Finite Languages

Definition
A language is finite if it has finitely many strings.
Finite Languages

Definition
A language is finite if it has finitely many strings.

Example
\{0, 1, 00, 10\} is a finite language
Finite Languages

Definition
A language is finite if it has finitely many strings.

Example
\{0, 1, 00, 10\} is a finite language, however, \((00 \cup 11)^*\) is not.
Finiteness and Regularity

Proposition

If \(L \) *is finite then* \(L \) *is regular.*
Proposition

If L is finite then L is regular.

Proof.

Let $L = \{w_1, w_2, \ldots w_n\}$. Then $R = w_1 \cup w_2 \cup \cdots \cup w_n$ is a regular expression defining L. □
Are all languages regular?

Proposition

The language \(L_{eq} = \{ w \in \{0, 1\}^* | w \text{ has an equal number of 0s and 1s} \} \) is not regular.

Proof

No DFA has enough states to keep track of the number of 0s and 1s it might see. □

Above is a weak argument because \(E = \{ w \in \{0, 1\}^* | w \text{ has an equal number of 01 and 10 substrings} \} \) is regular!
Are all languages regular?

Proposition

The language

\[L_{eq} = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of 0s and 1s} \} \]

is not regular.

Proof?

No DFA has enough states to keep track of the number of 0s and 1s it might see.

Above is a weak argument because

\[E = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of 01 and 10 substrings} \} \]

is regular!
Proposition

The language

$$L_{eq} = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of } 0\text{s and } 1\text{s} \}$$

is not regular.

Proof

No DFA has enough states to keep track of the number of 0s and 1s it might see.
Are all languages regular?

Proposition

The language $L_{eq} = \{w \in \{0, 1\}^* \mid w \ has \ an \ equal \ number \ of \ 0s \ and \ 1s\}$ is not regular.

Proof?

No DFA has enough states to keep track of the number of 0s and 1s it might see.

Above is a weak argument because $E = \{w \in \{0, 1\}^* \mid w \ has \ an \ equal \ number \ of \ 01 \ and \ 10 \ substrings\}$ is regular!
Proposition

The language

\[L_{eq} = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of 0s and 1s} \} \text{ is not regular.} \]
Proposition

The language $L_{eq} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0,1\}, \delta, q_0, F)$, where $|Q| = n$.

Proposition

The language $L_{eq} = \{w \in \{0, 1\}^* | w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof.

Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$, where $|Q| = n$.

- There must be $j < k \leq n$ such that $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$ ($= q$ say).
Proving Non-Regularity

Proposition

The language $L_{eq} = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$, where $|Q| = n$.

- There must be $j < k \leq n$ such that $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$ (say).
- Let $x = 0^j$, $y = 0^{k-j}$, and $z = 0^{n-k}1^n$; so $xyz = 0^n1^n$. \[\rightarrow\]
Proving Non-Regularity

Proof (contd).

We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
Proving Non-Regularity

Proof (contd).

- We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^n1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n1^n) \in F$.

\[y = 0^{k-j} \]
Proving Non-Regularity

Proof (contd).

We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

Since $0^n1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n1^n) \in F.$

$\hat{\delta}(q_0, 0^n1^n) = \delta(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n)$
Proving Non-Regularity

Proof (contd).

We have \(\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q \)

Since \(0^n1^n \in L_{eq} \), \(\hat{\delta}(q_0, 0^n1^n) \in F \).

\[
\hat{\delta}(q_0, 0^n1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n) \quad \text{(since} \ \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v))
\]
We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

Since $0^n1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n1^n) \in F$.

$$\hat{\delta}(q_0, 0^n1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n)$$

(since $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$)

$$= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k}1^n)$$
Proving Non-Regularity

Proof (contd).

We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

Since $0^n1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n1^n) \in F$.

\[
\begin{align*}
\hat{\delta}(q_0, 0^n1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n) \\
&= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k}1^n) \\
&= \hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)
\end{align*}
\]
Proving Non-Regularity

Proof (contd).

We have \(\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q \)

Since \(0^n1^n \in L_{eq}, \hat{\delta}(q_0, 0^n1^n) \in F. \)

\[
\hat{\delta}(q_0, 0^n1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n) \\
= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k}1^n) \\
= \hat{\delta}(q_0, 0^{n-k+j}1^n)
\]

(since \(\delta(q, uv) = \delta(\delta(q, u), v) \))

\((\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \)
Proving Non-Regularity

Proof (contd).

