# CSE 135: Introduction to Theory of Computation Closure Properties

### Sungjin Im

University of California, Merced

02-24-2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Recall that we can carry out operations on one or more languages to obtain a new language

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.

► Today: A variety of operations which preserve regularity

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity
  - i.e., the universe of regular languages is closed under these operations

#### Definition

Regular Languages are closed under an operation  $\operatorname{op}$  on languages if

$$L_1, L_2, \dots L_n$$
 regular  $\implies L = \operatorname{op}(L_1, L_2, \dots L_n)$  is regular

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Definition

Regular Languages are closed under an operation  $\operatorname{op}$  on languages if

$$L_1, L_2, \ldots L_n$$
 regular  $\implies L = \operatorname{op}(L_1, L_2, \ldots L_n)$  is regular

#### Example

Regular languages are closed under

• "halving", i.e., L regular  $\implies \frac{1}{2}L$  regular.

#### Definition

Regular Languages are closed under an operation  $\operatorname{op}$  on languages if

$$L_1, L_2, \ldots L_n$$
 regular  $\implies L = \operatorname{op}(L_1, L_2, \ldots L_n)$  is regular

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### Example

Regular languages are closed under

- "halving", i.e., L regular  $\implies \frac{1}{2}L$  regular.
- "reversing", i.e., L regular  $\implies L^{rev}$  regular.

Operations from Regular Expressions

Proposition

Regular Languages are closed under  $\cup$ ,  $\circ$  and \*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Operations from Regular Expressions

## Proposition

Regular Languages are closed under  $\cup$ ,  $\circ$  and \*.

## Proof.

(Summarizing previous arguments.)

►  $L_1, L_2$  regular  $\implies \exists$  regexes  $R_1, R_2$  s.t.  $L_1 = L(R_1)$  and  $L_2 = L(R_2)$ .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\blacktriangleright \implies L_1 \cup L_2 = L(R_1 \cup R_2) \implies L_1 \cup L_2 \text{ regular}.$ 

# Operations from Regular Expressions

### Proposition

Regular Languages are closed under  $\cup$ ,  $\circ$  and \*.

## Proof.

(Summarizing previous arguments.)

►  $L_1, L_2$  regular  $\implies \exists$  regexes  $R_1, R_2$  s.t.  $L_1 = L(R_1)$  and  $L_2 = L(R_2)$ .

$$\blacktriangleright \implies L_1 \cup L_2 = L(R_1 \cup R_2) \implies L_1 \cup L_2 \text{ regular}.$$

$$\blacktriangleright \implies L_1 \circ L_2 = L(R_1 \circ R_2) \implies L_1 \circ L_2 \text{ regular.}$$

$$\blacktriangleright \implies L_1^* = L(R_1^*) \implies L_1^* \text{ regular}$$

### Proposition

Regular Languages are closed under complementation, i.e., if L is regular then  $\overline{L} = \Sigma^* \setminus L$  is also regular.

### Proposition

Regular Languages are closed under complementation, i.e., if L is regular then  $\overline{L} = \Sigma^* \setminus L$  is also regular.

#### Proof.

► If *L* is regular, then there is a DFA  $M = (Q, \Sigma, \delta, q_0, F)$  such that L = L(M).

### Proposition

Regular Languages are closed under complementation, i.e., if L is regular then  $\overline{L} = \Sigma^* \setminus L$  is also regular.

#### Proof.

► If *L* is regular, then there is a DFA  $M = (Q, \Sigma, \delta, q_0, F)$  such that L = L(M).

Then, M
= (Q, Σ, δ, q₀, Q \ F) (i.e., switch accept and non-accept states) accepts L.

### Proposition

Regular Languages are closed under complementation, i.e., if L is regular then  $\overline{L} = \Sigma^* \setminus L$  is also regular.

#### Proof.

► If *L* is regular, then there is a DFA  $M = (Q, \Sigma, \delta, q_0, F)$  such that L = L(M).

