CSE 135: Introduction to Theory of Computation Regular Expressions

Sungjin Im

University of California, Merced

02-10-2014

► Recall: A language is a set of strings

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
 - ightharpoonup e.g., $L_1 \cup L_2$,

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
 - $\blacktriangleright \text{ e.g., } L_1 \cup L_2, \ L_1 \cap L_2,$

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
 - e.g., $L_1 \cup L_2$, $L_1 \cap L_2$, $\frac{1}{2}L$, ...

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
 - e.g., $L_1 \cup L_2$, $L_1 \cap L_2$, $\frac{1}{2}L$, ...
- ► A simple but powerful collection of operations:

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
 - e.g., $L_1 \cup L_2$, $L_1 \cap L_2$, $\frac{1}{2}L$, ...
- ► A simple but powerful collection of operations:
 - Union, Concatenation and Kleene Closure

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

Example

▶ $L_1 = \{\text{hello}\}\ \text{and}\ L_2 = \{\text{world}\}\ \text{then}\ L_1 \circ L_2 =$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

Example

▶ $L_1 = \{\text{hello}\}\ \text{and}\ L_2 = \{\text{world}\}\ \text{then}\ L_1 \circ L_2 = \{\text{helloworld}\}$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\$ and $L_2 = \{\text{world}\}\$ then $L_1 \circ L_2 = \{\text{helloworld}\}\$
- ► $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 =$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\$ and $L_2 = \{\text{world}\}\$ then $L_1 \circ L_2 = \{\text{helloworld}\}\$
- ▶ $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 = \{000, 001, 100, 101\}$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\ \text{and}\ L_2 = \{\text{world}\}\ \text{then}\ L_1 \circ L_2 = \{\text{helloworld}\}$
- ▶ $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 = \{000, 001, 100, 101\}$
- ▶ L_1 = set of strings ending in 0; L_2 = set of strings beginning with 01. $L_1 \circ L_2$ =

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\$ and $L_2 = \{\text{world}\}\$ then $L_1 \circ L_2 = \{\text{helloworld}\}\$
- ▶ $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 = \{000, 001, 100, 101\}$
- ▶ L_1 = set of strings ending in 0; L_2 = set of strings beginning with 01. $L_1 \circ L_2$ = set of strings containing 001 as a substring

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\ \text{and}\ L_2 = \{\text{world}\}\ \text{then}\ L_1 \circ L_2 = \{\text{helloworld}\}$
- ▶ $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 = \{000, 001, 100, 101\}$
- ▶ L_1 = set of strings ending in 0; L_2 = set of strings beginning with 01. $L_1 \circ L_2$ = set of strings containing 001 as a substring
- $L \circ \{\epsilon\} =$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\ \text{and}\ L_2 = \{\text{world}\}\ \text{then}\ L_1 \circ L_2 = \{\text{helloworld}\}$
- ▶ $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 = \{000, 001, 100, 101\}$
- ▶ L_1 = set of strings ending in 0; L_2 = set of strings beginning with 01. $L_1 \circ L_2$ = set of strings containing 001 as a substring
- $\blacktriangleright L \circ \{\epsilon\} = L.$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\$ and $L_2 = \{\text{world}\}\$ then $L_1 \circ L_2 = \{\text{helloworld}\}\$
- ▶ $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 = \{000, 001, 100, 101\}$
- ▶ L_1 = set of strings ending in 0; L_2 = set of strings beginning with 01. $L_1 \circ L_2$ = set of strings containing 001 as a substring
- $\blacktriangleright L \circ \{\epsilon\} = L. L \circ \emptyset =$

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

- ▶ $L_1 = \{\text{hello}\}\ \text{and}\ L_2 = \{\text{world}\}\ \text{then}\ L_1 \circ L_2 = \{\text{helloworld}\}$
- ▶ $L_1 = \{00, 10\}; L_2 = \{0, 1\}. L_1 \circ L_2 = \{000, 001, 100, 101\}$
- ▶ L_1 = set of strings ending in 0; L_2 = set of strings beginning with 01. $L_1 \circ L_2$ = set of strings containing 001 as a substring
- $L \circ \{\epsilon\} = L. \ L \circ \emptyset = \emptyset.$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

