CSE 135: Introduction to Theory of Computation
Closure Properties

Sungjin Im
University of California, Merced

02-24-2014

Closure Properties

» Recall that we can carry out operations on one or more
languages to obtain a new language

Closure Properties

» Recall that we can carry out operations on one or more
languages to obtain a new language

» Very useful in studying the properties of one language by
relating it to other (better understood) languages

Closure Properties

» Recall that we can carry out operations on one or more
languages to obtain a new language

» Very useful in studying the properties of one language by
relating it to other (better understood) languages

» Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

Closure Properties

» Recall that we can carry out operations on one or more
languages to obtain a new language

» Very useful in studying the properties of one language by
relating it to other (better understood) languages

» Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

» Today: A variety of operations which preserve regularity

Closure Properties

» Recall that we can carry out operations on one or more
languages to obtain a new language

» Very useful in studying the properties of one language by
relating it to other (better understood) languages

» Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

» Today: A variety of operations which preserve regularity

> i.e., the universe of regular languages is closed under these
operations

Closure Properties

Definition
Regular Languages are closed under an operation op on languages
if

Ly, Ly, ... L, regular = L =op(Ly,Lo,...Ly) is regular

Closure Properties

Definition
Regular Languages are closed under an operation op on languages
if

Ly, Ly, ... L, regular = L =op(Ly,Lo,...Ly) is regular
Example

Regular languages are closed under

» “halving”, i.e., L regular —- %L regular.

Closure Properties

Definition
Regular Languages are closed under an operation op on languages
if

Ly, Ly, ... L, regular = L =op(Ly,Lo,...Ly) is regular

Example
Regular languages are closed under
» “halving”, i.e., L regular —- %L regular.

> ‘“reversing”, i.e., L regular = L"® regular.

Operations from Regular Expressions

Proposition
Regular Languages are closed under U, o and *.

Operations from Regular Expressions

Proposition
Regular Languages are closed under U, o and *.

Proof.

(Summarizing previous arguments.)
» Ly, L, regular = T regexes Ry, Ry s.t. Ly = L(Ry) and
Lo = L(R).
» — UL, = L(Rl U R2) = L; UL regular.

Operations from Regular Expressions

Proposition
Regular Languages are closed under U, o and *.

Proof.
(Summarizing previous arguments.)
» Ly, L, regular = T regexes Ry, Ry s.t. Ly = L(Ry) and
L = L(Ry).
» — UL, = L(Rl U R2) = L; UL regular.
» = Lijoly=L(RioR) = Ljol;regular.
» = L7 =L(R) = Lj regular.

Closure Under Complementation

Proposition
Regular Languages are closed under complementation, i.e., if L is
regular then L = X* \ L is also regular.

Closure Under Complementation

Proposition
Regular Languages are closed under complementation, i.e., if L is
regular then L = X* \ L is also regular.

Proof.

» If Lis regular, then there is a DFA M = (Q, %, d, qo, F) such
that L = L(M).

Closure Under Complementation

Proposition
Regular Languages are closed under complementation, i.e., if L is
regular then L = X* \ L is also regular.

Proof.
» If Lis regular, then there is a DFA M = (Q, %, d, qo, F) such
that L = L(M).

> Then, M = (Q,%,6,q0, Q \ F) (i.e., switch accept and
non-accept states) accepts L. a

Closure Under Complementation

Proposition
Regular Languages are closed under complementation, i.e., if L is
regular then L = X* \ L is also regular.

Proof.
» If Lis regular, then there is a DFA M = (Q, %, d, qo, F) such
that L = L(M).
> Then, M = (Q,%,6,q0, Q \ F) (i.e., switch accept and
non-accept states) accepts L. O

What happens if M (above) was an NFA?

Closure under N

Proposition
Regular Languages are closed under intersection, i.e., if L1 and L;
are regular then Ly N Ly is also regular.

Closure under N

Proposition
Regular Languages are closed under intersection, i.e., if L1 and L;
are regular then Ly N Ly is also regular.

Proof. .
Observe that L1 N Ly = L1 U L.

Closure under N

Proposition
Regular Languages are closed under intersection, i.e., if L1 and L;
are regular then Ly N Ly is also regular.

Proof.
Observe that L1 N Ly = L; U Ly. Since regular languages are closed
under union and complementation, we have

» L1 and L, are regular

Closure under N

Proposition
Regular Languages are closed under intersection, i.e., if L1 and L;
are regular then Ly N Ly is also regular.

