CSE 135: Introduction to Theory of Computation Context-Free Languages and Ambiguity

Sungjin Im
University of California, Merced

03-10-2014

Context-Free Grammars

Definition
A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

Context-Free Grammars

Definition
A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

- V is a finite set of variables/non-terminals.

Context-Free Grammars

Definition
A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

- V is a finite set of variables/non-terminals.
- Σ is a finite set of terminals. Σ is disjoint from V.

Context-Free Grammars

Definition
A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

- V is a finite set of variables/non-terminals.
- Σ is a finite set of terminals. Σ is disjoint from V.
- R is a finite set of rules or productions of the form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$

Context-Free Grammars

Definition
A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

- V is a finite set of variables/non-terminals.
- Σ is a finite set of terminals. Σ is disjoint from V.
- R is a finite set of rules or productions of the form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$
- $S \in V$ is the start symbol

Context-Free Grammars

Definition
A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

- V is a finite set of variables/non-terminals.
- Σ is a finite set of terminals. Σ is disjoint from V.
- R is a finite set of rules or productions of the form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$
- $S \in V$ is the start symbol

Context-Free Grammars

Definition
A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

- V is a finite set of variables/non-terminals.
- Σ is a finite set of terminals. Σ is disjoint from V.
- R is a finite set of rules or productions of the form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$
- $S \in V$ is the start symbol

Conventions.

Context-Free Grammars

Definition

A context-free grammar (CFG) is $G=(V, \Sigma, R, S)$ where

- V is a finite set of variables/non-terminals.
- Σ is a finite set of terminals. Σ is disjoint from V.
- R is a finite set of rules or productions of the form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$
- $S \in V$ is the start symbol

Conventions.
V : uppercase; Σ : lowercase, numbers, special symbols; S : Var on the LHS of the topmost rule.

Example: Palindromes

Example

A string w is a palindrome if $w=w^{R}$.

Example: Palindromes

Example

A string w is a palindrome if $w=w^{R}$.
$G_{\text {pal }}=(\{S\},\{0,1\}, R, S)$ defines palindromes over $\{0,1\}$, where R is

$$
\begin{aligned}
& S \rightarrow \epsilon \\
& S \rightarrow 0 \\
& S \rightarrow 1 \\
& S \rightarrow 0 S 0 \\
& S \rightarrow 1 S 1
\end{aligned}
$$

Example: Palindromes

Example

A string w is a palindrome if $w=w^{R}$.
$G_{\text {pal }}=(\{S\},\{0,1\}, R, S)$ defines palindromes over $\{0,1\}$, where R is

$$
\begin{aligned}
& S \rightarrow \epsilon \\
& S \rightarrow 0 \\
& S \rightarrow 1 \\
& S \rightarrow 0 S 0 \\
& S \rightarrow 1 S 1
\end{aligned}
$$

Or more briefly, $R=\{S \rightarrow \epsilon|0| 1|0 S 0| 1 S 1\}$

Example: Palindromes

Can you tell what are variables, terminals, and the start symbol?

Example
$R=\{S \rightarrow \epsilon|0| 1|0 S 0| 1 S 1\}$

Language of a CFG

Derivations

Expand the start symbol using one of its rules. Further expand the resulting string by expanding one of the variables in the string, by the RHS of one of its rules. Repeat until you get a string of terminals.

Language of a CFG

Derivations

Expand the start symbol using one of its rules. Further expand the resulting string by expanding one of the variables in the string, by the RHS of one of its rules. Repeat until you get a string of terminals. For the grammar $G_{\text {pal }}=(\{S\},\{0,1\},\{S \rightarrow \epsilon|0| 1|0 S 0| 1 S 1\}, S)$ we have

$$
S \Rightarrow 0 S 0 \Rightarrow 00 S 00 \Rightarrow 001 S 100 \Rightarrow 0010100
$$

Formal Definition

Definition

Let $G=(V, \Sigma, R, S)$ be a CFG. We say $\alpha A \beta \Rightarrow_{G} \alpha \gamma \beta$, where $\alpha, \beta, \gamma \in(V \cup \Sigma)^{*}$ and $A \in V$ if $A \rightarrow \gamma$ is a rule of G.