▶ If
$$L = \{0, 1\}$$
, then $L^0 =$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

• If
$$L=\{0,1\}$$
, then $L^0=\{\epsilon\}$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

▶ If
$$L = \{0, 1\}$$
, then $L^0 = \{\epsilon\}$, $L^2 =$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

▶ If
$$L = \{0, 1\}$$
, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- ▶ Ø⁰ =

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\blacktriangleright \emptyset^0 = \{\epsilon\}.$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i =$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

$$L^{*} = \bigcup_{i \geq 0} L^{i}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

▶ If
$$L = \{0, 1\}$$
, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \{0, 1\}$

•
$$\emptyset^0 = \{\epsilon\}$$
. For $i > 0$, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$. $\emptyset^* =$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.
- $lackbox{0} = \{\epsilon\}. \text{ For } i > 0, \ \emptyset^i = \emptyset. \ \emptyset^* = \{\epsilon\}$
- \blacktriangleright \emptyset is one of only two languages whose Kleene closure is finite. Which is the other?

Kleene Closure

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

i.e., L^i is $L \circ L \circ \cdots \circ L$ (concatenation of i copies of L), for i > 0. L^* , the Kleene Closure of L: set of strings formed by taking any number of strings (possibly none) from L, possibly with repetitions and concatenating all of them.

- ▶ If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.
- $lackbox{0} = \{\epsilon\}. \text{ For } i > 0, \ \emptyset^i = \emptyset. \ \emptyset^* = \{\epsilon\}$
- ▶ \emptyset is one of only two languages whose Kleene closure is finite. Which is the other? $\{\epsilon\}^* = \{\epsilon\}$.

A Simple Programming Language

Stephen Cole Kleene

A regular expression is a formula for representing a (complex) language in terms of "elementary" languages combined using the three operations union, concatenation and Kleene closure.

Formal Inductive Definition

Syntax and Semantics

Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following forms:

 \emptyset

Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following forms:

 \emptyset

 ϵ

Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following forms:

 \emptyset

 ϵ

а

Formal Inductive Definition

Syntax and Semantics

```
Basis \epsilon
```

Formal Inductive Definition

Syntax and Semantics

```
Basis \epsilon
a
(R_1 \cup R_2)
```

Formal Inductive Definition

Syntax and Semantics

```
Basis \epsilon
a
(R_1 \cup R_2)
(R_1 \circ R_2)
```

Formal Inductive Definition

Syntax and Semantics

```
Basis \emptyset
\epsilon
a
(R_1 \cup R_2)
(R_1 \circ R_2)
(R_1^*)
```

Formal Inductive Definition

Syntax and Semantics

```
\begin{array}{c} \emptyset \\ \text{Basis} \qquad \epsilon \\ a \end{array} Induction \begin{array}{c} (R_1 \cup R_2) \\ (R_1 \circ R_2) \\ (R_1^*) \end{array}
```

Formal Inductive Definition

Syntax and Semantics

```
\begin{array}{c} & \text{Syntax} \\ \emptyset \\ \text{Basis} & \epsilon \\ & a \\ \\ \text{Induction} & (R_1 \cup R_2) \\ & (R_1^*) \end{array}
```

Formal Inductive Definition

Syntax and Semantics

Basis		Semantics
Induction	$(R_1 \cup R_2) \ (R_1 \circ R_2) \ (R_1^*)$	

Formal Inductive Definition

Syntax and Semantics

```
\begin{array}{ccc} & \text{Syntax} & \text{Semantics} \\ \emptyset & & L(\emptyset) = \{\} \end{array} Basis \begin{array}{ccc} \epsilon & & & \\ a & & & \\ \end{array} Induction \begin{array}{ccc} (R_1 \cup R_2) & & & \\ (R_1 \circ R_2) & & \\ (R_1^*) & & & \end{array}
```

Formal Inductive Definition

Syntax and Semantics

Basis		Semantics $L(\emptyset) = \{\}$ $L(\epsilon) = \{\epsilon\}$
Induction	$(R_1 \cup R_2)$ $(R_1 \circ R_2)$ (R_1^*)	

