
CSE 135: Introduction to Theory of Computation
Closure Properties

Sungjin Im

University of California, Merced

02-24-2014

Closure Properties

I Recall that we can carry out operations on one or more
languages to obtain a new language

I Very useful in studying the properties of one language by
relating it to other (better understood) languages

I Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

I Today: A variety of operations which preserve regularity
I i.e., the universe of regular languages is closed under these

operations

Closure Properties

I Recall that we can carry out operations on one or more
languages to obtain a new language

I Very useful in studying the properties of one language by
relating it to other (better understood) languages

I Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

I Today: A variety of operations which preserve regularity
I i.e., the universe of regular languages is closed under these

operations

Closure Properties

I Recall that we can carry out operations on one or more
languages to obtain a new language

I Very useful in studying the properties of one language by
relating it to other (better understood) languages

I Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

I Today: A variety of operations which preserve regularity
I i.e., the universe of regular languages is closed under these

operations

Closure Properties

I Recall that we can carry out operations on one or more
languages to obtain a new language

I Very useful in studying the properties of one language by
relating it to other (better understood) languages

I Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

I Today: A variety of operations which preserve regularity

I i.e., the universe of regular languages is closed under these
operations

Closure Properties

I Recall that we can carry out operations on one or more
languages to obtain a new language

I Very useful in studying the properties of one language by
relating it to other (better understood) languages

I Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

I Today: A variety of operations which preserve regularity
I i.e., the universe of regular languages is closed under these

operations

Closure Properties

Definition
Regular Languages are closed under an operation op on languages
if

L1, L2, . . . Ln regular =⇒ L = op(L1, L2, . . . Ln) is regular

Example

Regular languages are closed under

I “halving”, i.e., L regular =⇒ 1
2L regular.

I “reversing”, i.e., L regular =⇒ Lrev regular.

Closure Properties

Definition
Regular Languages are closed under an operation op on languages
if

L1, L2, . . . Ln regular =⇒ L = op(L1, L2, . . . Ln) is regular

Example

Regular languages are closed under

I “halving”, i.e., L regular =⇒ 1
2L regular.

I “reversing”, i.e., L regular =⇒ Lrev regular.

Closure Properties

Definition
Regular Languages are closed under an operation op on languages
if

L1, L2, . . . Ln regular =⇒ L = op(L1, L2, . . . Ln) is regular

Example

Regular languages are closed under

I “halving”, i.e., L regular =⇒ 1
2L regular.

I “reversing”, i.e., L regular =⇒ Lrev regular.

Operations from Regular Expressions

Proposition

Regular Languages are closed under ∪, ◦ and ∗.

Proof.
(Summarizing previous arguments.)
I L1, L2 regular =⇒ ∃ regexes R1, R2 s.t. L1 = L(R1) and

L2 = L(R2).
I =⇒ L1 ∪ L2 = L(R1 ∪ R2) =⇒ L1 ∪ L2 regular.
I =⇒ L1 ◦ L2 = L(R1 ◦ R2) =⇒ L1 ◦ L2 regular.
I =⇒ L∗1 = L(R∗1) =⇒ L∗1 regular. �

Operations from Regular Expressions

Proposition

Regular Languages are closed under ∪, ◦ and ∗.

Proof.
(Summarizing previous arguments.)
I L1, L2 regular =⇒ ∃ regexes R1, R2 s.t. L1 = L(R1) and

L2 = L(R2).
I =⇒ L1 ∪ L2 = L(R1 ∪ R2) =⇒ L1 ∪ L2 regular.

I =⇒ L1 ◦ L2 = L(R1 ◦ R2) =⇒ L1 ◦ L2 regular.
I =⇒ L∗1 = L(R∗1) =⇒ L∗1 regular. �

Operations from Regular Expressions

Proposition

Regular Languages are closed under ∪, ◦ and ∗.

Proof.
(Summarizing previous arguments.)
I L1, L2 regular =⇒ ∃ regexes R1, R2 s.t. L1 = L(R1) and

L2 = L(R2).
I =⇒ L1 ∪ L2 = L(R1 ∪ R2) =⇒ L1 ∪ L2 regular.
I =⇒ L1 ◦ L2 = L(R1 ◦ R2) =⇒ L1 ◦ L2 regular.
I =⇒ L∗1 = L(R∗1) =⇒ L∗1 regular. �

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is
regular then L = Σ∗ \ L is also regular.

Proof.

I If L is regular, then there is a DFA M = (Q,Σ, δ, q0,F) such
that L = L(M).

I Then, M = (Q,Σ, δ, q0,Q \ F) (i.e., switch accept and
non-accept states) accepts L. �

What happens if M (above) was an NFA?