We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

Since $0^n1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n1^n) \in F$.

\[
\begin{align*}
\hat{\delta}(q_0, 0^n1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n) \\
&= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k}1^n) \\
&= \hat{\delta}(q_0, 0^{n-k+j}1^n)
\end{align*}
\]

(since $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$)

($\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$)

(since $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$)
Proving Non-Regularity

Proof (contd).

- We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^n1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n1^n) \in F$.

\[
\begin{align*}
\hat{\delta}(q_0, 0^n1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n) \\
&= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k}1^n) \\
&= \hat{\delta}(q_0, 0^{n-k+j}1^n)
\end{align*}
\]

(since $\delta(q, uv) = \delta(\hat{\delta}(q, u), v)$)

$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$

(since $\delta(q, uv) = \delta(\hat{\delta}(q, u), v)$)

- So M accepts $0^{n-k+j}1^n$ as well.
Proving Non-Regularity

Proof (contd).

We have \(\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q \)

Since \(0^n1^n \in L_{eq} \), \(\hat{\delta}(q_0, 0^n1^n) \in F \).

\[
\hat{\delta}(q_0, 0^n1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k}1^n) \\
= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k}1^n) \\
= \hat{\delta}(q_0, 0^{n-k+j}1^n)
\]

(since \(\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v) \))

(\(\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) \))

(since \(\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v) \))

So \(M \) accepts \(0^{n-k+j}1^n \) as well. But, \(0^{n-k+j}1^n \notin L_{eq}! \)
Pumping Lemma: Overview

Pumping Lemma

The lemma generalizes this argument. Gives the template of an argument that can be used to easily prove that many languages are non-regular.
Pumping Lemma

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that $w = xyz$ and
Pumping Lemma

The Statement

Lemma

If \(L \) is regular then there is a number \(p \) (the pumping length) such that \(\forall w \in L \text{ with } |w| \geq p, \ \exists x, y, z \in \Sigma^* \text{ such that } w = xyz \) and

1. \(|y| > 0\)
Pumping Lemma

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that $w = xyz$ and

1. $|y| > 0$
2. $|xy| \leq p$
Pumping Lemma

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that $w = xyz$ and

1. $|y| > 0$
2. $|xy| \leq p$
3. $\forall i \geq 0. \ xy^i z \in L$
Proving the Pumping Lemma

Proof.
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(M) = L$ and let $p = |Q|$.

Let $w = w_1w_2\cdots w_n \in L$ be such that $n \geq p$.

For $1 \leq i \leq n$, let $s_i = \hat{\delta}(q_0, w_1\cdots w_i)$; define $s_0 = q_0$.

Since $s_0, s_1, \ldots, s_i, \ldots, s_p$ are $p + 1$ states, there must be j, k, $0 \leq j < k \leq p$ such that $s_j = s_k (= q$ say).

Take $x = w_1\cdots w_j$, $y = w_{j+1}\cdots w_k$, and $z = w_{k+1}\cdots w_n$.

Observe that since $j < k \leq p$, we have $|xy| \leq p$ and $|y| > 0$.··→
Proof.
Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA such that \(L(M) = L \) and let \(p = |Q| \). Let \(w = w_1 w_2 \cdots w_n \in L \) be such that \(n \geq p \).
Proving the Pumping Lemma

Proof.
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(M) = L$ and let $p = |Q|$. Let $w = w_1w_2 \cdots w_n \in L$ be such that $n \geq p$. For $1 \leq i \leq n$, let $s_i = \hat{\delta}(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

Since $s_0, s_1, \ldots, s_i, \ldots, s_p$ are $p + 1$ states, there must be j, k, $0 \leq j < k \leq p$ such that $s_j = s_k$ (say).

Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$.

Observe that since $j < k \leq p$, we have $|xy| \leq p$ and $|y| > 0$.
Proving the Pumping Lemma

Proof.
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(M) = L$ and let $p = |Q|$. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \geq p$. For $1 \leq i \leq n$, let $s_i = \hat{\delta}(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are $p + 1$ states, there must be $j, k, 0 \leq j < k \leq p$ such that $s_j = s_k (= q$ say).
Proof.
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(M) = L$ and let $p = |Q|$. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \geq p$. For $1 \leq i \leq n$, let $s_i = \hat{\delta}(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

- Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are $p + 1$ states, there must be j, k, $0 \leq j < k \leq p$ such that $s_j = s_k$ ($= q$ say).
- Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$
Proof.
Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA such that \(L(M) = L \) and let \(p = |Q| \). Let \(w = w_1 w_2 \cdots w_n \in L \) be such that \(n \geq p \). For \(1 \leq i \leq n \), let \(s_i = \hat{\delta}(q_0, w_1 \cdots w_i) \); define \(s_0 = q_0 \).

