
CSE 135: Introduction to Theory of Computation

Sungjin Im

University of California, Merced

Spring 2014

Decision Problems

Decision Problems
Given input, decide “yes” or “no”

I Examples: Is x an even
number? Is x prime? Is
there a path from s to t in
graph G?

I i.e., Compute a boolean
function of input

General Computational
Problem
In contrast, typically a problem
requires computing some
non-boolean function, or carrying
out interactive/reactive
computation in a distributed
environment

I Examples: Find the factors
of x . Find the balance in
account number x .

I In this course, we will study decision problems because aspects
of computability are captured by this special class of problems

Decision Problems

Decision Problems
Given input, decide “yes” or “no”

I Examples: Is x an even
number? Is x prime? Is
there a path from s to t in
graph G?

I i.e., Compute a boolean
function of input

General Computational
Problem
In contrast, typically a problem
requires computing some
non-boolean function, or carrying
out interactive/reactive
computation in a distributed
environment

I Examples: Find the factors
of x . Find the balance in
account number x .

I In this course, we will study decision problems because aspects
of computability are captured by this special class of problems

Decision Problems

Decision Problems
Given input, decide “yes” or “no”

I Examples: Is x an even
number? Is x prime? Is
there a path from s to t in
graph G?

I i.e., Compute a boolean
function of input

General Computational
Problem
In contrast, typically a problem
requires computing some
non-boolean function, or carrying
out interactive/reactive
computation in a distributed
environment

I Examples: Find the factors
of x . Find the balance in
account number x .

I In this course, we will study decision problems because aspects
of computability are captured by this special class of problems

What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)

I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!

What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)

I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!

What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)

I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!

What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)

I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!

What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation

I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!

What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!

What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!

Finite State Computation

I Finite state: A fixed upper bound on the size of the state,
independent of the size of the input

I A sequential program with no dynamic allocation using
variables that take boolean values (or values in a finite
enumerated data type)

I If t-bit state, at most 2t possible states

I Not enough memory to hold the entire input

I “Streaming input”: automaton runs (i.e., changes state) on
seeing each bit of input

Finite State Computation

I Finite state: A fixed upper bound on the size of the state,
independent of the size of the input

I A sequential program with no dynamic allocation using
variables that take boolean values (or values in a finite
enumerated data type)

I If t-bit state, at most 2t possible states

I Not enough memory to hold the entire input

I “Streaming input”: automaton runs (i.e., changes state) on
seeing each bit of input

Finite State Computation

I Finite state: A fixed upper bound on the size of the state,
independent of the size of the input

I A sequential program with no dynamic allocation using
variables that take boolean values (or values in a finite
enumerated data type)

I If t-bit state, at most 2t possible states

I Not enough memory to hold the entire input

I “Streaming input”: automaton runs (i.e., changes state) on
seeing each bit of input

Finite State Computation

I Finite state: A fixed upper bound on the size of the state,
independent of the size of the input

I A sequential program with no dynamic allocation using
variables that take boolean values (or values in a finite
enumerated data type)

I If t-bit state, at most 2t possible states

I Not enough memory to hold the entire input

I “Streaming input”: automaton runs (i.e., changes state) on
seeing each bit of input

Finite State Computation

I Finite state: A fixed upper bound on the size of the state,
independent of the size of the input

I A sequential program with no dynamic allocation using
variables that take boolean values (or values in a finite
enumerated data type)

I If t-bit state, at most 2t possible states

I Not enough memory to hold the entire input
I “Streaming input”: automaton runs (i.e., changes state) on

seeing each bit of input

An Automatic Door

Front
pad

Rear
pad

door

Top view of Door

closed open

front

neither

rear
both

neither

front
rear
both

State diagram of controller

I Input: A stream of events <front>, <rear>, <both>,
<neither> . . .

I Controller has a single bit of state.

An Automatic Door

Front
pad

Rear
pad

door

Top view of Door

closed open

front

neither

rear
both

neither

front
rear
both

State diagram of controller

I Input: A stream of events <front>, <rear>, <both>,
<neither> . . .

I Controller has a single bit of state.

An Automatic Door

Front
pad

Rear
pad

door

Top view of Door

closed open

front

neither

rear
both

neither

front
rear
both

State diagram of controller

I Input: A stream of events <front>, <rear>, <both>,
<neither> . . .

I Controller has a single bit of state.

An Automatic Door

Front
pad

Rear
pad

door

Top view of Door

closed open

front

neither

rear
both

neither

front
rear
both

State diagram of controller

I Input: A stream of events <front>, <rear>, <both>,
<neither> . . .

I Controller has a single bit of state.

Finite Automata
Details

Automaton
A finite automaton has:

Finite set of states,
with start/initial and accepting/final states;
Transitions from one state to another on
reading a symbol from the input.