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is
regular then L = Σ∗ \ L is also regular.

Proof.

I If L is regular, then there is a DFA M = (Q,Σ, δ, q0,F) such
that L = L(M).

I Then, M = (Q,Σ, δ, q0,Q \ F) (i.e., switch accept and
non-accept states) accepts L. �

What happens if M (above) was an NFA?

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is
regular then L = Σ∗ \ L is also regular.

Proof.

I If L is regular, then there is a DFA M = (Q,Σ, δ, q0,F) such
that L = L(M).

I Then, M = (Q,Σ, δ, q0,Q \ F) (i.e., switch accept and
non-accept states) accepts L. �

What happens if M (above) was an NFA?

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is
regular then L = Σ∗ \ L is also regular.

Proof.

I If L is regular, then there is a DFA M = (Q,Σ, δ, q0,F) such
that L = L(M).

I Then, M = (Q,Σ, δ, q0,Q \ F) (i.e., switch accept and
non-accept states) accepts L. �

What happens if M (above) was an NFA?

Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if L1 and L2
are regular then L1 ∩ L2 is also regular.

Proof.
Observe that L1 ∩ L2 = L1 ∪ L2. Since regular languages are closed
under union and complementation, we have

I L1 and L2 are regular

I L1 ∪ L2 is regular

I Hence, L1 ∩ L2 = L1 ∪ L2 is regular. �

Is there a direct proof for intersection (yielding a smaller DFA)?

Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if L1 and L2
are regular then L1 ∩ L2 is also regular.

Proof.
Observe that L1 ∩ L2 = L1 ∪ L2.

Since regular languages are closed
under union and complementation, we have

I L1 and L2 are regular

I L1 ∪ L2 is regular

I Hence, L1 ∩ L2 = L1 ∪ L2 is regular. �

Is there a direct proof for intersection (yielding a smaller DFA)?

Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if L1 and L2
are regular then L1 ∩ L2 is also regular.

Proof.
Observe that L1 ∩ L2 = L1 ∪ L2. Since regular languages are closed
under union and complementation, we have

I L1 and L2 are regular

I L1 ∪ L2 is regular

I Hence, L1 ∩ L2 = L1 ∪ L2 is regular. �

Is there a direct proof for intersection (yielding a smaller DFA)?

Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if L1 and L2
are regular then L1 ∩ L2 is also regular.

Proof.
Observe that L1 ∩ L2 = L1 ∪ L2. Since regular languages are closed
under union and complementation, we have

I L1 and L2 are regular

I L1 ∪ L2 is regular

I Hence, L1 ∩ L2 = L1 ∪ L2 is regular. �

Is there a direct proof for intersection (yielding a smaller DFA)?

Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if L1 and L2
are regular then L1 ∩ L2 is also regular.

Proof.
Observe that L1 ∩ L2 = L1 ∪ L2. Since regular languages are closed
under union and complementation, we have

I L1 and L2 are regular

I L1 ∪ L2 is regular

I Hence, L1 ∩ L2 = L1 ∪ L2 is regular. �

Is there a direct proof for intersection (yielding a smaller DFA)?

Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if L1 and L2
are regular then L1 ∩ L2 is also regular.

Proof.
Observe that L1 ∩ L2 = L1 ∪ L2. Since regular languages are closed
under union and complementation, we have

I L1 and L2 are regular

I L1 ∪ L2 is regular

I Hence, L1 ∩ L2 = L1 ∪ L2 is regular. �

Is there a direct proof for intersection (yielding a smaller DFA)?

Cross-Product Construction

Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be DFAs
recognizing L1 and L2, respectively.
Idea: Run M1 and M2 in parallel on the same input and accept if
both M1 and M2 accept.

Consider M = (Q,Σ, δ, q0,F) defined as follows

I Q = Q1 × Q2

I q0 = 〈q1, q2〉
I δ(〈p1, p2〉, a) = 〈δ1(p1, a), δ2(p2, a)〉
I F = F1 × F2

M accepts L1 ∩ L2 (exercise)
What happens if M1 and M2 where NFAs? Still works! Set
δ(〈p1, p2〉, a) = δ1(p1, a)× δ2(p2, a).

Cross-Product Construction

Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be DFAs
recognizing L1 and L2, respectively.
Idea: Run M1 and M2 in parallel on the same input and accept if
both M1 and M2 accept.

Consider M = (Q,Σ, δ, q0,F) defined as follows

I Q = Q1 × Q2

I q0 = 〈q1, q2〉
I δ(〈p1, p2〉, a) = 〈δ1(p1, a), δ2(p2, a)〉
I F = F1 × F2

M accepts L1 ∩ L2 (exercise)
What happens if M1 and M2 where NFAs? Still works! Set
δ(〈p1, p2〉, a) = δ1(p1, a)× δ2(p2, a).

