Regular Expressions and Regular Languages

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that $L(R) = L$.

That is, regular expressions have the same "expressive power" as finite automata.

Proof.

Given regular expression R, can construct NFA N such that $L(N) = L(R)$.

Given DFA M, will construct regular expression R such that $L(M) = L(R)$.

\square
Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that $L(R) = L$

i.e., Regular expressions have the same “expressive power” as finite automata.

Proof.

- Given regular expression R, can construct NFA N such that $L(N) = L(R)$
- Given DFA M, will construct regular expression R such that $L(M) = L(R)$ □
DFA to Regular Expression

- Given DFA \(M \), will construct regular expression \(R \) such that \(L(M) = L(R) \).
DFA to Regular Expression

Given DFA M, will construct regular expression R such that $L(M) = L(R)$. In two steps:
DFA to Regular Expression

- Given DFA M, will construct regular expression R such that $L(M) = L(R)$. In two steps:
 - Construct a “Generalized NFA” (GNFA) G from the DFA M
 - And then convert G to a regex R
Generalized NFA

- A GNFA is similar to an NFA, but:

 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
 - The transitions are labeled not by characters in the alphabet, but by regular expressions.
 - For every pair of states \((q_1, q_2)\), the transition from \(q_1\) to \(q_2\) is labeled by a regular expression \(\rho(q_1, q_2)\).

- "Generalized NFA" because a normal NFA has transitions labeled by \(\epsilon\), elements in \(\Sigma\) (a union of elements, if multiple edges between a pair of states) and \(\emptyset\) (missing edges).
Generalized NFA

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
Generalized NFA

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.

- These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.

- The transitions are labeled not by characters in the alphabet, but by regular expressions.

- For every pair of states \((q_1, q_2)\), the transition from \(q_1\) to \(q_2\) is labeled by a regular expression \(\rho(q_1, q_2)\).

- "Generalized NFA" because a normal NFA has transitions labeled by \(\epsilon\), elements in \(\Sigma\) (a union of elements, if multiple edges between a pair of states) and \(\emptyset\) (missing edges).
Generalized NFA

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are “cosmetic changes”: Any NFA can be converted to an equivalent NFA of this kind.

The transitions are labeled not by characters in the alphabet, but by regular expressions.

"Generalized NFA" because a normal NFA has transitions labeled by ϵ, elements in Σ (a union of elements, if multiple edges between a pair of states) and \emptyset (missing edges).
A GNFA is similar to an NFA, but:

- There is a single accept state.
- The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are “cosmetic changes”: Any NFA can be converted to an equivalent NFA of this kind.
- The transitions are labeled not by characters in the alphabet, but by regular expressions.
Generalized NFA

- A GNFA is similar to an NFA, but:
 - There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are “cosmetic changes”: Any NFA can be converted to an equivalent NFA of this kind.
 - The transitions are labeled not by characters in the alphabet, but by regular expressions.
 - For every pair of states \((q_1, q_2)\), the transition from \(q_1\) to \(q_2\) is labeled by a regular expression \(\rho(q_1, q_2)\).
A GNFA is similar to an NFA, but:

- There is a single accept state.
- The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are “cosmetic changes”: Any NFA can be converted to an equivalent NFA of this kind.
- The transitions are labeled not by characters in the alphabet, but by regular expressions.
 - For every pair of states \((q_1, q_2)\), the transition from \(q_1\) to \(q_2\) is labeled by a regular expression \(\rho(q_1, q_2)\).
- “Generalized NFA” because a normal NFA has transitions labeled by \(\epsilon\), elements in \(\Sigma\) (a union of elements, if multiple edges between a pair of states) and \(\emptyset\) (missing edges).
Generalized NFA

- Transition: GNFA non-deterministically reads a block of characters from the input, chooses an edge from the current state q_1 to another state q_2, and if the block of symbols matches the regex $\rho(q_1, q_2)$, then moves to q_2.