Formal Inductive Definition

Syntax and Semantics

Basis		Semantics $L(\emptyset) = \{\}$ $L(\epsilon) = \{\epsilon\}$ $L(a) = \{a\}$
Induction	$(R_1 \cup R_2) \ (R_1 \circ R_2) \ (R_1^*)$	

Formal Inductive Definition

Syntax and Semantics

Basis		Semantics $L(\emptyset) = \{\}$ $L(\epsilon) = \{\epsilon\}$ $L(a) = \{a\}$
Induction	·/	$L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$

Formal Inductive Definition

Syntax and Semantics

Basis		Semantics $L(\emptyset) = \{\}$ $L(\epsilon) = \{\epsilon\}$ $L(a) = \{a\}$
Induction	` ,	$L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$ $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$

Formal Inductive Definition

Syntax and Semantics

Basis		Semantics $L(\emptyset) = \{\}$ $L(\epsilon) = \{\epsilon\}$ $L(a) = \{a\}$
Induction	` ,	$L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$ $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$ $L((R_1^*)) = L(R_1)^*$

Removing the brackets

To avoid cluttering of parenthesis, we adopt the following conventions.

Removing the brackets

To avoid cluttering of parenthesis, we adopt the following conventions.

▶ Precedence: $*, \circ, \cup$. For example, $R \cup S^* \circ T$ means

Removing the brackets

To avoid cluttering of parenthesis, we adopt the following conventions.

▶ Precedence: $*, \circ, \cup$. For example, $R \cup S^* \circ T$ means $(R \cup ((S^*) \circ T))$

Removing the brackets

To avoid cluttering of parenthesis, we adopt the following conventions.

- ▶ Precedence: $*, \circ, \cup$. For example, $R \cup S^* \circ T$ means $(R \cup ((S^*) \circ T))$
- Associativity: $(R \cup (S \cup T)) = ((R \cup S) \cup T) = R \cup S \cup T$ and $(R \circ (S \circ T)) = ((R \circ S) \circ T) = R \circ S \circ T$.

Removing the brackets

To avoid cluttering of parenthesis, we adopt the following conventions.

- ▶ Precedence: $*, \circ, \cup$. For example, $R \cup S^* \circ T$ means $(R \cup ((S^*) \circ T))$
- Associativity: $(R \cup (S \cup T)) = ((R \cup S) \cup T) = R \cup S \cup T$ and $(R \circ (S \circ T)) = ((R \circ S) \circ T) = R \circ S \circ T$.

Also will sometimes omit \circ : e.g. will write RS instead of $R \circ S$

R L(R)

R
$$L(R)$$

 $(0 \cup 1)^*$ $= (\{0\} \cup \{1\})^* = \{0, 1\}^*$

R
$$L(R)$$

 $(0 \cup 1)^*$ $= (\{0\} \cup \{1\})^* = \{0, 1\}^*$
 $0\emptyset$

$$R$$
 $L(R)$ $(0 \cup 1)^*$ $= (\{0\} \cup \{1\})^* = \{0, 1\}^*$ \emptyset

```
R L(R)

(0 \cup 1)^* = (\{0\} \cup \{1\})^* = \{0, 1\}^*

0\emptyset \emptyset

0^* \cup (0^*10^*10^*10^*)^*
```

R

$$L(R)$$
 $(0 \cup 1)^*$
 $= (\{0\} \cup \{1\})^* = \{0, 1\}^*$
 $0\emptyset$
 \emptyset
 $0^* \cup (0^*10^*10^*10^*)^*$
 Strings where the number of 1s is divisible by 3

$$\begin{array}{ll} R & & L(R) \\ (0 \cup 1)^* & = (\{0\} \cup \{1\})^* = \{0,1\}^* \\ 0 \emptyset & \emptyset \\ \\ 0^* \cup (0^*10^*10^*10^*)^* & \text{Strings where the number of 1s} \\ \text{is divisible by 3} \\ (0 \cup 1)^*001(0 \cup 1)^* \end{array}$$

R	L(R)
$(0\cup 1)^*$	$= (\{0\} \cup \{1\})^* = \{0,1\}^*$
0Ø	Ø
0* \((0*10*10*10*)*	Strings where the number of 1s is divisible by 3
$(0 \cup 1)^*001(0 \cup 1)^*$	Strings that have 001 as a sub-