Cross-Product Construction

Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be DFAs
recognizing L1 and L2, respectively.
Idea: Run M1 and M2 in parallel on the same input and accept if
both M1 and M2 accept.

Consider M = (Q,Σ, δ, q0,F) defined as follows

I Q = Q1 × Q2

I q0 = 〈q1, q2〉
I δ(〈p1, p2〉, a) = 〈δ1(p1, a), δ2(p2, a)〉
I F = F1 × F2

M accepts L1 ∩ L2 (exercise)

What happens if M1 and M2 where NFAs? Still works! Set
δ(〈p1, p2〉, a) = δ1(p1, a)× δ2(p2, a).

Cross-Product Construction

Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be DFAs
recognizing L1 and L2, respectively.
Idea: Run M1 and M2 in parallel on the same input and accept if
both M1 and M2 accept.

Consider M = (Q,Σ, δ, q0,F) defined as follows

I Q = Q1 × Q2

I q0 = 〈q1, q2〉
I δ(〈p1, p2〉, a) = 〈δ1(p1, a), δ2(p2, a)〉
I F = F1 × F2

M accepts L1 ∩ L2 (exercise)
What happens if M1 and M2 where NFAs?

Still works! Set
δ(〈p1, p2〉, a) = δ1(p1, a)× δ2(p2, a).

Cross-Product Construction

Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be DFAs
recognizing L1 and L2, respectively.
Idea: Run M1 and M2 in parallel on the same input and accept if
both M1 and M2 accept.

Consider M = (Q,Σ, δ, q0,F) defined as follows

I Q = Q1 × Q2

I q0 = 〈q1, q2〉
I δ(〈p1, p2〉, a) = 〈δ1(p1, a), δ2(p2, a)〉
I F = F1 × F2

M accepts L1 ∩ L2 (exercise)
What happens if M1 and M2 where NFAs? Still works! Set
δ(〈p1, p2〉, a) = δ1(p1, a)× δ2(p2, a).

An Example

q00

q01

0 0

1

1

× =q10 q11

1

1

0 0 q00 q01

q10 q11

1

1

1

1

0 0 0 0

Homomorphism

Definition
A homomorphism is function h : Σ∗ → ∆∗ defined as follows:

I h(ε) = ε and for a ∈ Σ, h(a) is any string in ∆∗

I For a = a1a2 . . . an ∈ Σ∗ (n ≥ 2), h(a) = h(a1)h(a2) . . . h(an).

I A homomorphism h maps a string a ∈ Σ∗ to a string in ∆∗ by
mapping each character of a to a string h(a) ∈ ∆∗

I A homomorphism is a function from strings to strings that
“respects” concatenation: for any x , y ∈ Σ∗,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h : {0, 1} → {a, b}∗ where h(0) = ab and h(1) = ba. Then
h(0011) = ababbaba

Homomorphism

Definition
A homomorphism is function h : Σ∗ → ∆∗ defined as follows:

I h(ε) = ε and for a ∈ Σ, h(a) is any string in ∆∗

I For a = a1a2 . . . an ∈ Σ∗ (n ≥ 2), h(a) = h(a1)h(a2) . . . h(an).

I A homomorphism h maps a string a ∈ Σ∗ to a string in ∆∗ by
mapping each character of a to a string h(a) ∈ ∆∗

I A homomorphism is a function from strings to strings that
“respects” concatenation: for any x , y ∈ Σ∗,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h : {0, 1} → {a, b}∗ where h(0) = ab and h(1) = ba. Then
h(0011) = ababbaba

Homomorphism

Definition
A homomorphism is function h : Σ∗ → ∆∗ defined as follows:

I h(ε) = ε and for a ∈ Σ, h(a) is any string in ∆∗

I For a = a1a2 . . . an ∈ Σ∗ (n ≥ 2), h(a) = h(a1)h(a2) . . . h(an).

I A homomorphism h maps a string a ∈ Σ∗ to a string in ∆∗ by
mapping each character of a to a string h(a) ∈ ∆∗

I A homomorphism is a function from strings to strings that
“respects” concatenation: for any x , y ∈ Σ∗,
h(xy) = h(x)h(y).

(Any such function is a homomorphism.)

Example

h : {0, 1} → {a, b}∗ where h(0) = ab and h(1) = ba. Then
h(0011) = ababbaba

Homomorphism

Definition
A homomorphism is function h : Σ∗ → ∆∗ defined as follows:

I h(ε) = ε and for a ∈ Σ, h(a) is any string in ∆∗

I For a = a1a2 . . . an ∈ Σ∗ (n ≥ 2), h(a) = h(a1)h(a2) . . . h(an).

