
CSE 135: Introduction to Theory of Computation
Context-Free Languages and Ambiguity

Sungjin Im

University of California, Merced

03-10-2014

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.
V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.
V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.
V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.
V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.
V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.
V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.

V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Context-Free Grammars

Definition
A context-free grammar (CFG) is G = (V ,Σ,R,S) where

I V is a finite set of variables/non-terminals.

I Σ is a finite set of terminals. Σ is disjoint from V .

I R is a finite set of rules or productions of the form A→ α
where A ∈ V and α ∈ (V ∪ Σ)∗

I S ∈ V is the start symbol

Conventions.
V : uppercase; Σ: lowercase, numbers, special symbols; S : Var on
the LHS of the topmost rule.

Example: Palindromes

Example

A string w is a palindrome if w = wR .

Gpal = ({S}, {0, 1},R,S) defines palindromes over {0, 1}, where R
is

S → ε
S → 0
S → 1
S → 0S0
S → 1S1

Or more briefly, R = {S → ε | 0 | 1 | 0S0 | 1S1}

Example: Palindromes

Example

A string w is a palindrome if w = wR .
Gpal = ({S}, {0, 1},R,S) defines palindromes over {0, 1}, where R
is

S → ε
S → 0
S → 1
S → 0S0
S → 1S1

Or more briefly, R = {S → ε | 0 | 1 | 0S0 | 1S1}

Example: Palindromes

Example

A string w is a palindrome if w = wR .
Gpal = ({S}, {0, 1},R,S) defines palindromes over {0, 1}, where R
is

S → ε
S → 0
S → 1
S → 0S0
S → 1S1

Or more briefly, R = {S → ε | 0 | 1 | 0S0 | 1S1}

Example: Palindromes
Can you tell what are variables, terminals, and the start symbol?

Example

R = {S → ε | 0 | 1 | 0S0 | 1S1}

Language of a CFG
Derivations

Expand the start symbol using one of its rules. Further expand the
resulting string by expanding one of the variables in the string, by
the RHS of one of its rules. Repeat until you get a string of
terminals.

For the grammar
Gpal = ({S}, {0, 1}, {S → ε | 0 | 1 | 0S0 | 1S1},S) we have

S ⇒ 0S0⇒ 00S00⇒ 001S100⇒ 0010100

Language of a CFG
Derivations

Expand the start symbol using one of its rules. Further expand the
resulting string by expanding one of the variables in the string, by
the RHS of one of its rules. Repeat until you get a string of
terminals. For the grammar
Gpal = ({S}, {0, 1}, {S → ε | 0 | 1 | 0S0 | 1S1}, S) we have

S ⇒ 0S0⇒ 00S00⇒ 001S100⇒ 0010100

Formal Definition

Definition
Let G = (V ,Σ,R,S) be a CFG. We say αAβ ⇒G αγβ, where
α, β, γ ∈ (V ∪ Σ)∗ and A ∈ V if A→ γ is a rule of G .

We say α
∗⇒G β if either α = β or there are α0, α1, . . . αn such that

α = α0 ⇒G α1 ⇒G α2 ⇒G · · · ⇒G αn = β

Notation
When G is clear from the context, we will write ⇒ and

∗⇒ instead
of ⇒G and

∗⇒G .

Formal Definition

Definition
Let G = (V ,Σ,R,S) be a CFG. We say αAβ ⇒G αγβ, where
α, β, γ ∈ (V ∪ Σ)∗ and A ∈ V if A→ γ is a rule of G .

We say α
∗⇒G β if either α = β or there are α0, α1, . . . αn such that

α = α0 ⇒G α1 ⇒G α2 ⇒G · · · ⇒G αn = β

Notation
When G is clear from the context, we will write ⇒ and

∗⇒ instead
of ⇒G and

∗⇒G .

Formal Definition

Definition
Let G = (V ,Σ,R,S) be a CFG. We say αAβ ⇒G αγβ, where
α, β, γ ∈ (V ∪ Σ)∗ and A ∈ V if A→ γ is a rule of G .

We say α
∗⇒G β if either α = β or there are α0, α1, . . . αn such that

α = α0 ⇒G α1 ⇒G α2 ⇒G · · · ⇒G αn = β

Notation
When G is clear from the context, we will write ⇒ and

∗⇒ instead
of ⇒G and

∗⇒G .

Formal Definition

Example

For the given CFG R = {S → aSb | SS | ε}, show a derivation of
strings abab, aababb.