Then, M
= (Q, Σ, δ, q₀, Q \ F) (i.e., switch accept and non-accept states) accepts L.

What happens if M (above) was an NFA?

## Closure under $\cap$

## Proposition

Regular Languages are closed under intersection, i.e., if  $L_1$  and  $L_2$  are regular then  $L_1 \cap L_2$  is also regular.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Closure under $\cap$

### Proposition

Regular Languages are closed under intersection, i.e., if  $L_1$  and  $L_2$  are regular then  $L_1 \cap L_2$  is also regular.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof. Observe that  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ .

## Proposition

Regular Languages are closed under intersection, i.e., if  $L_1$  and  $L_2$  are regular then  $L_1 \cap L_2$  is also regular.

#### Proof.

Observe that  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ . Since regular languages are closed under union and complementation, we have

•  $\overline{L_1}$  and  $\overline{L_2}$  are regular

## Proposition

Regular Languages are closed under intersection, i.e., if  $L_1$  and  $L_2$  are regular then  $L_1 \cap L_2$  is also regular.

#### Proof.

Observe that  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ . Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$  and  $\overline{L_2}$  are regular
- $\overline{L_1} \cup \overline{L_2}$  is regular

## Proposition

Regular Languages are closed under intersection, i.e., if  $L_1$  and  $L_2$  are regular then  $L_1 \cap L_2$  is also regular.

### Proof.

Observe that  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ . Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$  and  $\overline{L_2}$  are regular
- $\overline{L_1} \cup \overline{L_2}$  is regular
- Hence,  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$  is regular.

### Proposition

Regular Languages are closed under intersection, i.e., if  $L_1$  and  $L_2$  are regular then  $L_1 \cap L_2$  is also regular.

#### Proof.

Observe that  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ . Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$  and  $\overline{L_2}$  are regular
- $\overline{L_1} \cup \overline{L_2}$  is regular
- Hence,  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$  is regular.

Is there a direct proof for intersection (yielding a smaller DFA)?

Let  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  and  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  be DFAs recognizing  $L_1$  and  $L_2$ , respectively. Idea: Run  $M_1$  and  $M_2$  in parallel on the same input and accept if both  $M_1$  and  $M_2$  accept.

Let  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  and  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  be DFAs recognizing  $L_1$  and  $L_2$ , respectively. Idea: Run  $M_1$  and  $M_2$  in parallel on the same input and accept if both  $M_1$  and  $M_2$  accept.

Consider  $M = (Q, \Sigma, \delta, q_0, F)$  defined as follows

•  $Q = Q_1 \times Q_2$ •  $q_0 = \langle q_1, q_2 \rangle$ •  $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$ •  $F = F_1 \times F_2$ 

Let  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  and  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  be DFAs recognizing  $L_1$  and  $L_2$ , respectively. Idea: Run  $M_1$  and  $M_2$  in parallel on the same input and accept if both  $M_1$  and  $M_2$  accept.

Consider  $M = (Q, \Sigma, \delta, q_0, F)$  defined as follows

•  $Q = Q_1 \times Q_2$ •  $q_0 = \langle q_1, q_2 \rangle$ •  $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$ •  $F = F_1 \times F_2$ 

*M* accepts  $L_1 \cap L_2$  (exercise)

Let  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  and  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  be DFAs recognizing  $L_1$  and  $L_2$ , respectively. Idea: Run  $M_1$  and  $M_2$  in parallel on the same input and accept if both  $M_1$  and  $M_2$  accept.

Consider  $M = (Q, \Sigma, \delta, q_0, F)$  defined as follows

•  $Q = Q_1 \times Q_2$ •  $q_0 = \langle q_1, q_2 \rangle$ •  $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$ •  $F = F_1 \times F_2$ 

M accepts  $L_1 \cap L_2$  (exercise) What happens if  $M_1$  and  $M_2$  where NFAs?