Computation

Start at the initial state; in each step, read the
next symbol of the input, take the transition
(edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the
input w , the machine is in a final state then w
is accepted; otherwise w is rejected.

q0 q1

0 0

1

1

Transition Diagram of

automaton

Finite Automata
Details

Automaton
A finite automaton has: Finite set of states,
with start/initial and accepting/final states;

Transitions from one state to another on
reading a symbol from the input.

Computation

Start at the initial state; in each step, read the
next symbol of the input, take the transition
(edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the
input w , the machine is in a final state then w
is accepted; otherwise w is rejected.

q0 q1

0 0

1

1

Transition Diagram of

automaton

Finite Automata
Details

Automaton
A finite automaton has: Finite set of states,
with start/initial and accepting/final states;
Transitions from one state to another on
reading a symbol from the input.

Computation

Start at the initial state; in each step, read the
next symbol of the input, take the transition
(edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the
input w , the machine is in a final state then w
is accepted; otherwise w is rejected.

q0 q1

0 0

1

1

Transition Diagram of

automaton

Finite Automata
Details

Automaton
A finite automaton has: Finite set of states,
with start/initial and accepting/final states;
Transitions from one state to another on
reading a symbol from the input.

Computation

Start at the initial state; in each step, read the
next symbol of the input, take the transition
(edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the
input w , the machine is in a final state then w
is accepted; otherwise w is rejected.

q0 q1

0 0

1

1

Transition Diagram of

automaton

Finite Automata
Details

Automaton
A finite automaton has: Finite set of states,
with start/initial and accepting/final states;
Transitions from one state to another on
reading a symbol from the input.

Computation

Start at the initial state; in each step, read the
next symbol of the input, take the transition
(edge) labeled by that symbol to a new state.
Acceptance/Rejection: If after reading the
input w , the machine is in a final state then w
is accepted; otherwise w is rejected.

q0 q1

0 0

1

1

Transition Diagram of

automaton

Example: Computation

I On input 1001, the computation is

1. Start in state q0. Read 1 and goto q1.
2. Read 0 and goto q1.
3. Read 0 and goto q1.
4. Read 1 and goto q0. Since q0 is not a

final state 1001 is rejected.

I On input 010, the computation is

1. Start in state q0. Read 0 and goto q0.
2. Read 1 and goto q1.
3. Read 0 and goto q1. Since q1 is a final

state 010 is accepted.

q0 q1

0 0

1

1

Example: Computation

I On input 1001, the computation is

1. Start in state q0. Read 1 and goto q1.
2. Read 0 and goto q1.
3. Read 0 and goto q1.
4. Read 1 and goto q0. Since q0 is not a

final state 1001 is rejected.

I On input 010, the computation is

1. Start in state q0. Read 0 and goto q0.
2. Read 1 and goto q1.
3. Read 0 and goto q1. Since q1 is a final

state 010 is accepted.

q0 q1

0 0

1

1

Example I

q0

0, 1

Automaton accepts all strings of 0s and 1s

Example I

q0

0, 1

Automaton accepts all strings of 0s and 1s

Example II

q0 q1

0 1

1

0

Automaton accepts strings ending in 1

Example II

q0 q1

0 1

1

0

Automaton accepts strings ending in 1

Example III

q0 q1

0 0

1

1

Automaton accepts strings having an odd number of 1s

Example III

q0 q1

0 0

1

1

Automaton accepts strings having an odd number of 1s

Example IV

q0 q1

q2q3

1

1

1

1

0 0 0 0

Automaton accepts strings having an odd number of 1s and odd number

of 0s

Example IV

q0 q1

q2q3

1

1

1

1

0 0 0 0

Automaton accepts strings having an odd number of 1s and odd number

of 0s

Finite Automata in Practice

I grep

I Thermostats

I Coke Machines

I Elevators

I Train Track Switches

I Security Properties

I Lexical Analyzers for Parsers

Alphabet

Definition
An alphabet is any finite, non-empty set of symbols. We will
usually denote it by Σ.

Example

Examples of alphabets include {0, 1} (binary alphabet);
{a, b, . . . , z} (English alphabet); the set of all ASCII characters;
{moveforward, moveback, rotate90}.

Strings

Definition
A string or word over alphabet Σ is a (finite) sequence of symbols
in Σ. Examples are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’

I ε is the empty string.

I The length of string u (denoted by |u|) is the number of
symbols in u. Example, |ε| = 0, |011010| = 6.

I Concatenation: uv is the string that has a copy of u followed
by a copy of v . Example, if u = ‘cat ′ and v = ‘nap′ then
uv = ‘catnap′. If v = ε the uv = vu = u.