Design CFGs

Example

Give a grammar for the language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}

{0n1n | n ≥ 0} : S1 → 0S11 | ε

{1n0n | n ≥ 0} : S2 → 1S20 | ε

S → S1 | S2
S1 → 0S11 | ε
S2 → 1S20 | ε

Design CFGs

Example

Give a grammar for the language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}

{0n1n | n ≥ 0} : S1 → 0S11 | ε

{1n0n | n ≥ 0} : S2 → 1S20 | ε

S → S1 | S2
S1 → 0S11 | ε
S2 → 1S20 | ε

Design CFGs

Example

Give a grammar for the language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}

{0n1n | n ≥ 0} : S1 → 0S11 | ε

{1n0n | n ≥ 0} : S2 → 1S20 | ε

S → S1 | S2
S1 → 0S11 | ε
S2 → 1S20 | ε

Design CFGs

Example

Give a grammar for the language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}

{0n1n | n ≥ 0} : S1 → 0S11 | ε

{1n0n | n ≥ 0} : S2 → 1S20 | ε

S → S1 | S2
S1 → 0S11 | ε
S2 → 1S20 | ε

Design CFGs

Example

Give a CFG for the language of all even-length binary strings

S → S00 | S01 | S10 | S11 | ε

Design CFGs

Example

Give a CFG for the language of all even-length binary strings

S → S00 | S01 | S10 | S11 | ε

Design CFGs

Example

Give a CFG for the language of all binary strings ending with 111

S → A111

A → A0 | A1 | ε

Design CFGs

Example

Give a CFG for the language of all binary strings ending with 111

S → A111

A → A0 | A1 | ε

Context-Free Language

Definition
The language of CFG G = (V ,Σ,R,S), denoted L(G) is the
collection of strings over the terminals derivable from S using the
rules in R. In other words,

L(G) = {w ∈ Σ∗ | S ∗⇒ w}

Definition
A language L is said to be context-free if there is a CFG G such
that L = L(G).

Context-Free Language

Definition
The language of CFG G = (V ,Σ,R,S), denoted L(G) is the
collection of strings over the terminals derivable from S using the
rules in R. In other words,

L(G) = {w ∈ Σ∗ | S ∗⇒ w}

Definition
A language L is said to be context-free if there is a CFG G such
that L = L(G).

Palindromes Revisited

Recall, Lpal = {w ∈ {0, 1}∗ | w = wR} is the language of
palindromes.

Consider Gpal = ({S}, {0, 1},R,S) defines palindromes over
{0, 1}, where R = {S → ε | 0 | 1 | 0S0 | 1S1}

Proposition

L(Gpal) = Lpal

Palindromes Revisited

Recall, Lpal = {w ∈ {0, 1}∗ | w = wR} is the language of
palindromes.
Consider Gpal = ({S}, {0, 1},R,S) defines palindromes over
{0, 1}, where R = {S → ε | 0 | 1 | 0S0 | 1S1}

Proposition

L(Gpal) = Lpal

Palindromes Revisited

Recall, Lpal = {w ∈ {0, 1}∗ | w = wR} is the language of
palindromes.
Consider Gpal = ({S}, {0, 1},R,S) defines palindromes over
{0, 1}, where R = {S → ε | 0 | 1 | 0S0 | 1S1}

Proposition

L(Gpal) = Lpal

Proving Correctness of CFG
Lpal ⊆ L(Gpal)

Proof.
Let w ∈ Lpal. We prove that S

∗⇒ w

by induction on |w |.
I Base Cases: If |w | = 0 or |w | = 1 then w = ε or 0 or 1. And

S → ε | 0 | 1.

I Induction Step: If |w | ≥ 2 and w = wR then it must begin
and with the same symbol. Let w = 0x0. Now,
wR = 0xR0 = w = 0x0; thus, xR = x . By induction
hypothesis, S

∗⇒ x . Hence S ⇒ 0S0
∗⇒ 0x0. If w = 1x1 the

argument is similar. ··→

Proving Correctness of CFG
Lpal ⊆ L(Gpal)

Proof.
Let w ∈ Lpal. We prove that S

∗⇒ w by induction on |w |.

I Base Cases: If |w | = 0 or |w | = 1 then w = ε or 0 or 1. And
S → ε | 0 | 1.

I Induction Step: If |w | ≥ 2 and w = wR then it must begin
and with the same symbol. Let w = 0x0. Now,
wR = 0xR0 = w = 0x0; thus, xR = x . By induction
hypothesis, S

∗⇒ x . Hence S ⇒ 0S0
∗⇒ 0x0. If w = 1x1 the

argument is similar. ··→

Proving Correctness of CFG
Lpal ⊆ L(Gpal)

Proof.
Let w ∈ Lpal. We prove that S

∗⇒ w by induction on |w |.
I Base Cases: If |w | = 0 or |w | = 1 then w = ε or 0 or 1. And

S → ε | 0 | 1.