- Acceptance: G accepts w if there exists some sequence of valid transitions such that on starting from the start state, and after finishing the entire input, G is in the accept state.
Generalized NFA

- Transition: GNFA non-deterministically reads a block of characters from the input, chooses an edge from the current state q_1 to another state q_2, and if the block of symbols matches the regex $\rho(q_1, q_2)$, then moves to q_2.

- Acceptance: G accepts w if there exists some sequence of valid transitions such that on starting from the start state, and after finishing the entire input, G is in the accept state.
Generalized NFA: Example

Example GNFA G

Accepting run of G on 11110100 is
Generalized NFA: Example

Example GNFA G

Accepting run of G on 11110100 is

$q_0 \xrightarrow{1} G q_1$
Generalized NFA: Example

Example GNFA G

Accepting run of G on 11110100 is
$q_0 \xrightarrow{1} G q_1 \xrightarrow{11} G q_1$
Generalized NFA: Example

Example GNFA G

Accepting run of G on 11110100 is

$q_0 \xrightarrow{1} G q_1 \xrightarrow{11} G q_1 \xrightarrow{101} G q_1$
Generalized NFA: Example

Example GNFA G

Accepting run of G on 11110100 is

$q_0 \xrightarrow{1} G \ x q_1 \xrightarrow{11} G \ x q_1 \xrightarrow{101} G \ x q_1 \xrightarrow{00} G \ x q_2$
Definition
A generalized nondeterministic finite automaton (GNFA) is $G = (Q, \Sigma, q_0, q_F, \rho)$, where
- Q is the finite set of states
- Σ is the finite alphabet
- $q_0 \in Q$ initial state
Generalized NFA: Definition

Definition
A generalized nondeterministic finite automaton (GNFA) is
\[G = (Q, \Sigma, q_0, q_F, \rho), \]
where
- \(Q \) is the finite set of states
- \(\Sigma \) is the finite alphabet
- \(q_0 \in Q \) initial state
- \(q_F \in Q \), a single accepting state
Definition

A generalized nondeterministic finite automaton (GNFA) is $G = (Q, \Sigma, q_0, q_F, \rho)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $q_0 \in Q$ initial state
- $q_F \in Q$, a single accepting state
- $\rho : (Q \setminus \{q_F\}) \times (Q \setminus \{q_0\}) \rightarrow \mathcal{R}_\Sigma$, where \mathcal{R}_Σ is the set of all regular expressions over the alphabet Σ
Generalized NFA: Definition

Definition
For a GNFA $M = (Q, \Sigma, q_0, q_F, \rho)$ and string $w \in \Sigma^*$, we say M accepts w iff there exist $x_1, \ldots, x_t \in \Sigma^*$ and states r_0, \ldots, r_t such that
Generalized NFA: Definition

Definition
For a GNFA $M = (Q, \Sigma, q_0, q_F, \rho)$ and string $w \in \Sigma^*$, we say M accepts w iff there exist $x_1, \ldots, x_t \in \Sigma^*$ and states r_0, \ldots, r_t such that

$\triangleright w = x_1 x_2 x_3 \cdots x_t$
Generalized NFA: Definition

Definition

For a GNFA $M = (Q, \Sigma, q_0, q_F, \rho)$ and string $w \in \Sigma^*$, we say M accepts w iff there exist $x_1, \ldots, x_t \in \Sigma^*$ and states r_0, \ldots, r_t such that

1. $w = x_1x_2x_3 \cdots x_t$
2. $r_0 = q_0$ and $r_t = q_F$
Generalized NFA: Definition

Definition
For a GNFA $M = (Q, \Sigma, q_0, q_F, \rho)$ and string $w \in \Sigma^*$, we say M accepts w iff there exist $x_1, \ldots, x_t \in \Sigma^*$ and states r_0, \ldots, r_t such that

1. $w = x_1x_2x_3 \cdots x_t$
2. $r_0 = q_0$ and $r_t = q_F$
3. for each $i \in [1, t]$, $x_i \in L(\rho(r_{i-1}, r_i))$.
Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q'_0, q'_F, \rho)$:

- $Q' = Q \cup \{q'_0, q'_F\}$ where $Q \cap \{q'_0, q'_F\} = \emptyset$
- $\rho(q_1, q_2) = \begin{cases} \epsilon, & \text{if } q_1 = q'_0 \text{ and } q_2 = q_0 \\ \epsilon, & \text{if } q_1 \in F \text{ and } q_2 = q'_F \cup \{a | \delta(q_1, a) = q_2\} \\ \text{otherwise} \end{cases}$

Prove: $L(G) = L(M)$.
Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q'_0, q'_F, \rho)$:

- $Q' = Q \cup \{q'_0, q'_F\}$ where $Q \cap \{q'_0, q'_F\} = \emptyset$
Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q'_0, q'_F, \rho)$:

- $Q' = Q \cup \{q'_0, q'_F\}$ where $Q \cap \{q'_0, q'_F\} = \emptyset$
- $\rho(q_1, q_2) = \begin{cases}
\epsilon, & \text{if } q_1 = q'_0 \text{ and } q_2 = q_0 \\
\epsilon, & \text{if } q_1 \in F \text{ and } q_2 = q'_F \\
\bigcup \{a | \delta(q_1, a) = q_2\} a & \text{otherwise}
\end{cases}$

Prove: $L(G) = L(M)$.

![Diagram showing the conversion process from DFA to GNFA]
Converting DFA to GNFA

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be easily converted to an equivalent GNFA $G = (Q', \Sigma, q_0', q_F', \rho)$:

- $Q' = Q \cup \{q_0', q_F'\}$ where $Q \cap \{q_0', q_F'\} = \emptyset$

- $\rho(q_1, q_2) = \begin{cases}
 \epsilon, & \text{if } q_1 = q_0' \text{ and } q_2 = q_0 \\
 \epsilon, & \text{if } q_1 \in F \text{ and } q_2 = q_F' \\
 \bigcup \{a | \delta(q_1, a) = q_2\} & \text{otherwise}
\end{cases}$

Prove: $L(G) = L(M)$.
Suppose G is a GNFA with only two states, q_0 and q_F. Then $L(R) = L(G)$ where $R = \rho(q_0, q_F)$.

How about G with three states?

Plan: Reduce any GNFA G with $k > 2$ states to an equivalent GFA with $k - 1$ states.
GNFA to Regex

- Suppose G is a GNFA with only two states, q_0 and q_F.

- How about G with three states:

 $q_0 \xrightarrow{R_4} q_F \cup q_0 \xrightarrow{R_1} q_F \cup q_0 \xrightarrow{R_3} q_F$

- Plan: Reduce any GNFA G with $k > 2$ states to an equivalent GFA with $k - 1$ states.
GNFA to Regex

- Suppose G is a GNFA with only two states, q_0 and q_F.
- Then $L(R) = L(G)$ where $R = \rho(q_0, q_F)$.
GNFA to Regex

- Suppose G is a GNFA with only two states, q_0 and q_F.
- Then $L(R) = L(G)$ where $R = \rho(q_0, q_F)$.
- How about G with three states?
GNFA to Regex

- Suppose G is a GNFA with only two states, q_0 and q_F.
- Then $L(R) = L(G)$ where $R = \rho(q_0, q_F)$.
- How about G with three states?

![Diagram of a GNFA with three states]
GNFA to Regex

- Suppose G is a GNFA with only two states, q_0 and q_F.
- Then $L(R) = L(G)$ where $R = \rho(q_0, q_F)$.
- How about G with three states?
Suppose G is a GNFA with only two states, q_0 and q_F. Then $L(R) = L(G)$ where $R = \rho(q_0, q_F)$. How about G with three states?

Plan: Reduce any GNFA G with $k > 2$ states to an equivalent GFA with $k - 1$ states.
Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\text{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

1. $Q' = Q \setminus \{q^*\}$.
2. For any $(q_1, q_2) \in Q' \setminus \{q_F\} \times Q' \setminus \{q_0\}$ (possibly $q_1 = q_2$), let $\rho'(q_1, q_2) = (R_1 R_2 R_3) \cup R_4$, where $R_1 = \rho(q_1, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, q_2)$ and $R_4 = \rho(q_1, q_2)$.

