of a TM, it is the state, head position, and tape
contents

I In the case of a PDA, it is the state + stack contents

Definition
An instantaneous description of a PDA P = (Q,Σ, Γ, δ, q0,F) is a
pair 〈q, σ〉, where q ∈ Q and σ ∈ Γ∗

Computation

Definition
For a PDA P = (Q,Σ, Γ, δ, q0,F), string w ∈ Σ∗, and
instantaneous descriptions 〈q1, σ1〉 and 〈q2, σ2〉, we say
〈q1, σ1〉

w−→P 〈q2, σ2〉 iff there is a sequence of instanteous
descriptions 〈r0, s0〉, 〈r1, s1〉, . . . 〈rk , sk〉 and a sequence
x1, x2, . . . xk , where for each i , xi ∈ Σ ∪ {ε}, such that

I w = x1x2 · · · xk ,

I r0 = q1, and s0 = σ1,

I rk = q2, and sk = σ2,

I for every i , (ri+1, b) ∈ δ(ri , xi+1, a) such that si = as and
si+1 = bs, where a, b ∈ Γ ∪ {ε} and s ∈ Γ∗

Computation

Definition
For a PDA P = (Q,Σ, Γ, δ, q0,F), string w ∈ Σ∗, and
instantaneous descriptions 〈q1, σ1〉 and 〈q2, σ2〉, we say
〈q1, σ1〉

w−→P 〈q2, σ2〉 iff there is a sequence of instanteous
descriptions 〈r0, s0〉, 〈r1, s1〉, . . . 〈rk , sk〉 and a sequence
x1, x2, . . . xk , where for each i , xi ∈ Σ ∪ {ε}, such that

I w = x1x2 · · · xk ,

I r0 = q1, and s0 = σ1,

I rk = q2, and sk = σ2,

I for every i , (ri+1, b) ∈ δ(ri , xi+1, a) such that si = as and
si+1 = bs, where a, b ∈ Γ ∪ {ε} and s ∈ Γ∗

Computation

Definition
For a PDA P = (Q,Σ, Γ, δ, q0,F), string w ∈ Σ∗, and
instantaneous descriptions 〈q1, σ1〉 and 〈q2, σ2〉, we say
〈q1, σ1〉

w−→P 〈q2, σ2〉 iff there is a sequence of instanteous
descriptions 〈r0, s0〉, 〈r1, s1〉, . . . 〈rk , sk〉 and a sequence
x1, x2, . . . xk , where for each i , xi ∈ Σ ∪ {ε}, such that

I w = x1x2 · · · xk ,

I r0 = q1, and s0 = σ1,

I rk = q2, and sk = σ2,

I for every i , (ri+1, b) ∈ δ(ri , xi+1, a) such that si = as and
si+1 = bs, where a, b ∈ Γ ∪ {ε} and s ∈ Γ∗

Computation

Definition
For a PDA P = (Q,Σ, Γ, δ, q0,F), string w ∈ Σ∗, and
instantaneous descriptions 〈q1, σ1〉 and 〈q2, σ2〉, we say
〈q1, σ1〉

w−→P 〈q2, σ2〉 iff there is a sequence of instanteous
descriptions 〈r0, s0〉, 〈r1, s1〉, . . . 〈rk , sk〉 and a sequence
x1, x2, . . . xk , where for each i , xi ∈ Σ ∪ {ε}, such that

I w = x1x2 · · · xk ,

I r0 = q1, and s0 = σ1,

I rk = q2, and sk = σ2,

I for every i , (ri+1, b) ∈ δ(ri , xi+1, a) such that si = as and
si+1 = bs, where a, b ∈ Γ ∪ {ε} and s ∈ Γ∗

Example of Computation

Example

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

〈q0, ε〉
(()(−→ 〈q, (($〉 because

〈q0, ε〉
x1=ε−→ 〈q, $〉 x2=(−→ 〈q, ($〉 x3=(−→ 〈q, (($〉 x4=)−→ 〈q, ($〉 x5=(−→ 〈q, (($〉

Example of Computation

Example

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

〈q0, ε〉
(()(−→ 〈q, (($〉 because

〈q0, ε〉
x1=ε−→ 〈q, $〉 x2=(−→ 〈q, ($〉 x3=(−→ 〈q, (($〉 x4=)−→ 〈q, ($〉 x5=(−→ 〈q, (($〉

Acceptance/Recognition

Definition
A PDA P = (Q,Σ, Γ, δ, q0,F) accepts a string w ∈ Σ∗ iff

for some
q ∈ F and σ ∈ Γ∗, 〈q0, ε〉

w−→P 〈q, σ〉

Definition
The language recognized/accepted by a PDA
P = (Q,Σ, Γ, δ, q0,F) is L(P) = {w ∈ Σ∗ | P accepts w}. A
language L is said to be accepted/recognized by P if L = L(P).

Acceptance/Recognition

Definition
A PDA P = (Q,Σ, Γ, δ, q0,F) accepts a string w ∈ Σ∗ iff for some
q ∈ F and σ ∈ Γ∗, 〈q0, ε〉

w−→P 〈q, σ〉

Definition
The language recognized/accepted by a PDA
P = (Q,Σ, Γ, δ, q0,F) is L(P) = {w ∈ Σ∗ | P accepts w}. A
language L is said to be accepted/recognized by P if L = L(P).

Acceptance/Recognition

Definition
A PDA P = (Q,Σ, Γ, δ, q0,F) accepts a string w ∈ Σ∗ iff for some
q ∈ F and σ ∈ Γ∗, 〈q0, ε〉

w−→P 〈q, σ〉

Definition
The language recognized/accepted by a PDA
P = (Q,Σ, Γ, δ, q0,F) is L(P) = {w ∈ Σ∗ | P accepts w}.

A
language L is said to be accepted/recognized by P if L = L(P).

Acceptance/Recognition

Definition
A PDA P = (Q,Σ, Γ, δ, q0,F) accepts a string w ∈ Σ∗ iff for some
q ∈ F and σ ∈ Γ∗, 〈q0, ε〉

w−→P 〈q, σ〉

Definition
The language recognized/accepted by a PDA
P = (Q,Σ, Γ, δ, q0,F) is L(P) = {w ∈ Σ∗ | P accepts w}. A
language L is said to be accepted/recognized by P if L = L(P).

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,
. . .

Theorem
For every CFG G , there is a PDA P such that L(G) = L(P). In
addition, for every PDA P, there is a CFG G such that
L(P) = L(G). Thus, L is context-free iff there is a PDA P such
that L = L(P).

Proof.
Skipped. �

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,
. . .

Theorem
For every CFG G , there is a PDA P such that L(G) = L(P). In
addition, for every PDA P, there is a CFG G such that
L(P) = L(G).

Thus, L is context-free iff there is a PDA P such
that L = L(P).

Proof.
Skipped. �

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,
. . .

Theorem
For every CFG G , there is a PDA P such that L(G) = L(P). In
addition, for every PDA P, there is a CFG G such that
L(P) = L(G). Thus, L is context-free iff there is a PDA P such
that L = L(P).

Proof.
Skipped. �

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,
. . .

Theorem
For every CFG G , there is a PDA P such that L(G) = L(P). In
addition, for every PDA P, there is a CFG G such that
L(P) = L(G). Thus, L is context-free iff there is a PDA P such
that L = L(P).

Proof.
Skipped. �

	Pushdown Automata
	Computing Using a Stack
	Definition
	Examples of Pushdown Automata

	Semantics of a PDA
	Computation
	Language Recognized
	Expressive Power