Let  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  and  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  be DFAs recognizing  $L_1$  and  $L_2$ , respectively. Idea: Run  $M_1$  and  $M_2$  in parallel on the same input and accept if both  $M_1$  and  $M_2$  accept.

Consider  $M = (Q, \Sigma, \delta, q_0, F)$  defined as follows

•  $Q = Q_1 \times Q_2$ •  $q_0 = \langle q_1, q_2 \rangle$ •  $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$ •  $F = F_1 \times F_2$ 

*M* accepts  $L_1 \cap L_2$  (exercise) What happens if  $M_1$  and  $M_2$  where NFAs? Still works! Set  $\delta(\langle p_1, p_2 \rangle, a) = \delta_1(p_1, a) \times \delta_2(p_2, a).$ 

## An Example



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

## Definition

A homomorphism is function  $h: \Sigma^* \to \Delta^*$  defined as follows:

• 
$$h(\epsilon) = \epsilon$$
 and for  $a \in \Sigma$ ,  $h(a)$  is any string in  $\Delta^*$ 

• For 
$$a = a_1 a_2 \dots a_n \in \Sigma^*$$
  $(n \ge 2)$ ,  $h(a) = h(a_1)h(a_2) \dots h(a_n)$ .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

## Definition

A homomorphism is function  $h: \Sigma^* \to \Delta^*$  defined as follows:

• 
$$h(\epsilon) = \epsilon$$
 and for  $a \in \Sigma$ ,  $h(a)$  is any string in  $\Delta^*$ 

• For 
$$a = a_1 a_2 \dots a_n \in \Sigma^*$$
  $(n \ge 2)$ ,  $h(a) = h(a_1)h(a_2) \dots h(a_n)$ .

A homomorphism h maps a string a ∈ Σ\* to a string in Δ\* by mapping each character of a to a string h(a) ∈ Δ\*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

## Definition

A homomorphism is function  $h: \Sigma^* \to \Delta^*$  defined as follows:

• 
$$h(\epsilon) = \epsilon$$
 and for  $a \in \Sigma$ ,  $h(a)$  is any string in  $\Delta^*$ 

• For 
$$a = a_1 a_2 \dots a_n \in \Sigma^*$$
  $(n \ge 2)$ ,  $h(a) = h(a_1)h(a_2) \dots h(a_n)$ .

A homomorphism h maps a string a ∈ Σ\* to a string in Δ\* by mapping each character of a to a string h(a) ∈ Δ\*

A homomorphism is a function from strings to strings that "respects" concatenation: for any x, y ∈ Σ\*, h(xy) = h(x)h(y).

## Definition

A homomorphism is function  $h: \Sigma^* \to \Delta^*$  defined as follows:

• 
$$h(\epsilon) = \epsilon$$
 and for  $a \in \Sigma$ ,  $h(a)$  is any string in  $\Delta^*$ 

• For 
$$a = a_1 a_2 \dots a_n \in \Sigma^*$$
  $(n \ge 2)$ ,  $h(a) = h(a_1)h(a_2) \dots h(a_n)$ .

- A homomorphism h maps a string a ∈ Σ\* to a string in Δ\* by mapping each character of a to a string h(a) ∈ Δ\*
- A homomorphism is a function from strings to strings that "respects" concatenation: for any x, y ∈ Σ\*, h(xy) = h(x)h(y). (Any such function is a homomorphism.)

#### Example

$$h: \{0,1\} 
ightarrow \{a,b\}^*$$
 where  $h(0) = ab$  and  $h(1) = ba$ . Then  $h(0011) =$ 

## Definition

A homomorphism is function  $h: \Sigma^* \to \Delta^*$  defined as follows:

• 
$$h(\epsilon) = \epsilon$$
 and for  $a \in \Sigma$ ,  $h(a)$  is any string in  $\Delta^*$ 

• For 
$$a = a_1 a_2 \dots a_n \in \Sigma^*$$
  $(n \ge 2)$ ,  $h(a) = h(a_1)h(a_2) \dots h(a_n)$ .