Formal Definition

Definition

Let $G=(V, \Sigma, R, S)$ be a CFG. We say $\alpha A \beta \Rightarrow_{G} \alpha \gamma \beta$, where $\alpha, \beta, \gamma \in(V \cup \Sigma)^{*}$ and $A \in V$ if $A \rightarrow \gamma$ is a rule of G.
We say $\alpha \stackrel{*}{\Rightarrow} G \beta$ if either $\alpha=\beta$ or there are $\alpha_{0}, \alpha_{1}, \ldots \alpha_{n}$ such that

$$
\alpha=\alpha_{0} \Rightarrow_{G} \alpha_{1} \Rightarrow_{G} \alpha_{2} \Rightarrow_{G} \cdots \Rightarrow_{G} \alpha_{n}=\beta
$$

Formal Definition

Definition

Let $G=(V, \Sigma, R, S)$ be a CFG. We say $\alpha A \beta \Rightarrow_{G} \alpha \gamma \beta$, where $\alpha, \beta, \gamma \in(V \cup \Sigma)^{*}$ and $A \in V$ if $A \rightarrow \gamma$ is a rule of G.
We say $\alpha \stackrel{*}{\Rightarrow}{ }_{G} \beta$ if either $\alpha=\beta$ or there are $\alpha_{0}, \alpha_{1}, \ldots \alpha_{n}$ such that

$$
\alpha=\alpha_{0} \Rightarrow_{G} \alpha_{1} \Rightarrow_{G} \alpha_{2} \Rightarrow_{G} \cdots \Rightarrow_{G} \alpha_{n}=\beta
$$

Notation

When G is clear from the context, we will write \Rightarrow and $\stackrel{*}{\Rightarrow}$ instead of \Rightarrow_{G} and $\stackrel{*}{\Rightarrow} G$.

Formal Definition

Example
For the given CFG $R=\{S \rightarrow a S b|S S| \epsilon\}$, show a derivation of strings $a b a b, a a b a b b$.

Design CFGs

Example

Give a grammar for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\} \cup\left\{1^{n} 0^{n} \mid n \geq 0\right\}$

Design CFGs

Example

Give a grammar for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\} \cup\left\{1^{n} 0^{n} \mid n \geq 0\right\}$

$$
\left\{0^{n} 1^{n} \mid n \geq 0\right\}: \quad S_{1} \rightarrow 0 S_{1} 1 \mid \epsilon
$$

Design CFGs

Example

Give a grammar for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\} \cup\left\{1^{n} 0^{n} \mid n \geq 0\right\}$

$$
\begin{array}{ll}
\left\{0^{n} 1^{n} \mid n \geq 0\right\}: & S_{1} \rightarrow 0 S_{1} 1 \mid \epsilon \\
\left\{1^{n} 0^{n} \mid n \geq 0\right\}: & S_{2} \rightarrow 1 S_{2} 0 \mid \epsilon
\end{array}
$$

Design CFGs

Example

Give a grammar for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\} \cup\left\{1^{n} 0^{n} \mid n \geq 0\right\}$

$$
\begin{array}{ll}
\left\{0^{n} 1^{n} \mid n \geq 0\right\}: & S_{1} \rightarrow 0 S_{1} 1 \mid \epsilon \\
\left\{1^{n} 0^{n} \mid n \geq 0\right\}: & S_{2} \rightarrow 1 S_{2} 0 \mid \epsilon
\end{array}
$$

$$
\begin{aligned}
S & \rightarrow S_{1} \mid S_{2} \\
S_{1} & \rightarrow 0 S_{1} 1 \mid \epsilon \\
S_{2} & \rightarrow 1 S_{2} 0 \mid \epsilon
\end{aligned}
$$

Design CFGs

Example

Give a CFG for the language of all even-length binary strings

Design CFGs

Example

Give a CFG for the language of all even-length binary strings

$$
S \rightarrow S 00|S 01| S 10|S 11| \epsilon
$$

Design CFGs

Example

Give a CFG for the language of all binary strings ending with 111

Design CFGs

Example
Give a CFG for the language of all binary strings ending with 111

$$
\begin{aligned}
& S \rightarrow A 111 \\
& A \rightarrow A 0|A 1| \epsilon
\end{aligned}
$$

Context-Free Language

Definition

The language of CFG $G=(V, \Sigma, R, S)$, denoted $L(G)$ is the collection of strings over the terminals derivable from S using the rules in R. In other words,

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}
$$

Context-Free Language

Definition

The language of CFG $G=(V, \Sigma, R, S)$, denoted $L(G)$ is the collection of strings over the terminals derivable from S using the rules in R. In other words,

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}
$$

Definition

A language L is said to be context-free if there is a CFG G such that $L=L(G)$.