I Induction Step: If |w | ≥ 2 and w = wR then it must begin
and with the same symbol. Let w = 0x0. Now,
wR = 0xR0 = w = 0x0; thus, xR = x . By induction
hypothesis, S

∗⇒ x . Hence S ⇒ 0S0
∗⇒ 0x0. If w = 1x1 the

argument is similar. ··→

Proving Correctness of CFG
Lpal ⊆ L(Gpal)

Proof.
Let w ∈ Lpal. We prove that S

∗⇒ w by induction on |w |.
I Base Cases: If |w | = 0 or |w | = 1 then w = ε or 0 or 1. And

S → ε | 0 | 1.

I Induction Step: If |w | ≥ 2 and w = wR then it must begin
and with the same symbol.

Let w = 0x0. Now,
wR = 0xR0 = w = 0x0; thus, xR = x . By induction
hypothesis, S

∗⇒ x . Hence S ⇒ 0S0
∗⇒ 0x0. If w = 1x1 the

argument is similar. ··→

Proving Correctness of CFG
Lpal ⊆ L(Gpal)

Proof.
Let w ∈ Lpal. We prove that S

∗⇒ w by induction on |w |.
I Base Cases: If |w | = 0 or |w | = 1 then w = ε or 0 or 1. And

S → ε | 0 | 1.

I Induction Step: If |w | ≥ 2 and w = wR then it must begin
and with the same symbol. Let w = 0x0.

Now,
wR = 0xR0 = w = 0x0; thus, xR = x . By induction
hypothesis, S

∗⇒ x . Hence S ⇒ 0S0
∗⇒ 0x0. If w = 1x1 the

argument is similar. ··→

Proving Correctness of CFG
Lpal ⊆ L(Gpal)

Proof.
Let w ∈ Lpal. We prove that S

∗⇒ w by induction on |w |.
I Base Cases: If |w | = 0 or |w | = 1 then w = ε or 0 or 1. And

S → ε | 0 | 1.

I Induction Step: If |w | ≥ 2 and w = wR then it must begin
and with the same symbol. Let w = 0x0. Now,
wR = 0xR0 = w = 0x0; thus, xR = x .

By induction
hypothesis, S

∗⇒ x . Hence S ⇒ 0S0
∗⇒ 0x0. If w = 1x1 the

argument is similar. ··→

Proving Correctness of CFG
Lpal ⊆ L(Gpal)

Proof.
Let w ∈ Lpal. We prove that S

∗⇒ w by induction on |w |.
I Base Cases: If |w | = 0 or |w | = 1 then w = ε or 0 or 1. And

S → ε | 0 | 1.

I Induction Step: If |w | ≥ 2 and w = wR then it must begin
and with the same symbol. Let w = 0x0. Now,
wR = 0xR0 = w = 0x0; thus, xR = x . By induction
hypothesis, S

∗⇒ x . Hence S ⇒ 0S0
∗⇒ 0x0. If w = 1x1 the

argument is similar. ··→

Proving Correctness of CFG
Lpal ⊇ L(Gpal)

Proof (contd).

Let w ∈ L(G), i.e., S
∗⇒ w . We will show w ∈ Lpal

by induction
on the number of derivation steps.

I Base Case: If the derivation has only one step then the
derivation must be S ⇒ ε, S ⇒ 0 or S ⇒ 1. Thus w = ε or 0
or 1 and is in LPal.

I Induction Step: Consider an (n + 1)-step derivation of w . It

must be of the form S ⇒ 0S0
∗⇒ 0x0 = w or

S ⇒ 1S1
∗⇒ 1x1 = w . In either case S

∗⇒ x in n-steps. Hence
x ∈ LPal and so w = wR . �

Proving Correctness of CFG
Lpal ⊇ L(Gpal)

Proof (contd).

Let w ∈ L(G), i.e., S
∗⇒ w . We will show w ∈ Lpal by induction

on the number of derivation steps.

I Base Case: If the derivation has only one step then the
derivation must be S ⇒ ε, S ⇒ 0 or S ⇒ 1. Thus w = ε or 0
or 1 and is in LPal.

I Induction Step: Consider an (n + 1)-step derivation of w . It

must be of the form S ⇒ 0S0
∗⇒ 0x0 = w or

S ⇒ 1S1
∗⇒ 1x1 = w . In either case S

∗⇒ x in n-steps. Hence
x ∈ LPal and so w = wR . �

Proving Correctness of CFG
Lpal ⊇ L(Gpal)

Proof (contd).

Let w ∈ L(G), i.e., S
∗⇒ w . We will show w ∈ Lpal by induction

on the number of derivation steps.

I Base Case: If the derivation has only one step then the
derivation must be S ⇒ ε, S ⇒ 0 or S ⇒ 1. Thus w = ε or 0
or 1 and is in LPal.

I Induction Step: Consider an (n + 1)-step derivation of w . It

must be of the form S ⇒ 0S0
∗⇒ 0x0 = w or

S ⇒ 1S1
∗⇒ 1x1 = w . In either case S

∗⇒ x in n-steps. Hence
x ∈ LPal and so w = wR . �

Proving Correctness of CFG
Lpal ⊇ L(Gpal)

Proof (contd).