- A homomorphism h maps a string a ∈ Σ\* to a string in Δ\* by mapping each character of a to a string h(a) ∈ Δ\*
- A homomorphism is a function from strings to strings that "respects" concatenation: for any x, y ∈ Σ\*, h(xy) = h(x)h(y). (Any such function is a homomorphism.)

#### Example

$$h:\{0,1\}
ightarrow\{a,b\}^*$$
 where  $h(0)=ab$  and  $h(1)=ba$ . Then  $h(0011)=ababbaba$ 

Homomorphism as an Operation on Languages

### Definition

Given a homomorphism  $h: \Sigma^* \to \Delta^*$  and a language  $L \subseteq \Sigma^*$ , define  $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$ .

Homomorphism as an Operation on Languages

## Definition

Given a homomorphism  $h: \Sigma^* \to \Delta^*$  and a language  $L \subseteq \Sigma^*$ , define  $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$ .

#### Example

Let  $L = \{0^n 1^n \mid n \ge 0\}$  and h(0) = ab and h(1) = ba. Then  $h(L) = \{(ab)^n (ba)^n \mid n \ge 0\}$ 

Homomorphism as an Operation on Languages

## Definition

Given a homomorphism  $h: \Sigma^* \to \Delta^*$  and a language  $L \subseteq \Sigma^*$ , define  $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$ .

#### Example

Let 
$$L = \{0^n 1^n | n \ge 0\}$$
 and  $h(0) = ab$  and  $h(1) = ba$ . Then  
 $h(L) = \{(ab)^n (ba)^n | n \ge 0\}$   
Exercise:  $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$ .

Homomorphism as an Operation on Languages

### Definition

Given a homomorphism  $h: \Sigma^* \to \Delta^*$  and a language  $L \subseteq \Sigma^*$ , define  $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$ .

#### Example

Let 
$$L = \{0^{n}1^{n} | n \ge 0\}$$
 and  $h(0) = ab$  and  $h(1) = ba$ . Then  
 $h(L) = \{(ab)^{n}(ba)^{n} | n \ge 0\}$   
Exercise:  $h(L_{1} \cup L_{2}) = h(L_{1}) \cup h(L_{2})$ .  $h(L_{1} \circ L_{2}) = h(L_{1}) \circ h(L_{2})$ ,  
and  $h(L^{*}) = h(L)^{*}$ .

## Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

## Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

#### Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

## Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

#### Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

> Define homomorphism as an operation on regular expressions

## Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

#### Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

Define homomorphism as an operation on regular expressions

• Show that L(h(R)) = h(L(R))

## Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

### Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

Define homomorphism as an operation on regular expressions

 $\cdots$ 

- Show that L(h(R)) = h(L(R))
- Let R be such that L = L(R). Let R' = h(R). Then h(L) = L(R').

Homomorphism as an Operation on Regular Expressions

## Definition

For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of  $a \in \Sigma$  in R by the string h(a).

Homomorphism as an Operation on Regular Expressions

## Definition

For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of  $a \in \Sigma$  in R by the string h(a).

#### Example

If  $R = (0 \cup 1)^* 001(0 \cup 1)^*$  and h(0) = ab and h(1) = bc then  $h(R) = (ab \cup bc)^* ababbc(ab \cup bc)^*$ 

Homomorphism as an Operation on Regular Expressions

## Definition

For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of  $a \in \Sigma$  in R by the string h(a).