More Examples

R L(R)

More Examples

More Examples

R	L(R)
$(10)^* \cup (01)^* \cup 0(10)^* \cup 1(01)^*$	Strings that consist of alternating 0s and 1s
$(\epsilon \cup 1)(01)^*(\epsilon \cup 0)$	Strings that consist of alternating 0s and 1s

R	L(R)
$(10)^* \cup (01)^* \cup 0(10)^* \cup 1(01)^*$	Strings that consist of alternating 0s and 1s
$(\epsilon \cup 1)(01)^*(\epsilon \cup 0)$	Strings that consist of alternating 0s and 1s
$(0 \cup \epsilon)(1 \cup 10)^*$	

R	L(R)
$(10)^* \cup (01)^* \cup 0(10)^* \cup 1(01)^*$	Strings that consist of alternating 0s and 1s
$(\epsilon \cup 1)(01)^*(\epsilon \cup 0)$	Strings that consist of alternating 0s and 1s
$(0 \cup \epsilon)(1 \cup 10)^*$	Strings that do not have two consecutive 0s

We say
$$R_1 = R_2$$
 if $L(R_1) = L(R_2)$.

▶ Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$

We say
$$R_1 = R_2$$
 if $L(R_1) = L(R_2)$.

► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R =$

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- $ightharpoonup R \cup \emptyset = R.$

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- $ightharpoonup R \cup \emptyset = R$. $R \cup \epsilon = R$ iff

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- ▶ $R \cup \emptyset = R$. $R \cup \epsilon = R$ iff $\epsilon \in L(R)$

We say
$$R_1 = R_2$$
 if $L(R_1) = L(R_2)$.

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- ▶ $R \cup \emptyset = R$. $R \cup \epsilon = R$ iff $\epsilon \in L(R)$
- $(R^*)^* =$

We say
$$R_1 = R_2$$
 if $L(R_1) = L(R_2)$.

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- ▶ $R \cup \emptyset = R$. $R \cup \epsilon = R$ iff $\epsilon \in L(R)$
- $(R^*)^* = R^*$

We say
$$R_1 = R_2$$
 if $L(R_1) = L(R_2)$.

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- ▶ $R \cup \emptyset = R$. $R \cup \epsilon = R$ iff $\epsilon \in L(R)$
- $(R^*)^* = R^*$
- **▶** ∅* =

We say
$$R_1 = R_2$$
 if $L(R_1) = L(R_2)$.

- ► Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- ▶ Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- ▶ Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- ▶ Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- ▶ Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- $ightharpoonup R \cup \emptyset = R$. $R \cup \epsilon = R$ iff $\epsilon \in L(R)$
- $(R^*)^* = R^*$
- $\triangleright \emptyset^* = \epsilon$

Useful Notation

Definition Define $R^+ = RR^*$.

Useful Notation

Definition

Define $R^+ = RR^*$. Thus, $R^* = R^+ \cup \epsilon$.

Useful Notation

Definition

Define $R^+ = RR^*$. Thus, $R^* = R^+ \cup \epsilon$. In addition, $R^+ = R^*$ iff $\epsilon \in \mathcal{L}(R)$.

Why do they have such similar names?

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R)=L

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R) = L

i.e., Regular expressions have the same "expressive power" as finite automata.

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R) = L

i.e., Regular expressions have the same "expressive power" as finite automata.

Proof.

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R)=L

i.e., Regular expressions have the same "expressive power" as finite automata.

Proof.

▶ Given regular expression R, will construct NFA N such that L(N) = L(R)

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R)=L

i.e., Regular expressions have the same "expressive power" as finite automata.

Proof.

- ▶ Given regular expression R, will construct NFA N such that L(N) = L(R)
- ▶ Given DFA M, will construct regular expression R such that L(M) = L(R)

... to Non-determinstic Finite Automata

Lemma

For any regex R, there is an NFA N_R s.t. $L(N_R) = L(R)$.

Proof Idea

We will build the NFA N_R for R, inductively, based on the number of operators in R, #(R).

... to Non-determinstic Finite Automata

Lemma

For any regex R, there is an NFA N_R s.t. $L(N_R) = L(R)$.