Proof.
Observe that L1 N Ly = L; U Ly. Since regular languages are closed
under union and complementation, we have

» L1 and L, are regular

» [, ULy is regular

Closure under N

Proposition
Regular Languages are closed under intersection, i.e., if L1 and L;
are regular then Ly N Ly is also regular.

Proof.
Observe that L1 N Ly = L; U Ly. Since regular languages are closed
under union and complementation, we have

» L1 and L, are regular

» [, ULy is regular

» Hence, L1 N Ly = L; UL, is regular. O

Closure under N

Proposition
Regular Languages are closed under intersection, i.e., if L1 and L;
are regular then Ly N Ly is also regular.

Proof.
Observe that L1 N Ly = L; U Ly. Since regular languages are closed
under union and complementation, we have

» L1 and L, are regular

» [, ULy is regular

» Hence, L1 N Ly = L; UL, is regular. O

Is there a direct proof for intersection (yielding a smaller DFA)?

Cross-Product Construction

Let M = (Ql,Z,cSl, q1, Fl) and Mp = (QQ,Z,(SQ, q2, F2) be DFAs
recognizing Ly and L, respectively.

Idea: Run My and M5 in parallel on the same input and accept if
both M; and M, accept.

Cross-Product Construction

Let M = (Ql,Z,cSl, q1, Fl) and Mp = (QQ,Z,(SQ, q2, F2) be DFAs
recognizing Ly and L, respectively.

Idea: Run My and M5 in parallel on the same input and accept if
both M; and M, accept.

Consider M = (Q, X, 4, qo, F) defined as follows
» Q=Q1 x Q@
> qo = (91, q2)

> 0({p1, p2),a) = (01(p1, a), 62(p2, a))
> F = F1 X F2

Cross-Product Construction

Let M = (Ql,Z,cSl, q1, Fl) and Mp = (QQ,Z,(SQ, q2, F2) be DFAs
recognizing Ly and L, respectively.

Idea: Run My and M5 in parallel on the same input and accept if
both M; and M, accept.

Consider M = (Q, X, 4, qo, F) defined as follows

» Q=01 x Q@
> qo = (q1,q2)
> 5((p1, p2), a) = (1(p1, @), 2(p2, a))
> F = F1 X F2

M accepts L1 N Ly (exercise)

Cross-Product Construction

Let M = (Ql,Z,cSl, q1, Fl) and Mp = (QQ,Z,(SQ, q2, F2) be DFAs
recognizing Ly and L, respectively.

Idea: Run My and M5 in parallel on the same input and accept if
both M; and M, accept.

Consider M = (Q, X, 4, qo, F) defined as follows

» Q=01 x Q@
> qo = (q1,q2)
> 5((p1, p2), a) = (1(p1, @), 2(p2, a))
> F = F1 X F2

M accepts L1 N Ly (exercise)
What happens if My and M, where NFAs?

Cross-Product Construction

Let M = (Ql,Z,cSl, q1, Fl) and Mp = (QQ,Z,(SQ, q2, F2) be DFAs
recognizing Ly and L, respectively.

Idea: Run My and M5 in parallel on the same input and accept if
both M; and M, accept.

Consider M = (Q, X, 4, qo, F) defined as follows

» Q=01 x Q@
> qo = (q1,q2)
> 5((p1, p2), a) = (1(p1, @), 2(p2, a))
> F = F1 X F2

M accepts L1 N Ly (exercise)
What happens if My and M, where NFAs? Still works! Set

6((p1, p2),a) = 01(p1, a) x d2(p2, a).

An Example

Homomorphism

Definition
A homomorphism is function h: £* — A* defined as follows:
» h(e) =€ and for a € X, h(a) is any string in A*
» Fora=ajay...a, € X* (n>2), h(a) = h(a1)h(az) ... h(an).

Homomorphism

Definition
A homomorphism is function h: £* — A* defined as follows:
» h(e) =€ and for a € X, h(a) is any string in A*
» Fora=ajay...a, € X* (n>2), h(a) = h(a1)h(az) ... h(an).

» A homomorphism h maps a string a € ¥* to a string in A* by
mapping each character of a to a string h(a) € A*

Homomorphism

Definition
A homomorphism is function h: £* — A* defined as follows:
» h(e) =€ and for a € X, h(a) is any string in A*
» Fora=ajay...a, € X* (n>2), h(a) = h(a1)h(az) ... h(an).

» A homomorphism h maps a string a € ¥* to a string in A* by
mapping each character of a to a string h(a) € A*

» A homomorphism is a function from strings to strings that
“respects” concatenation: for any x,y € ¥,

h(xy) = h(x)h(y).