I A homomorphism h maps a string a ∈ Σ∗ to a string in ∆∗ by
mapping each character of a to a string h(a) ∈ ∆∗

I A homomorphism is a function from strings to strings that
“respects” concatenation: for any x , y ∈ Σ∗,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h : {0, 1} → {a, b}∗ where h(0) = ab and h(1) = ba. Then
h(0011) =

ababbaba

Homomorphism

Definition
A homomorphism is function h : Σ∗ → ∆∗ defined as follows:

I h(ε) = ε and for a ∈ Σ, h(a) is any string in ∆∗

I For a = a1a2 . . . an ∈ Σ∗ (n ≥ 2), h(a) = h(a1)h(a2) . . . h(an).

I A homomorphism h maps a string a ∈ Σ∗ to a string in ∆∗ by
mapping each character of a to a string h(a) ∈ ∆∗

I A homomorphism is a function from strings to strings that
“respects” concatenation: for any x , y ∈ Σ∗,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h : {0, 1} → {a, b}∗ where h(0) = ab and h(1) = ba. Then
h(0011) = ababbaba

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h : Σ∗ → ∆∗ and a language L ⊆ Σ∗,
define h(L) = {h(w) | w ∈ L} ⊆ ∆∗.

Example

Let L = {0n1n | n ≥ 0} and h(0) = ab and h(1) = ba. Then
h(L) = {(ab)n(ba)n | n ≥ 0}
Exercise: h(L1 ∪ L2) = h(L1) ∪ h(L2). h(L1 ◦ L2) = h(L1) ◦ h(L2),
and h(L∗) = h(L)∗.

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h : Σ∗ → ∆∗ and a language L ⊆ Σ∗,
define h(L) = {h(w) | w ∈ L} ⊆ ∆∗.

Example

Let L = {0n1n | n ≥ 0} and h(0) = ab and h(1) = ba. Then
h(L) = {(ab)n(ba)n | n ≥ 0}

Exercise: h(L1 ∪ L2) = h(L1) ∪ h(L2). h(L1 ◦ L2) = h(L1) ◦ h(L2),
and h(L∗) = h(L)∗.

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h : Σ∗ → ∆∗ and a language L ⊆ Σ∗,
define h(L) = {h(w) | w ∈ L} ⊆ ∆∗.

Example

Let L = {0n1n | n ≥ 0} and h(0) = ab and h(1) = ba. Then
h(L) = {(ab)n(ba)n | n ≥ 0}
Exercise: h(L1 ∪ L2) = h(L1) ∪ h(L2).

h(L1 ◦ L2) = h(L1) ◦ h(L2),
and h(L∗) = h(L)∗.

Homomorphism as an Operation on Languages

Definition
Given a homomorphism h : Σ∗ → ∆∗ and a language L ⊆ Σ∗,
define h(L) = {h(w) | w ∈ L} ⊆ ∆∗.

Example

Let L = {0n1n | n ≥ 0} and h(0) = ab and h(1) = ba. Then
h(L) = {(ab)n(ba)n | n ≥ 0}
Exercise: h(L1 ∪ L2) = h(L1) ∪ h(L2). h(L1 ◦ L2) = h(L1) ◦ h(L2),
and h(L∗) = h(L)∗.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.

I Define homomorphism as an operation on regular expressions

I Show that L(h(R)) = h(L(R))

I Let R be such that L = L(R). Let R ′ = h(R). Then
h(L) = L(R ′). ··→

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.

I Define homomorphism as an operation on regular expressions

I Show that L(h(R)) = h(L(R))

I Let R be such that L = L(R). Let R ′ = h(R). Then
h(L) = L(R ′). ··→

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.

I Define homomorphism as an operation on regular expressions

I Show that L(h(R)) = h(L(R))

I Let R be such that L = L(R). Let R ′ = h(R). Then
h(L) = L(R ′). ··→

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.

I Define homomorphism as an operation on regular expressions

I Show that L(h(R)) = h(L(R))

I Let R be such that L = L(R). Let R ′ = h(R). Then
h(L) = L(R ′). ··→

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.
We will use the representation of regular languages in terms of
regular expressions to argue this.

I Define homomorphism as an operation on regular expressions

I Show that L(h(R)) = h(L(R))

I Let R be such that L = L(R). Let R ′ = h(R). Then
h(L) = L(R ′). ··→

Homomorphism as an Operation on Regular Expressions

Definition
For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a ∈ Σ in R by the string
h(a).