I u is a prefix of v if there is a string w such that v = uw .
Example ‘cat ′ is a prefix of ‘catnap′.

Strings

Definition
A string or word over alphabet Σ is a (finite) sequence of symbols
in Σ. Examples are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’
I ε is the empty string.

I The length of string u (denoted by |u|) is the number of
symbols in u. Example, |ε| = 0, |011010| = 6.

I Concatenation: uv is the string that has a copy of u followed
by a copy of v . Example, if u = ‘cat ′ and v = ‘nap′ then
uv = ‘catnap′. If v = ε the uv = vu = u.

I u is a prefix of v if there is a string w such that v = uw .
Example ‘cat ′ is a prefix of ‘catnap′.

Strings

Definition
A string or word over alphabet Σ is a (finite) sequence of symbols
in Σ. Examples are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’
I ε is the empty string.

I The length of string u (denoted by |u|) is the number of
symbols in u. Example, |ε| = 0, |011010| = 6.

I Concatenation: uv is the string that has a copy of u followed
by a copy of v . Example, if u = ‘cat ′ and v = ‘nap′ then
uv = ‘catnap′. If v = ε the uv = vu = u.

I u is a prefix of v if there is a string w such that v = uw .
Example ‘cat ′ is a prefix of ‘catnap′.

Strings

Definition
A string or word over alphabet Σ is a (finite) sequence of symbols
in Σ. Examples are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’
I ε is the empty string.

I The length of string u (denoted by |u|) is the number of
symbols in u. Example, |ε| = 0, |011010| = 6.

I Concatenation: uv is the string that has a copy of u followed
by a copy of v . Example, if u = ‘cat ′ and v = ‘nap′ then
uv = ‘catnap′. If v = ε the uv = vu = u.

I u is a prefix of v if there is a string w such that v = uw .
Example ‘cat ′ is a prefix of ‘catnap′.

Strings

Definition
A string or word over alphabet Σ is a (finite) sequence of symbols
in Σ. Examples are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’
I ε is the empty string.

I The length of string u (denoted by |u|) is the number of
symbols in u. Example, |ε| = 0, |011010| = 6.

I Concatenation: uv is the string that has a copy of u followed
by a copy of v . Example, if u = ‘cat ′ and v = ‘nap′ then
uv = ‘catnap′. If v = ε the uv = vu = u.

I u is a prefix of v if there is a string w such that v = uw .
Example ‘cat ′ is a prefix of ‘catnap′.

Languages

Definition

I For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the
set of all strings of length n.

I A language over Σ is a set L ⊆ Σ∗. For example
L = {1, 01, 11, 001} is a language over {0, 1}.

I A language L defines a decision problem:

Inputs (strings)
whose answer is ‘yes’ are exactly those belonging to L

Languages

Definition

I For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the
set of all strings of length n.

I A language over Σ is a set L ⊆ Σ∗. For example
L = {1, 01, 11, 001} is a language over {0, 1}.

I A language L defines a decision problem:

Inputs (strings)
whose answer is ‘yes’ are exactly those belonging to L

Languages

Definition

I For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the
set of all strings of length n.

I A language over Σ is a set L ⊆ Σ∗. For example
L = {1, 01, 11, 001} is a language over {0, 1}.

I A language L defines a decision problem:

Inputs (strings)
whose answer is ‘yes’ are exactly those belonging to L

Languages

Definition

I For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the
set of all strings of length n.

I A language over Σ is a set L ⊆ Σ∗. For example
L = {1, 01, 11, 001} is a language over {0, 1}.

I A language L defines a decision problem:

Inputs (strings)
whose answer is ‘yes’ are exactly those belonging to L

Languages

Definition

I For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the
set of all strings of length n.

I A language over Σ is a set L ⊆ Σ∗. For example
L = {1, 01, 11, 001} is a language over {0, 1}.

I A language L defines a decision problem: Inputs (strings)
whose answer is ‘yes’ are exactly those belonging to L

Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is

the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.

Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is

the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.

Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.

Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.

Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is the
set of all prefixes of 10001.

Defining an Automaton

To describe an automaton, we to need to specify

I What the alphabet is,

I What the states are,

I What the initial state is,

I What states are accepting/final, and

I What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.

Deterministic

Finite Automata
Formal Definition

Definition
A

deterministic

finite automaton

(DFA)

is M = (Q,Σ, δ, q0,F),
where

I Q is the finite set of states

I Σ is the finite alphabet

I δ : Q × Σ→ Q “Next-state” transition function

I q0 ∈ Q initial state

I F ⊆ Q final/accepting states

Given a state and a symbol, the next state is “determined”.