Homomorphism

Definition
A homomorphism is function h: £* — A* defined as follows:
» h(e) =€ and for a € X, h(a) is any string in A*
» Fora=ajay...a, € X* (n>2), h(a) = h(a1)h(az) ... h(an).

» A homomorphism h maps a string a € ¥* to a string in A* by
mapping each character of a to a string h(a) € A*

» A homomorphism is a function from strings to strings that
“respects” concatenation: for any x,y € ¥,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h:{0,1} — {a, b}* where h(0) = ab and h(1) = ba. Then
h(0011) =

Homomorphism

Definition
A homomorphism is function h: £* — A* defined as follows:
» h(e) =€ and for a € X, h(a) is any string in A*
» Fora=ajay...a, € X* (n>2), h(a) = h(a1)h(az) ... h(an).

» A homomorphism h maps a string a € ¥* to a string in A* by
mapping each character of a to a string h(a) € A*

» A homomorphism is a function from strings to strings that
“respects” concatenation: for any x,y € ¥,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h:{0,1} — {a, b}* where h(0) = ab and h(1) = ba. Then
h(0011) = ababbaba

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h: X* — A* and a language L C ¥*,
define h(L) = {h(w) |w € L} C A*.

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h: X* — A* and a language L C ¥*,
define h(L) = {h(w) |w € L} C A*.

Example
Let L ={0"1" | n> 0} and h(0) = ab and h(1) = ba. Then
h(L) = {(ab)"(ba)" [n > 0}

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h: X* — A* and a language L C ¥*,
define h(L) = {h(w) |w € L} C A*.

Example

Let L ={0"1" | n> 0} and h(0) = ab and h(1) = ba. Then
h(L) = {(ab)"(ba)" [n > 0}

Exercise: h(L1 U Ly) = h(L1) U h(Lp).

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h: X* — A* and a language L C ¥*,
define h(L) = {h(w) |w € L} C A*.

Example

Let L ={0"1" | n> 0} and h(0) = ab and h(1) = ba. Then

h(L) = {(ab)"(ba)" [n > 0}

Exercise: h(L1 U Ly) = h(L1) U h(Lp). h(L;y o Ly) = h(L1) o h(L),
and h(L*) = h(L)*.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.

» Define homomorphism as an operation on regular expressions

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.
» Define homomorphism as an operation on regular expressions
» Show that L(h(R)) = h(L(R))

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.
» Define homomorphism as an operation on regular expressions
» Show that L(h(R)) = h(L(R))
» Let R be such that L = L(R). Let R = h(R). Then
h(L) = L(R"). e

Homomorphism as an Operation on Regular Expressions

Definition
For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a € ¥ in R by the string

h(a).

Homomorphism as an Operation on Regular Expressions

Definition
For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a € ¥ in R by the string

h(a).
Example

If R=(0U1)*001(0U1)* and h(0) = ab and h(1) = bc then
h(R) = (ab U bc)*ababbc(ab U bc)*

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a € ¥ in R by the string
h(a).

Example
If R=(0U1)*001(0U1)* and h(0) = ab and h(1) = bc then
h(R) = (ab U bc)*ababbc(ab U bc)*

Formally h(R) is defined inductively as follows.

(0) =
(€) =
(a) =

h 0 h(Ry1R2) = h(R1)h(Rz)
€ h(R1 U R2) = h(R>) U h(Ry)
h

(a) h(R*) = (h(R))*

>

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R
» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.

By induction on the number of operations in R

» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R=a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

» Induction Step: For R = Ry U Ry, observe that

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R
» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R=a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
» Induction Step: For R = Ry U Ry, observe that
h(R) = h(R1) U h(R»)

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R
» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
» Induction Step: For R = Ry U Ry, observe that
h(R) = h(R1) U h(R>) and
h(L(R)) = h(L(R1) U L(R2)) = h(L(R1)) U h(L(R2)).

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R
» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
» Induction Step: For R = Ry U Ry, observe that
h(R) = h(R1) U h(R>) and
h(L(R)) = h(L(R1) U L(R2)) = h(L(Ry)) U h(L(R2)). By
induction hypothesis, h(L(R;)) = L(h(R;)) and so
h(L(R)) = L(h(R1) U h(R2))

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R
» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
» Induction Step: For R = Ry U Ry, observe that
h(R) = h(R1) U h(R>) and
h(L(R)) = h(L(R1) U L(R2)) = h(L(Ry)) U h(L(Rz)). By
induction hypothesis, h(L(R;)) = L(h(R;)) and so
h(L(R)) = L(h(R1) U h(Rz))
Other cases (R = RiR; and R = R{) similar.

