CSE 135: Introduction to Theory of Computation Closure Properties

Sungjin Im
University of California, Merced

02-24-2014

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity
- i.e., the universe of regular languages is closed under these operations

Closure Properties

Definition
Regular Languages are closed under an operation op on languages if

$$
L_{1}, L_{2}, \ldots L_{n} \text { regular } \Longrightarrow L=\operatorname{op}\left(L_{1}, L_{2}, \ldots L_{n}\right) \text { is regular }
$$

Closure Properties

Definition
Regular Languages are closed under an operation op on languages if

$$
L_{1}, L_{2}, \ldots L_{n} \text { regular } \Longrightarrow L=\operatorname{op}\left(L_{1}, L_{2}, \ldots L_{n}\right) \text { is regular }
$$

Example
Regular languages are closed under

- "halving", i.e., L regular $\Longrightarrow \frac{1}{2} L$ regular.

Closure Properties

Definition

Regular Languages are closed under an operation op on languages if

$$
L_{1}, L_{2}, \ldots L_{n} \text { regular } \Longrightarrow L=\operatorname{op}\left(L_{1}, L_{2}, \ldots L_{n}\right) \text { is regular }
$$

Example

Regular languages are closed under

- "halving", i.e., L regular $\Longrightarrow \frac{1}{2} L$ regular.
- "reversing", i.e., L regular $\Longrightarrow L^{\text {rev }}$ regular.

Operations from Regular Expressions

Proposition
Regular Languages are closed under \cup, \circ and *.

Operations from Regular Expressions

Proposition

Regular Languages are closed under \cup, \circ and *.
Proof.
(Summarizing previous arguments.)

- L_{1}, L_{2} regular $\Longrightarrow \exists$ regexes R_{1}, R_{2} s.t. $L_{1}=L\left(R_{1}\right)$ and $L_{2}=L\left(R_{2}\right)$.
- $\Longrightarrow L_{1} \cup L_{2}=L\left(R_{1} \cup R_{2}\right) \Longrightarrow L_{1} \cup L_{2}$ regular.

Operations from Regular Expressions

Proposition

Regular Languages are closed under \cup, \circ and *.
Proof.
(Summarizing previous arguments.)

- L_{1}, L_{2} regular $\Longrightarrow \exists$ regexes R_{1}, R_{2} s.t. $L_{1}=L\left(R_{1}\right)$ and $L_{2}=L\left(R_{2}\right)$.
- $\Longrightarrow L_{1} \cup L_{2}=L\left(R_{1} \cup R_{2}\right) \Longrightarrow L_{1} \cup L_{2}$ regular.
$\Rightarrow \quad L_{1} \circ L_{2}=L\left(R_{1} \circ R_{2}\right) \Longrightarrow L_{1} \circ L_{2}$ regular.
- $\Longrightarrow L_{1}^{*}=L\left(R_{1}^{*}\right) \Longrightarrow L_{1}^{*}$ regular.

Closure Under Complementation

Proposition
Regular Languages are closed under complementation, i.e., if L is regular then $\bar{L}=\Sigma^{*} \backslash L$ is also regular.

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\bar{L}=\Sigma^{*} \backslash L$ is also regular.

Proof.

- If L is regular, then there is a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L=L(M)$.

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\bar{L}=\Sigma^{*} \backslash L$ is also regular.

Proof.

- If L is regular, then there is a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L=L(M)$.
- Then, $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$ (i.e., switch accept and non-accept states) accepts \bar{L}.

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\bar{L}=\Sigma^{*} \backslash L$ is also regular.

Proof.

- If L is regular, then there is a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L=L(M)$.
- Then, $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$ (i.e., switch accept and non-accept states) accepts \bar{L}.

What happens if M (above) was an NFA?

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is also regular.

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is also regular.

Proof.
Observe that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$.

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is also regular.

Proof.
Observe that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are regular

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is also regular.

Proof.
Observe that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are regular
- $\overline{L_{1}} \cup \overline{L_{2}}$ is regular

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is also regular.

Proof.
Observe that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are regular
- $\overline{L_{1}} \cup \overline{L_{2}}$ is regular
- Hence, $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is regular.

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is also regular.

Proof.
Observe that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are regular
- $\overline{L_{1}} \cup \overline{L_{2}}$ is regular
- Hence, $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is regular.

Is there a direct proof for intersection (yielding a smaller DFA)?