Deterministic Finite Automata
Formal Definition

Definition
A deterministic finite automaton (DFA) is M = (Q,Σ, δ, q0,F),
where

I Q is the finite set of states

I Σ is the finite alphabet

I δ : Q × Σ→ Q “Next-state” transition function

I q0 ∈ Q initial state

I F ⊆ Q final/accepting states

Given a state and a symbol, the next state is “determined”.

Computation

Definition
For a DFA M = (Q,Σ, δ, q0,F), let us define a function
δ̂ : Q × Σ∗ → Q such that δ̂(q,w) is M’s state after reading w
from state q.

Formally,

δ̂(q,w) =

{

q

if w = ε

δ(δ̂(q, u), a)

if w = ua

Definition
We say a DFA M = (Q,Σ, δ, q0,F) accepts string w ∈ Σ∗ iff
δ̂(q0,w) ∈ F .

Computation

Definition
For a DFA M = (Q,Σ, δ, q0,F), let us define a function
δ̂ : Q × Σ∗ → Q such that δ̂(q,w) is M’s state after reading w
from state q. Formally,

δ̂(q,w) =

{

q

if w = ε

δ(δ̂(q, u), a)

if w = ua

Definition
We say a DFA M = (Q,Σ, δ, q0,F) accepts string w ∈ Σ∗ iff
δ̂(q0,w) ∈ F .

Computation

Definition
For a DFA M = (Q,Σ, δ, q0,F), let us define a function
δ̂ : Q × Σ∗ → Q such that δ̂(q,w) is M’s state after reading w
from state q. Formally,

δ̂(q,w) =

{
q if w = ε

δ(δ̂(q, u), a)

if w = ua

Definition
We say a DFA M = (Q,Σ, δ, q0,F) accepts string w ∈ Σ∗ iff
δ̂(q0,w) ∈ F .

Computation

Definition
For a DFA M = (Q,Σ, δ, q0,F), let us define a function
δ̂ : Q × Σ∗ → Q such that δ̂(q,w) is M’s state after reading w
from state q. Formally,

δ̂(q,w) =

{
q if w = ε

δ(δ̂(q, u), a) if w = ua

Definition
We say a DFA M = (Q,Σ, δ, q0,F) accepts string w ∈ Σ∗ iff
δ̂(q0,w) ∈ F .

Computation

Definition
For a DFA M = (Q,Σ, δ, q0,F), let us define a function
δ̂ : Q × Σ∗ → Q such that δ̂(q,w) is M’s state after reading w
from state q. Formally,

δ̂(q,w) =

{
q if w = ε

δ(δ̂(q, u), a) if w = ua

Definition
We say a DFA M = (Q,Σ, δ, q0,F) accepts string w ∈ Σ∗ iff
δ̂(q0,w) ∈ F .

Acceptance/Recognition

and Regular Languages

Definition
The language accepted or recognized by a DFA M over alphabet Σ
is L(M) = {w ∈ Σ∗ |M accepts w}.

A language L is said to be
accepted/recognized by M if L = L(M).

Definition
A language L is regular if there is some DFA M such that
L = L(M).

Acceptance/Recognition

and Regular Languages

Definition
The language accepted or recognized by a DFA M over alphabet Σ
is L(M) = {w ∈ Σ∗ |M accepts w}. A language L is said to be
accepted/recognized by M if L = L(M).

Definition
A language L is regular if there is some DFA M such that
L = L(M).

Acceptance/Recognition and Regular Languages

Definition
The language accepted or recognized by a DFA M over alphabet Σ
is L(M) = {w ∈ Σ∗ |M accepts w}. A language L is said to be
accepted/recognized by M if L = L(M).

Definition
A language L is regular if there is some DFA M such that
L = L(M).

Formal Example of DFA

Example

q0 q1

0 0

1

1

Transition Diagram of DFA

0 1

q0 q0 q1
q1 q1 q0

Transition Table representation

Formally the automaton is M = ({q0, q1}, {0, 1}, δ, q0, {q1}) where

δ(q0, 0) = q0 δ(q0, 1) = q1
δ(q1, 0) = q1 δ(q1, 1) = q0

Formal Example of DFA

Example

q0 q1

0 0

1

1

Transition Diagram of DFA

0 1

q0 q0 q1
q1 q1 q0

Transition Table representation

Formally the automaton is M = ({q0, q1}, {0, 1}, δ, q0, {q1}) where

δ(q0, 0) = q0 δ(q0, 1) = q1
δ(q1, 0) = q1 δ(q1, 1) = q0

Formal Example of DFA

Example

q0 q1

0 0

1

1

Transition Diagram of DFA

0 1

q0 q0 q1
q1 q1 q0

Transition Table representation

Formally the automaton is M = ({q0, q1}, {0, 1}, δ, q0, {q1}) where

δ(q0, 0) = q0 δ(q0, 1) = q1
δ(q1, 0) = q1 δ(q1, 1) = q0

A Simple Observation about DFAs

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
By induction! Let’s see . . . �

A Simple Observation about DFAs

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
By induction! Let’s see . . . �

Domino Principle

I Line up n dominoes numbered
0, 1, . . . n − 1 such that if we knock one
the next one will fall

I If Fi denotes “ith domino falls”, we have
Fi → Fi+1

I Thus, knocking the 0th domino will cause
all the dominoes to fall because
F0

→ F1 → F2 → · · · → Fn−1

Dominoes

Domino Principle

I Line up n dominoes numbered
0, 1, . . . n − 1 such that if we knock one
the next one will fall

I If Fi denotes “ith domino falls”, we have
Fi → Fi+1

I Thus, knocking the 0th domino will cause
all the dominoes to fall because
F0

→ F1 → F2 → · · · → Fn−1

Dominoes

Domino Principle

I Line up n dominoes numbered
0, 1, . . . n − 1 such that if we knock one
the next one will fall

I If Fi denotes “ith domino falls”, we have
Fi → Fi+1

I Thus, knocking the 0th domino will cause
all the dominoes to fall because
F0 → F1

→ F2 → · · · → Fn−1

Dominoes

Domino Principle

I Line up n dominoes numbered
0, 1, . . . n − 1 such that if we knock one
the next one will fall

I If Fi denotes “ith domino falls”, we have
Fi → Fi+1

I Thus, knocking the 0th domino will cause
all the dominoes to fall because
F0 → F1 → F2

→ · · · → Fn−1

Dominoes

Domino Principle

I Line up n dominoes numbered
0, 1, . . . n − 1 such that if we knock one
the next one will fall

I If Fi denotes “ith domino falls”, we have
Fi → Fi+1

I Thus, knocking the 0th domino will cause
all the dominoes to fall because
F0 → F1 → F2 → · · · → Fn−1

Dominoes

Plato’s Infinite Domino Principle

Principle

Imagine one domino for each natural number
0, 1, 2, . . ., arranged in an infinite row.
Knocking the 0th domino will knock them all.

Plato

“Proof”
Suppose they don’t all fall. Let k > 0 be the smallest numbered
domino that remains standing. This means domino k − 1 fell. But
then k − 1 will knock k over. Therefore, k must fall and remain
standing, which is a contradiction.

Plato’s Infinite Domino Principle

Principle

Imagine one domino for each natural number
0, 1, 2, . . ., arranged in an infinite row.
Knocking the 0th domino will knock them all.

Plato

“Proof”
Suppose they don’t all fall. Let k > 0 be the smallest numbered
domino that remains standing. This means domino k − 1 fell. But
then k − 1 will knock k over. Therefore, k must fall and remain
standing, which is a contradiction.

Plato’s Infinite Domino Principle
Formally

Mathematically we can say

I Fi : ith domino falls

I Suppose for every natural number i , Fi → Fi+1

I Suppose 0th domino is knocked over, i.e., F0
I Then all dominoes will fall, i.e., ∀i .Fi .

Dominoes and Mathematical Induction

Domino Principle

I Infinite sequence of
dominoes

I Knock the 0th domino

I Arrange dominoes such
that knocking one will
knock the next one

I Conclude all dominoes
fall

Induction Principle

I Infinite sequence of statements
S0, S1, . . .

I Prove S0 is correct [Base Case]

I For an arbitrary i , assuming S1
to be correct

[Induction
Hypothesis]

establishes Si+1 to
be correct

[Induction Step]

I Conclude ∀i . Si is true

Dominoes and Mathematical Induction

Domino Principle

I Infinite sequence of
dominoes

I Knock the 0th domino

I Arrange dominoes such
that knocking one will
knock the next one

I Conclude all dominoes
fall

Induction Principle

I Infinite sequence of statements
S0, S1, . . .

I Prove S0 is correct [Base Case]

I For an arbitrary i , assuming S1
to be correct

[Induction
Hypothesis]

establishes Si+1 to
be correct

[Induction Step]

I Conclude ∀i . Si is true

Dominoes and Mathematical Induction

Domino Principle

I Infinite sequence of
dominoes

I Knock the 0th domino

I Arrange dominoes such
that knocking one will
knock the next one

I Conclude all dominoes
fall

Induction Principle

I Infinite sequence of statements
S0, S1, . . .

I Prove S0 is correct [Base Case]

I For an arbitrary i , assuming S1
to be correct

[Induction
Hypothesis]

establishes Si+1 to
be correct

[Induction Step]

I Conclude ∀i . Si is true

Dominoes and Mathematical Induction

Domino Principle

I Infinite sequence of
dominoes

I Knock the 0th domino

I Arrange dominoes such
that knocking one will
knock the next one

I Conclude all dominoes
fall

Induction Principle

I Infinite sequence of statements
S0, S1, . . .