- Since \(s_0, s_1, \ldots, s_i, \ldots s_p \) are \(p + 1 \) states, there must be \(j, k \), \(0 \leq j < k \leq p \) such that \(s_j = s_k \) (\(= q \) say).
- Take \(x = w_1 \cdots w_j \), \(y = w_{j+1} \cdots w_k \), and \(z = w_{k+1} \cdots w_n \)
- Observe that since \(j < k \leq p \), we have \(|xy| \leq p \) and \(|y| > 0 \).
Proof . . .

Technical Claim

Claim
For all $i \geq 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.
Proof . . .

Technical Claim

Claim
For all $i \geq 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

\blacksquare
Proof . . .

Technical Claim

Claim
For all $i \geq 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.
We will prove it by induction on i.

□
Proof

Technical Claim

Claim
For all $i \geq 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.
We will prove it by induction on i.

- **Base Case:** By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.

Claim
For all $i \geq 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.
We will prove it by induction on i.

- **Base Case:** By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.

- **Induction Step:** We have
Proof . . .

Technical Claim

Claim
For all $i \geq 1$, $\hat{\delta}(xy^i) = \hat{\delta}(q_0, x)$.

Proof.
We will prove it by induction on i.

- **Base Case:** By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.

- **Induction Step:** We have

\[
\hat{\delta}(q_0, xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, xy^\ell), y)
\]

□
Proof . . .

Technical Claim

Claim
For all $i \geq 1$, $\hat{\delta}(x y^i) = \hat{\delta}(q_0, x)$.

Proof.
We will prove it by induction on i.

- **Base Case:** By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.

- **Induction Step:** We have

 $\hat{\delta}(q_0, x y^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, x y^\ell), y) = \hat{\delta}(\hat{\delta}(q_0, x), y)$

\[\square \]
Proof . . .

Technical Claim

Claim
For all \(i \geq 1, \hat{\delta}(xy^i) = \hat{\delta}(q_0, x) \).

Proof.
We will prove it by induction on \(i \).

- **Base Case:** By our assumption that \(s_j = s_k \) and the definition of \(x \) and \(y \), we have \(\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x) \).

- **Induction Step:** We have

\[
\hat{\delta}(q_0, xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, xy^\ell), y) \\
= \hat{\delta}(\hat{\delta}(q_0, x), y) \\
= \hat{\delta}(q_0, xy) = \hat{\delta}(q_0, x) \\
\]

\[\Box\]
Completing the Proof

Proof (contd).

\[q_0 \xrightarrow{x} s_j = s_k = q \xrightarrow{z} q' \]

\[\hat{\delta}(q_0, \alpha) = \hat{\delta}(q_0, \beta) \] for all \(\alpha = \beta \)

\[\text{Since } w \in L, \hat{\delta}(q_0, w) = \hat{\delta}(q_0, \alpha) \in F \]

\[\text{Observe, } \hat{\delta}(q_0, \alpha) = \hat{\delta}(\hat{\delta}(q_0, \beta), \gamma) = \hat{\delta}(\hat{\delta}(q_0, \alpha), \gamma) = \hat{\delta}(q_0, w). \text{ So } \alpha = \beta \]

\[\text{Similarly, } \hat{\delta}(q_0, \alpha \beta) = \hat{\delta}(q_0, w) \]
Completing the Proof

Proof (contd).

We have \(\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x) \) for all \(i \geq 1 \)
Completing the Proof

Proof (contd).

We have $\hat{\delta}(q_0, x y^i) = \hat{\delta}(q_0, x)$ for all $i \geq 1$

Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$
We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \geq 1$

Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$

Observe,

$\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, xy), z) = \hat{\delta}(q_0, w)$. So $xz \in L$
Completing the Proof

Proof (contd).