Cross-Product Construction

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be DFAs recognizing L_{1} and L_{2}, respectively. Idea: Run M_{1} and M_{2} in parallel on the same input and accept if both M_{1} and M_{2} accept.

Cross-Product Construction

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be DFAs recognizing L_{1} and L_{2}, respectively. Idea: Run M_{1} and M_{2} in parallel on the same input and accept if both M_{1} and M_{2} accept.

Consider $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ defined as follows

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left\langle q_{1}, q_{2}\right\rangle$
- $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\left\langle\delta_{1}\left(p_{1}, a\right), \delta_{2}\left(p_{2}, a\right)\right\rangle$
- $F=F_{1} \times F_{2}$

Cross-Product Construction

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be DFAs recognizing L_{1} and L_{2}, respectively. Idea: Run M_{1} and M_{2} in parallel on the same input and accept if both M_{1} and M_{2} accept.

Consider $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ defined as follows

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left\langle q_{1}, q_{2}\right\rangle$
- $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\left\langle\delta_{1}\left(p_{1}, a\right), \delta_{2}\left(p_{2}, a\right)\right\rangle$
- $F=F_{1} \times F_{2}$
M accepts $L_{1} \cap L_{2}$ (exercise)

Cross-Product Construction

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be DFAs recognizing L_{1} and L_{2}, respectively.
Idea: Run M_{1} and M_{2} in parallel on the same input and accept if both M_{1} and M_{2} accept.

Consider $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ defined as follows

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left\langle q_{1}, q_{2}\right\rangle$
- $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\left\langle\delta_{1}\left(p_{1}, a\right), \delta_{2}\left(p_{2}, a\right)\right\rangle$
- $F=F_{1} \times F_{2}$
M accepts $L_{1} \cap L_{2}$ (exercise)
What happens if M_{1} and M_{2} where NFAs?

Cross-Product Construction

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be DFAs recognizing L_{1} and L_{2}, respectively.
Idea: Run M_{1} and M_{2} in parallel on the same input and accept if both M_{1} and M_{2} accept.

Consider $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ defined as follows

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left\langle q_{1}, q_{2}\right\rangle$
- $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\left\langle\delta_{1}\left(p_{1}, a\right), \delta_{2}\left(p_{2}, a\right)\right\rangle$
- $F=F_{1} \times F_{2}$
M accepts $L_{1} \cap L_{2}$ (exercise)
What happens if M_{1} and M_{2} where NFAs? Still works! Set $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\delta_{1}\left(p_{1}, a\right) \times \delta_{2}\left(p_{2}, a\right)$.

An Example

Homomorphism

Definition

A homomorphism is function $h: \Sigma^{*} \rightarrow \Delta^{*}$ defined as follows:

- $h(\epsilon)=\epsilon$ and for $a \in \Sigma, h(a)$ is any string in Δ^{*}
- For $a=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}(n \geq 2), h(a)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.

Homomorphism

Definition

A homomorphism is function $h: \Sigma^{*} \rightarrow \Delta^{*}$ defined as follows:

- $h(\epsilon)=\epsilon$ and for $a \in \Sigma, h(a)$ is any string in Δ^{*}
- For $a=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}(n \geq 2), h(a)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
- A homomorphism h maps a string $a \in \Sigma^{*}$ to a string in Δ^{*} by mapping each character of a to a string $h(a) \in \Delta^{*}$

Homomorphism

Definition

A homomorphism is function $h: \Sigma^{*} \rightarrow \Delta^{*}$ defined as follows:

- $h(\epsilon)=\epsilon$ and for $a \in \Sigma, h(a)$ is any string in Δ^{*}
- For $a=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}(n \geq 2), h(a)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
- A homomorphism h maps a string $a \in \Sigma^{*}$ to a string in Δ^{*} by mapping each character of a to a string $h(a) \in \Delta^{*}$
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^{*}$, $h(x y)=h(x) h(y)$.

Homomorphism

Definition

A homomorphism is function $h: \Sigma^{*} \rightarrow \Delta^{*}$ defined as follows:

- $h(\epsilon)=\epsilon$ and for $a \in \Sigma, h(a)$ is any string in Δ^{*}
- For $a=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}(n \geq 2), h(a)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
- A homomorphism h maps a string $a \in \Sigma^{*}$ to a string in Δ^{*} by mapping each character of a to a string $h(a) \in \Delta^{*}$
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^{*}$, $h(x y)=h(x) h(y)$. (Any such function is a homomorphism.)