Claim. For any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\text{rip}(G, q^*)$ are equivalent.
GNFA to Regex: From k states to $k - 1$ states

Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\text{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

- $Q' = Q \setminus \{q^*\}$.

Claim. For any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\text{rip}(G, q^*)$ are equivalent.
Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\text{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

1. $Q' = Q \setminus \{q^*\}$.
2. For any $(q_1, q_2) \in Q' \times Q' \setminus \{q_F\} \times Q' \setminus \{q_0\}$ (possibly $q_1 = q_2$), let

 $$\rho'(q_1, q_2) = (R_1 R_2^* R_3) \cup R_4,$$

 where $R_1 = \rho(q_1, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, q_2)$ and $R_4 = \rho(q_1, q_2)$.
Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\text{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

- $Q' = Q \setminus \{q^*\}$.
- For any $(q_1, q_2) \in Q' \setminus \{q_F\} \times Q' \setminus \{q_0\}$ (possibly $q_1 = q_2$), let
 \[
 \rho'(q_1, q_2) = (R_1 R_2^* R_3) \cup R_4,
 \]
 where $R_1 = \rho(q_1, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, q_2)$ and $R_4 = \rho(q_1, q_2)$.

Claim. For any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\text{rip}(G, q^*)$ are equivalent.
GNFA to Regex: From k states to $k - 1$ states

\(w \in L(G) \implies w \in L(G') \)

Proof.
GNFA to Regex: From k states to $k - 1$ states

$w \in L(G) \implies w \in L(G')$

Proof.

- $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
GNFA to Regex: From k states to $k - 1$ states

$w \in L(G) \implies w \in L(G')$

Proof.

$w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.

Let $(q_0 = s_0, \ldots, s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^*.

GNFA to Regex: From \(k \) states to \(k - 1 \) states

\[w \in L(G) \implies w \in L(G') \]

Proof.

- \(w \in L(G) \implies w = x_1x_2x_3 \cdots x_t \), and a sequence of states \(q_0 = r_0, r_1, \ldots, r_t = q_F \) s.t. \(x_i \in L(\rho(r_{i-1}, r_i)) \).
- Let \((q_0 = s_0, \ldots, s_d = q_F) \) be the subsequence of states obtained by deleting all occurrences of \(q^* \).
- For any run of \(q^* \) — i.e., an interval \([a, b]\) s.t. \(r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b \) — let \(x_{[a,b]} = x_a \cdots x_b \).
GNFA to Regex: From k states to $k - 1$ states

$w \in L(G) \implies w \in L(G')$

Proof.

- $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, \ldots, s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^*.
- For any run of q^* — i.e., an interval $[a, b]$ s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1}, s_j))$.
GNFA to Regex: From \(k \) states to \(k - 1 \) states

\(w \in L(G) \implies w \in L(G') \)

Proof.

- \(w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t \), and a sequence of states \(q_0 = r_0, r_1, \ldots, r_t = q_F \) s.t. \(x_i \in L(\rho(r_{i-1}, r_i)) \).
- Let \((q_0 = s_0, \ldots, s_d = q_F) \) be the subsequence of states obtained by deleting all occurrences of \(q^* \).
- For any run of \(q^* \) — i.e., an interval \([a, b]\) s.t. \(r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b \) — let \(x_{[a,b]} = x_a \cdots x_b \).
- If \(s_{j-1} = r_{a-1} \) and \(s_j = r_b \), then \(x_{[a,b]} \in L(\rho'(s_{j-1}, s_j)) \).
 - Let \(R_1 = \rho(s_{j-1}, q^*) \), \(R_2 = \rho(q^*, q^*) \), \(R_3 = \rho(q^*, s_j) \) and \(R_4 = \rho(s_{j-1}, s_j) \). Then \(\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3) \).
GNFA to Regex: From k states to $k - 1$ states

$w \in L(G) \implies w \in L(G')$

Proof.