Proof Idea

We will build the NFA N_R for R, inductively, based on the number of operators in R, #(R).

▶ Base Case: #(R) = 0 means that R is \emptyset , ϵ , or a (from some $a \in \Sigma$). We will build NFAs for these cases.

... to Non-determinstic Finite Automata

Lemma

For any regex R, there is an NFA N_R s.t. $L(N_R) = L(R)$.

Proof Idea

We will build the NFA N_R for R, inductively, based on the number of operators in R, #(R).

- ▶ Base Case: #(R) = 0 means that R is \emptyset, ϵ , or a (from some $a \in \Sigma$). We will build NFAs for these cases.
- ▶ Induction Hypothesis: Assume that for regular expressions R, with $\#(R) \le n$, there is an NFA N_R s.t. $L(N_R) = L(R)$.

... to Non-determinstic Finite Automata

Lemma

For any regex R, there is an NFA N_R s.t. $L(N_R) = L(R)$.

Proof Idea

We will build the NFA N_R for R, inductively, based on the number of operators in R, #(R).

- ▶ Base Case: #(R) = 0 means that R is \emptyset , ϵ , or a (from some $a \in \Sigma$). We will build NFAs for these cases.
- ▶ Induction Hypothesis: Assume that for regular expressions R, with $\#(R) \le n$, there is an NFA N_R s.t. $L(N_R) = L(R)$.
- ▶ Induction Step: Consider R with #(R) = n + 1. Based on the form of R, the NFA N_R will be built using the induction hypothesis.

Base Cases

Base Cases

$$R = \emptyset$$

Base Cases

$$R = \emptyset$$
 q_0

Base Cases

$$R = \emptyset$$

$$R = \epsilon$$

Regular Expression to NFA

Base Cases

If R is an elementary regular expression, NFA N_R is constructed as follows.

$$R = \emptyset$$
 q_0
 $R = \epsilon$

Regular Expression to NFA

Base Cases

If R is an elementary regular expression, NFA N_R is constructed as follows.

$$R = \emptyset$$
 q_0
 q_0
 q_0

$$R = a$$

Regular Expression to NFA

Base Cases

If R is an elementary regular expression, NFA N_R is constructed as follows.

Case $R = R_1 \cup R_2$

Case
$$R = R_1 \cup R_2$$

By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$.

Case
$$R = R_1 \cup R_2$$

By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$. Build NFA N s.t. $L(N) = L(N_1) \cup L(N_2)$

Case $R = R_1 \cup R_2$

By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$. Build NFA N s.t. $L(N) = L(N_1) \cup L(N_2)$

Formal Definition

Case
$$R = R_1 \cup R_2$$

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ (with $Q_1\cap Q_2=\emptyset$) such that $L(N_1)=L(R_1)$ and $L(N_2)=L(R_2)$. The NFA $N=(Q,\Sigma,\delta,q_0,F)$ is given by

- $lacksquare Q = Q_1 \cup Q_2 \cup \{q_0\}$, where $q_0
 ot\in Q_1 \cup Q_2$
- $F = F_1 \cup F_2$
- \triangleright δ is defined as follows

$$\delta(q,a) = \left\{ egin{array}{ll} \delta_1(q,a) & ext{if } q \in Q_1 \\ \delta_2(q,a) & ext{if } q \in Q_2 \\ \{q_1,q_2\} & ext{if } q = q_0 ext{ and } a = \epsilon \\ \emptyset & ext{otherwise} \end{array}
ight.$$

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

 $\Rightarrow w \in L(N)$ implies $q_0 \xrightarrow{w}_N q$ for some $q \in F$.

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

 $\Rightarrow w \in L(N)$ implies $q_0 \xrightarrow{w}_N q$ for some $q \in F$. Based on the transitions out of q_0 , $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$ or $q_0 \xrightarrow{\epsilon}_N q_2 \xrightarrow{w}_N q$.