Example
$h:\{0,1\} \rightarrow\{a, b\}^{*}$ where $h(0)=a b$ and $h(1)=b a$. Then $h(0011)=$

Homomorphism

Definition

A homomorphism is function $h: \Sigma^{*} \rightarrow \Delta^{*}$ defined as follows:

- $h(\epsilon)=\epsilon$ and for $a \in \Sigma, h(a)$ is any string in Δ^{*}
- For $a=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}(n \geq 2), h(a)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
- A homomorphism h maps a string $a \in \Sigma^{*}$ to a string in Δ^{*} by mapping each character of a to a string $h(a) \in \Delta^{*}$
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^{*}$, $h(x y)=h(x) h(y)$. (Any such function is a homomorphism.)

Example
$h:\{0,1\} \rightarrow\{a, b\}^{*}$ where $h(0)=a b$ and $h(1)=b a$. Then $h(0011)=a b a b b a b a$

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and a language $L \subseteq \Sigma^{*}$, define $h(L)=\{h(w) \mid w \in L\} \subseteq \Delta^{*}$.

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and a language $L \subseteq \Sigma^{*}$, define $h(L)=\{h(w) \mid w \in L\} \subseteq \Delta^{*}$.

Example
Let $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $h(0)=a b$ and $h(1)=b a$. Then $h(L)=\left\{(a b)^{n}(b a)^{n} \mid n \geq 0\right\}$

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and a language $L \subseteq \Sigma^{*}$, define $h(L)=\{h(w) \mid w \in L\} \subseteq \Delta^{*}$.

Example
Let $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $h(0)=a b$ and $h(1)=b a$. Then $h(L)=\left\{(a b)^{n}(b a)^{n} \mid n \geq 0\right\}$
Exercise: $h\left(L_{1} \cup L_{2}\right)=h\left(L_{1}\right) \cup h\left(L_{2}\right)$.

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and a language $L \subseteq \Sigma^{*}$, define $h(L)=\{h(w) \mid w \in L\} \subseteq \Delta^{*}$.

Example
Let $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $h(0)=a b$ and $h(1)=b a$. Then
$h(L)=\left\{(a b)^{n}(b a)^{n} \mid n \geq 0\right\}$
Exercise: $h\left(L_{1} \cup L_{2}\right)=h\left(L_{1}\right) \cup h\left(L_{2}\right) . h\left(L_{1} \circ L_{2}\right)=h\left(L_{1}\right) \circ h\left(L_{2}\right)$, and $h\left(L^{*}\right)=h(L)^{*}$.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then $h(L)$ is also regular.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then $h(L)$ is also regular.

Proof.
We will use the representation of regular languages in terms of regular expressions to argue this.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then $h(L)$ is also regular.

Proof.
We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then $h(L)$ is also regular.

Proof.
We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions
- Show that $L(h(R))=h(L(R))$

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then $h(L)$ is also regular.

Proof.
We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions
- Show that $L(h(R))=h(L(R))$
- Let R be such that $L=L(R)$. Let $R^{\prime}=h(R)$. Then $h(L)=L\left(R^{\prime}\right)$.

Homomorphism as an Operation on Regular Expressions

Definition
For a regular expression R, let $h(R)$ be the regular expression obtained by replacing each occurence of $a \in \Sigma$ in R by the string $h(a)$.

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let $h(R)$ be the regular expression obtained by replacing each occurence of $a \in \Sigma$ in R by the string $h(a)$.

Example
If $R=(0 \cup 1)^{*} 001(0 \cup 1)^{*}$ and $h(0)=a b$ and $h(1)=b c$ then $h(R)=(a b \cup b c)^{*} a b a b b c(a b \cup b c)^{*}$

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let $h(R)$ be the regular expression obtained by replacing each occurence of $a \in \Sigma$ in R by the string $h(a)$.

Example
If $R=(0 \cup 1)^{*} 001(0 \cup 1)^{*}$ and $h(0)=a b$ and $h(1)=b c$ then $h(R)=(a b \cup b c)^{*} a b a b b c(a b \cup b c)^{*}$

Formally $h(R)$ is defined inductively as follows.

$$
\begin{array}{ll}
h(\emptyset)=\emptyset & h\left(R_{1} R_{2}\right)=h\left(R_{1}\right) h\left(R_{2}\right) \\
h(\epsilon)=\epsilon & h\left(R_{1} \cup R_{2}\right)=h\left(R_{2}\right) \cup h\left(R_{2}\right) \\
h(a)=h(a) & h\left(R^{*}\right)=(h(R))^{*}
\end{array}
$$

Proof of Claim

Claim
For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

Proof of Claim

Claim
For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(L(R))=L(R)$.