#### Example

If  $R = (0 \cup 1)^* 001(0 \cup 1)^*$  and h(0) = ab and h(1) = bc then  $h(R) = (ab \cup bc)^* ababbc(ab \cup bc)^*$ 

Formally h(R) is defined inductively as follows.

$$h(\emptyset) = \emptyset \qquad h(R_1R_2) = h(R_1)h(R_2)$$
  

$$h(\epsilon) = \epsilon \qquad h(R_1 \cup R_2) = h(R_2) \cup h(R_2)$$
  

$$h(a) = h(a) \qquad h(R^*) = (h(R))^*$$

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

### Proof.

By induction on the number of operations in  ${\it R}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

### Proof.

By induction on the number of operations in R

▶ Base Cases: For  $R = \epsilon$  or  $\emptyset$ , h(R) = R and h(L(R)) = L(R).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

## Proof.

By induction on the number of operations in R

Base Cases: For R = € or Ø, h(R) = R and h(L(R)) = L(R). For R = a, L(R) = {a} and h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

## Proof.

By induction on the number of operations in R

Base Cases: For R = € or Ø, h(R) = R and h(L(R)) = L(R). For R = a, L(R) = {a} and h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

• Induction Step: For  $R = R_1 \cup R_2$ , observe that

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

## Proof.

By induction on the number of operations in R

Base Cases: For R = € or Ø, h(R) = R and h(L(R)) = L(R). For R = a, L(R) = {a} and h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

▶ Induction Step: For  $R = R_1 \cup R_2$ , observe that  $h(R) = h(R_1) \cup h(R_2)$ 

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

### Proof.

By induction on the number of operations in R

▶ Base Cases: For  $R = \epsilon$  or  $\emptyset$ , h(R) = R and h(L(R)) = L(R). For R = a,  $L(R) = \{a\}$  and  $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$ . So claim holds.

▶ Induction Step: For  $R = R_1 \cup R_2$ , observe that  $h(R) = h(R_1) \cup h(R_2)$  and  $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$ .

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

### Proof.

By induction on the number of operations in R

- ▶ Base Cases: For  $R = \epsilon$  or  $\emptyset$ , h(R) = R and h(L(R)) = L(R). For R = a,  $L(R) = \{a\}$  and  $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$ . So claim holds.
- ▶ Induction Step: For  $R = R_1 \cup R_2$ , observe that  $h(R) = h(R_1) \cup h(R_2)$  and  $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$ . By induction hypothesis,  $h(L(R_i)) = L(h(R_i))$  and so  $h(L(R)) = L(h(R_1) \cup h(R_2))$

#### Claim

For any regular expression R, L(h(R)) = h(L(R)).

### Proof.

By induction on the number of operations in R

- ▶ Base Cases: For  $R = \epsilon$  or  $\emptyset$ , h(R) = R and h(L(R)) = L(R). For R = a,  $L(R) = \{a\}$  and  $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$ . So claim holds.
- ▶ Induction Step: For  $R = R_1 \cup R_2$ , observe that  $h(R) = h(R_1) \cup h(R_2)$  and  $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$ . By induction hypothesis,  $h(L(R_i)) = L(h(R_i))$  and so  $h(L(R)) = L(h(R_1) \cup h(R_2))$ Other cases  $(R = R_1R_2 \text{ and } R = R_1^*)$  similar.

## Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

▶ No! Consider  $L = \{0^n 1^n \mid n \ge 0\}$  and h(0) = a and  $h(1) = \epsilon$ . Then  $h(L) = a^*$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

▶ No! Consider  $L = \{0^n 1^n \mid n \ge 0\}$  and h(0) = a and  $h(1) = \epsilon$ . Then  $h(L) = a^*$ .

Applying a homomorphism can "simplify" a non-regular language into a regular language.

Definition Given homomorphism  $h : \Sigma^* \to \Delta^*$  and  $L \subseteq \Delta^*$ ,  $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$ 

### Definition

Given homomorphism  $h : \Sigma^* \to \Delta^*$  and  $L \subseteq \Delta^*$ ,  $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$ 

 $h^{-1}(L)$  consists of strings whose homomorphic images are in L

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Definition

Given homomorphism  $h : \Sigma^* \to \Delta^*$  and  $L \subseteq \Delta^*$ ,  $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$ 

 $h^{-1}(L)$  consists of strings whose homomorphic images are in L



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

#### Example

Let  $\Sigma = \{a, b\}$ , and  $\Delta = \{0, 1\}$ . Let  $L = (00 \cup 1)^*$  and h(a) = 01 and h(b) = 10.