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, \ldots, s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^*.
- For any run of $q^* \text{ — i.e., an interval } [a, b] \text{ s.t. } r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b \text{ — let } x_{[a, b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a, b]} \in L(\rho'(s_{j-1}, s_j))$
 - Let $R_1 = \rho(s_{j-1}, q^*), R_2 = \rho(q^*, q^*), R_3 = \rho(q^*, s_j)$ and $R_4 = \rho(s_{j-1}, s_j)$. Then $\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3)$.
 - Case $a = b$. $(s_{j-1}, s_j) = (r_{b-1}, r_b)$ and $x_{[a, b]} = x_b \in L(R_4)$.

··→
GNFA to Regex: From \(k \) states to \(k - 1 \) states

\[w \in L(G) \implies w \in L(G') \]

Proof.

\(w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t \), and a sequence of states \(q_0 = r_0, r_1, \ldots, r_t = q_F \) s.t. \(x_i \in L(\rho(r_{i-1}, r_i)) \).

Let \((q_0 = s_0, \ldots, s_d = q_F) \) be the subsequence of states obtained by deleting all occurrences of \(q^* \).

For any run of \(q^* \) — i.e., an interval \([a, b]\) s.t. \(r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b \) — let \(x_{[a,b]} = x_a \cdots x_b \).

If \(s_{j-1} = r_{a-1} \) and \(s_j = r_b \), then \(x_{[a,b]} \in L(\rho'(s_{j-1}, s_j)) \)

Let \(R_1 = \rho(s_{j-1}, q^*), R_2 = \rho(q^*, q^*), R_3 = \rho(q^*, s_j) \) and \(R_4 = \rho(s_{j-1}, s_j) \). Then \(\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3) \).

Case \(a = b \). \((s_{j-1}, s_j) = (r_{b-1}, r_b)\) and \(x_{[a,b]} = x_b \in L(R_4) \).

Case \(a = b + 1 + u \). \(x_a \in L(R_1), x_{a+1}, \ldots, x_{b-1} \in L(R_2) \) and \(x_b \in L(R_3) \). So \(x_{[a,b]} \in L(R_1 R_2^u R_3) \).
GNFA to Regex: From k states to $k-1$ states

\[w \in L(G) \implies w \in L(G') \]

Proof.

- $w \in L(G) \implies w = x_1 x_2 x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, \ldots, s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^*.
- For any run of q^* — i.e., an interval $[a, b]$ s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1}, s_j))$
- Let y_1, \ldots, y_d be the sequence of blocks of the form $x_{[a,b]}$.
GNFA to Regex: From k states to $k-1$ states

$w \in L(G) \implies w \in L(G')$

Proof.

- $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, \ldots, s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^*.
- For any run of q^* — i.e., an interval $[a, b]$ s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.
- If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1}, s_j))$.
- Let y_1, \ldots, y_d be the sequence of blocks of the form $x_{[a,b]}$.
- Then $w = y_1 \cdots y_d$ and $y_j \in L(\rho'(s_{j-1}, s_j))$.
GNFA to Regex: From k states to $k - 1$ states

$w \in L(G) \implies w \in L(G')$

Proof.

\triangleright $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \ldots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.

\triangleright Let $(q_0 = s_0, \ldots, s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^*.

\triangleright For any run of q^* — i.e., an interval $[a, b]$ s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ — let $x_{[a,b]} = x_a \cdots x_b$.

\triangleright If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1}, s_j))$

\triangleright Let y_1, \ldots, y_d be the sequence of blocks of the form $x_{[a,b]}$.

\triangleright Then $w = y_1 \cdots y_d$ and $y_j \in L(\rho'(s_{j-1}, s_j))$.

i.e., $w \in L(G) \implies w \in L(G')$.

\(\triangleright\)
GNFA to Regex: From k states to $k-1$ states

$w \in L(G') \implies w \in L(G)$

Proof (contd).
GNFA to Regex: From k states to $k-1$ states

$w \in L(G') \implies w \in L(G)$

Proof (contd).