Proof of Claim

Claim

For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(L(R))=L(R)$. For $R=a, L(R)=\{a\}$ and $h(L(R))=\{h(a)\}=L(h(a))=L(h(R))$. So claim holds.

Proof of Claim

Claim

For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(L(R))=L(R)$. For $R=a, L(R)=\{a\}$ and $h(L(R))=\{h(a)\}=L(h(a))=L(h(R))$. So claim holds.
- Induction Step: For $R=R_{1} \cup R_{2}$, observe that

Proof of Claim

Claim

For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(L(R))=L(R)$. For $R=a, L(R)=\{a\}$ and $h(L(R))=\{h(a)\}=L(h(a))=L(h(R))$. So claim holds.
- Induction Step: For $R=R_{1} \cup R_{2}$, observe that $h(R)=h\left(R_{1}\right) \cup h\left(R_{2}\right)$

Proof of Claim

Claim

For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(L(R))=L(R)$. For $R=a, L(R)=\{a\}$ and $h(L(R))=\{h(a)\}=L(h(a))=L(h(R))$. So claim holds.
- Induction Step: For $R=R_{1} \cup R_{2}$, observe that $h(R)=h\left(R_{1}\right) \cup h\left(R_{2}\right)$ and $h(L(R))=h\left(L\left(R_{1}\right) \cup L\left(R_{2}\right)\right)=h\left(L\left(R_{1}\right)\right) \cup h\left(L\left(R_{2}\right)\right)$.

Proof of Claim

Claim

For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(L(R))=L(R)$. For $R=a, L(R)=\{a\}$ and $h(L(R))=\{h(a)\}=L(h(a))=L(h(R))$. So claim holds.
- Induction Step: For $R=R_{1} \cup R_{2}$, observe that $h(R)=h\left(R_{1}\right) \cup h\left(R_{2}\right)$ and $h(L(R))=h\left(L\left(R_{1}\right) \cup L\left(R_{2}\right)\right)=h\left(L\left(R_{1}\right)\right) \cup h\left(L\left(R_{2}\right)\right)$. By induction hypothesis, $h\left(L\left(R_{i}\right)\right)=L\left(h\left(R_{i}\right)\right)$ and so $h(L(R))=L\left(h\left(R_{1}\right) \cup h\left(R_{2}\right)\right)$

Proof of Claim

Claim

For any regular expression $R, L(h(R))=h(L(R))$.
Proof.
By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(L(R))=L(R)$. For $R=a, L(R)=\{a\}$ and $h(L(R))=\{h(a)\}=L(h(a))=L(h(R))$. So claim holds.
- Induction Step: For $R=R_{1} \cup R_{2}$, observe that $h(R)=h\left(R_{1}\right) \cup h\left(R_{2}\right)$ and $h(L(R))=h\left(L\left(R_{1}\right) \cup L\left(R_{2}\right)\right)=h\left(L\left(R_{1}\right)\right) \cup h\left(L\left(R_{2}\right)\right)$. By induction hypothesis, $h\left(L\left(R_{i}\right)\right)=L\left(h\left(R_{i}\right)\right)$ and so $h(L(R))=L\left(h\left(R_{1}\right) \cup h\left(R_{2}\right)\right)$
Other cases ($R=R_{1} R_{2}$ and $R=R_{1}^{*}$) similar.

Nonregularity and Homomorphism

If L is not regular, is $h(L)$ also not regular?

Nonregularity and Homomorphism

If L is not regular, is $h(L)$ also not regular?

- No! Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $h(0)=a$ and $h(1)=\epsilon$. Then $h(L)=a^{*}$.

Nonregularity and Homomorphism

If L is not regular, is $h(L)$ also not regular?

- No! Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $h(0)=a$ and $h(1)=\epsilon$. Then $h(L)=a^{*}$.

Applying a homomorphism can "simplify" a non-regular language into a regular language.