Let w ∈ L(G), i.e., S
∗⇒ w . We will show w ∈ Lpal by induction

on the number of derivation steps.

I Base Case: If the derivation has only one step then the
derivation must be S ⇒ ε, S ⇒ 0 or S ⇒ 1. Thus w = ε or 0
or 1 and is in LPal.

I Induction Step: Consider an (n + 1)-step derivation of w . It

must be of the form S ⇒ 0S0
∗⇒ 0x0 = w or

S ⇒ 1S1
∗⇒ 1x1 = w .

In either case S
∗⇒ x in n-steps. Hence

x ∈ LPal and so w = wR . �

Proving Correctness of CFG
Lpal ⊇ L(Gpal)

Proof (contd).

Let w ∈ L(G), i.e., S
∗⇒ w . We will show w ∈ Lpal by induction

on the number of derivation steps.

I Base Case: If the derivation has only one step then the
derivation must be S ⇒ ε, S ⇒ 0 or S ⇒ 1. Thus w = ε or 0
or 1 and is in LPal.

I Induction Step: Consider an (n + 1)-step derivation of w . It

must be of the form S ⇒ 0S0
∗⇒ 0x0 = w or

S ⇒ 1S1
∗⇒ 1x1 = w . In either case S

∗⇒ x in n-steps. Hence
x ∈ LPal and so w = wR . �

Parse Trees

For CFG G = (V ,Σ,R,S), a parse tree (or derivation tree) of G is
a tree satisfying the following conditions:

I Each interior node is labeled by a
variable in V

I Each leaf is labeled by either a
variable, a terminal or ε; a leaf
labeled by ε must be the only child
of its parent.

I If an interior node labeled by A
with children labeled by
X1,X2, . . .Xk (from the left), then
A→ X1X2 · · ·Xk must be a rule.

S

0 S

1 S

1 S

ε

1

1

0

Example Parse Tree with yield

011110

Yield of a parse tree is the concatenation of leaf labels (left–right)

Parse Trees

For CFG G = (V ,Σ,R,S), a parse tree (or derivation tree) of G is
a tree satisfying the following conditions:

I Each interior node is labeled by a
variable in V

I Each leaf is labeled by either a
variable, a terminal or ε; a leaf
labeled by ε must be the only child
of its parent.

I If an interior node labeled by A
with children labeled by
X1,X2, . . .Xk (from the left), then
A→ X1X2 · · ·Xk must be a rule.

S

0 S

1 S

1 S

ε

1

1

0

Example Parse Tree with yield

011110

Yield of a parse tree is the concatenation of leaf labels (left–right)

Parse Trees

For CFG G = (V ,Σ,R,S), a parse tree (or derivation tree) of G is
a tree satisfying the following conditions:

I Each interior node is labeled by a
variable in V

I Each leaf is labeled by either a
variable, a terminal or ε; a leaf
labeled by ε must be the only child
of its parent.

I If an interior node labeled by A
with children labeled by
X1,X2, . . .Xk (from the left), then
A→ X1X2 · · ·Xk must be a rule.

S

0 S

1 S

1 S

ε

1

1

0

Example Parse Tree with yield

011110

Yield of a parse tree is the concatenation of leaf labels (left–right)

Parse Trees

For CFG G = (V ,Σ,R,S), a parse tree (or derivation tree) of G is
a tree satisfying the following conditions:

I Each interior node is labeled by a
variable in V

I Each leaf is labeled by either a
variable, a terminal or ε; a leaf
labeled by ε must be the only child
of its parent.

I If an interior node labeled by A
with children labeled by
X1,X2, . . .Xk (from the left), then
A→ X1X2 · · ·Xk must be a rule.

S

0 S

1 S

1 S

ε

1

1

0

Example Parse Tree with yield

011110

Yield of a parse tree is the concatenation of leaf labels (left–right)

Parse Trees

For CFG G = (V ,Σ,R,S), a parse tree (or derivation tree) of G is
a tree satisfying the following conditions:

I Each interior node is labeled by a
variable in V

I Each leaf is labeled by either a
variable, a terminal or ε; a leaf
labeled by ε must be the only child
of its parent.

I If an interior node labeled by A
with children labeled by
X1,X2, . . .Xk (from the left), then
A→ X1X2 · · ·Xk must be a rule.

S

0 S

1 S

1 S

ε

1

1

0

Example Parse Tree with yield

011110

Yield of a parse tree is the concatenation of leaf labels (left–right)

Parse Trees and Derivations

Proposition

Let G = (V ,Σ,R,S) be a CFG. For any A ∈ V and α ∈ (V ∪Σ)∗,

A
∗⇒ α iff there is a parse tree with root labeled A and whose yield

is α.