I Prove S0 is correct [Base Case]

I For an arbitrary i , assuming S1
to be correct [Induction
Hypothesis] establishes Si+1 to
be correct [Induction Step]

I Conclude ∀i . Si is true

Dominoes and Mathematical Induction

Domino Principle

I Infinite sequence of
dominoes

I Knock the 0th domino

I Arrange dominoes such
that knocking one will
knock the next one

I Conclude all dominoes
fall

Induction Principle

I Infinite sequence of statements
S0, S1, . . .

I Prove S0 is correct [Base Case]

I For an arbitrary i , assuming S1
to be correct [Induction
Hypothesis] establishes Si+1 to
be correct [Induction Step]

I Conclude ∀i . Si is true

Induction Proofs
An Example

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
We will prove this by induction.

I Let Si be “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”

I Observe that if Si is true for all i then δ̂(q, uv) = δ̂(δ̂(q, u), v)
for every u and v ··→

Induction Proofs
An Example

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
We will prove this by induction.

I Let Si be “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”

I Observe that if Si is true for all i then δ̂(q, uv) = δ̂(δ̂(q, u), v)
for every u and v ··→

Induction Proofs
An Example

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
We will prove this by induction.

I Let Si be “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”

I Observe that if Si is true for all i then δ̂(q, uv) = δ̂(δ̂(q, u), v)
for every u and v ··→

Induction Proofs
An Example

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
We will prove this by induction.

I Let Si be “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”
I Observe that if Si is true for all i then δ̂(q, uv) = δ̂(δ̂(q, u), v)

for every u and v ··→

Example Inductive Proof
Base Case

Proof (contd).

To establish S0, i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = 0”

I If |v | = 0 then v = ε

I Observe uε = u

I Thus, LHS = δ̂(q, uε) = δ̂(q, u)

I Observe by definition of δ̂(·, ·), for any q′, δ̂(q′, ε) = q′

I Thus, RHS = δ̂(δ̂(q, u), ε) = δ̂(q, u) ··→

Example Inductive Proof
Base Case

Proof (contd).

To establish S0, i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = 0”

I If |v | = 0 then v = ε

I Observe uε = u

I Thus, LHS = δ̂(q, uε) = δ̂(q, u)

I Observe by definition of δ̂(·, ·), for any q′, δ̂(q′, ε) = q′

I Thus, RHS = δ̂(δ̂(q, u), ε) = δ̂(q, u) ··→

Example Inductive Proof
Induction Step

Proof (contd).

Assume Si , i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”. Need to
establish Si+1.

I Consider v such that |v | = i + 1.

WLOG, v = wa, where
w ∈ Σ∗ with |w | = n and a ∈ Σ

δ̂(q, uwa) = δ(δ̂(q, uw), a) defn. of δ̂

= δ(δ̂(δ̂(q, u),w), a) ind. hyp.

= δ̂(δ̂(q, u),wa) defn. of δ̂

�

Example Inductive Proof
Induction Step

Proof (contd).

Assume Si , i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”. Need to
establish Si+1.

I Consider v such that |v | = i + 1.

WLOG, v = wa, where
w ∈ Σ∗ with |w | = n and a ∈ Σ

δ̂(q, uwa) = δ(δ̂(q, uw), a) defn. of δ̂

= δ(δ̂(δ̂(q, u),w), a) ind. hyp.

= δ̂(δ̂(q, u),wa) defn. of δ̂

�

Example Inductive Proof
Induction Step

Proof (contd).

Assume Si , i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”. Need to
establish Si+1.

I Consider v such that |v | = i + 1. WLOG, v = wa, where
w ∈ Σ∗ with |w | = n and a ∈ Σ

δ̂(q, uwa) = δ(δ̂(q, uw), a) defn. of δ̂

= δ(δ̂(δ̂(q, u),w), a) ind. hyp.

= δ̂(δ̂(q, u),wa) defn. of δ̂

�

Example Inductive Proof
Induction Step

Proof (contd).

Assume Si , i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”. Need to
establish Si+1.

I Consider v such that |v | = i + 1. WLOG, v = wa, where
w ∈ Σ∗ with |w | = n and a ∈ Σ

δ̂(q, uwa) = δ(δ̂(q, uw), a) defn. of δ̂

= δ(δ̂(δ̂(q, u),w), a) ind. hyp.

= δ̂(δ̂(q, u),wa) defn. of δ̂

�

Example Inductive Proof
Induction Step

Proof (contd).

Assume Si , i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”. Need to
establish Si+1.