Example

If R = (0 ∪ 1)∗001(0 ∪ 1)∗ and h(0) = ab and h(1) = bc then
h(R) = (ab ∪ bc)∗ababbc(ab ∪ bc)∗

Formally h(R) is defined inductively as follows.

h(∅) = ∅ h(R1R2) = h(R1)h(R2)
h(ε) = ε h(R1 ∪ R2) = h(R2) ∪ h(R2)
h(a) = h(a) h(R∗) = (h(R))∗

Homomorphism as an Operation on Regular Expressions

Definition
For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a ∈ Σ in R by the string
h(a).

Example

If R = (0 ∪ 1)∗001(0 ∪ 1)∗ and h(0) = ab and h(1) = bc then
h(R) = (ab ∪ bc)∗ababbc(ab ∪ bc)∗

Formally h(R) is defined inductively as follows.

h(∅) = ∅ h(R1R2) = h(R1)h(R2)
h(ε) = ε h(R1 ∪ R2) = h(R2) ∪ h(R2)
h(a) = h(a) h(R∗) = (h(R))∗

Homomorphism as an Operation on Regular Expressions

Definition
For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a ∈ Σ in R by the string
h(a).

Example

If R = (0 ∪ 1)∗001(0 ∪ 1)∗ and h(0) = ab and h(1) = bc then
h(R) = (ab ∪ bc)∗ababbc(ab ∪ bc)∗

Formally h(R) is defined inductively as follows.

h(∅) = ∅ h(R1R2) = h(R1)h(R2)
h(ε) = ε h(R1 ∪ R2) = h(R2) ∪ h(R2)
h(a) = h(a) h(R∗) = (h(R))∗

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1) similar. �

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).

For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1) similar. �

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1) similar. �

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that

h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1) similar. �

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2)

and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1) similar. �

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)).

By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1) similar. �

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))

Other cases (R = R1R2 and R = R∗1) similar. �

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).

Proof.
By induction on the number of operations in R

I Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

I Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri)) = L(h(Ri)) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1) similar. �

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

I No! Consider L = {0n1n | n ≥ 0} and h(0) = a and h(1) = ε.
Then h(L) = a∗.

Applying a homomorphism can “simplify” a non-regular language
into a regular language.

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

I No! Consider L = {0n1n | n ≥ 0} and h(0) = a and h(1) = ε.
Then h(L) = a∗.

Applying a homomorphism can “simplify” a non-regular language
into a regular language.

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

I No! Consider L = {0n1n | n ≥ 0} and h(0) = a and h(1) = ε.
Then h(L) = a∗.

Applying a homomorphism can “simplify” a non-regular language
into a regular language.

Inverse Homomorphism

Definition
Given homomorphism h : Σ∗ → ∆∗ and L ⊆ ∆∗,
h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}
h−1(L) consists of strings whose homomorphic images are in L

Σ∗ ∆∗

h

h−1(L)

L

Inverse Homomorphism

Definition
Given homomorphism h : Σ∗ → ∆∗ and L ⊆ ∆∗,
h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}

h−1(L) consists of strings whose homomorphic images are in L

Σ∗ ∆∗

h

h−1(L)

L

Inverse Homomorphism

Definition
Given homomorphism h : Σ∗ → ∆∗ and L ⊆ ∆∗,
h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}
h−1(L) consists of strings whose homomorphic images are in L

Σ∗ ∆∗

h

h−1(L)

L

Inverse Homomorphism

Definition
Given homomorphism h : Σ∗ → ∆∗ and L ⊆ ∆∗,
h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}
h−1(L) consists of strings whose homomorphic images are in L

Σ∗ ∆∗

h

h−1(L)

L

Inverse Homomorphism

Example

Let Σ = {a, b}, and ∆ = {0, 1}. Let L = (00 ∪ 1)∗ and h(a) = 01
and h(b) = 10.

I h−1(1001) = {ba}, h−1(010110) = {aab}
I h−1(L) = (ba)∗

I What is h(h−1(L))? (1001)∗ (L

Note: In general h(h−1(L)) ⊆ L ⊆ h−1(h(L)), but neither
containment is necessarily an equality.

Inverse Homomorphism

Example

Let Σ = {a, b}, and ∆ = {0, 1}. Let L = (00 ∪ 1)∗ and h(a) = 01
and h(b) = 10.

I h−1(1001) = {ba}, h−1(010110) = {aab}

I h−1(L) = (ba)∗

I What is h(h−1(L))? (1001)∗ (L

Note: In general h(h−1(L)) ⊆ L ⊆ h−1(h(L)), but neither
containment is necessarily an equality.

Inverse Homomorphism

Example

Let Σ = {a, b}, and ∆ = {0, 1}. Let L = (00 ∪ 1)∗ and h(a) = 01
and h(b) = 10.