Palindromes Revisited

Recall, $L_{\text {pal }}=\left\{w \in\{0,1\}^{*} \mid w=w^{R}\right\}$ is the language of palindromes.

Palindromes Revisited

Recall, $L_{\text {pal }}=\left\{w \in\{0,1\}^{*} \mid w=w^{R}\right\}$ is the language of palindromes.
Consider $G_{\text {pal }}=(\{S\},\{0,1\}, R, S)$ defines palindromes over $\{0,1\}$, where $R=\{S \rightarrow \epsilon|0| 1|0 S 0| 1 S 1\}$

Palindromes Revisited

Recall, $L_{\text {pal }}=\left\{w \in\{0,1\}^{*} \mid w=w^{R}\right\}$ is the language of palindromes.
Consider $G_{\text {pal }}=(\{S\},\{0,1\}, R, S)$ defines palindromes over $\{0,1\}$, where $R=\{S \rightarrow \epsilon|0| 1|0 S 0| 1 S 1\}$

Proposition
$L\left(G_{\text {pal }}\right)=L_{\text {pal }}$

Proving Correctness of CFG

$L_{\mathrm{pal}} \subseteq L\left(G_{\mathrm{pal}}\right)$

Proof.
Let $w \in L_{\text {pal }}$. We prove that $S \stackrel{*}{\Rightarrow} w$

Proving Correctness of CFG

$L_{\mathrm{pal}} \subseteq L\left(G_{\mathrm{pal}}\right)$

Proof.

Let $w \in L_{\text {pal }}$. We prove that $S \stackrel{*}{\Rightarrow} w$ by induction on $|w|$.

Proving Correctness of CFG

$L_{\text {pal }} \subseteq L\left(G_{\text {pal }}\right)$

Proof.

Let $w \in L_{\text {pal }}$. We prove that $S \stackrel{*}{\Rightarrow} w$ by induction on $|w|$.

- Base Cases: If $|w|=0$ or $|w|=1$ then $w=\epsilon$ or 0 or 1 . And $S \rightarrow \epsilon|0| 1$.

Proving Correctness of CFG

 $L_{\text {pal }} \subseteq L\left(G_{\text {pal }}\right)$
Proof.

Let $w \in L_{\text {pal }}$. We prove that $S \stackrel{*}{\Rightarrow} w$ by induction on $|w|$.

- Base Cases: If $|w|=0$ or $|w|=1$ then $w=\epsilon$ or 0 or 1 . And $S \rightarrow \epsilon|0| 1$.
- Induction Step: If $|w| \geq 2$ and $w=w^{R}$ then it must begin and with the same symbol.

Proving Correctness of CFG

$L_{\text {pal }} \subseteq L\left(G_{\text {pal }}\right)$

Proof.

Let $w \in L_{\text {pal }}$. We prove that $S \stackrel{*}{\Rightarrow} w$ by induction on $|w|$.

- Base Cases: If $|w|=0$ or $|w|=1$ then $w=\epsilon$ or 0 or 1 . And $S \rightarrow \epsilon|0| 1$.
- Induction Step: If $|w| \geq 2$ and $w=w^{R}$ then it must begin and with the same symbol. Let $w=0 x 0$.

Proving Correctness of CFG

$L_{\text {pal }} \subseteq L\left(G_{\text {pal }}\right)$

Proof.

Let $w \in L_{\text {pal }}$. We prove that $S \stackrel{*}{\Rightarrow} w$ by induction on $|w|$.