#### Example

Let  $\Sigma = \{a, b\}$ , and  $\Delta = \{0, 1\}$ . Let  $L = (00 \cup 1)^*$  and h(a) = 01and h(b) = 10.

• 
$$h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$$

#### Example

Let  $\Sigma = \{a, b\}$ , and  $\Delta = \{0, 1\}$ . Let  $L = (00 \cup 1)^*$  and h(a) = 01and h(b) = 10.

#### Example

Let  $\Sigma = \{a, b\}$ , and  $\Delta = \{0, 1\}$ . Let  $L = (00 \cup 1)^*$  and h(a) = 01and h(b) = 10.

▶ 
$$h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$$
  
▶  $h^{-1}(L) = (ba)^*$ 

#### Example

Let  $\Sigma = \{a, b\}$ , and  $\Delta = \{0, 1\}$ . Let  $L = (00 \cup 1)^*$  and h(a) = 01and h(b) = 10.

• 
$$h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$$

▶ 
$$h^{-1}(L) = (ba)^*$$

#### Example

Let  $\Sigma = \{a, b\}$ , and  $\Delta = \{0, 1\}$ . Let  $L = (00 \cup 1)^*$  and h(a) = 01and h(b) = 10.

► 
$$h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$$

• 
$$h^{-1}(L) = (ba)^*$$

• What is 
$$h(h^{-1}(L))$$
?  $(1001)^* \subsetneq L$ 

Note: In general  $h(h^{-1}(L)) \subseteq L \subseteq h^{-1}(h(L))$ , but neither containment is necessarily an equality.

### Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then  $h^{-1}(L)$  is regular.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then  $h^{-1}(L)$  is regular.

#### Proof.

We will use the representation of regular languages in terms of  $\mathsf{DFA}$  to argue this.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then  $h^{-1}(L)$  is regular.

### Proof.

We will use the representation of regular languages in terms of DFA to argue this.

Given a DFA M recognizing L, construct an DFA M' that accepts  $h^{-1}(L)$ 

► Intuition: On input w M' will run M on h(w) and accept if M does.

 $\cdots$ 

Intuition: On input w M' will run M on h(w) and accept if M does.

#### Example

 $L = L((00 \cup 1)^*)$ . h(a) = 01, h(b) = 10.



Intuition: On input w M' will run M on h(w) and accept if M does.

#### Example

 $L = L((00 \cup 1)^*)$ . h(a) = 01, h(b) = 10.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Formal Construction

- Let M = (Q, Δ, δ, q<sub>0</sub>, F) accept L ⊆ Δ\* and let h : Σ\* → Δ\* be a homomorphism
- Define  $M' = (Q', \Sigma, \delta', q'_0, F')$ , where
  - ► Q' = Q
  - $q'_0 = q_0$
  - F' = F, and
  - $\delta'(q, a) = \hat{\delta}_M(q, h(a)); M'$  on input a simulates M on h(a)

▶ M' accepts h<sup>-1</sup>(L)

## Closure under Inverse Homomorphism

Formal Construction

- Let M = (Q, Δ, δ, q<sub>0</sub>, F) accept L ⊆ Δ\* and let h : Σ\* → Δ\* be a homomorphism
- Define  $M' = (Q', \Sigma, \delta', q'_0, F')$ , where
  - ► Q' = Q
  - ▶  $q'_0 = q_0$
  - F' = F, and
  - $\delta'(q, a) = \hat{\delta}_M(q, h(a)); M'$  on input a simulates M on h(a)

- ▶ M' accepts h<sup>-1</sup>(L)
- Because  $\forall w. \ \hat{\delta}_{M'}(q_0, w) = \hat{\delta}_M(q_0, h(w))$

Problem Show that  $L = \{a^n b a^n \mid n \ge 0\}$  is not regular

Proof.