Inverse Homomorphism

Inverse Homomorphism

Definition

Given homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and $L \subseteq \Delta^{*}$, $h^{-1}(L)=\left\{w \in \Sigma^{*} \mid h(w) \in L\right\}$

Inverse Homomorphism

Definition

Given homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and $L \subseteq \Delta^{*}$, $h^{-1}(L)=\left\{w \in \Sigma^{*} \mid h(w) \in L\right\}$
$h^{-1}(L)$ consists of strings whose homomorphic images are in L

Inverse Homomorphism

Definition

Given homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and $L \subseteq \Delta^{*}$, $h^{-1}(L)=\left\{w \in \Sigma^{*} \mid h(w) \in L\right\}$
$h^{-1}(L)$ consists of strings whose homomorphic images are in L

Inverse Homomorphism

Example

Let $\Sigma=\{a, b\}$, and $\Delta=\{0,1\}$. Let $L=(00 \cup 1)^{*}$ and $h(a)=01$ and $h(b)=10$.

Inverse Homomorphism

Example

Let $\Sigma=\{a, b\}$, and $\Delta=\{0,1\}$. Let $L=(00 \cup 1)^{*}$ and $h(a)=01$ and $h(b)=10$.

- $h^{-1}(1001)=\{b a\}, h^{-1}(010110)=\{a a b\}$

Inverse Homomorphism

Example

Let $\Sigma=\{a, b\}$, and $\Delta=\{0,1\}$. Let $L=(00 \cup 1)^{*}$ and $h(a)=01$ and $h(b)=10$.

- $h^{-1}(1001)=\{b a\}, h^{-1}(010110)=\{a a b\}$
- $h^{-1}(L)=$

Inverse Homomorphism

Example

Let $\Sigma=\{a, b\}$, and $\Delta=\{0,1\}$. Let $L=(00 \cup 1)^{*}$ and $h(a)=01$ and $h(b)=10$.

- $h^{-1}(1001)=\{b a\}, h^{-1}(010110)=\{a a b\}$
- $h^{-1}(L)=(b a)^{*}$

Inverse Homomorphism

Example

Let $\Sigma=\{a, b\}$, and $\Delta=\{0,1\}$. Let $L=(00 \cup 1)^{*}$ and $h(a)=01$ and $h(b)=10$.

- $h^{-1}(1001)=\{b a\}, h^{-1}(010110)=\{a a b\}$
- $h^{-1}(L)=(b a)^{*}$
- What is $h\left(h^{-1}(L)\right)$?

Inverse Homomorphism

Example
Let $\Sigma=\{a, b\}$, and $\Delta=\{0,1\}$. Let $L=(00 \cup 1)^{*}$ and $h(a)=01$ and $h(b)=10$.

- $h^{-1}(1001)=\{b a\}, h^{-1}(010110)=\{a a b\}$
- $h^{-1}(L)=(b a)^{*}$
- What is $h\left(h^{-1}(L)\right)$? $(1001)^{*} \subsetneq L$

Note: In general $h\left(h^{-1}(L)\right) \subseteq L \subseteq h^{-1}(h(L))$, but neither containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.
Proof.
We will use the representation of regular languages in terms of
DFA to argue this.

Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proof.
We will use the representation of regular languages in terms of
DFA to argue this.
Given a DFA M recognizing L, construct an DFA M^{\prime} that accepts $h^{-1}(L)$

- Intuition: On input $w M^{\prime}$ will run M on $h(w)$ and accept if M does.

Closure under Inverse Homomorphism

- Intuition: On input w M^{\prime} will run M on $h(w)$ and accept if M does.

Example

$L=L\left((00 \cup 1)^{*}\right) . h(a)=01, h(b)=10$.

Closure under Inverse Homomorphism

- Intuition: On input w M^{\prime} will run M on $h(w)$ and accept if M does.

Example

$L=L\left((00 \cup 1)^{*}\right) . h(a)=01, h(b)=10$.