- Base Cases: If $|w|=0$ or $|w|=1$ then $w=\epsilon$ or 0 or 1 . And $S \rightarrow \epsilon|0| 1$.
- Induction Step: If $|w| \geq 2$ and $w=w^{R}$ then it must begin and with the same symbol. Let $w=0 \times 0$. Now, $w^{R}=0 x^{R} 0=w=0 x 0$; thus, $x^{R}=x$.

Proving Correctness of CFG

$L_{\text {pal }} \subseteq L\left(G_{\text {pal }}\right)$

Proof.

Let $w \in L_{\text {pal }}$. We prove that $S \stackrel{*}{\Rightarrow} w$ by induction on $|w|$.

- Base Cases: If $|w|=0$ or $|w|=1$ then $w=\epsilon$ or 0 or 1 . And $S \rightarrow \epsilon|0| 1$.
- Induction Step: If $|w| \geq 2$ and $w=w^{R}$ then it must begin and with the same symbol. Let $w=0 x 0$. Now, $w^{R}=0 x^{R} 0=w=0 x 0$; thus, $x^{R}=x$. By induction hypothesis, $S \stackrel{*}{\Rightarrow} x$. Hence $S \Rightarrow 0 S 0 \stackrel{*}{\Rightarrow} 0 \times 0$. If $w=1 \times 1$ the argument is similar.

Proving Correctness of CFG

$L_{\text {pal }} \supseteq L\left(G_{\text {pal }}\right)$

Proof (contd).

Let $w \in L(G)$, i.e., $S \stackrel{*}{\Rightarrow} w$. We will show $w \in L_{\text {pal }}$

Proving Correctness of CFG

$\iota_{\text {pal }} \supseteq\left\llcorner\left(G_{\text {pal }}\right)\right.$

Proof (contd).
Let $w \in L(G)$, i.e., $S \stackrel{*}{\Rightarrow} w$. We will show $w \in L_{\text {pal }}$ by induction on the number of derivation steps.

Proving Correctness of CFG

$\iota_{\text {pal }} \supseteq\left\llcorner\left(G_{\text {pal }}\right)\right.$

Proof (contd).
Let $w \in L(G)$, i.e., $S \stackrel{*}{\Rightarrow} w$. We will show $w \in L_{\text {pal }}$ by induction on the number of derivation steps.

- Base Case: If the derivation has only one step then the derivation must be $S \Rightarrow \epsilon, S \Rightarrow 0$ or $S \Rightarrow 1$. Thus $w=\epsilon$ or 0 or 1 and is in $L_{\text {Pal }}$.

Proving Correctness of CFG

$\iota_{\text {pal }} \supseteq\left\llcorner\left(G_{\text {pal }}\right)\right.$

Proof (contd).
Let $w \in L(G)$, i.e., $S \stackrel{*}{\Rightarrow} w$. We will show $w \in L_{\text {pal }}$ by induction on the number of derivation steps.

- Base Case: If the derivation has only one step then the derivation must be $S \Rightarrow \epsilon, S \Rightarrow 0$ or $S \Rightarrow 1$. Thus $w=\epsilon$ or 0 or 1 and is in $L_{\text {Pal }}$.
- Induction Step: Consider an $(n+1)$-step derivation of w. It must be of the form $S \Rightarrow 0 S 0 \stackrel{*}{\Rightarrow} 0 \times 0=w$ or $S \Rightarrow 1 S 1 \stackrel{*}{\Rightarrow} 1 \times 1=w$.

Proving Correctness of CFG $L_{\text {pal }} \supseteq L\left(G_{\text {pal }}\right)$

Proof (contd).

Let $w \in L(G)$, i.e., $S \stackrel{*}{\Rightarrow} w$. We will show $w \in L_{\text {pal }}$ by induction on the number of derivation steps.

- Base Case: If the derivation has only one step then the derivation must be $S \Rightarrow \epsilon, S \Rightarrow 0$ or $S \Rightarrow 1$. Thus $w=\epsilon$ or 0 or 1 and is in $L_{\text {Pal }}$.
- Induction Step: Consider an $(n+1)$-step derivation of w. It must be of the form $S \Rightarrow 0 S 0 \stackrel{*}{\Rightarrow} 0 \times 0=w$ or $S \Rightarrow 1 S 1 \stackrel{*}{\Rightarrow} 1 \times 1=w$. In either case $S \stackrel{*}{\Rightarrow} x$ in n-steps. Hence $x \in L_{\text {Pal }}$ and so $w=w^{R}$.