I Consider v such that |v | = i + 1. WLOG, v = wa, where
w ∈ Σ∗ with |w | = n and a ∈ Σ

δ̂(q, uwa) = δ(δ̂(q, uw), a) defn. of δ̂

= δ(δ̂(δ̂(q, u),w), a) ind. hyp.

= δ̂(δ̂(q, u),wa) defn. of δ̂

�

Example Inductive Proof
Induction Step

Proof (contd).

Assume Si , i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”. Need to
establish Si+1.

I Consider v such that |v | = i + 1. WLOG, v = wa, where
w ∈ Σ∗ with |w | = n and a ∈ Σ

δ̂(q, uwa) = δ(δ̂(q, uw), a) defn. of δ̂

= δ(δ̂(δ̂(q, u),w), a) ind. hyp.

= δ̂(δ̂(q, u),wa) defn. of δ̂

�

Conventions in Inductive Proofs

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
“We will prove by induction on |v |” is a short-hand for

“We will
prove the proposition by induction. Take Si to be statement of the
proposition restricted to strings v where |v | = i .” �

Conventions in Inductive Proofs

Proposition

For a DFA M = (Q,Σ, δ, q0,F), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
“We will prove by induction on |v |” is a short-hand for “We will
prove the proposition by induction. Take Si to be statement of the
proposition restricted to strings v where |v | = i .” �

Properties of δ̂

Corollary

For a DFA M = (Q,Σ, δ, q0,F), and any string v ∈ Σ∗, a ∈ Σ and
state q ∈ Q, δ̂(q, av) = δ̂(δ(q, a), v).

Proof.
From previous proposition we have, δ̂(q, av) = δ̂(δ̂(q, a), v) (taking
u = a).

Next,

δ̂(q, a) = δ(δ̂(q, ε), a) defn. of δ̂

= δ(q, a) as δ̂(q, ε) = q

�

Properties of δ̂

Corollary

For a DFA M = (Q,Σ, δ, q0,F), and any string v ∈ Σ∗, a ∈ Σ and
state q ∈ Q, δ̂(q, av) = δ̂(δ(q, a), v).

Proof.
From previous proposition we have, δ̂(q, av) = δ̂(δ̂(q, a), v) (taking
u = a).

Next,

δ̂(q, a) = δ(δ̂(q, ε), a) defn. of δ̂

= δ(q, a) as δ̂(q, ε) = q

�

Properties of δ̂

Corollary

For a DFA M = (Q,Σ, δ, q0,F), and any string v ∈ Σ∗, a ∈ Σ and
state q ∈ Q, δ̂(q, av) = δ̂(δ(q, a), v).

Proof.
From previous proposition we have, δ̂(q, av) = δ̂(δ̂(q, a), v) (taking
u = a). Next,

δ̂(q, a) = δ(δ̂(q, ε), a) defn. of δ̂

= δ(q, a) as δ̂(q, ε) = q

�

Language of Modd

Proposition

L(Modd) = {w ∈ {0, 1}∗ | w has an odd
number of 0s and an odd number of
1s}.

q0 q1

q2q3

1

1

1

1

0 0 0 0

Transition Diagram of Modd

Language of Modd

Proposition

L(Modd) = {w ∈ {0, 1}∗ | w has an odd
number of 0s and an odd number of
1s}.

q0 q1

q2q3

1

1

1

1

0 0 0 0

Transition Diagram of Modd

Proof about the language of Modd

It fails!

Proof.
We will prove by induction on |w | that δ̂(q0,w) ∈ F = {q2} iff w
has an odd number of 0s and an odd number of 1s.

I Base Case: When w = ε, w has an even number of 0s and an
even number of 1s and δ̂(q0, ε) = q0 so the observation holds.

I Induction Step w = 0u: The parity of the number of 1s in u
and w is the same, and the parity of the number of 0s is
opposite. And δ̂(q0,w) = δ̂(δ(q0, 0), u) = δ̂(q3, u)

I Need to know what strings are accepted from q3! Need to
prove a stronger statement. �

Proof about the language of Modd

It fails!

Proof.
We will prove by induction on |w | that δ̂(q0,w) ∈ F = {q2} iff w
has an odd number of 0s and an odd number of 1s.

I Base Case: When w = ε, w has an even number of 0s and an
even number of 1s and δ̂(q0, ε) = q0 so the observation holds.

I Induction Step w = 0u: The parity of the number of 1s in u
and w is the same, and the parity of the number of 0s is
opposite. And δ̂(q0,w) = δ̂(δ(q0, 0), u) = δ̂(q3, u)

I Need to know what strings are accepted from q3! Need to
prove a stronger statement. �

Proof about the language of Modd

It fails!

Proof.
We will prove by induction on |w | that δ̂(q0,w) ∈ F = {q2} iff w
has an odd number of 0s and an odd number of 1s.

