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» Recall that we can carry out operations on one or more
languages to obtain a new language

» Very useful in studying the properties of one language by
relating it to other (better understood) languages

» Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

» Today: A variety of operations which preserve regularity

> i.e., the universe of regular languages is closed under these
operations
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Closure Properties

Definition
Regular Languages are closed under an operation op on languages
if

Ly, Ly, ... L, regular = L =op(Ly,Lo,...Ly) is regular

Example
Regular languages are closed under
» “halving”, i.e., L regular —- %L regular.

> ‘“reversing”, i.e., L regular = L"® regular.
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Operations from Regular Expressions

Proposition
Regular Languages are closed under U, o and *.

Proof.
(Summarizing previous arguments.)
» Ly, L, regular = T regexes Ry, Ry s.t. Ly = L(Ry) and
L = L(Ry).
» — UL, = L(Rl U R2) = L; UL regular.
» = Lijoly=L(RioR) = Ljol;regular.
» = L7 =L(R) = Lj regular.
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Closure Under Complementation

Proposition
Regular Languages are closed under complementation, i.e., if L is
regular then L = X* \ L is also regular.

Proof.
» If Lis regular, then there is a DFA M = (Q, %, d, qo, F) such
that L = L(M).
> Then, M = (Q,%,6,q0, Q \ F) (i.e., switch accept and
non-accept states) accepts L. O

What happens if M (above) was an NFA?
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Closure under N

Proposition
Regular Languages are closed under intersection, i.e., if L1 and L;
are regular then Ly N Ly is also regular.

Proof.
Observe that L1 N Ly = L; U Ly. Since regular languages are closed
under union and complementation, we have

» L1 and L, are regular

» [, ULy is regular

» Hence, L1 N Ly = L; UL, is regular. O

Is there a direct proof for intersection (yielding a smaller DFA)?
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Cross-Product Construction

Let M = (Ql,Z,cSl, q1, Fl) and Mp = (QQ,Z,(SQ, q2, F2) be DFAs
recognizing Ly and L, respectively.

Idea: Run My and M5 in parallel on the same input and accept if
both M; and M, accept.

Consider M = (Q, X, 4, qo, F) defined as follows

» Q=01 x Q@
> qo = (q1,q2)
> 5((p1, p2), a) = (1(p1, @), 2(p2, a))
> F = F1 X F2

M accepts L1 N Ly (exercise)
What happens if My and M, where NFAs? Still works! Set

6((p1, p2),a) = 01(p1, a) x d2(p2, a).



An Example
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Definition
A homomorphism is function h: £* — A* defined as follows:
» h(e) =€ and for a € X, h(a) is any string in A*
» Fora=ajay...a, € X* (n>2), h(a) = h(a1)h(az) ... h(an).

» A homomorphism h maps a string a € ¥* to a string in A* by
mapping each character of a to a string h(a) € A*

» A homomorphism is a function from strings to strings that
“respects” concatenation: for any x,y € ¥,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h:{0,1} — {a, b}* where h(0) = ab and h(1) = ba. Then
h(0011) = ababbaba
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Homomorphism as an Operation on Languages

Definition
Given a homomorphism h: X* — A* and a language L C ¥*,
define h(L) = {h(w) |w € L} C A*.

Example

Let L ={0"1" | n> 0} and h(0) = ab and h(1) = ba. Then

h(L) = {(ab)"(ba)" [ n > 0}

Exercise: h(L1 U Ly) = h(L1) U h(Lp). h(L;y o Ly) = h(L1) o h(L),
and h(L*) = h(L)*.
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Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.
» Define homomorphism as an operation on regular expressions
» Show that L(h(R)) = h(L(R))
» Let R be such that L = L(R). Let R = h(R). Then
h(L) = L(R"). e
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Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a € ¥ in R by the string
h(a).

Example
If R=(0U1)*001(0U1)* and h(0) = ab and h(1) = bc then
h(R) = (ab U bc)*ababbc(ab U bc)*

Formally h(R) is defined inductively as follows.

(0) =
(€) =
(a) =

h 0 h(Ry1R2) = h(R1)h(Rz)
€ h(R1 U R2) = h(R>) U h(Ry)
h

(a) h(R*) = (h(R))*

>
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Proof.
By induction on the number of operations in R
» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
» Induction Step: For R = Ry U Ry, observe that
h(R) = h(R1) U h(R>) and
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Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
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» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
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Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R
» Base Cases: For R =cor (), h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
» Induction Step: For R = Ry U Ry, observe that
h(R) = h(R1) U h(R>) and
h(L(R)) = h(L(R1) U L(R2)) = h(L(Ry)) U h(L(Rz)). By
induction hypothesis, h(L(R;)) = L(h(R;)) and so
h(L(R)) = L(h(R1) U h(Rz))
Other cases (R = RiR; and R = R{) similar.
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Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?
» No! Consider L = {0"1" | n > 0} and h(0) = a and h(1) = e.
Then h(L) = a*.