Proof.
(⇒): Proof by induction on the number of steps in the derivation.

I Base Case: If A⇒ α then A→ α
is a rule in G . There is a tree of
height 1, with root A and leaves
the symbols in α. ··→

A

α1 α2 · · · αn

Parse Tree for Base Case

Parse Trees and Derivations

Proposition

Let G = (V ,Σ,R,S) be a CFG. For any A ∈ V and α ∈ (V ∪Σ)∗,

A
∗⇒ α iff there is a parse tree with root labeled A and whose yield

is α.

Proof.
(⇒): Proof by induction on the number of steps in the derivation.

I Base Case: If A⇒ α then A→ α
is a rule in G . There is a tree of
height 1, with root A and leaves
the symbols in α. ··→

A

α1 α2 · · · αn

Parse Tree for Base Case

Parse Trees for Derivations

Proof (contd).

(⇒): Proof by induction on the number of steps in the derivation.

I Induction Step: Let A
∗⇒ α in

k + 1 steps.

I Then A
∗⇒ α1Xα2 ⇒ α1γα2 = α,

where X → X1 · · ·Xn = γ is a rule

I By ind. hyp., there is a tree with
root A and yield α1Xα2.

I Add leaves X1, . . .Xn and make
them children of X . New tree is a
parse tree with desired yield. ··→

A

α1 X α2

γ

Parse Tree for Induction Step

Parse Trees for Derivations

Proof (contd).

(⇒): Proof by induction on the number of steps in the derivation.

I Induction Step: Let A
∗⇒ α in

k + 1 steps.

I Then A
∗⇒ α1Xα2 ⇒ α1γα2 = α,

where X → X1 · · ·Xn = γ is a rule

I By ind. hyp., there is a tree with
root A and yield α1Xα2.

I Add leaves X1, . . .Xn and make
them children of X . New tree is a
parse tree with desired yield. ··→

A

α1 X α2

γ

Parse Tree for Induction Step

Parse Trees for Derivations

Proof (contd).

(⇒): Proof by induction on the number of steps in the derivation.

I Induction Step: Let A
∗⇒ α in

k + 1 steps.

I Then A
∗⇒ α1Xα2 ⇒ α1γα2 = α,

where X → X1 · · ·Xn = γ is a rule

I By ind. hyp., there is a tree with
root A and yield α1Xα2.

I Add leaves X1, . . .Xn and make
them children of X . New tree is a
parse tree with desired yield. ··→

A

α1 X α2

γ

Parse Tree for Induction Step

Parse Trees for Derivations

Proof (contd).

(⇒): Proof by induction on the number of steps in the derivation.

I Induction Step: Let A
∗⇒ α in

k + 1 steps.

I Then A
∗⇒ α1Xα2 ⇒ α1γα2 = α,

where X → X1 · · ·Xn = γ is a rule

I By ind. hyp., there is a tree with
root A and yield α1Xα2.

I Add leaves X1, . . .Xn and make
them children of X . New tree is a
parse tree with desired yield. ··→

A

α1 X α2

γ

Parse Tree for Induction Step

Derivations for Parse Trees

Proof (contd).

(⇐): Assume that there is a parse tree with root A and yield α.

Need to show that A
∗⇒ α.

Proof by induction on the number of
internal nodes in the tree.

I Base Case: If tree has only one
internal node, then it has the form
as in picture

I Then, α = X1 · · ·Xn and A→ α is
a rule. Thus, A

∗⇒ α.

A

α1 α2 · · · αn

Parse Tree with one internal

node

··→

Derivations for Parse Trees

Proof (contd).

(⇐): Assume that there is a parse tree with root A and yield α.

Need to show that A
∗⇒ α. Proof by induction on the number of

internal nodes in the tree.

I Base Case: If tree has only one
internal node, then it has the form
as in picture

I Then, α = X1 · · ·Xn and A→ α is
a rule. Thus, A

∗⇒ α.

A

α1 α2 · · · αn

Parse Tree with one internal

node

··→

Derivations for Parse Trees

Proof (contd).

(⇐): Assume that there is a parse tree with root A and yield α.

Need to show that A
∗⇒ α. Proof by induction on the number of

internal nodes in the tree.

I Base Case: If tree has only one
internal node, then it has the form
as in picture

I Then, α = X1 · · ·Xn and A→ α is
a rule. Thus, A

∗⇒ α.

A

α1 α2 · · · αn

Parse Tree with one internal

node
··→

Derivations for Parse Trees

Proof (contd).

(⇐): Assume that there is a parse tree with root A and yield α.

Need to show that A
∗⇒ α. Proof by induction on the number of

internal nodes in the tree.

I Base Case: If tree has only one
internal node, then it has the form
as in picture

I Then, α = X1 · · ·Xn and A→ α is
a rule. Thus, A

∗⇒ α.