We have \(\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x) \) for all \(i \geq 1 \)

Since \(w \in L \), we have \(\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F \)

Observe,
\[
\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, xy), z) = \hat{\delta}(q_0, w).
\]
So \(xz \in L \)

Similarly, \(\hat{\delta}(q_0, xy^i z) = \hat{\delta}(q_0, xyz) \in F \) and so \(xy^i z \in L \)
Finite Languages and Pumping Lemma

Question
Do finite languages really satisfy the condition in the pumping lemma?
Finite Languages and Pumping Lemma

Question
Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that $w = xyz$ and

1. $|y| > 0$
2. $|xy| \leq p$
3. $\forall i \geq 0. \ xy^i z \in L$

Answer
Yes, they do. Let p be larger than the longest string in the language. Then the condition "$\forall w \in L$ with $|w| \geq p$, ...

is vacuously satisfied as there are no strings in the language longer than p!
Finite Languages and Pumping Lemma

Question
Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If \(L \) is regular then there is a number \(p \) (the pumping length) such that \(\forall w \in L \) with \(|w| \geq p \), \(\exists x, y, z \in \Sigma^* \) such that \(w = xyz \) and
1. \(|y| > 0 \)
2. \(|xy| \leq p \)
3. \(\forall i \geq 0. \) \(xy^i z \in L \)

Answer
Yes, they do. Let \(p \) be larger than the longest string in the language. Then the condition “\(\forall w \in L \) with \(|w| \geq p \), …” is vacuously satisfied as there are no strings in the language longer than \(p \)!
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular pumping lemma says nothing about L!
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive
If L does not satisfy the pumping condition, then L not regular.

Pumping Condition

\[
\exists p. \quad \forall w \in L. \text{ with } |w| \geq p \quad \exists x, y, z \in \Sigma^*. \ w = xyz
\]

(1) $|y| > 0$

(2) $|xy| \leq p$

(3) $\forall i \geq 0. \ xy^i z \in L$
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive
If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

\[\overline{p}. \quad \forall w \in L. \text{ with } |w| \geq p \quad \exists x, y, z \in \Sigma^*. w = xyz \]
\[(1) \quad |y| > 0 \]
\[(2) \quad |xy| \leq p \]
\[(3) \quad \forall i \geq 0. \ xy^i z \in L \]
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive
If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

\[\forall p. \quad \exists w \in L. \text{ with } |w| \geq p \quad \exists x, y, z \in \Sigma^*. \quad w = xyz \]

\begin{align*}
(1) \quad & |y| > 0 \\
(2) \quad & |xy| \leq p \\
(3) \quad & \forall i \geq 0. \; xy^iz \in L
\end{align*}
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive
If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

\[
\forall p. \exists w \in L. \text{ with } |w| \geq p \quad \forall x, y, z \in \Sigma^*. \ w = xyz \\
(1) \ |y| > 0 \\
(2) \ |xy| \leq p \\
(3) \ \forall i \geq 0. \ xy^i z \in L
\]
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive
If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\forall p. \ \exists w \in L. \ \text{with} \ |w| \geq p \ \forall x, y, z \in \Sigma^*. \ w = xyz$$

(1) $|y| > 0$
(2) $|xy| \leq p$
(3) $\forall i \geq 0. \ xy^i z \in L$

(not all of them hold)
Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma.

Pumping Lemma, in contrapositive
If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

\[\forall p. \ \exists w \in L. \text{ with } |w| \geq p \quad \forall x, y, z \in \Sigma^*. \ w = xyz \]

\[
(1) \quad |y| > 0 \\
(2) \quad |xy| \leq p \\
(3) \quad \forall i \geq 0. \ xy^i z \in L
\]

not all of them hold

Equivalent to showing that if (1), (2) then (3) does not. In other words, we can find i such that $xy^i z \notin L$
Think of using the Pumping Lemma as a game between you and an opponent.
Think of using the Pumping Lemma as a game between you and an opponent.

L Task: To show that L is not regular
Think of using the Pumping Lemma as a game between you and an opponent.

- \(L \) Task: To show that \(L \) is not regular
- \(\forall p. \) Opponent picks \(p \)

Pumping Lemma: If \(L \) is regular, opponent has a winning strategy (no matter what you do).

Contrapositive: If you can beat the opponent, \(L \) not regular.

Your strategy should work for any \(p \) and any subdivision that the opponent may come up with.
Think of using the Pumping Lemma as a game between you and an opponent.

- L Task: To show that L is not regular
- $\forall p.$ Opponent picks p
- $\exists w.$ Pick w that is of length at least p
Think of using the Pumping Lemma as a game between you and an opponent.