I h−1(1001) = {ba}, h−1(010110) = {aab}
I h−1(L) =

(ba)∗

I What is h(h−1(L))? (1001)∗ (L

Note: In general h(h−1(L)) ⊆ L ⊆ h−1(h(L)), but neither
containment is necessarily an equality.

Inverse Homomorphism

Example

Let Σ = {a, b}, and ∆ = {0, 1}. Let L = (00 ∪ 1)∗ and h(a) = 01
and h(b) = 10.

I h−1(1001) = {ba}, h−1(010110) = {aab}
I h−1(L) = (ba)∗

I What is h(h−1(L))? (1001)∗ (L

Note: In general h(h−1(L)) ⊆ L ⊆ h−1(h(L)), but neither
containment is necessarily an equality.

Inverse Homomorphism

Example

Let Σ = {a, b}, and ∆ = {0, 1}. Let L = (00 ∪ 1)∗ and h(a) = 01
and h(b) = 10.

I h−1(1001) = {ba}, h−1(010110) = {aab}
I h−1(L) = (ba)∗

I What is h(h−1(L))?

(1001)∗ (L

Note: In general h(h−1(L)) ⊆ L ⊆ h−1(h(L)), but neither
containment is necessarily an equality.

Inverse Homomorphism

Example

Let Σ = {a, b}, and ∆ = {0, 1}. Let L = (00 ∪ 1)∗ and h(a) = 01
and h(b) = 10.

I h−1(1001) = {ba}, h−1(010110) = {aab}
I h−1(L) = (ba)∗

I What is h(h−1(L))? (1001)∗ (L

Note: In general h(h−1(L)) ⊆ L ⊆ h−1(h(L)), but neither
containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h−1(L) is regular.

Proof.
We will use the representation of regular languages in terms of
DFA to argue this.
Given a DFA M recognizing L, construct an DFA M ′ that accepts
h−1(L)

I Intuition: On input w M ′ will run M on h(w) and accept if M
does.

··→

Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h−1(L) is regular.

Proof.
We will use the representation of regular languages in terms of
DFA to argue this.

Given a DFA M recognizing L, construct an DFA M ′ that accepts
h−1(L)

I Intuition: On input w M ′ will run M on h(w) and accept if M
does.

··→

Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h−1(L) is regular.

Proof.
We will use the representation of regular languages in terms of
DFA to argue this.
Given a DFA M recognizing L, construct an DFA M ′ that accepts
h−1(L)

I Intuition: On input w M ′ will run M on h(w) and accept if M
does.

··→

Closure under Inverse Homomorphism

I Intuition: On input w M ′ will run M on h(w) and accept if M
does.

Example

L = L ((00 ∪ 1)∗). h(a) = 01, h(b) = 10.

q0 q1

q2

1

0, 1

0

0

1

Closure under Inverse Homomorphism

I Intuition: On input w M ′ will run M on h(w) and accept if M
does.

Example

L = L ((00 ∪ 1)∗). h(a) = 01, h(b) = 10.

q0 q1

q2

1

0, 1

0

0

1a b
b

a

a, b

Closure under Inverse Homomorphism
Formal Construction

I Let M = (Q,∆, δ, q0,F) accept L ⊆ ∆∗ and let h : Σ∗ → ∆∗

be a homomorphism
I Define M ′ = (Q ′,Σ, δ′, q′0,F

′), where
I Q ′ = Q
I q′0 = q0
I F ′ = F , and
I δ′(q, a) = δ̂M(q, h(a)); M ′ on input a simulates M on h(a)

I M ′ accepts h−1(L)

I Because ∀w . δ̂M′(q0,w) = δ̂M(q0, h(w))

Closure under Inverse Homomorphism
Formal Construction

I Let M = (Q,∆, δ, q0,F) accept L ⊆ ∆∗ and let h : Σ∗ → ∆∗

be a homomorphism
I Define M ′ = (Q ′,Σ, δ′, q′0,F

′), where
I Q ′ = Q
I q′0 = q0
I F ′ = F , and
I δ′(q, a) = δ̂M(q, h(a)); M ′ on input a simulates M on h(a)

I M ′ accepts h−1(L)

I Because ∀w . δ̂M′(q0,w) = δ̂M(q0, h(w))

Proving Non-Regularity

Problem
Show that L = {anban | n ≥ 0} is not regular

Proof.
Use pumping lemma!

Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0n1n | n ≥ 0}
(“reduction”)
More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K . Then, since
K is not regular, L cannot be regular. ··→

Proving Non-Regularity

Problem
Show that L = {anban | n ≥ 0} is not regular

Proof.
Use pumping lemma!
Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0n1n | n ≥ 0}
(“reduction”)

More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K . Then, since
K is not regular, L cannot be regular. ··→

Proving Non-Regularity

Problem
Show that L = {anban | n ≥ 0} is not regular

Proof.
Use pumping lemma!
Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0n1n | n ≥ 0}
(“reduction”)
More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K .

Then, since
K is not regular, L cannot be regular. ··→

Proving Non-Regularity

Problem
Show that L = {anban | n ≥ 0} is not regular

Proof.
Use pumping lemma!
Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0n1n | n ≥ 0}
(“reduction”)
More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K . Then, since
K is not regular, L cannot be regular. ··→

Proving Non-Regularity
Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {anban | n ≥ 0} we can get K = {0n1n | n ≥ 0}.

I Consider homomorphism h1 : {a, b, c}∗ → {a, b, c}∗ defined
as h1(a) = a, h1(b) = b, h1(c) = a.

I L1 = h−11 (L) = {(a ∪ c)nb(a ∪ c)n | n ≥ 0}
I Let L2 = L1 ∩ L(a∗bc∗) = {anbcn | n ≥ 0}
I Homomorphism h2 : {a, b, c}∗ → {0, 1}∗ is defined as

h2(a) = 0, h2(b) = ε, and h2(c) = 1.‘
I L3 = h2(L2) = {0n1n | n ≥ 0} = K

I Now if L is regular then so are L1, L2, L3, and K . But K is not
regular, and so L is not regular. �

Proving Non-Regularity
Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {anban | n ≥ 0} we can get K = {0n1n | n ≥ 0}.
I Consider homomorphism h1 : {a, b, c}∗ → {a, b, c}∗ defined

as h1(a) = a, h1(b) = b, h1(c) = a.
I L1 = h−11 (L) = {(a ∪ c)nb(a ∪ c)n | n ≥ 0}

I Let L2 = L1 ∩ L(a∗bc∗) = {anbcn | n ≥ 0}
I Homomorphism h2 : {a, b, c}∗ → {0, 1}∗ is defined as

h2(a) = 0, h2(b) = ε, and h2(c) = 1.‘
I L3 = h2(L2) = {0n1n | n ≥ 0} = K

I Now if L is regular then so are L1, L2, L3, and K . But K is not
regular, and so L is not regular. �

Proving Non-Regularity
Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {anban | n ≥ 0} we can get K = {0n1n | n ≥ 0}.
I Consider homomorphism h1 : {a, b, c}∗ → {a, b, c}∗ defined

as h1(a) = a, h1(b) = b, h1(c) = a.
I L1 = h−11 (L) = {(a ∪ c)nb(a ∪ c)n | n ≥ 0}

I Let L2 = L1 ∩ L(a∗bc∗) = {anbcn | n ≥ 0}

I Homomorphism h2 : {a, b, c}∗ → {0, 1}∗ is defined as
h2(a) = 0, h2(b) = ε, and h2(c) = 1.‘

I L3 = h2(L2) = {0n1n | n ≥ 0} = K

I Now if L is regular then so are L1, L2, L3, and K . But K is not
regular, and so L is not regular. �

Proving Non-Regularity
Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {anban | n ≥ 0} we can get K = {0n1n | n ≥ 0}.
I Consider homomorphism h1 : {a, b, c}∗ → {a, b, c}∗ defined

as h1(a) = a, h1(b) = b, h1(c) = a.
I L1 = h−11 (L) = {(a ∪ c)nb(a ∪ c)n | n ≥ 0}

I Let L2 = L1 ∩ L(a∗bc∗) = {anbcn | n ≥ 0}
I Homomorphism h2 : {a, b, c}∗ → {0, 1}∗ is defined as

h2(a) = 0, h2(b) = ε, and h2(c) = 1.‘
I L3 = h2(L2) = {0n1n | n ≥ 0} = K

I Now if L is regular then so are L1, L2, L3, and K . But K is not
regular, and so L is not regular. �

Proving Non-Regularity
Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {anban | n ≥ 0} we can get K = {0n1n | n ≥ 0}.
I Consider homomorphism h1 : {a, b, c}∗ → {a, b, c}∗ defined

as h1(a) = a, h1(b) = b, h1(c) = a.
I L1 = h−11 (L) = {(a ∪ c)nb(a ∪ c)n | n ≥ 0}

I Let L2 = L1 ∩ L(a∗bc∗) = {anbcn | n ≥ 0}
I Homomorphism h2 : {a, b, c}∗ → {0, 1}∗ is defined as

h2(a) = 0, h2(b) = ε, and h2(c) = 1.‘
I L3 = h2(L2) = {0n1n | n ≥ 0} = K

I Now if L is regular then so are L1, L2, L3, and K . But K is not
regular, and so L is not regular. �

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L).