\blacktriangleright $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states
$q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j))$
GNFA to Regex: From \(k \) states to \(k - 1 \) states

\[w \in L(G') \implies w \in L(G) \]

Proof (contd).

\[
\begin{align*}
\text{Case } y_j \in L(R_4). & \text{ Retain the block } y_j \text{ and retain } s_{j-1} \text{ and } s_j \text{ as adjacent states.} \\
\text{Case } y_j \in L(R_1 R^*_2 R_3). & \text{ } y_j = z_0 \cdots z_u + 1 \text{ where } z_0 \in L(R_1), z_1, ..., z_u \in L(R_2) \text{ and } z_{u+1} = L(R_3) \text{ (for some finite } u). \text{ Insert } u + 1 \text{ copies of } q^* \text{ between } s_{j-1} \text{ and } s_j. \text{ Divide } y_j \text{ into } u + 2 \text{ blocks } (z_0, ..., z_u+1).
\end{align*}
\]
GNFA to Regex: From k states to $k - 1$ states

$w \in L(G') \implies w \in L(G)$

Proof (contd).

- $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = L(R_1 R_2^* R_3) \cup L(R_4)$.

(See notes for a formal argument.)
Proof (contd).

- \(w \in L(G') \implies w = y_1 \cdots y_d \) and a sequence of states
 \(q_0 = s_0, \ldots, s_d = q_F \) s.t. \(y_j \in L(\rho'(s_{j-1}, s_j)) = \)
 \(L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^\ast \rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = \)
 \(L(R_1R_2^*R_3) \cup L(R_4). \)

- To build a sequence of blocks \(x_1, \ldots, x_t \) and a sequence of states
 \(q_0 = r_0, \ldots, r_t = q_F \) to show \(w \in L(G): \)
GNFA to Regex: From \(k\) states to \(k - 1\) states

\(w \in L(G') \implies w \in L(G)\)

Proof (contd).

\(\begin{align*}
&w \in L(G') \implies w = y_1 \cdots y_d \text{ and a sequence of states} \\
&q_0 = s_0, \ldots, s_d = q_F \text{ s.t. } y_j \in L(\rho'(s_{j-1}, s_j)) = \\
&L(\rho(s_{j-1}, q^*)\rho(q^*, q^*)^* \rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = \\
&L(R_1R_2^*R_3) \cup L(R_4). \\
\end{align*}\)

To build a sequence of blocks \(x_1, \ldots, x_t\) and a sequence of states \(q_0 = r_0, \ldots, r_t = q_F\) to show \(w \in L(G)\):

\(\begin{align*}
&w \in L(G) \implies w = y_1 \cdots y_d \text{ and a sequence of states} \\
&q_0 = s_0, \ldots, s_d = q_F \text{ s.t. } y_j \in L(\rho'(s_{j-1}, s_j)) = \\
&L(\rho(s_{j-1}, q^*)\rho(q^*, q^*)^* \rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = \\
&L(R_1R_2^*R_3) \cup L(R_4). \\
\end{align*}\)

\(\begin{align*}
&\text{Case } y_j \in L(R_4). \text{ Retain the block } y_j \text{ and retain } s_{j-1} \text{ and } s_j \text{ as} \\
&\text{adjacent states.}
\end{align*}\)
GNFA to Regex: From k states to $k - 1$ states

$w \in L(G') \implies w \in L(G)$

Proof (contd).

- $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states
 $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) =
 L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) =
 L(R_1R_2^*R_3) \cup L(R_4)$.

- To build a sequence of blocks x_1, \ldots, x_t and a sequence of
 states $q_0 = r_0, \ldots, r_t = q_F$ to show $w \in L(G)$:
 - **Case** $y_j \in L(R_4)$. Retain the block y_j and retain s_{j-1} and s_j as
 adjacent states.
 - **Case** $y_j \in L(R_1R_2^*R_3)$. $y_j = z_0 \cdots z_{u+1}$ where $z_0 \in L(R_1)$,
 $z_1, \ldots, z_u \in L(R_2)$ and $z_{u+1} = L(R_3)$ (for some finite u). Insert
 $u + 1$ copies of q^* between s_{j-1} and s_j. Divide y_j into $u + 2$
 blocks (z_0, \ldots, z_{u+1}). □
GNFA to Regex: From \(k \) states to \(k - 1 \) states

\[w \in L(G') \implies w \in L(G) \]

Proof (contd).