Parse Trees

For CFG $G=(V, \Sigma, R, S)$, a parse tree (or derivation tree) of G is a tree satisfying the following conditions:

Example Parse Tree with yield 011110

Parse Trees

For CFG $G=(V, \Sigma, R, S)$, a parse tree (or derivation tree) of G is a tree satisfying the following conditions:

- Each interior node is labeled by a variable in V

Example Parse Tree with yield 011110

Parse Trees

For CFG $G=(V, \Sigma, R, S)$, a parse tree (or derivation tree) of G is a tree satisfying the following conditions:

- Each interior node is labeled by a variable in V
- Each leaf is labeled by either a variable, a terminal or ϵ; a leaf labeled by ϵ must be the only child of its parent.

Example Parse Tree with yield 011110

Parse Trees

For CFG $G=(V, \Sigma, R, S)$, a parse tree (or derivation tree) of G is a tree satisfying the following conditions:

- Each interior node is labeled by a variable in V
- Each leaf is labeled by either a variable, a terminal or ϵ; a leaf labeled by ϵ must be the only child of its parent.
- If an interior node labeled by A

with children labeled by
$X_{1}, X_{2}, \ldots X_{k}$ (from the left), then
$A \rightarrow X_{1} X_{2} \cdots X_{k}$ must be a rule.
Example Parse Tree with yield 011110

Parse Trees

For CFG $G=(V, \Sigma, R, S)$, a parse tree (or derivation tree) of G is a tree satisfying the following conditions:

- Each interior node is labeled by a variable in V
- Each leaf is labeled by either a variable, a terminal or ϵ; a leaf labeled by ϵ must be the only child of its parent.
- If an interior node labeled by A

with children labeled by
$X_{1}, X_{2}, \ldots X_{k}$ (from the left), then
Example Parse Tree with yield
$A \rightarrow X_{1} X_{2} \cdots X_{k}$ must be a rule. 011110
Yield of a parse tree is the concatenation of leaf labels (left-right)

Parse Trees and Derivations

Proposition
Let $G=(V, \Sigma, R, S)$ be a $C F G$. For any $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$, $A \stackrel{*}{\Rightarrow} \alpha$ iff there is a parse tree with root labeled A and whose yield is α.

Parse Trees and Derivations

Proposition

Let $G=(V, \Sigma, R, S)$ be a CFG. For any $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$, $A \stackrel{*}{\Rightarrow} \alpha$ iff there is a parse tree with root labeled A and whose yield is α.

Proof.
(\Rightarrow) : Proof by induction on the number of steps in the derivation.

- Base Case: If $A \Rightarrow \alpha$ then $A \rightarrow \alpha$ is a rule in G. There is a tree of height 1 , with root A and leaves the symbols in α.

Parse Tree for Base Case

Parse Trees for Derivations

Proof (contd).
(\Rightarrow) : Proof by induction on the number of steps in the derivation.

- Induction Step: Let $A \xlongequal{*} \alpha$ in $k+1$ steps.

Parse Trees for Derivations

Proof (contd).
(\Rightarrow) : Proof by induction on the number of steps in the derivation.

- Induction Step: Let $A \stackrel{*}{\Rightarrow} \alpha$ in $k+1$ steps.
- Then $A \stackrel{*}{\Rightarrow} \alpha_{1} X \alpha_{2} \Rightarrow \alpha_{1} \gamma \alpha_{2}=\alpha$, where $X \rightarrow X_{1} \cdots X_{n}=\gamma$ is a rule

Parse Trees for Derivations

Proof (contd).
(\Rightarrow) : Proof by induction on the number of steps in the derivation.

- Induction Step: Let $A \stackrel{*}{\Rightarrow} \alpha$ in $k+1$ steps.
- Then $A \stackrel{*}{\Rightarrow} \alpha_{1} X \alpha_{2} \Rightarrow \alpha_{1} \gamma \alpha_{2}=\alpha$, where $X \rightarrow X_{1} \cdots X_{n}=\gamma$ is a rule

- By ind. hyp., there is a tree with root A and yield $\alpha_{1} X \alpha_{2}$.