Let L be the language.

- Task: To show that L is not regular
- $\forall p$. Opponent picks p
- $\exists w$. Pick w that is of length at least p
- $\forall x, y, z$. Opponent divides w into x, y, z such that $|y| > 0$, and $|xy| \leq p$
Think of using the Pumping Lemma as a game between you and an opponent.

L

Task: To show that L is not regular

$\forall p$. Opponent picks p

$\exists w$. Pick w that is of length at least p

$\forall x, y, z$. Opponent divides w into x, y, z such that $|y| > 0$, and $|xy| \leq p$

$\exists k$. You pick k and win if $xy^kz \notin L$
Game View

Think of using the Pumping Lemma as a game between you and an opponent.

\[L \]

Task: To show that \(L \) is not regular
\[\forall p. \]
Opponent picks \(p \)
\[\exists w. \]
Pick \(w \) that is of length at least \(p \)
\[\forall x, y, z \]
Opponent divides \(w \) into \(x, y, \) and \(z \) such that
\[|y| > 0, \text{ and } |xy| \leq p \]
\[\exists k. \]
You pick \(k \) and win if \(xy^kz \notin L \)

Pumping Lemma: If \(L \) is regular, opponent has a winning strategy (no matter what you do).
Think of using the Pumping Lemma as a game between you and an opponent.

L

Task: To show that L is not regular

$\forall p$. Opponent picks p

$\exists w$. Pick w that is of length at least p

$\forall x, y, z$. Opponent divides w into x, y, z such that $|y| > 0$, and $|xy| \leq p$

$\exists k$. You pick k and win if $xy^kz \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Contrapositive: If you can beat the opponent, L not regular.
Think of using the Pumping Lemma as a game between you and an opponent.

- **L** Task: To show that L is not regular
- $\forall p$. Opponent picks p
- $\exists w$. Pick w that is of length at least p
- $\forall x, y, z$. Opponent divides w into x, y, z such that $|y| > 0$, and $|xy| \leq p$
- $\exists k$. You pick k and win if $xy^kz \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the opponent may come up with.
Example 1

Proposition

\[L_{01n} = \{0^n1^n \mid n \geq 0\} \text{ is not regular.} \]
Example 1

Proposition
$L_{0^n1^n} = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
Suppose $L_{0^n1^n}$ is regular. Let p be the pumping length for $L_{0^n1^n}$.
Example 1

Proposition
\[L_{0^n1^n} = \{0^n1^n \mid n \geq 0\} \text{ is not regular.} \]

Proof.
Suppose \(L_{0^n1^n} \) is regular. Let \(p \) be the pumping length for \(L_{0^n1^n} \).

- Consider \(w = 0^p1^p \)
Example 1

Proposition

\[L_{0^n1^n} = \{0^n1^n \mid n \geq 0\} \text{ is not regular.} \]

Proof.

Suppose \(L_{0^n1^n} \) is regular. Let \(p \) be the pumping length for \(L_{0^n1^n} \).

▶ Consider \(w = 0^p1^p \)

▶ Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_{0^n1^n} \), for all \(i \).
Example I

Proposition
\[L_{0n1n} = \{0^n1^n \mid n \geq 0\} \text{ is not regular.} \]

Proof.
Suppose \(L_{0n1n} \) is regular. Let \(p \) be the pumping length for \(L_{0n1n} \).

- Consider \(w = 0^p1^p \)
- Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_{0n1n} \), for all \(i \).
- Since \(|xy| \leq p \), \(x = 0^r \), \(y = 0^s \) and \(z = 0^t1^p \). Further, as \(|y| > 0 \), we have \(s > 0 \).
Example I

Proposition
$L_{0n1n} = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
Suppose L_{0n1n} is regular. Let p be the pumping length for L_{0n1n}.

- Consider $w = 0^p1^p$
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_{0n1n}$, for all i.
- Since $|xy| \leq p$, $x = 0^r$, $y = 0^s$ and $z = 0^t1^p$. Further, as $|y| > 0$, we have $s > 0$.

$$xy^0z = 0^r0^t1^p = 0^{r+t}1^p$$

Contradiction! \square
Example I

Proposition
$L_{01n} = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof.
Suppose L_{01n} is regular. Let p be the pumping length for L_{01n}.