Closure under Inverse Homomorphism

Formal Construction

- Let $M=\left(Q, \Delta, \delta, q_{0}, F\right)$ accept $L \subseteq \Delta^{*}$ and let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism
- Define $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where
- $Q^{\prime}=Q$
- $q_{0}^{\prime}=q_{0}$
- $F^{\prime}=F$, and
- $\delta^{\prime}(q, a)=\hat{\delta}_{M}(q, h(a)) ; M^{\prime}$ on input a simulates M on $h(a)$
- M^{\prime} accepts $h^{-1}(L)$

Closure under Inverse Homomorphism

Formal Construction

- Let $M=\left(Q, \Delta, \delta, q_{0}, F\right)$ accept $L \subseteq \Delta^{*}$ and let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism
- Define $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where
- $Q^{\prime}=Q$
- $q_{0}^{\prime}=q_{0}$
- $F^{\prime}=F$, and
- $\delta^{\prime}(q, a)=\hat{\delta}_{M}(q, h(a)) ; M^{\prime}$ on input a simulates M on $h(a)$
- M^{\prime} accepts $h^{-1}(L)$
- Because $\forall w . \hat{\delta}_{M^{\prime}}\left(q_{0}, w\right)=\hat{\delta}_{M}\left(q_{0}, h(w)\right)$

Proving Non-Regularity

Problem
Show that $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ is not regular
Proof.
Use pumping lemma!

Proving Non-Regularity

Problem
Show that $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ is not regular
Proof.
Use pumping lemma!
Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
("reduction")

Proving Non-Regularity

Problem
Show that $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ is not regular
Proof.
Use pumping lemma!
Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
("reduction")
More formally, we will show that by applying a sequence of "regularity preserving" operations to L we can get K.

Proving Non-Regularity

Problem
Show that $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ is not regular
Proof.
Use pumping lemma!
Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
("reduction")
More formally, we will show that by applying a sequence of "regularity preserving" operations to L we can get K. Then, since K is not regular, L cannot be regular.

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ we can get $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ we can get $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- Consider homomorphism $h_{1}:\{a, b, c\}^{*} \rightarrow\{a, b, c\}^{*}$ defined as $h_{1}(a)=a, h_{1}(b)=b, h_{1}(c)=a$.
- $L_{1}=h_{1}^{-1}(L)=\left\{(a \cup c)^{n} b(a \cup c)^{n} \mid n \geq 0\right\}$

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ we can get $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- Consider homomorphism $h_{1}:\{a, b, c\}^{*} \rightarrow\{a, b, c\}^{*}$ defined as $h_{1}(a)=a, h_{1}(b)=b, h_{1}(c)=a$.
- $L_{1}=h_{1}^{-1}(L)=\left\{(a \cup c)^{n} b(a \cup c)^{n} \mid n \geq 0\right\}$
- Let $L_{2}=L_{1} \cap L\left(a^{*} b c^{*}\right)=\left\{a^{n} b c^{n} \mid n \geq 0\right\}$

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ we can get $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- Consider homomorphism $h_{1}:\{a, b, c\}^{*} \rightarrow\{a, b, c\}^{*}$ defined as $h_{1}(a)=a, h_{1}(b)=b, h_{1}(c)=a$.
- $L_{1}=h_{1}^{-1}(L)=\left\{(a \cup c)^{n} b(a \cup c)^{n} \mid n \geq 0\right\}$
- Let $L_{2}=L_{1} \cap L\left(a^{*} b c^{*}\right)=\left\{a^{n} b c^{n} \mid n \geq 0\right\}$
- Homomorphism $h_{2}:\{a, b, c\}^{*} \rightarrow\{0,1\}^{*}$ is defined as $h_{2}(a)=0, h_{2}(b)=\epsilon$, and $h_{2}(c)=1$.
- $L_{3}=h_{2}\left(L_{2}\right)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=K$

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ we can get $K=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- Consider homomorphism $h_{1}:\{a, b, c\}^{*} \rightarrow\{a, b, c\}^{*}$ defined as $h_{1}(a)=a, h_{1}(b)=b, h_{1}(c)=a$.
- $L_{1}=h_{1}^{-1}(L)=\left\{(a \cup c)^{n} b(a \cup c)^{n} \mid n \geq 0\right\}$
- Let $L_{2}=L_{1} \cap L\left(a^{*} b c^{*}\right)=\left\{a^{n} b c^{n} \mid n \geq 0\right\}$
- Homomorphism $h_{2}:\{a, b, c\}^{*} \rightarrow\{0,1\}^{*}$ is defined as $h_{2}(a)=0, h_{2}(b)=\epsilon$, and $h_{2}(c)=1$.
- $L_{3}=h_{2}\left(L_{2}\right)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=K$
- Now if L is regular then so are L_{1}, L_{2}, L_{3}, and K. But K is not regular, and so L is not regular.

Proving Regularity

For a language L, define head (L) to be the set of all prefixes of strings in L. Prove that if L is regular, so is head (L).