A

α1 α2 · · · αn

Parse Tree with one internal

node
··→

Derivations for Parse Trees

Proof (contd).

(⇐) Induction Step: Suppose α is the yield of a tree with k + 1
interior nodes. Let X1,X2, . . .Xn be the children of the root
ordered from the left. Not all Xi are leaves, and A→ X1X2 · · ·Xn

must be a rule.

I Let αi be the yield of the tree
rooted at Xi ; so Xi is a leaf αi = Xi

I Now if j < i then all the
descendents of Xj are to the left of
the descendents of Xi . So
α = α1α2 · · ·αn. ··→

A

X1 X2 · · · Xn

· · ·

α1 α2 αn

Tree with k+1 internal nodes

Derivations for Parse Trees

Proof (contd).

(⇐) Induction Step: Suppose α is the yield of a tree with k + 1
interior nodes. Let X1,X2, . . .Xn be the children of the root
ordered from the left. Not all Xi are leaves, and A→ X1X2 · · ·Xn

must be a rule.

I Let αi be the yield of the tree
rooted at Xi ; so Xi is a leaf αi = Xi

I Now if j < i then all the
descendents of Xj are to the left of
the descendents of Xi . So
α = α1α2 · · ·αn. ··→

A

X1 X2 · · · Xn

· · ·

α1 α2 αn

Tree with k+1 internal nodes

Derivations for Parse Trees

Proof (contd).

(⇐) Induction Step: Suppose α is the yield of a tree with k + 1
interior nodes. Let X1,X2, . . .Xn be the children of the root
ordered from the left. Not all Xi are leaves, and A→ X1X2 · · ·Xn

must be a rule.

I Let αi be the yield of the tree
rooted at Xi ; so Xi is a leaf αi = Xi

I Now if j < i then all the
descendents of Xj are to the left of
the descendents of Xi . So
α = α1α2 · · ·αn. ··→

A

X1 X2 · · · Xn

· · ·

α1 α2 αn

Tree with k+1 internal nodes

Derivations for Parse Trees

Proof (contd).

(⇐) Induction Step: Suppose α is the yield of a tree with k + 1
interior nodes.

I Each subtree rooted at Xi has at
most k internal nodes. So if Xi is a
leaf Xi

∗⇒ αi and if Xi is not a leaf
then Xi

∗⇒ αi (ind. hyp.).

I Thus
A⇒ X1X2 · · ·Xn

∗⇒ α1X2 · · ·Xn
∗⇒

α1α2 · · ·Xn
∗⇒ α1 · · ·αn = α �

A

X1 X2 · · · Xn

· · ·

α1 α2 αn

Derivations for Parse Trees

Proof (contd).

(⇐) Induction Step: Suppose α is the yield of a tree with k + 1
interior nodes.

I Each subtree rooted at Xi has at
most k internal nodes. So if Xi is a
leaf Xi

∗⇒ αi and if Xi is not a leaf
then Xi

∗⇒ αi (ind. hyp.).

I Thus
A⇒ X1X2 · · ·Xn

∗⇒ α1X2 · · ·Xn
∗⇒

α1α2 · · ·Xn
∗⇒ α1 · · ·αn = α �

A

X1 X2 · · · Xn

· · ·

α1 α2 αn

Derivations for Parse Trees

Proof (contd).

(⇐) Induction Step: Suppose α is the yield of a tree with k + 1
interior nodes.

I Each subtree rooted at Xi has at
most k internal nodes. So if Xi is a
leaf Xi

∗⇒ αi and if Xi is not a leaf
then Xi

∗⇒ αi (ind. hyp.).

I Thus
A⇒ X1X2 · · ·Xn

∗⇒ α1X2 · · ·Xn
∗⇒

α1α2 · · ·Xn
∗⇒ α1 · · ·αn = α �

A

X1 X2 · · · Xn

· · ·

α1 α2 αn

Recap . . .

For a CFG G with variable A the following are equivalent

1. A
∗⇒ w

2. There is a parse tree with root A and yield w

Context-free-ness
CFGs have the property that if X

∗⇒ γ then αXβ
∗⇒ αγβ

Recap . . .