We can
prove this by

I constructing a DFA/NFA that accepts head(L); or

I giving a regular expression for head(L); or

I by applying a sequence of regularity-preserving operations.

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

I constructing a DFA/NFA that accepts head(L); or

I giving a regular expression for head(L); or

I by applying a sequence of regularity-preserving operations.

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

I constructing a DFA/NFA that accepts head(L); or

I giving a regular expression for head(L); or

I by applying a sequence of regularity-preserving operations.

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

I constructing a DFA/NFA that accepts head(L); or

I giving a regular expression for head(L); or

I by applying a sequence of regularity-preserving operations.

Proving Regularity

For a language L, define head(L) to be the set of all prefixes of
strings in L. Prove that if L is regular, so is head(L). We can
prove this by

I constructing a DFA/NFA that accepts head(L); or

I giving a regular expression for head(L); or

I by applying a sequence of regularity-preserving operations.

Proving Regularity via Regularity-preserving Operations

I For simplicity, assume
∑

= {0, 1}; the proof easliy extends to
a general alphabet set.

I Define a homomorphism h where
h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then h−1(L) is
regular.

I (0 ∪ 1)∗(a ∪ b)∗) is regular, so is (0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L).

I Define a homomorphism g where
g(0) = 0, g(1) = 1, g(a) = ε, g(b) = ε. Then

g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

is regular.

I Do you see head(L) = g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

?

Proving Regularity via Regularity-preserving Operations

I For simplicity, assume
∑

= {0, 1}; the proof easliy extends to
a general alphabet set.

I Define a homomorphism h where
h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then h−1(L) is
regular.

I (0 ∪ 1)∗(a ∪ b)∗) is regular, so is (0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L).

I Define a homomorphism g where
g(0) = 0, g(1) = 1, g(a) = ε, g(b) = ε. Then

g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

is regular.

I Do you see head(L) = g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

?

Proving Regularity via Regularity-preserving Operations

I For simplicity, assume
∑

= {0, 1}; the proof easliy extends to
a general alphabet set.

I Define a homomorphism h where
h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then h−1(L) is
regular.

I (0 ∪ 1)∗(a ∪ b)∗) is regular, so is (0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L).

I Define a homomorphism g where
g(0) = 0, g(1) = 1, g(a) = ε, g(b) = ε. Then

g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

is regular.

I Do you see head(L) = g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

?

Proving Regularity via Regularity-preserving Operations

I For simplicity, assume
∑

= {0, 1}; the proof easliy extends to
a general alphabet set.

I Define a homomorphism h where
h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then h−1(L) is
regular.

I (0 ∪ 1)∗(a ∪ b)∗) is regular, so is (0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L).

I Define a homomorphism g where
g(0) = 0, g(1) = 1, g(a) = ε, g(b) = ε. Then

g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

is regular.

I Do you see head(L) = g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

?

Proving Regularity via Regularity-preserving Operations

I For simplicity, assume
∑

= {0, 1}; the proof easliy extends to
a general alphabet set.

I Define a homomorphism h where
h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then h−1(L) is
regular.

I (0 ∪ 1)∗(a ∪ b)∗) is regular, so is (0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L).

I Define a homomorphism g where
g(0) = 0, g(1) = 1, g(a) = ε, g(b) = ε. Then

g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

is regular.

I Do you see head(L) = g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

?

Proving Regularity via Regularity-preserving Operations

I For simplicity, assume
∑

= {0, 1}; the proof easliy extends to
a general alphabet set.

I Define a homomorphism h where
h(0) = 0, h(1) = 1, h(a) = 0, h(b) = 1. Then h−1(L) is
regular.

I (0 ∪ 1)∗(a ∪ b)∗) is regular, so is (0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L).

I Define a homomorphism g where
g(0) = 0, g(1) = 1, g(a) = ε, g(b) = ε. Then

g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

is regular.

I Do you see head(L) = g
(

(0 ∪ 1)∗(a ∪ b)∗ ∩ h−1(L)
)

?

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

Proving Regularity and Non-Regularity

Showing that L is not regular

I Use the pumping lemma

I Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

I Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

I Construct a DFA or NFA or regular expression recognizing L

I Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

I Note: Do not use pumping lemma to prove regularity!!

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

I Regular Expression operations

I Boolean operations: union, intersection, complement

I Homomorphism

I Inverse Homomorphism

(And several other operations...)

	Closure Properties
	Boolean Operators
	Homomorphisms
	Inverse Homomorphism

	Applications of Closure Properties
	Proving Non-Regularity
	Proving Regularity
	In a nutshell …