- \(w \in L(G') \implies w = y_1 \cdots y_d \) and a sequence of states
 \[q_0 = s_0, \ldots, s_d = q_F \] s.t. \(y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = L(R_1R_2^*R_3) \cup L(R_4). \]

- To build a sequence of blocks \(x_1, \ldots, x_t \) and a sequence of states \(q_0 = r_0, \ldots, r_t = q_F \) to show \(w \in L(G) \):

 - **Case** \(y_j \in L(R_4) \). Retain the block \(y_j \) and retain \(s_{j-1} \) and \(s_j \) as adjacent states.

 - **Case** \(y_j \in L(R_1R_2^*R_3) \). \(y_j = z_0 \cdots z_{u+1} \) where \(z_0 \in L(R_1) \), \(z_1, \ldots, z_u \in L(R_2) \) and \(z_{u+1} = L(R_3) \) (for some finite \(u \)). Insert \(u + 1 \) copies of \(q^* \) between \(s_{j-1} \) and \(s_j \). Divide \(y_j \) into \(u + 2 \) blocks \((z_0, \ldots, z_{u+1}) \).

(See notes for a formal argument.)
DFA to Regex: Summary

Lemma

*For every DFA M, there is a regular expression R such that $L(M) = L(R)$.***
DFA to Regex: Summary

Lemma
For every DFA M, there is a regular expression R such that $L(M) = L(R)$.

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. $L(M) = L(G)$.
Lemma

For every DFA M, there is a regular expression R such that $L(M) = L(R)$.

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. $L(M) = L(G)$.
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\text{rip}(G, q^*)$ are equivalent.
DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that $L(M) = L(R)$.

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. $L(M) = L(G)$.
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and rip(G, q^*) are equivalent. rip(G, q^*) has one fewer state than G.

Lemma

For every DFA M, there is a regular expression R such that $L(M) = L(R)$.

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. $L(M) = L(G)$.
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and rip(G, q^*) are equivalent. rip(G, q^*) has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q^* arbitrarily each time), we can get a GNFA G' with two states s.t. $L(G) = L(G')$.
DFA to Regex: Summary

Lemma
For every DFA M, there is a regular expression R such that $L(M) = L(R)$.

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. $L(M) = L(G)$.
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\text{rip}(G, q^*)$ are equivalent. $\text{rip}(G, q^*)$ has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q^* arbitrarily each time), we can get a GNFA G' with two states s.t. $L(G) = L(G')$. Formally, by induction on the number of states in G.

DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that $L(M) = L(R)$.

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. $L(M) = L(G)$.
- For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with $|Q| > 2$, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\text{rip}(G, q^*)$ are equivalent. $\text{rip}(G, q^*)$ has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q^* arbitrarily each time), we can get a GNFA G' with two states s.t. $L(G) = L(G')$. Formally, by induction on the number of states in G.
- For a 2-state GNFA G', $L(G') = L(R)$, where $R = \rho(q_0, q_F)$.
DFA to Regex: Example

```
q1 -> 0 -> q1
     |        |
     1      1
     |        |
q2 -> 0 -> q2
```
DFA to Regex: Example
DFA to Regex: Example
DFA to Regex: Example
DFA to Regex: Example

\[q_0 \xrightarrow{\epsilon 0^* 1} q_2 \]

\[q_2 \rightarrow 0 \cup (10^* 1) \]

\[q_2 \xrightarrow{\epsilon} q_F \]
DFA to Regex: Example

\[q_0 \rightarrow q_2 \rightarrow q_F \]

\[0 \cup (10^*1) \]

\[\epsilon 0^*1 \rightarrow \epsilon \]
DFA to Regex: Example

$q_0 \xrightarrow{0^*1(0 \cup (10^*)^*)} q_F$