- Consider $w = 0^p1^p$
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_{01n}$, for all i.
- Since $|xy| \leq p$, $x = 0^r$, $y = 0^s$ and $z = 0^t1^p$. Further, as $|y| > 0$, we have $s > 0$.

$$xy^0z = 0^r0^t1^p = 0^{r+t}1^p$$

Since $r + t < p$, $xy^0z \not\in L_{01n}$. Contradiction! □
Example II

Proposition

\[L_{eq} = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of 0s and 1s} \} \text{ is not regular.} \]
Example II

Proposition
$L_{eq} = \{w \in \{0, 1\}^* \mid w \text{ has an equal number of } 0\text{s and } 1\text{s}\}$ is not regular.

Proof.
Suppose L_{eq} is regular. Let p be the pumping length for L_{eq}.
Example II

Proposition
$L_{eq} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of } 0\text{s and } 1\text{s}\}$ is not regular.

Proof.
Suppose L_{eq} is regular. Let p be the pumping length for L_{eq}.

- Consider $w = 0^p1^p$
Example II

Proposition

\[L_{eq} = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of 0s and 1s} \} \text{ is not regular.} \]

Proof.

Suppose \(L_{eq} \) is regular. Let \(p \) be the pumping length for \(L_{eq} \).

- Consider \(w = 0^p1^p \)
- Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_{eq} \), for all \(i \).
Example II

Proposition
\[L_{eq} = \{ w \in \{0, 1\}^* \mid w \ has \ an \ equal \ number \ of \ 0s \ and \ 1s \} \ is \ not \ regular. \]

Proof.
Suppose \(L_{eq} \) is regular. Let \(p \) be the pumping length for \(L_{eq} \).

▶ Consider \(w = 0^p1^p \)

▶ Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_{eq} \), for all \(i \).

▶ Since \(|xy| \leq p \), \(x = 0^r \), \(y = 0^s \) and \(z = 0^t1^p \). Further, as \(|y| > 0 \), we have \(s > 0 \).

\[
xy^0z = 0^r\epsilon 0^t1^p = 0^{r+t}1^p
\]

Since \(r + t < p \), \(xy^0z \not\in L_{eq} \). Contradiction! \(\Box \)
A Tale of two Proofs

Non Pumping Lemma
Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p.

Pumping Lemma
Suppose L_{eq} is regular. Let p be pumping length for L_{eq}. Consider $w = 0^p1^p$.
A Tale of two Proofs

Non Pumping Lemma
Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p. There exist j, k and state q such that

Pumping Lemma
Suppose L_{eq} is regular. Let p be pumping length for L_{eq}. Consider $w = 0^p1^p$. There exist x, y, z such that
A Tale of two Proofs

Non Pumping Lemma
Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p. There exist j, k and state q such that

- $j < k$ and

 $$\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$$

Pumping Lemma
Suppose L_{eq} is regular. Let p be pumping length for L_{eq}. Consider $w = 0^p1^p$. There exist x, y, z such that

- $w = xyz$, $|xy| \leq p$, $|y| > 0$: so for some r, s, t, $x = 0^r$, $y = 0^s$ and $z = 0^t1^p$, with $s > 0$.
A Tale of two Proofs

Non Pumping Lemma
Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p. There exist j, k and state q such that

- $j < k$ and
 $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^p1^p \in L_{eq}$, $0^k0^{(p-k)}1^p$ is accepted by M and so is $0^j0^{(p-k)}1^p$.

Pumping Lemma
Suppose L_{eq} is regular. Let p be pumping length for L_{eq}. Consider $w = 0^p1^p$. There exist x, y, z such that

- $w = xyz$, $|xy| \leq p$, $|y| > 0$: so for some r, s, t, $x = 0^r$, $y = 0^s$ and $z = 0^t1^p$, with $s > 0$.
- $xy^iz \in L_{eq}$ for all i: so $xy^0z \in L_{eq}$.
A Tale of two Proofs

Non Pumping Lemma
Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p. There exist j, k and state q such that

- $j < k$ and
 $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

- Since $0^p1^p \in L_{eq}$,
 $0^k0^{(p-k)}1^p$ is accepted by M and so is $0^j0^{(p-k)}1^p$.

- But $0^j0^{(p-k)}1^p \notin L_{eq}$.