Use pumping lemma!

Problem Show that  $L = \{a^n b a^n \mid n \ge 0\}$  is not regular

#### Proof.

Use pumping lemma! Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting  $K = \{0^n 1^n \mid n \ge 0\}$  ("reduction")

Problem Show that  $L = \{a^n b a^n \mid n \ge 0\}$  is not regular

#### Proof.

Use pumping lemma!

Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting  $K = \{0^n 1^n \mid n \ge 0\}$  ("reduction") More formally, we will show that by applying a sequence of

"regularity preserving" operations to L we can get K.

Problem Show that  $L = \{a^n b a^n \mid n \ge 0\}$  is not regular

#### Proof.

Use pumping lemma!

Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting  $K = \{0^n 1^n \mid n \ge 0\}$  ("reduction")

More formally, we will show that by applying a sequence of "regularity preserving" operations to L we can get K. Then, since K is not regular, L cannot be regular.

Using Closure Properties

### Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to  $L = \{a^n b a^n \mid n \ge 0\}$  we can get  $K = \{0^n 1^n \mid n \ge 0\}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Using Closure Properties

### Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to  $L = \{a^n b a^n \mid n \ge 0\}$  we can get  $K = \{0^n 1^n \mid n \ge 0\}$ .

► Consider homomorphism  $h_1 : \{a, b, c\}^* \to \{a, b, c\}^*$  defined as  $h_1(a) = a$ ,  $h_1(b) = b$ ,  $h_1(c) = a$ .

• 
$$L_1 = h_1^{-1}(L) = \{(a \cup c)^n | n \ge 0\}$$

Using Closure Properties

### Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to  $L = \{a^n b a^n \mid n \ge 0\}$  we can get  $K = \{0^n 1^n \mid n \ge 0\}$ .

Consider homomorphism h<sub>1</sub>: {a, b, c}\* → {a, b, c}\* defined as h<sub>1</sub>(a) = a, h<sub>1</sub>(b) = b, h<sub>1</sub>(c) = a.
 L<sub>1</sub> = h<sub>1</sub><sup>-1</sup>(L) = {(a ∪ c)<sup>n</sup>b(a ∪ c)<sup>n</sup> | n ≥ 0}
 Let L<sub>2</sub> = L<sub>1</sub> ∩ L(a\*bc\*) = {a<sup>n</sup>bc<sup>n</sup> | n > 0}

Using Closure Properties

### Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to  $L = \{a^n b a^n \mid n \ge 0\}$  we can get  $K = \{0^n 1^n \mid n \ge 0\}$ .

Consider homomorphism h<sub>1</sub>: {a, b, c}\* → {a, b, c}\* defined as h<sub>1</sub>(a) = a, h<sub>1</sub>(b) = b, h<sub>1</sub>(c) = a.
 L<sub>1</sub> = h<sub>1</sub><sup>-1</sup>(L) = {(a ∪ c)<sup>n</sup>b(a ∪ c)<sup>n</sup> | n ≥ 0}

- Let  $L_2 = L_1 \cap L(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$
- ▶ Homomorphism  $h_2 : \{a, b, c\}^* \to \{0, 1\}^*$  is defined as  $h_2(a) = 0, h_2(b) = \epsilon$ , and  $h_2(c) = 1$ . ▶  $L_3 = h_2(L_2) = \{0^n 1^n \mid n \ge 0\} = K$

Using Closure Properties

### Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to  $L = \{a^n b a^n \mid n \ge 0\}$  we can get  $K = \{0^n 1^n \mid n \ge 0\}$ .