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

 $\Rightarrow w \in L(N)$ implies $q_0 \xrightarrow{w}_N q$ for some $q \in F$. Based on the transitions out of q_0 , $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$ or $q_0 \xrightarrow{\epsilon}_N q_2 \xrightarrow{w}_N q$. Consider $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$. (Other case is similar)

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

 \Rightarrow $w \in L(N)$ implies $q_0 \xrightarrow{w}_N q$ for some $q \in F$. Based on the transitions out of q_0 , $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$ or $q_0 \xrightarrow{\epsilon}_N q_2 \xrightarrow{w}_N q$. Consider $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$. (Other case is similar) This means $q_1 \xrightarrow{w}_{N_1} q$ (as N has the same transition as N_1 on the states in Q_1) and $q \in F_1$. This means $w \in L(N_1)$.

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

- $\Rightarrow w \in L(N)$ implies $q_0 \xrightarrow{w}_N q$ for some $q \in F$. Based on the transitions out of q_0 , $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$ or $q_0 \xrightarrow{\epsilon}_N q_2 \xrightarrow{w}_N q$. Consider $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$. (Other case is similar) This means $q_1 \xrightarrow{w}_{N_1} q$ (as N has the same transition as N_1 on the states in Q_1) and $q \in F_1$. This means $w \in L(N_1)$.
- $\leftarrow w \in L(N_1) \cup L(N_2)$. Consider $w \in L(N_1)$; case of $w \in L(N_2)$ is similar.

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

- \Rightarrow $w \in L(N)$ implies $q_0 \xrightarrow{w}_N q$ for some $q \in F$. Based on the transitions out of q_0 , $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$ or $q_0 \xrightarrow{\epsilon}_N q_2 \xrightarrow{w}_N q$. Consider $q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q$. (Other case is similar) This means $q_1 \xrightarrow{w}_{N_1} q$ (as N has the same transition as N_1 on the states in Q_1) and $q \in F_1$. This means $w \in L(N_1)$.
- $\Leftarrow w \in L(N_1) \cup L(N_2)$. Consider $w \in L(N_1)$; case of $w \in L(N_2)$ is similar. Then, $q_1 \xrightarrow{w}_{N_1} q$ for some $q \in F_1$.

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

- $\Rightarrow w \in L(N) \text{ implies } q_0 \xrightarrow{w}_N q \text{ for some } q \in F. \text{ Based on the transitions out of } q_0, \ q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q \text{ or } q_0 \xrightarrow{\epsilon}_N q_2 \xrightarrow{w}_N q. \text{ Consider } q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q. \text{ (Other case is similar) This means } q_1 \xrightarrow{w}_{N_1} q \text{ (as N has the same transition as N_1 on the states in Q_1) and $q \in F_1$. This means $w \in L(N_1)$.}$
- $\Leftarrow w \in L(N_1) \cup L(N_2)$. Consider $w \in L(N_1)$; case of $w \in L(N_2)$ is similar. Then, $q_1 \xrightarrow{w}_{N_1} q$ for some $q \in F_1$. Thus, $q_0 \xrightarrow{\epsilon}_{N} q_1 \xrightarrow{w}_{N} q$, and $q \in F$. This means that $w \in L(N)$.

Case
$$R = R_1 \circ R_2$$

Case
$$R = R_1 \circ R_2$$

▶ By induction hypothesis, there are N_1 , N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$

Case
$$R = R_1 \circ R_2$$

- ▶ By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$
- ▶ Build NFA N s.t. $L(N) = L(N_1) \circ L(N_2)$

Case $R = R_1 \circ R_2$

- ▶ By induction hypothesis, there are N_1 , N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$
- ▶ Build NFA N s.t. $L(N) = L(N_1) \circ L(N_2)$

Case $R = R_1 \circ R_2$

- ▶ By induction hypothesis, there are N_1 , N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$
- ▶ Build NFA N s.t. $L(N) = L(N_1) \circ L(N_2)$

Formal definition and proof of correctness left as exercise.

Case
$$R = R_1^*$$

Case
$$R = R_1^*$$

▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

First Attempt

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Problem: May not accept $\epsilon!$ One can show that $L(N) = (L(N_1))^+$.

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Second Attempt

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Problem: May accept strings that are not in $(L(N_1))^*$!