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?
» No! Consider L = {0"1" | n > 0} and h(0) = a and h(1) = e.
Then h(L) = a*.

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?
» No! Consider L = {0"1" | n > 0} and h(0) = a and h(1) = e.
Then h(L) = a*.

Applying a homomorphism can “simplify” a non-regular language
into a regular language.

Inverse Homomorphism

Inverse Homomorphism

Definition
Given homomorphism h: ¥* — A* and L C A,
h_l(L) ={weX*|h(w) € L}

Inverse Homomorphism

Definition

Given homomorphism h: X* — A* and L C A*,

h=Y(L) = {w € X* | h(w) € L}

h~1(L) consists of strings whose homomorphic images are in L

Inverse Homomorphism

Definition

Given homomorphism h: ¥* — A* and L C A,

h=Y(L) = {w € X* | h(w) € L}

h~1(L) consists of strings whose homomorphic images are in L

h

Inverse Homomorphism

Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.

Inverse Homomorphism

Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.

> h~1(1001) = {ba}, h~1(010110) = {aab}

Inverse Homomorphism

Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.

» h~1(1001) = {ba}, h~1(010110) = {aab}

Inverse Homomorphism

Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.

» h~1(1001) = {ba}, h~1(010110) = {aab}

> h(L) = (ba)"

Inverse Homomorphism

Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.

> h~1(1001) = {ba}, h~1(010110) = {aab}

> h™H(L) = (ba)*

» What is h(h=%(L))?

Inverse Homomorphism

Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.
~1(1001) = {ba}, h~1(010110) = {aab}
> h=Y(L) = (ba)*
» What is h(h~1(L))? (1001)* C L

Note: In general h(h=1(L)) C L C h~1(h(L)), but neither
containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition
Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h=1(L) is regular.

Closure under Inverse Homomorphism

Proposition
Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h=1(L) is regular.

Proof.

We will use the representation of regular languages in terms of
DFA to argue this.

Closure under Inverse Homomorphism

Proposition
Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h=1(L) is regular.

Proof.
We will use the representation of regular languages in terms of
DFA to argue this.
Given a DFA M recognizing L, construct an DFA M’ that accepts
h=Y(L)
» Intuition: On input w M’ will run M on h(w) and accept if M
does.

Closure under Inverse Homomorphism

» Intuition: On input w M’ will run M on h(w) and accept if M
does.

Example
L=L((00U1)*). h(a) =01, h(b) = 10.

Closure under Inverse Homomorphism

» Intuition: On input w M’ will run M on h(w) and accept if M
does.

Example
L=L((00U1)*). h(a) =01, h(b) = 10.

Closure under Inverse Homomorphism

Formal Construction

» Let M =(Q,A,0d,qo, F) accept L C A* and let h: X* — A*
be a homomorphism
» Define M' = (Q', X, qp, F'), where

| 4 Q/:Q
> 9o = Qo
» F/ = F, and

v

(g, a) = dum(q. h(a)); M’ on input a simulates M on h(a)
» M’ accepts h™1(L)

Closure under Inverse Homomorphism

Formal Construction

v

Let M = (Q,A,0,qo, F) accept L C A* and let h: £* — A*
be a homomorphism

» Define M' = (Q', X, qp, F'), where
» Q' =Q
> go = qo
» F/ = F, and

v

(g, a) = dum(q. h(a)); M’ on input a simulates M on h(a)
M’ accepts h=1(L)
Because Yw. dp(qo, w) = dni(qo, h(w))

v

v

Proving Non-Regularity

Problem
Show that L = {a"ba" | n > 0} is not regular

Proof.

Use pumping lemmal

Proving Non-Regularity

Problem
Show that L = {a"ba" | n > 0} is not regular

Proof.

Use pumping lemmal

Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0"1" | n > 0}
(“reduction”)

Proving Non-Regularity

Problem
Show that L = {a"ba" | n > 0} is not regular

Proof.

Use pumping lemmal

Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0"1" | n > 0}
(“reduction”)

More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K.

Proving Non-Regularity

Problem
Show that L = {a"ba" | n > 0} is not regular

Proof.