Parse Tree for Induction Step

Parse Trees for Derivations

Proof (contd).

(\Rightarrow) : Proof by induction on the number of steps in the derivation.

- Induction Step: Let $A \stackrel{*}{\Rightarrow} \alpha$ in $k+1$ steps.
- Then $A \stackrel{*}{\Rightarrow} \alpha_{1} X \alpha_{2} \Rightarrow \alpha_{1} \gamma \alpha_{2}=\alpha$, where $X \rightarrow X_{1} \cdots X_{n}=\gamma$ is a rule
- By ind. hyp., there is a tree with root A and yield $\alpha_{1} X \alpha_{2}$.
- Add leaves $X_{1}, \ldots X_{n}$ and make them children of X. New tree is a parse tree with desired yield.

Parse Tree for Induction Step

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) : Assume that there is a parse tree with root A and yield α. Need to show that $A \stackrel{*}{\Rightarrow} \alpha$.

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) : Assume that there is a parse tree with root A and yield α. Need to show that $A \stackrel{*}{\Rightarrow} \alpha$. Proof by induction on the number of internal nodes in the tree.

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) : Assume that there is a parse tree with root A and yield α. Need to show that $A \stackrel{*}{\Rightarrow} \alpha$. Proof by induction on the number of internal nodes in the tree.

- Base Case: If tree has only one internal node, then it has the form as in picture

Parse Tree with one internal node

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) : Assume that there is a parse tree with root A and yield α. Need to show that $A \stackrel{*}{\Rightarrow} \alpha$. Proof by induction on the number of internal nodes in the tree.

- Base Case: If tree has only one internal node, then it has the form as in picture

- Then, $\alpha=X_{1} \cdots X_{n}$ and $A \rightarrow \alpha$ is a rule. Thus, $A \stackrel{*}{\Rightarrow} \alpha$.

Parse Tree with one internal node

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) Induction Step: Suppose α is the yield of a tree with $k+1$ interior nodes. Let $X_{1}, X_{2}, \ldots X_{n}$ be the children of the root ordered from the left. Not all X_{i} are leaves, and $A \rightarrow X_{1} X_{2} \cdots X_{n}$ must be a rule.

Tree with $k+1$ internal nodes

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) Induction Step: Suppose α is the yield of a tree with $k+1$ interior nodes. Let $X_{1}, X_{2}, \ldots X_{n}$ be the children of the root ordered from the left. Not all X_{i} are leaves, and $A \rightarrow X_{1} X_{2} \cdots X_{n}$ must be a rule.

- Let α_{i} be the yield of the tree rooted at X_{i}; so X_{i} is a leaf $\alpha_{i}=X_{i}$

Tree with $k+1$ internal nodes

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) Induction Step: Suppose α is the yield of a tree with $k+1$ interior nodes. Let $X_{1}, X_{2}, \ldots X_{n}$ be the children of the root ordered from the left. Not all X_{i} are leaves, and $A \rightarrow X_{1} X_{2} \cdots X_{n}$ must be a rule.

- Let α_{i} be the yield of the tree rooted at X_{i}; so X_{i} is a leaf $\alpha_{i}=X_{i}$
- Now if $j<i$ then all the descendents of X_{j} are to the left of the descendents of X_{i}. So

$$
\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n} .
$$

Tree with $k+1$ internal nodes

Derivations for Parse Trees

Proof (contd).

(\Leftarrow) Induction Step: Suppose α is the yield of a tree with $k+1$ interior nodes.

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) Induction Step: Suppose α is the yield of a tree with $k+1$ interior nodes.

- Each subtree rooted at X_{i} has at most k internal nodes. So if X_{i} is a leaf $X_{i} \stackrel{*}{\Rightarrow} \alpha_{i}$ and if X_{i} is not a leaf then $X_{i} \stackrel{*}{\Rightarrow} \alpha_{i}$ (ind. hyp.).

Derivations for Parse Trees

Proof (contd).
(\Leftarrow) Induction Step: Suppose α is the yield of a tree with $k+1$ interior nodes.