Applying a homomorphism can “simplify” a non-regular language
into a regular language.
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h=Y(L) = {w € X* | h(w) € L}

h~1(L) consists of strings whose homomorphic images are in L

h
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Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.
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Inverse Homomorphism

Example
Let ¥ = {a, b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01
and h(b) = 10.
~1(1001) = {ba}, h~1(010110) = {aab}
> h=Y(L) = (ba)*
» What is h(h~1(L))? (1001)* C L

Note: In general h(h=1(L)) C L C h~1(h(L)), but neither
containment is necessarily an equality.
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Closure under Inverse Homomorphism

Proposition
Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h=1(L) is regular.

Proof.
We will use the representation of regular languages in terms of
DFA to argue this.
Given a DFA M recognizing L, construct an DFA M’ that accepts
h=Y(L)
» Intuition: On input w M’ will run M on h(w) and accept if M
does.
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» Intuition: On input w M’ will run M on h(w) and accept if M
does.

Example
L=L((00U1)*). h(a) =01, h(b) = 10.




Closure under Inverse Homomorphism

Formal Construction

» Let M =(Q,A,0d,qo, F) accept L C A* and let h: X* — A*
be a homomorphism
» Define M' = (Q', X, qp, F'), where

| 4 Q/:Q
> 9o = Qo
» F/ = F, and

v

(g, a) = dum(q. h(a)); M’ on input a simulates M on h(a)
» M’ accepts h™1(L)



Closure under Inverse Homomorphism

Formal Construction

v

Let M = (Q,A,0,qo, F) accept L C A* and let h: £* — A*
be a homomorphism

» Define M' = (Q', X, qp, F'), where
» Q' =Q
> go = qo
» F/ = F, and

v

(g, a) = dum(q. h(a)); M’ on input a simulates M on h(a)
M’ accepts h=1(L)
Because Yw. dp(qo, w) = dni(qo, h(w))

v

v
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Proving Non-Regularity

Problem
Show that L = {a"ba" | n > 0} is not regular

Proof.

Use pumping lemmal

Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0"1" | n > 0}
(“reduction”)

More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K. Then, since
K is not regular, L cannot be regular. o
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To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
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operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined
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Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined

as hi(a) = a, hi(b) = b, hi(c) = a.
» Ly =hyH(L)={(aUc)"b(aUc)”| n>0}
» Let Lr = L1 N L(a*bc*) = {a"bc" | n > 0}



Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined
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Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {a"ba" | n > 0} we can get K = {0"1" | n > 0}.
» Consider homomorphism hy : {a, b,c}* — {a, b, c}* defined

as hi(a) = a, hi(b) = b, hi(c) = a.
» Ly =hyH(L)={(aUc)"b(aUc)”| n>0}
» Let Lr = L1 N L(a*bc*) = {a"bc" | n > 0}
» Homomorphism hy : {a, b, c}* — {0,1}* is defined as
ha(a) = 0, ha(b) =€, and hp(c) = 1."
> L3 = h2(L2) = {Onln | n> 0} =K
» Now if L is regular then so are L;, Ly, L3, and K. But K is not
regular, and so L is not regular. O
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Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

» constructing a DFA/NFA that accepts head(L); or
» giving a regular expression for head(L); or

> by applying a sequence of regularity-preserving operations.
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Proving Regularity via Regularity-preserving Operations

» For simplicity, assume > = {0, 1}; the proof easliy extends to
a general alphabet set.

» Define a homomorphism h where
h(0) = 0, h(1) = 1,h(a) = 0, h(b) = 1. Then h~1(L) is
regular.
» (0U1)*(aU b)*) is regular, so is (0U 1)*(aU b)* N h~1(L).
» Define a homomorphism g where
g(0)=0,g(1)=1,g(a) =€,g(b) =€. Then
g((O ul)*(aub)*n h_l(L)) is regular.

» Do you see head(L) = g((O ul)*(aub)*n hfl(L)>?



Proving Regularity and Non-Regularity

Showing that L is not regular



Proving Regularity and Non-Regularity

Showing that L is not regular

> Use the pumping lemma



Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.



Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

» Note: Non-regular languages are not closed under the
operations discussed.



Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

» Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular



Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

» Note: Non-regular languages are not closed under the
operations discussed.
Showing that L is regular
» Construct a DFA or NFA or regular expression recognizing L



Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

> Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular
» Construct a DFA or NFA or regular expression recognizing L

» Or, show that L can be obtained from known regular
languages L1, Lo, ... Lk through regularity preserving
operations



Proving Regularity and Non-Regularity

Showing that L is not regular
> Use the pumping lemma

» Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

> Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular
» Construct a DFA or NFA or regular expression recognizing L

» Or, show that L can be obtained from known regular
languages L1, Lo, ... Lk through regularity preserving
operations

» Note: Do not use pumping lemma to prove regularity!!



A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

» Regular Expression operations

v

Boolean operations: union, intersection, complement

» Homomorphism

v

Inverse Homomorphism

(And several other operations...)
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