Use pumping lemmal

Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0"1" | n > 0}
(“reduction”)

More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K. Then, since
K is not regular, L cannot be regular. o

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined

as hi(a) = a, hi(b) = b, hi(c) = a.
» Ly =hyH(L)={(aUc)"b(aUc)”| n>0}

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined

as hi(a) = a, hi(b) = b, hi(c) = a.
» Ly =hyH(L)={(aUc)"b(aUc)”| n>0}
» Let Lr = L1 N L(a*bc*) = {a"bc" | n > 0}

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined

as hi(a) = a, hi(b) = b, hi(c) = a.
» Ly =hyH(L)={(aUc)"b(aUc)”| n>0}
» Let Lr = L1 N L(a*bc*) = {a"bc" | n > 0}
» Homomorphism hy : {a, b, c}* — {0,1}* is defined as
ha(a) = 0, ha(b) =€, and hp(c) = 1."
> L3 = h2(L2) = {Onln | n> 0} =K

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined

as hi(a) = a, hi(b) = b, hi(c) = a.
» Ly =hyH(L)={(aUc)"b(aUc)”| n>0}
» Let Lr = L1 N L(a*bc*) = {a"bc" | n > 0}
» Homomorphism hy : {a, b, c}* — {0,1}* is defined as
ha(a) = 0, ha(b) =€, and hp(c) = 1."
> L3 = h2(L2) = {Onln | n> 0} =K
» Now if L is regular then so are L;, Ly, L3, and K. But K is not
regular, and so L is not regular. O

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L).

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

» constructing a DFA/NFA that accepts head(L); or

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

» constructing a DFA/NFA that accepts head(L); or

» giving a regular expression for head(L); or

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

» constructing a DFA/NFA that accepts head(L); or
» giving a regular expression for head(L); or

> by applying a sequence of regularity-preserving operations.

Proving Regularity via Regularity-preserving Operations

Proving Regularity via Regularity-preserving Operations

» For simplicity, assume > = {0, 1}; the proof easliy extends to
a general alphabet set.

Proving Regularity via Regularity-preserving Operations

» For simplicity, assume > = {0, 1}; the proof easliy extends to
a general alphabet set.

» Define a homomorphism h where
h(0) = 0, h(1) = 1,h(a) = 0, h(b) = 1. Then h~1(L) is
regular.

Proving Regularity via Regularity-preserving Operations

» For simplicity, assume > = {0, 1}; the proof easliy extends to
a general alphabet set.

» Define a homomorphism h where
h(0) = 0, h(1) =1, h(a) = 0, h(b) = 1. Then h~1(L) is
regular.

» (0U1)*(aUb)*) is regular, sois (0U1)*(aU b)* N h~1(L).

Proving Regularity via Regularity-preserving Operations

» For simplicity, assume > = {0, 1}; the proof easliy extends to
a general alphabet set.

» Define a homomorphism h where
h(0) = 0, h(1) = 1,h(a) = 0, h(b) = 1. Then h~1(L) is
regular.
» (0U1)*(aU b)*) is regular, so is (0U 1)*(aU b)* N h~1(L).
» Define a homomorphism g where
g(0)=0,g(1)=1,g(a) =€,g(b) =€. Then
g((O ul)*(aub)*n h_l(L)) is regular.

Proving Regularity via Regularity-preserving Operations

» For simplicity, assume > = {0, 1}; the proof easliy extends to
a general alphabet set.

» Define a homomorphism h where
h(0) = 0, h(1) = 1,h(a) = 0, h(b) = 1. Then h~1(L) is
regular.
» (0U1)*(aU b)*) is regular, so is (0U 1)*(aU b)* N h~1(L).
» Define a homomorphism g where
g(0)=0,g(1)=1,g(a) =€,g(b) =€. Then
g((O ul)*(aub)*n h_l(L)) is regular.

» Do you see head(L) = g((O ul)*(aub)*n hfl(L)>?

Proving Regularity and Non-Regularity

Showing that L is not regular

Proving Regularity and Non-Regularity

Showing that L is not regular

> Use the pumping lemma

Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

» Note: Non-regular languages are not closed under the
operations discussed.

Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

» Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

» Note: Non-regular languages are not closed under the
operations discussed.
Showing that L is regular
» Construct a DFA or NFA or regular expression recognizing L

Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

> Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular
» Construct a DFA or NFA or regular expression recognizing L

» Or, show that L can be obtained from known regular
languages L1, Lo, ... Lk through regularity preserving
operations

Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

> Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular
» Construct a DFA or NFA or regular expression recognizing L

» Or, show that L can be obtained from known regular
languages L1, Lo, ... Lk through regularity preserving
operations

» Note: Do not use pumping lemma to prove regularity!!

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

» Regular Expression operations

v

Boolean operations: union, intersection, complement

» Homomorphism

v

Inverse Homomorphism

(And several other operations...)

	Closure Properties
	Boolean Operators
	Homomorphisms
	Inverse Homomorphism

	Applications of Closure Properties
	Proving Non-Regularity
	Proving Regularity
	In a nutshell …