Proving Regularity

For a language L, define head (L) to be the set of all prefixes of strings in L. Prove that if L is regular, so is head (L). We can prove this by

Proving Regularity

For a language L, define head (L) to be the set of all prefixes of strings in L. Prove that if L is regular, so is head (L). We can prove this by

- constructing a DFA/NFA that accepts head (L); or

Proving Regularity

For a language L, define head (L) to be the set of all prefixes of strings in L. Prove that if L is regular, so is head (L). We can prove this by

- constructing a DFA/NFA that accepts head(L); or
- giving a regular expression for head (L); or

Proving Regularity

For a language L, define head (L) to be the set of all prefixes of strings in L. Prove that if L is regular, so is head (L). We can prove this by

- constructing a DFA/NFA that accepts head(L); or
- giving a regular expression for head (L); or
- by applying a sequence of regularity-preserving operations.

Proving Regularity via Regularity-preserving Operations

Proving Regularity via Regularity-preserving Operations

- For simplicity, assume $\sum=\{0,1\}$; the proof easliy extends to a general alphabet set.

Proving Regularity via Regularity-preserving Operations

- For simplicity, assume $\sum=\{0,1\}$; the proof easliy extends to a general alphabet set.
- Define a homomorphism h where $h(0)=0, h(1)=1, h(a)=0, h(b)=1$. Then $h^{-1}(L)$ is regular.

Proving Regularity via Regularity-preserving Operations

- For simplicity, assume $\sum=\{0,1\}$; the proof easliy extends to a general alphabet set.
- Define a homomorphism h where $h(0)=0, h(1)=1, h(a)=0, h(b)=1$. Then $h^{-1}(L)$ is regular.
- $\left.(0 \cup 1)^{*}(a \cup b)^{*}\right)$ is regular, so is $(0 \cup 1)^{*}(a \cup b)^{*} \cap h^{-1}(L)$.

Proving Regularity via Regularity-preserving Operations

- For simplicity, assume $\sum=\{0,1\}$; the proof easliy extends to a general alphabet set.
- Define a homomorphism h where $h(0)=0, h(1)=1, h(a)=0, h(b)=1$. Then $h^{-1}(L)$ is regular.
- $\left.(0 \cup 1)^{*}(a \cup b)^{*}\right)$ is regular, so is $(0 \cup 1)^{*}(a \cup b)^{*} \cap h^{-1}(L)$.
- Define a homomorphism g where $g(0)=0, g(1)=1, g(a)=\epsilon, g(b)=\epsilon$. Then $g\left((0 \cup 1)^{*}(a \cup b)^{*} \cap h^{-1}(L)\right)$ is regular.

Proving Regularity via Regularity-preserving Operations

- For simplicity, assume $\sum=\{0,1\}$; the proof easliy extends to a general alphabet set.
- Define a homomorphism h where $h(0)=0, h(1)=1, h(a)=0, h(b)=1$. Then $h^{-1}(L)$ is regular.
- $\left.(0 \cup 1)^{*}(a \cup b)^{*}\right)$ is regular, so is $(0 \cup 1)^{*}(a \cup b)^{*} \cap h^{-1}(L)$.
- Define a homomorphism g where $g(0)=0, g(1)=1, g(a)=\epsilon, g(b)=\epsilon$. Then $g\left((0 \cup 1)^{*}(a \cup b)^{*} \cap h^{-1}(L)\right)$ is regular.
- Do you see head $(L)=g\left((0 \cup 1)^{*}(a \cup b)^{*} \cap h^{-1}(L)\right)$?

Proving Regularity and Non-Regularity

Showing that L is not regular

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.
Showing that L is regular

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.
Showing that L is regular
- Construct a DFA or NFA or regular expression recognizing L

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.
Showing that L is regular
- Construct a DFA or NFA or regular expression recognizing L
- Or, show that L can be obtained from known regular languages $L_{1}, L_{2}, \ldots L_{k}$ through regularity preserving operations

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.
Showing that L is regular
- Construct a DFA or NFA or regular expression recognizing L
- Or, show that L can be obtained from known regular languages $L_{1}, L_{2}, \ldots L_{k}$ through regularity preserving operations
- Note: Do not use pumping lemma to prove regularity!!

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

- Regular Expression operations
- Boolean operations: union, intersection, complement
- Homomorphism
- Inverse Homomorphism
(And several other operations...)