- Consider homomorphism h<sub>1</sub>: {a, b, c}\* → {a, b, c}\* defined as h<sub>1</sub>(a) = a, h<sub>1</sub>(b) = b, h<sub>1</sub>(c) = a.
   L<sub>1</sub> = h<sub>1</sub><sup>-1</sup>(L) = {(a ∪ c)<sup>n</sup>b(a ∪ c)<sup>n</sup> | n ≥ 0}
- Let  $L_2 = L_1 \cap L(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$
- ▶ Homomorphism  $h_2 : \{a, b, c\}^* \to \{0, 1\}^*$  is defined as  $h_2(a) = 0, h_2(b) = \epsilon$ , and  $h_2(c) = 1$ . ▶  $L_3 = h_2(L_2) = \{0^n 1^n \mid n \ge 0\} = K$
- Now if L is regular then so are L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub>, and K. But K is not regular, and so L is not regular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

constructing a DFA/NFA that accepts head(L); or

- constructing a DFA/NFA that accepts head(L); or
- giving a regular expression for head(L); or

- constructing a DFA/NFA that accepts head(L); or
- giving a regular expression for head(L); or
- by applying a sequence of regularity-preserving operations.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 ■ - のへで

For simplicity, assume ∑ = {0,1}; the proof easily extends to a general alphabet set.

For simplicity, assume ∑ = {0, 1}; the proof easily extends to a general alphabet set.

• Define a homomorphism h where h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then  $h^{-1}(L)$  is regular.

- For simplicity, assume ∑ = {0,1}; the proof easily extends to a general alphabet set.
- Define a homomorphism h where h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then  $h^{-1}(L)$  is regular.
- $(0 \cup 1)^*(a \cup b)^*)$  is regular, so is  $(0 \cup 1)^*(a \cup b)^* \cap h^{-1}(L)$ .

- For simplicity, assume ∑ = {0,1}; the proof easily extends to a general alphabet set.
- Define a homomorphism h where h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then  $h^{-1}(L)$  is regular.
- $(0 \cup 1)^*(a \cup b)^*)$  is regular, so is  $(0 \cup 1)^*(a \cup b)^* \cap h^{-1}(L)$ .

▶ Define a homomorphism g where  

$$g(0) = 0, g(1) = 1, g(a) = \epsilon, g(b) = \epsilon$$
. Then  
 $g((0 \cup 1)^*(a \cup b)^* \cap h^{-1}(L))$  is regular.

- For simplicity, assume ∑ = {0,1}; the proof easily extends to a general alphabet set.
- Define a homomorphism h where h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then  $h^{-1}(L)$  is regular.
- $(0 \cup 1)^*(a \cup b)^*)$  is regular, so is  $(0 \cup 1)^*(a \cup b)^* \cap h^{-1}(L)$ .
- Define a homomorphism g where  $g(0) = 0, g(1) = 1, g(a) = \epsilon, g(b) = \epsilon$ . Then  $g((0 \cup 1)^*(a \cup b)^* \cap h^{-1}(L))$  is regular.
- Do you see  $head(L) = g((0 \cup 1)^*(a \cup b)^* \cap h^{-1}(L))?$

Showing that L is not regular

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Showing that L is not regular

Use the pumping lemma

#### Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.

#### Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

#### Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is regular

#### Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

#### Showing that L is regular

Construct a DFA or NFA or regular expression recognizing L

#### Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

#### Showing that L is regular

Construct a DFA or NFA or regular expression recognizing L

► Or, show that L can be obtained from known regular languages L<sub>1</sub>, L<sub>2</sub>,... L<sub>k</sub> through regularity preserving operations

#### Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

#### Showing that L is regular

- Construct a DFA or NFA or regular expression recognizing L
- ► Or, show that L can be obtained from known regular languages L<sub>1</sub>, L<sub>2</sub>,... L<sub>k</sub> through regularity preserving operations
- Note: Do not use pumping lemma to prove regularity!!

# A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

- Regular Expression operations
- Boolean operations: union, intersection, complement

- Homomorphism
- Inverse Homomorphism

(And several other operations...)