
CSE 135: Introduction to Theory of Computation
Optimal DFA

Sungjin Im

University of California, Merced

02-26-2014

Optimal Algorithms for Regular Languages

Anil Nerode

Myhill-Nerode Theorem

There is a “unique” “optimal” “algorithm” for
every problem that can be solved using finite
memory.

I “algorithm” here means a deterministic
machine

I “optimal” means requires least memory,
i.e., has fewest states

I “unique” means that any two DFAs with
fewest states for a language are
“isomorphic”

Optimal Algorithms for Regular Languages

Anil Nerode

Myhill-Nerode Theorem

There is a “unique” “optimal” “algorithm” for
every problem that can be solved using finite
memory.

I “algorithm” here means a deterministic
machine

I “optimal” means requires least memory,
i.e., has fewest states

I “unique” means that any two DFAs with
fewest states for a language are
“isomorphic”

Optimal Algorithms for Regular Languages

Anil Nerode

Myhill-Nerode Theorem

There is a “unique” “optimal” “algorithm” for
every problem that can be solved using finite
memory.

I “algorithm” here means a deterministic
machine

I “optimal” means requires least memory,
i.e., has fewest states

I “unique” means that any two DFAs with
fewest states for a language are
“isomorphic”

Optimal Algorithms for Regular Languages

Anil Nerode

Myhill-Nerode Theorem

There is a “unique” “optimal” “algorithm” for
every problem that can be solved using finite
memory.

I “algorithm” here means a deterministic
machine

I “optimal” means requires least memory,
i.e., has fewest states

I “unique” means that any two DFAs with
fewest states for a language are
“isomorphic”

Roadmap

I DFA minimization: Minimize a given DFA M by merging
“indistinguishable” states.

In general, could be only minimal
(locally optimal)

I In DFA minimization, a minimal (locally optimal) DFA is a
minimum (globally optimal) DFA.

I Test if two given DFAs are equivalent.

I Revisit Myhill-Nerode Theorem.

Roadmap

I DFA minimization: Minimize a given DFA M by merging
“indistinguishable” states. In general, could be only minimal
(locally optimal)

I In DFA minimization, a minimal (locally optimal) DFA is a
minimum (globally optimal) DFA.

I Test if two given DFAs are equivalent.

I Revisit Myhill-Nerode Theorem.

Many DFAs for the same language

Minimization

Problem
Ultimate goal:

Given a DFA M, construct the DFA with fewest
states M ′ such that L(M ′) = L(M).
Intermediate goal: Minimize a given DFA M by merging
“indistinguishable” states.

Applications

Algorithms using DFAs run in time directly related to the number
of states of DFA. Implementation of the DFA itself takes memory
proportional to log number of states. So constructing small DFAs
is very critical.

Minimization

Problem
Ultimate goal:

Given a DFA M, construct the DFA with fewest
states M ′ such that L(M ′) = L(M).
Intermediate goal: Minimize a given DFA M by merging
“indistinguishable” states.

Applications

Algorithms using DFAs run in time directly related to the number
of states of DFA. Implementation of the DFA itself takes memory
proportional to log number of states. So constructing small DFAs
is very critical.

Minimization

Problem
Ultimate goal: Given a DFA M, construct the DFA with fewest
states M ′ such that L(M ′) = L(M).

Intermediate goal: Minimize a given DFA M by merging
“indistinguishable” states.

Applications

Algorithms using DFAs run in time directly related to the number
of states of DFA. Implementation of the DFA itself takes memory
proportional to log number of states. So constructing small DFAs
is very critical.

Minimization

Problem
Ultimate goal: Given a DFA M, construct the DFA with fewest
states M ′ such that L(M ′) = L(M).
Intermediate goal: Minimize a given DFA M by merging
“indistinguishable” states.

Applications

Algorithms using DFAs run in time directly related to the number
of states of DFA. Implementation of the DFA itself takes memory
proportional to log number of states. So constructing small DFAs
is very critical.

Minimization

Problem
Ultimate goal: Given a DFA M, construct the DFA with fewest
states M ′ such that L(M ′) = L(M).
Intermediate goal: Minimize a given DFA M by merging
“indistinguishable” states.

Applications

Algorithms using DFAs run in time directly related to the number
of states of DFA. Implementation of the DFA itself takes memory
proportional to log number of states. So constructing small DFAs
is very critical.

Algorithm

Step 1: Remove all unreachable states.

* Use DFS o BFS.
Step 2: Merge “similar” states.

Algorithm

Step 1: Remove all unreachable states.
* Use DFS o BFS.

Step 2: Merge “similar” states.

Algorithm

Step 1: Remove all unreachable states.
* Use DFS o BFS.
Step 2: Merge “similar” states.