- Each subtree rooted at X_{i} has at most k internal nodes. So if X_{i} is a leaf $X_{i} \stackrel{*}{\Rightarrow} \alpha_{i}$ and if X_{i} is not a leaf then $X_{i} \stackrel{*}{\Rightarrow} \alpha_{i}$ (ind. hyp.).
- Thus

$$
\begin{aligned}
& A \Rightarrow X_{1} X_{2} \cdots X_{n} \stackrel{*}{\Rightarrow} \alpha_{1} X_{2} \cdots X_{n} \stackrel{*}{\Rightarrow} \\
& \alpha_{1} \alpha_{2} \cdots X_{n} \stackrel{*}{\Rightarrow} \alpha_{1} \cdots \alpha_{n}=\alpha
\end{aligned}
$$

Recap ...

For a CFG G with variable A the following are equivalent 1. $A \stackrel{*}{\Rightarrow} w$
2. There is a parse tree with root A and yield w

Recap ...

For a CFG G with variable A the following are equivalent 1. $A \stackrel{*}{\Rightarrow} w$
2. There is a parse tree with root A and yield w

Context-free-ness
CFGs have the property that if $X \stackrel{*}{\Rightarrow} \gamma$ then $\alpha X \beta \stackrel{*}{\Rightarrow} \alpha \gamma \beta$

Example: English Sentences

English sentences can be described as

$$
\begin{aligned}
& \langle S\rangle \rightarrow\langle N P\rangle\langle V P\rangle \\
& \langle N P\rangle \rightarrow\langle C N\rangle \mid\langle C N\rangle\langle P P\rangle \\
& \langle V P\rangle \rightarrow\langle C V\rangle \mid\langle C V\rangle\langle P P\rangle \\
& \langle P P\rangle \rightarrow\langle P\rangle\langle C N\rangle \\
& \langle C N\rangle \rightarrow\langle A\rangle\langle N\rangle \\
& \langle C V\rangle \rightarrow\langle V\rangle \mid\langle V\rangle\langle N P\rangle \\
& \langle A\rangle \rightarrow \text { a } \mid \text { the } \\
& \langle N\rangle \rightarrow \text { boy } \mid \text { girl } \mid \text { bat } \\
& \langle V\rangle \rightarrow \text { hits } \mid \text { likes } \mid \text { sees } \\
& \langle P\rangle \rightarrow \text { with }
\end{aligned}
$$

Multiple Parse Trees

Example 1

The sentence "the girl hits the boy with the bat" has the following parse tree

Multiple Parse Trees

Example 1

The sentence "the girl hits the boy with the bat" has the following parse trees

Example: Arithmetic Expressions

Consider the language of all arithmetic expressions (E) built out of integers (N) and identifiers (I), using only + and $*$

Example: Arithmetic Expressions

Consider the language of all arithmetic expressions (E) built out of integers (N) and identifiers (I), using only + and $*$

$$
G_{\exp }=(\{E, I, N\},\{a, b, 0,1,(,),+, *,-\}, R, E) \text { where } R \text { is }
$$

$$
\begin{aligned}
& E \rightarrow I|N|-N|E+E| E * E \mid(E) \\
& I \rightarrow a|b| I a \mid I b \\
& N \rightarrow 0|1| N 0 \mid N 1
\end{aligned}
$$

Multiple Parse Trees

Example 2

The parse tree for expression $a+b * a$ in the grammar $G_{\exp }$ is

Multiple Parse Trees

Example 2

The parse trees for expression $a+b * a$ in the grammar $G_{\exp }$ is

Ambiguity

Definition
A grammar $G=(V, \Sigma, R, S)$ is said to be ambiguous if there is $w \in \Sigma^{*}$ for which there are two different parse trees.

Ambiguity

Definition
A grammar $G=(V, \Sigma, R, S)$ is said to be ambiguous if there is $w \in \Sigma^{*}$ for which there are two different parse trees.

Warning!

Existence of two derivations for a string does not mean the grammar is ambiguous!

Removing Ambiguity

Ambiguity maybe removed either by

Removing Ambiguity

Ambiguity maybe removed either by

- Using the semantics to change the rules.

Removing Ambiguity

Ambiguity maybe removed either by

- Using the semantics to change the rules. For example, if we knew who had the bat (the girl or the boy) from the context, we would know which is the right interpretation.