Pumping Lemma
Suppose L_{eq} is regular. Let p be pumping length for L_{eq}. Consider $w = 0^p1^p$. There exist x, y, z such that

- $w = xyz$, $|xy| \leq p$, $|y| > 0$: so for some r, s, t, $x = 0^r$, $y = 0^s$ and $z = 0^t1^p$, with $s > 0$.

- $xy^iz \in L_{eq}$ for all i: so $xy^0z \in L_{eq}$.

- But $xy^0z = 0^{p-s}1^p \notin L_{eq}$.
Example III

Proposition

\[L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular} \]
Example III

Proposition
$L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proof.
Suppose L_p is regular. Let p be the pumping length for L_p. Consider $w = 0^m$, where $m \geq p + 2$ and m is prime. Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_p$, for all i. Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as $|y| > 0$, we have $s > 0$. $xy^{r+t}z \neq 0^{r(0^s)(r+t)}0^t = 0^{r+s(r+t)}+t$. Now $r+s(r+t) + t = (r+t)(s+1)$. Further $m = r+s+t \geq p+2$ and $s > 0$ mean that $t \geq 2$ and $s+1 \geq 2$. Thus, $xy^{r+t}z \not\in L_p$. Contradiction! □
Example III

Proposition
$L_p = \{0^i \mid i \text{ prime}\}$ is not regular

Proof.
Suppose L_p is regular. Let p be the pumping length for L_p.

- Consider $w = 0^m$, where $m \geq p + 2$ and m is prime.
Example III

Proposition

$L_p = \{0^i \mid i \text{ prime}\}$ is not regular

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p.

- Consider $w = 0^m$, where $m \geq p + 2$ and m is prime.
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_p$, for all i.

Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as $|y| > 0$, we have $s > 0$.

$\boxed{\text{Contradiction!} \; \square}$
Example III

Proposition
$L_p = \{0^i \mid i \text{ prime}\}$ is not regular

Proof.
Suppose L_p is regular. Let p be the pumping length for L_p.

- Consider $w = 0^m$, where $m \geq p + 2$ and m is prime.
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_p$, for all i.
- Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as $|y| > 0$, we have $s > 0$.
Example III

Proposition

\[L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular} \]

Proof.
Suppose \(L_p \) is regular. Let \(p \) be the pumping length for \(L_p \).

- Consider \(w = 0^m \), where \(m \geq p + 2 \) and \(m \) is prime.
- Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_p \), for all \(i \).
- Thus, \(x = 0^r \), \(y = 0^s \) and \(z = 0^t \). Further, as \(|y| > 0 \), we have \(s > 0 \). \(xy^{r+t}z = 0^r(0^s)^{(r+t)}0^t = 0^{r+s(r+t)+t} \).
Example III

Proposition

\[L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular} \]

Proof.

Suppose \(L_p \) is regular. Let \(p \) be the pumping length for \(L_p \).

- Consider \(w = 0^m \), where \(m \geq p + 2 \) and \(m \) is prime.
- Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^i z \in L_p \), for all \(i \).
- Thus, \(x = 0^r \), \(y = 0^s \) and \(z = 0^t \). Further, as \(|y| > 0 \), we have \(s > 0 \). \(xy^{r+t}z = 0^r (0^s)^{r+t}0^t = 0^{r+s(r+t)+t} \). Now \(r + s(r + t) + t = (r + t)(s + 1) \). Further \(m = r + s + t \geq p + 2 \) and \(s > 0 \) mean that \(t \geq 2 \) and \(s + 1 \geq 2 \). Thus, \(xy^{r+t}z \not\in L_p \). Contradiction! \(\square \)
Example IV

Question
Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?
Example IV

Question
Is \(L_{xx} = \{ xx \mid x \in \{0, 1\}^* \} \) is regular?

Suppose \(L_{xx} \) is regular, and let \(p \) be the pumping length of \(L_{xx} \).
Question

Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx}.

- Consider $w = 0^p0^p \in L$.
Question

Is \(L_{xx} = \{xx \mid x \in \{0, 1\}^*\} \) is regular?

Suppose \(L_{xx} \) is regular, and let \(p \) be the pumping length of \(L_{xx} \).

- Consider \(w = 0^p0^p \in L \).
- Can we find substrings \(x, y, z \) satisfying the conditions in the pumping lemma?

 Yes! Consider \(x = \epsilon, y = 00, z = 0^{2p-2} \).

 Does this mean \(L_{xx} \) satisfies the pumping lemma? Does it mean it is regular?