Some possible approaches

Want to merge “similar” states.

Attempt 1: Focus on what each state remembers/encodes.
Seems hard when the DFA is large.
Attempt 2: State Characterization? Two states are
indistinguishable if δ̂(p,w) = δ̂(q,w) for all strings w .
Seems not strong enough.

Some possible approaches

Want to merge “similar” states.
Attempt 1: Focus on what each state remembers/encodes.

Seems hard when the DFA is large.
Attempt 2: State Characterization? Two states are
indistinguishable if δ̂(p,w) = δ̂(q,w) for all strings w .
Seems not strong enough.

Some possible approaches

Want to merge “similar” states.
Attempt 1: Focus on what each state remembers/encodes.
Seems hard when the DFA is large.

Attempt 2: State Characterization? Two states are
indistinguishable if δ̂(p,w) = δ̂(q,w) for all strings w .
Seems not strong enough.

Some possible approaches

Want to merge “similar” states.
Attempt 1: Focus on what each state remembers/encodes.
Seems hard when the DFA is large.
Attempt 2: State Characterization? Two states are
indistinguishable if δ̂(p,w) = δ̂(q,w) for all strings w .

Seems not strong enough.

Some possible approaches

Want to merge “similar” states.
Attempt 1: Focus on what each state remembers/encodes.
Seems hard when the DFA is large.
Attempt 2: State Characterization? Two states are
indistinguishable if δ̂(p,w) = δ̂(q,w) for all strings w .
Seems not strong enough.

Distinguishability

When must two states p and q of M not be collapsed?

∃w . δ̂(p,w) ∈ F and δ̂(q,w) 6∈ F ; or

∃w . δ̂(p,w) 6∈ F and δ̂(q,w) ∈ F

We will say that p and q are distinguishable when this happens.

Distinguishability

When must two states p and q of M not be collapsed?

∃w . δ̂(p,w) ∈ F and δ̂(q,w) 6∈ F ; or

∃w . δ̂(p,w) 6∈ F and δ̂(q,w) ∈ F

We will say that p and q are distinguishable when this happens.

Distinguishability

When must two states p and q of M not be collapsed?

∃w . δ̂(p,w) ∈ F and δ̂(q,w) 6∈ F ; or

∃w . δ̂(p,w) 6∈ F and δ̂(q,w) ∈ F

We will say that p and q are distinguishable when this happens.

Indistinguishability

We say that two states p and q of M are
indistinguishable/equivalent if

∀w . δ̂(p,w) ∈ F iff δ̂(q,w) ∈ F

Indistinguishability defines an equivalence class: A ≡ A
(reflexivity), A ≡ B ⇔ B ≡ A (symmetricity), A ≡ B and
B ≡ C ⇒ (transivity). So let’s use p ≡ q to say that two states p
and q are indistinguishable.

Indistinguishability

We say that two states p and q of M are
indistinguishable/equivalent if

∀w . δ̂(p,w) ∈ F iff δ̂(q,w) ∈ F

Indistinguishability defines an equivalence class: A ≡ A
(reflexivity), A ≡ B ⇔ B ≡ A (symmetricity), A ≡ B and
B ≡ C ⇒ (transivity). So let’s use p ≡ q to say that two states p
and q are indistinguishable.

Indistinguishability

We say that two states p and q of M are
indistinguishable/equivalent if

∀w . δ̂(p,w) ∈ F iff δ̂(q,w) ∈ F

Indistinguishability defines an equivalence class: A ≡ A
(reflexivity), A ≡ B ⇔ B ≡ A (symmetricity), A ≡ B and
B ≡ C ⇒ (transivity). So let’s use p ≡ q to say that two states p
and q are indistinguishable.

Indistinguishability

We say that two states p and q of M are
indistinguishable/equivalent if

∀w . δ̂(p,w) ∈ F iff δ̂(q,w) ∈ F

Indistinguishability defines an equivalence class: A ≡ A
(reflexivity), A ≡ B ⇔ B ≡ A (symmetricity), A ≡ B and
B ≡ C ⇒ (transivity). So let’s use p ≡ q to say that two states p
and q are indistinguishable.

Gradually Refine Indistinguishability

Recall

p ≡ q : ∀w . δ̂(p,w) ∈ F iff δ̂(q,w) ∈ F

For each k ≥ 0, define

p ≡k q : ∀w with |w | ≤ k . δ̂(p,w) ∈ F iff δ̂(q,w) ∈ F

An equivalence class partitions states into disjoint groups. ≡0 has
two groups: Q \ F and F .

Gradually Refine Indistinguishability

Suppose that we know for each pair of two states p, q if p ≡k q or
not. How can we examine if p ≡k+1 q or not?