Example NFA N

Example NFA N

$$L(N) = (0 \cup 1)^*1(0 \cup 1)^*.$$

Example NFA N

$$L(N) = (0 \cup 1)^* 1 (0 \cup 1)^*$$
. Thus, $(L(N))^* = \epsilon \cup (0 \cup 1)^* 1 (0 \cup 1)^*$.

Example NFA N

Incorrect Kleene Closure of N

$$L(N) = (0 \cup 1)^* 1 (0 \cup 1)^*$$
. Thus, $(L(N))^* = \epsilon \cup (0 \cup 1)^* 1 (0 \cup 1)^*$.

Example NFA N

Incorrect Kleene Closure of N

$$L(N) = (0 \cup 1)^*1(0 \cup 1)^*$$
. Thus, $(L(N))^* = \epsilon \cup (0 \cup 1)^*1(0 \cup 1)^*$. The previous construction, gives an NFA that accepts $0 \notin (L(N))^*$!

Correct Construction

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Correct Construction

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Induction Step: Kleene Closure

Correct Construction

Case
$$R = R_1^*$$

- ▶ By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- ▶ Build NFA N s.t. $L(N) = (L(N_1))^*$

Formal definition and proof of correctness left as exercise.

To Summarize

We built an NFA N_R for each regular expression R inductively

To Summarize

We built an NFA N_R for each regular expression R inductively

When R was an elementary regular expression, we gave an explicit construction of an NFA recognizing L(R)

To Summarize

We built an NFA N_R for each regular expression R inductively

- When R was an elementary regular expression, we gave an explicit construction of an NFA recognizing L(R)
- ▶ When $R = R_1$ op R_2 (or $R = op(R_1)$), we constructed an NFA N for R, using the NFAs for R_1 and R_2 .

An Example

Build NFA for $(1 \cup 01)^*$

An Example

Build NFA for $(1 \cup 01)^*$

 N_0

An Example

Build NFA for $(1 \cup 01)^*$

$$N_0$$
 \rightarrow \bigcirc

An Example

Build NFA for $(1 \cup 01)^*$

 N_1

An Example

Build NFA for $(1 \cup 01)^{\ast}$

An Example

Build NFA for $(1 \cup 01)^{\ast}$

An Example

Build NFA for $(1 \cup 01)^{\ast}$

An Example

Build NFA for $(1 \cup 01)^*$

$$N_0$$
 N_1
 N_{01}
 N_0

 $\textit{N}_{1\cup 01}$

An Example

Build NFA for $(1 \cup 01)^*$

Example Continued

Build NFA for $(1 \cup 01)^*$

Example Continued

Build NFA for $(1 \cup 01)^*$

 $N_{(1\cup 01)^*}$

Example Continued

Build NFA for $(1 \cup 01)^*$

 $\textit{N}_{(1\cup 01)^*}$

Defined Regular Expressions

- Defined Regular Expressions
 - ▶ Syntax: what a regex is built out of \emptyset , ϵ , characters in Σ , and operators \cup , \circ ,*.

- Defined Regular Expressions
 - ▶ Syntax: what a regex is built out of \emptyset , ϵ , characters in Σ , and operators \cup , \circ , *.
 - Semantics: what language a regex stands for.

- Defined Regular Expressions
 - ▶ Syntax: what a regex is built out of \emptyset , ϵ , characters in Σ , and operators \cup , \circ , *.
 - ▶ Semantics: what language a regex stands for.
- Expressive power of regular expressions: can express (any and only) regular languages

- Defined Regular Expressions
 - ▶ Syntax: what a regex is built out of \emptyset , ϵ , characters in Σ , and operators \cup , \circ , *.
 - ▶ Semantics: what language a regex stands for.
- Expressive power of regular expressions: can express (any and only) regular languages
 - ► Today: Languages represented by regular expressions are regular (we showed how to build NFAs for them).

- Defined Regular Expressions
 - ▶ Syntax: what a regex is built out of \emptyset , ϵ , characters in Σ , and operators \cup , \circ , *.
 - ▶ Semantics: what language a regex stands for.
- Expressive power of regular expressions: can express (any and only) regular languages
 - ► Today: Languages represented by regular expressions are regular (we showed how to build NFAs for them).
 - Coming up: Regular languages can be represented by regular expressions (by building regex for any given DFA).