Removing Ambiguity

Ambiguity maybe removed either by

- Using the semantics to change the rules. For example, if we knew who had the bat (the girl or the boy) from the context, we would know which is the right interpretation.
- Adding precedence to operators.

Removing Ambiguity

Ambiguity maybe removed either by

- Using the semantics to change the rules. For example, if we knew who had the bat (the girl or the boy) from the context, we would know which is the right interpretation.
- Adding precedence to operators. For example, * binds more tightly than + , or "else" binds with the innermost "if".

An Example

Recall, $G_{\text {exp }}$ has the following rules

$$
\begin{aligned}
& E \rightarrow I|N|-N|E+E| E * E \mid(E) \\
& I \rightarrow a|b| l a \mid I b \\
& N \rightarrow 0|1| N 0 \mid N 1
\end{aligned}
$$

An Example

Recall, $G_{\text {exp }}$ has the following rules

$$
\begin{aligned}
& E \rightarrow I|N|-N|E+E| E * E \mid(E) \\
& I \rightarrow a|b| l a \mid I b \\
& N \rightarrow 0|1| N 0 \mid N 1
\end{aligned}
$$

New CFG $G_{\text {exp }}^{\prime}$ has the rules

$$
\begin{aligned}
& I \rightarrow a|b| l a \mid l b \\
& N \rightarrow 0|1| N 0 \mid N 1 \\
& F \rightarrow I|N|-N \mid(E) \\
& T \rightarrow F \mid T * F \\
& E \rightarrow T \mid E+T
\end{aligned}
$$

Ambiguity: Computational Problems

Removing Ambiguity
Problem: Given CFG G, find CFG G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$ and G^{\prime} is unambiguous.

Ambiguity: Computational Problems

Removing Ambiguity
Problem: Given CFG G, find CFG G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$ and G^{\prime} is unambiguous.
There is no algorithm that can solve the above problem!

Ambiguity: Computational Problems

Removing Ambiguity

Problem: Given CFG G, find CFG G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$ and G^{\prime} is unambiguous.
There is no algorithm that can solve the above problem!
Deciding Ambiguity
Problem: Given CFG G, determine if G is ambiguous.

Ambiguity: Computational Problems

Removing Ambiguity

Problem: Given CFG G, find CFG G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$ and G^{\prime} is unambiguous.
There is no algorithm that can solve the above problem!
Deciding Ambiguity
Problem: Given CFG G, determine if G is ambiguous.
The problem is undecidable.

Problem: Is it the case that for every CFG G, there is a grammar G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$ and G^{\prime} is unambiguous, even if G^{\prime} cannot be constructed algorithmically?

Inherently Ambiguous Languages

Problem: Is it the case that for every CFG G, there is a grammar G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$ and G^{\prime} is unambiguous, even if G^{\prime} cannot be constructed algorithmically? No! There are context-free languages L such that every grammar for L is ambiguous.

Inherently Ambiguous Languages

Problem: Is it the case that for every CFG G, there is a grammar G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$ and G^{\prime} is unambiguous, even if G^{\prime} cannot be constructed algorithmically?
No! There are context-free languages L such that every grammar for L is ambiguous.

Definition
A context-free language L is said to be inherently ambiguous if every grammar G for L is ambiguous.

Inherently Ambiguous Languages

An Example

Consider

$$
L=\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k\right\}
$$

Inherently Ambiguous Languages

An Example

Consider

$$
L=\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k\right\}
$$

One can show that any CFG G for L will have two parse trees on $a^{n} b^{n} c^{n}$, for all but finitely many values of n

Inherently Ambiguous Languages

An Example

Consider

$$
L=\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k\right\}
$$

One can show that any CFG G for L will have two parse trees on $a^{n} b^{n} c^{n}$, for all but finitely many values of n

- One that checks that number of a 's $=$ number of b 's

Inherently Ambiguous Languages

An Example

Consider

$$
L=\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k\right\}
$$

One can show that any CFG G for L will have two parse trees on $a^{n} b^{n} c^{n}$, for all but finitely many values of n

- One that checks that number of a 's $=$ number of b 's
- Another that checks that number of b 's = number of c 's