If p 6≡k q, then we have p 6≡k+1 q. Each group of states can be
only refined!
If p ≡k q, then we need to do more work:

p ≡k+1 q iff ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Do you see why?

p ≡k+1 q

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(p, au) ∈ F iff δ̂(q, au) ∈ F

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ∀u with |u| ≤ k .δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Gradually Refine Indistinguishability

Suppose that we know for each pair of two states p, q if p ≡k q or
not. How can we examine if p ≡k+1 q or not?

If p 6≡k q, then we have p 6≡k+1 q. Each group of states can be
only refined!
If p ≡k q, then we need to do more work:

p ≡k+1 q iff ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Do you see why?

p ≡k+1 q

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(p, au) ∈ F iff δ̂(q, au) ∈ F

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ∀u with |u| ≤ k .δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Gradually Refine Indistinguishability

Suppose that we know for each pair of two states p, q if p ≡k q or
not. How can we examine if p ≡k+1 q or not?

If p 6≡k q, then we have p 6≡k+1 q. Each group of states can be
only refined!
If p ≡k q, then we need to do more work:

p ≡k+1 q iff ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Do you see why?

p ≡k+1 q

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(p, au) ∈ F iff δ̂(q, au) ∈ F

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ∀u with |u| ≤ k .δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Gradually Refine Indistinguishability

Suppose that we know for each pair of two states p, q if p ≡k q or
not. How can we examine if p ≡k+1 q or not?

If p 6≡k q, then we have p 6≡k+1 q. Each group of states can be
only refined!
If p ≡k q, then we need to do more work:

p ≡k+1 q iff ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Do you see why?

p ≡k+1 q

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(p, au) ∈ F iff δ̂(q, au) ∈ F

⇔ ∀u with |u| ≤ k∀a ∈ Σ.δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ∀u with |u| ≤ k .δ̂(δ(p, a), u) ∈ F iff δ̂(δ(q, a), u) ∈ F

⇔ ∀a ∈ Σ.δ(p, a) ≡k δ(q, a)

Distinguishability
Inductive Definition

Distinguishability can be inductively defined as follows

I If p ∈ F and q 6∈ F then p and q are distinuishable

I If for some a, δ(p, a) = p′ and δ(q, a) = q′, and p′ and q′ are
distinguishable, then p and q are distinguishable

Distinguishability
Inductive Definition

Distinguishability can be inductively defined as follows

I If p ∈ F and q 6∈ F then p and q are distinuishable

I If for some a, δ(p, a) = p′ and δ(q, a) = q′, and p′ and q′ are
distinguishable, then p and q are distinguishable

Distinguishability
Inductive Definition

Distinguishability can be inductively defined as follows

I If p ∈ F and q 6∈ F then p and q are distinuishable

I If for some a, δ(p, a) = p′ and δ(q, a) = q′, and p′ and q′ are
distinguishable, then p and q are distinguishable

Distinguishability
An Algorithm

Let distinct be a table with an entry for each pair of states.
Initially all entries are 0.

if p ∈ F and q 6∈ F (or vice versa)

then distinct(p, q) := 1

repeat

for each pair (p, q) and symbol a
if distinct(δ(p, a), δ(q, a)) = 1,

then distinct(p, q) := 1

until no changes in table

Minimization Algorithm

1. Remove states that are not reachable from the initial state

2. Find all pairs of states that are distinguishable

3. Collapse pairs that are not distinguishable

Minimization Algorithm

1. Remove states that are not reachable from the initial state

2. Find all pairs of states that are distinguishable

3. Collapse pairs that are not distinguishable

Minimization Algorithm

1. Remove states that are not reachable from the initial state

2. Find all pairs of states that are distinguishable

3. Collapse pairs that are not distinguishable

Example

B

?

C ? ?
E

?

?
F

? ?

?

?

G

? ?

?

? ?

H

?

?

? ? ?

A B C E F G

A B C D

E FGH

0

1

1

0

1
0

0

1

0

1

0

1

0
1

1

0

Example

B

?

C ? ?
E

?

?
F

? ?

?

?

G

? ?

?

? ?

H

?

?

? ? ?

A B C E F G

A B C

E FGH

D
0

1

0

1

1

0

1
0

0

1

0

1

0
1

1

0

Example

B

?

C ? ?
E

?

?
F

? ?

?

?

G

? ?

?

? ?

H

?

?

? ? ?

A B C E F G

A B C

E FGH

0

1

1

0

1
0

0

1

0

1

0
1

1

0

Example

B ?
C ? ?
E ? ?
F ? ? ? ?
G

?

? ?

?

?
H ? ? ? ? ?