For a CFG G with variable A the following are equivalent

1. A
∗⇒ w

2. There is a parse tree with root A and yield w

Context-free-ness
CFGs have the property that if X

∗⇒ γ then αXβ
∗⇒ αγβ

Example: English Sentences

English sentences can be described as

〈S〉 → 〈NP〉〈VP〉
〈NP〉 → 〈CN〉 | 〈CN〉〈PP〉
〈VP〉 → 〈CV 〉 | 〈CV 〉〈PP〉
〈PP〉 → 〈P〉〈CN〉
〈CN〉 → 〈A〉〈N〉
〈CV 〉 → 〈V 〉 | 〈V 〉〈NP〉
〈A〉 → a | the
〈N〉 → boy | girl | bat
〈V 〉 → hits | likes | sees
〈P〉 → with

:
sentence; ¡NP¿: Noun-Phrase; ¡VP¿: Verb-Phrase; ¡CN¿:
Complex-Noun; ¡PP¿: Prepositional-Phrase; ¡CV¿: Complex-Verb

Multiple Parse Trees
Example 1

The sentence “the girl hits the boy with the bat” has the following
parse tree

s

〈S〉

〈NP〉

〈CN〉

〈A〉

the

〈N〉

girl

〈VP〉

〈V 〉

hits

〈NP〉

〈CN〉

〈A〉

the

〈N〉

boy

〈PP〉

〈P〉

with

〈CN〉

〈A〉

the

〈N〉

bat

〈S〉

〈NP〉

〈CN〉

〈A〉

the

〈N〉

girl

〈VP〉

〈CV 〉

〈V 〉

hits

〈NP〉

〈CN〉

〈A〉

the

〈N〉

boy

〈PP〉

〈P〉

with

〈CN〉

〈A〉

the

〈N〉

bat

Multiple Parse Trees
Example 1

The sentence “the girl hits the boy with the bat” has the following
parse trees

〈S〉

〈NP〉

〈CN〉

〈A〉

the

〈N〉

girl

〈VP〉

〈V 〉

hits

〈NP〉

〈CN〉

〈A〉

the

〈N〉

boy

〈PP〉

〈P〉

with

〈CN〉

〈A〉

the

〈N〉

bat

〈S〉

〈NP〉

〈CN〉

〈A〉

the

〈N〉

girl

〈VP〉

〈CV 〉

〈V 〉

hits

〈NP〉

〈CN〉

〈A〉

the

〈N〉

boy

〈PP〉

〈P〉

with

〈CN〉

〈A〉

the

〈N〉

bat

Example: Arithmetic Expressions

Consider the language of all arithmetic expressions (E) built out of
integers (N) and identifiers (I), using only + and ∗

Gexp = ({E , I ,N}, {a, b, 0, 1, (,),+, ∗,−},R,E) where R is

E → I | N | − N | E + E | E ∗ E | (E)
I → a | b | Ia | Ib
N → 0 | 1 | N0 | N1

Example: Arithmetic Expressions

Consider the language of all arithmetic expressions (E) built out of
integers (N) and identifiers (I), using only + and ∗
Gexp = ({E , I ,N}, {a, b, 0, 1, (,),+, ∗,−},R,E) where R is

E → I | N | − N | E + E | E ∗ E | (E)
I → a | b | Ia | Ib
N → 0 | 1 | N0 | N1

Multiple Parse Trees
Example 2

The parse tree

s

for expression a + b ∗ a in the grammar Gexp is

E

E

I

a

+ E

E

I

b

∗ E

I

a

E

E

E

I

a

+ E

I

b

∗ E

I

a

Multiple Parse Trees
Example 2

The parse trees for expression a + b ∗ a in the grammar Gexp is

E

E

I

a

+ E

E

I

b

∗ E

I

a

E

E

E

I

a

+ E

I

b

∗ E

I

a

Ambiguity

Definition
A grammar G = (V ,Σ,R, S) is said to be ambiguous if there is
w ∈ Σ∗ for which there are two different parse trees.

Warning!

Existence of two derivations for a string does not mean the
grammar is ambiguous!

Ambiguity

Definition
A grammar G = (V ,Σ,R, S) is said to be ambiguous if there is
w ∈ Σ∗ for which there are two different parse trees.

Warning!

Existence of two derivations for a string does not mean the
grammar is ambiguous!

Removing Ambiguity

Ambiguity maybe removed either by

I Using the semantics to change the rules.

For example, if we
knew who had the bat (the girl or the boy) from the context,
we would know which is the right interpretation.

I Adding precedence to operators.

For example, ∗ binds more
tightly than +, or “else” binds with the innermost “if”.

Removing Ambiguity

Ambiguity maybe removed either by

I Using the semantics to change the rules.

For example, if we
knew who had the bat (the girl or the boy) from the context,
we would know which is the right interpretation.

I Adding precedence to operators.

For example, ∗ binds more
tightly than +, or “else” binds with the innermost “if”.

Removing Ambiguity

Ambiguity maybe removed either by

I Using the semantics to change the rules. For example, if we
knew who had the bat (the girl or the boy) from the context,
we would know which is the right interpretation.

I Adding precedence to operators.

For example, ∗ binds more
tightly than +, or “else” binds with the innermost “if”.

Removing Ambiguity

Ambiguity maybe removed either by

I Using the semantics to change the rules. For example, if we
knew who had the bat (the girl or the boy) from the context,
we would know which is the right interpretation.

I Adding precedence to operators.

For example, ∗ binds more
tightly than +, or “else” binds with the innermost “if”.