 No! We have chosen a bad \(w \). To prove that the pumping lemma is violated, we only need to exhibit some \(w \) that cannot be pumped.

 Another bad choice (01).
Example IV

Question
Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx}.

- Consider $w = 0^p0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.
Example IV

Question
Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx}.

▶ Consider $w = 0^p0^p \in L$.

▶ Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.

▶ Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?
Example IV

Question

Is $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx}.

- Consider $w = 0^p0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.
- Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.
Question

Is \(L_{xx} = \{xx \mid x \in \{0, 1\}^*\} \) is regular?

Suppose \(L_{xx} \) is regular, and let \(p \) be the pumping length of \(L_{xx} \).

- Consider \(w = 0^p0^p \in L \).
- Can we find substrings \(x, y, z \) satisfying the conditions in the pumping lemma? Yes! Consider \(x = \epsilon, y = 00, z = 0^{2p-2} \).
- Does this mean \(L_{xx} \) satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad \(w \). To prove that the pumping lemma is violated, we only need to exhibit some \(w \) that cannot be pumped.
- Another bad choice \((01)^p(01)^p \).
Example IV
Reloaded

Proposition

\[L_{xx} = \{ xx \mid x \in \{0, 1\}^* \} \text{ is not regular.} \]
Example IV
Reloaded

Proposition

\[L_{xx} = \{ xx \mid x \in \{0, 1\}^* \} \text{ is not regular.} \]

Proof.

Suppose \(L_{xx} \) is regular. Let \(p \) be the pumping length for \(L_{xx} \).
Example IV
Reloaded

Proposition

$L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx}.

- Consider $w = 0^p10^p1$.

Since $r + t < p$, $xy0z \not\in L_{xx}$. Contradiction!

□
Example IV
Reloaded

Proposition

\[L_{xx} = \{ xx \mid x \in \{0, 1\}^* \} \text{ is not regular.} \]

Proof.

Suppose \(L_{xx} \) is regular. Let \(p \) be the pumping length for \(L_{xx} \).

\begin{itemize}
 \item Consider \(w = 0^p10^p1 \).
 \item Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_p \), for all \(i \).
\end{itemize}
Example IV
Reloaded

Proposition
\(L_{xx} = \{xx \mid x \in \{0, 1\}^*\} \) is not regular.

Proof.
Suppose \(L_{xx} \) is regular. Let \(p \) be the pumping length for \(L_{xx} \).

- Consider \(w = 0^p10^p1 \).
- Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_p \), for all \(i \).
- Since \(|xy| \leq p \), \(x = 0^r \), \(y = 0^s \) and \(z = 0^t10^p1 \). Further, as \(|y| > 0 \), we have \(s > 0 \).
Example IV
Reloaded

Proposition
\[L_{xx} = \{xx \mid x \in \{0, 1\}^*\} \text{ is not regular.} \]

Proof.
Suppose \(L_{xx} \) is regular. Let \(p \) be the pumping length for \(L_{xx} \).

- Consider \(w = 0^p10^p1 \).
- Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz \), \(|xy| \leq p \), \(|y| > 0 \), and \(xy^iz \in L_p \), for all \(i \).
- Since \(|xy| \leq p \), \(x = 0^r \), \(y = 0^s \) and \(z = 0^t10^p1 \). Further, as \(|y| > 0 \), we have \(s > 0 \).

\[xy^0z = 0^r0^t10^p1 = 0^r+t10^p1 \]
Example IV

Reloaded

Proposition

$L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx}.

- Consider $w = 0^p10^p1$.
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_p$, for all i.
- Since $|xy| \leq p$, $x = 0^r$, $y = 0^s$ and $z = 0^t10^p1$. Further, as $|y| > 0$, we have $s > 0$.

$$xy^0z = 0^r0^t10^p1 = 0^{r+t}10^p1$$

Since $r + t < p$, $xy^0z \not\in L_{xx}$. Contradiction! □
Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- “keep track of counts”: e.g., L_{0n1n} not regular.
- “compare far apart pieces” of the input: e.g. L_{xx} not regular.
- do “computations that require it to look at global properties” of the input. e.g. L_{prime} not regular.
Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

▶ “keep track of counts”: e.g., L_{0n1n} not regular.
▶ “compare far apart pieces” of the input: e.g. L_{xx} not regular.
▶ do “computations that require it to look at global properties” of the input. e.g. L_{prime} not regular.

...and pumping lemma provides one way to find out some of these limitations.