A B C E F G

A B C

E FGH

0

1

1

0

1
0

0

1

0

1

0
1

1

0

Example

B ?
C ? ?
E ? ?
F ? ? ? ?
G ? ? ? ? ?
H ? ? ? ? ?

A B C E F G

A B C

E FGH

0

1

1

0

1
0

0

1

0

1

0
1

1

0

Example

B ?
C ? ?
E ? ?
F ? ? ? ?
G ? ? ? ? ?
H ? ? ? ? ?

A B C E F G

A B C

E FGH

0

1

1

0

1
0

0

1

0

1

0
1

1

0

0

1

1

0

10

01

1
0

Example

≡0: {A,B,E ,F ,G ,H}, {C}
≡1: {A,E ,G}, {B,H}, {F}, {C}
≡2: {A,E}, {G}, {B,H}, {F}, {C}
≡3: {A,E}, {G}, {B,H}, {F}, {C}

No change from ≡2 to ≡3, so stop.

Roadmap

I DFA minimization: Minimize a given DFA M by merging
“indistinguishable” states (possibly locally optimal) – done

I In DFA minimization, a minimal (locally optimal) DFA is a
minimum (globally optimal) DFA.

I Test if the two given DFAs are equivalent.

I Revisit Myhill-Nerode Theorem.

Decide if two given DFAs accpet the same language

We would like to test if two DFAs M = (QM ,ΣM , δM , qM0 ,F
M)

and N = (QN ,ΣN , δN , qN0 ,F
N) accept the same language or not.

1. Run the table-filling algorithm on both DFAs simultaneously.

2. M and N accept the same language iff qM0 ≡ qN0 .

Decide if two given DFAs accpet the same language

We would like to test if two DFAs M = (QM ,ΣM , δM , qM0 ,F
M)

and N = (QN ,ΣN , δN , qN0 ,F
N) accept the same language or not.

1. Run the table-filling algorithm on both DFAs simultaneously.

2. M and N accept the same language iff qM0 ≡ qN0 .

Decide if two given DFAs accpet the same language

We would like to test if two DFAs M = (QM ,ΣM , δM , qM0 ,F
M)

and N = (QN ,ΣN , δN , qN0 ,F
N) accept the same language or not.

1. Run the table-filling algorithm on both DFAs simultaneously.

2. M and N accept the same language iff qM0 ≡ qN0 .

Table-filling Algorithm Gives a Globally Optimal DFA

Very short proof sketch: M = (QM ,ΣM , δM , qM0 ,F
M): DFA

output by the algorithm
N = (QN ,ΣN , δN , qN0 ,F

N): a globally optimal DFA
For the sake of contradiction suppose |QN | < |QM |. Then one can
find qMi 6≡ qMj such that qMi ≡ qNt ≡ qMj for some qNt ∈ QN .

Isomorphism

Definition
Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be two
DFAs. A function f : Q1 → Q2 is said to be isomorphism iff

I f is bijective, i.e., one-to-one and onto

I f (q1) = q2
I For every p ∈ Q1 and a ∈ Σ, f (δ1(p, a)) = δ2(f (p), a)

I q ∈ F1 iff f (q) ∈ F2

M1 and M2 are said to be isomorphic if there is an isomorphism f
from M1 to M2.
Thus, if M1 and M2 are isomorphic then they are the “same”
machine except for possibly renaming states.

Isomorphism

Definition
Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be two
DFAs. A function f : Q1 → Q2 is said to be isomorphism iff

I f is bijective, i.e., one-to-one and onto

I f (q1) = q2
I For every p ∈ Q1 and a ∈ Σ, f (δ1(p, a)) = δ2(f (p), a)

I q ∈ F1 iff f (q) ∈ F2

M1 and M2 are said to be isomorphic if there is an isomorphism f
from M1 to M2.

Thus, if M1 and M2 are isomorphic then they are the “same”
machine except for possibly renaming states.

Isomorphism

Definition
Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be two
DFAs. A function f : Q1 → Q2 is said to be isomorphism iff

I f is bijective, i.e., one-to-one and onto

I f (q1) = q2
I For every p ∈ Q1 and a ∈ Σ, f (δ1(p, a)) = δ2(f (p), a)

I q ∈ F1 iff f (q) ∈ F2

M1 and M2 are said to be isomorphic if there is an isomorphism f
from M1 to M2.
Thus, if M1 and M2 are isomorphic then they are the “same”
machine except for possibly renaming states.

Myhill-Nerode Theorem
implies...

Theorem
For any regular language L, threre is a unique (upto isomorphism)
DFA with fewest states that recognizes L.

	Introduction
	DFA Minimization
	Distinguishability
	The Algorithm

	Myhill-Nerode Theorem