Removing Ambiguity

Ambiguity maybe removed either by

I Using the semantics to change the rules. For example, if we
knew who had the bat (the girl or the boy) from the context,
we would know which is the right interpretation.

I Adding precedence to operators. For example, ∗ binds more
tightly than +, or “else” binds with the innermost “if”.

An Example

Recall, Gexp has the following rules

E → I | N | − N | E + E | E ∗ E | (E)
I → a | b | Ia | Ib
N → 0 | 1 | N0 | N1

New CFG G ′exp has the
rules

I → a | b | Ia | Ib
N → 0 | 1 | N0 | N1
F → I | N | − N | (E)
T → F | T ∗ F
E → T | E + T

An Example

Recall, Gexp has the following rules

E → I | N | − N | E + E | E ∗ E | (E)
I → a | b | Ia | Ib
N → 0 | 1 | N0 | N1

New CFG G ′exp has the
rules

I → a | b | Ia | Ib
N → 0 | 1 | N0 | N1
F → I | N | − N | (E)
T → F | T ∗ F
E → T | E + T

Ambiguity: Computational Problems

Removing Ambiguity

Problem: Given CFG G , find CFG G ′ such that L(G) = L(G ′) and
G ′ is unambiguous.

There is no algorithm that can solve the above problem!

Deciding Ambiguity

Problem: Given CFG G , determine if G is ambiguous.
The problem is undecidable.

Ambiguity: Computational Problems

Removing Ambiguity

Problem: Given CFG G , find CFG G ′ such that L(G) = L(G ′) and
G ′ is unambiguous.
There is no algorithm that can solve the above problem!

Deciding Ambiguity

Problem: Given CFG G , determine if G is ambiguous.
The problem is undecidable.

Ambiguity: Computational Problems

Removing Ambiguity

Problem: Given CFG G , find CFG G ′ such that L(G) = L(G ′) and
G ′ is unambiguous.
There is no algorithm that can solve the above problem!

Deciding Ambiguity

Problem: Given CFG G , determine if G is ambiguous.

The problem is undecidable.

Ambiguity: Computational Problems

Removing Ambiguity

Problem: Given CFG G , find CFG G ′ such that L(G) = L(G ′) and
G ′ is unambiguous.
There is no algorithm that can solve the above problem!

Deciding Ambiguity

Problem: Given CFG G , determine if G is ambiguous.
The problem is undecidable.

Inherently Ambiguous Languages

Problem: Is it the case that for every CFG G , there is a grammar
G ′ such that L(G) = L(G ′) and G ′ is unambiguous, even if G ′

cannot be constructed algorithmically?

No! There are context-free languages L such that every grammar
for L is ambiguous.

Definition
A context-free language L is said to be inherently ambiguous if
every grammar G for L is ambiguous.

Inherently Ambiguous Languages

Problem: Is it the case that for every CFG G , there is a grammar
G ′ such that L(G) = L(G ′) and G ′ is unambiguous, even if G ′

cannot be constructed algorithmically?
No! There are context-free languages L such that every grammar
for L is ambiguous.

Definition
A context-free language L is said to be inherently ambiguous if
every grammar G for L is ambiguous.

Inherently Ambiguous Languages

Problem: Is it the case that for every CFG G , there is a grammar
G ′ such that L(G) = L(G ′) and G ′ is unambiguous, even if G ′

cannot be constructed algorithmically?
No! There are context-free languages L such that every grammar
for L is ambiguous.

Definition
A context-free language L is said to be inherently ambiguous if
every grammar G for L is ambiguous.

Inherently Ambiguous Languages
An Example

Consider
L = {aibjck | i = j or j = k}

One can show that any CFG G for L will have two parse trees on
anbncn, for all but finitely many values of n

I One that checks that number of a’s = number of b’s

I Another that checks that number of b’s = number of c’s

Inherently Ambiguous Languages
An Example

Consider
L = {aibjck | i = j or j = k}

One can show that any CFG G for L will have two parse trees on
anbncn, for all but finitely many values of n

I One that checks that number of a’s = number of b’s

I Another that checks that number of b’s = number of c’s

Inherently Ambiguous Languages
An Example

Consider
L = {aibjck | i = j or j = k}

One can show that any CFG G for L will have two parse trees on
anbncn, for all but finitely many values of n

I One that checks that number of a’s = number of b’s

I Another that checks that number of b’s = number of c’s

Inherently Ambiguous Languages
An Example

Consider
L = {aibjck | i = j or j = k}

One can show that any CFG G for L will have two parse trees on
anbncn, for all but finitely many values of n

I One that checks that number of a’s = number of b’s

I Another that checks that number of b’s = number of c’s

	Context Free Grammars
	Definitions
	Proving Properties
	Parse Trees

	Ambiguity
	The Concept
	Removing Ambiguity