I Base Case: When w = ε, w has an even number of 0s and an
even number of 1s and δ̂(q0, ε) = q0 so the observation holds.

I Induction Step w = 0u: The parity of the number of 1s in u
and w is the same, and the parity of the number of 0s is
opposite. And δ̂(q0,w) = δ̂(δ(q0, 0), u) = δ̂(q3, u)

I Need to know what strings are accepted from q3! Need to
prove a stronger statement. �

Proof about the language of Modd
It fails!

Proof.
We will prove by induction on |w | that δ̂(q0,w) ∈ F = {q2} iff w
has an odd number of 0s and an odd number of 1s.

I Base Case: When w = ε, w has an even number of 0s and an
even number of 1s and δ̂(q0, ε) = q0 so the observation holds.

I Induction Step w = 0u: The parity of the number of 1s in u
and w is the same, and the parity of the number of 0s is
opposite. And δ̂(q0,w) = δ̂(δ(q0, 0), u) = δ̂(q3, u)

I Need to know what strings are accepted from q3! Need to
prove a stronger statement. �

Corrected Proof

Proof.
We need to a stronger statement that asserts what strings are
accepted from each state of the DFA. We will prove by induction
on |w | that

(a) δ̂(q0,w) ∈ F iff w has odd number of 0s & odd number of 1s

(b) δ̂(q1,w) ∈ F iff

w has odd number of 0s & even number of 1s

(c) δ̂(q2,w) ∈ F iff

w has even number of 0s & even number of
1s

(d) δ̂(q3,w) ∈ F iff

w has even number of 0s & odd number of 1s

··→

Corrected Proof

Proof.
We need to a stronger statement that asserts what strings are
accepted from each state of the DFA. We will prove by induction
on |w | that

(a) δ̂(q0,w) ∈ F iff w has odd number of 0s & odd number of 1s

(b) δ̂(q1,w) ∈ F iff w has odd number of 0s & even number of 1s

(c) δ̂(q2,w) ∈ F iff

w has even number of 0s & even number of
1s

(d) δ̂(q3,w) ∈ F iff

w has even number of 0s & odd number of 1s

··→

Corrected Proof

Proof.
We need to a stronger statement that asserts what strings are
accepted from each state of the DFA. We will prove by induction
on |w | that

(a) δ̂(q0,w) ∈ F iff w has odd number of 0s & odd number of 1s

(b) δ̂(q1,w) ∈ F iff w has odd number of 0s & even number of 1s

(c) δ̂(q2,w) ∈ F iff w has even number of 0s & even number of
1s

(d) δ̂(q3,w) ∈ F iff

w has even number of 0s & odd number of 1s

··→

Corrected Proof

Proof.
We need to a stronger statement that asserts what strings are
accepted from each state of the DFA. We will prove by induction
on |w | that

(a) δ̂(q0,w) ∈ F iff w has odd number of 0s & odd number of 1s

(b) δ̂(q1,w) ∈ F iff w has odd number of 0s & even number of 1s

(c) δ̂(q2,w) ∈ F iff w has even number of 0s & even number of
1s

(d) δ̂(q3,w) ∈ F iff w has even number of 0s & odd number of 1s

··→

Corrected Proof
Base Case

Proof (contd).

Consider w such that |w | = 0. Then w = ε.

I w has even number of 0s and even number of 1s

I For any q ∈ Q, δ̂(q,w) = q

I Thus, δ̂(q,w) ∈ F iff q = q3, and statements (a),(b),(c), and
(d) hold in the base case. ··→

Corrected Proof
Base Case

Proof (contd).

Consider w such that |w | = 0. Then w = ε.

I w has even number of 0s and even number of 1s

I For any q ∈ Q, δ̂(q,w) = q

I Thus, δ̂(q,w) ∈ F iff q = q3, and statements (a),(b),(c), and
(d) hold in the base case. ··→

Corrected Proof
Base Case

Proof (contd).

Consider w such that |w | = 0. Then w = ε.

I w has even number of 0s and even number of 1s

I For any q ∈ Q, δ̂(q,w) = q

I Thus, δ̂(q,w) ∈ F iff q = q3, and statements (a),(b),(c), and
(d) hold in the base case. ··→

Corrected Proof
Base Case

Proof (contd).

Consider w such that |w | = 0. Then w = ε.

I w has even number of 0s and even number of 1s

I For any q ∈ Q, δ̂(q,w) = q

I Thus, δ̂(q,w) ∈ F iff q = q3, and statements (a),(b),(c), and
(d) hold in the base case. ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n.

Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff

δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff

u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff

w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff

δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff

u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff

w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n. Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→

Corrected Proof
Induction Step: other parts

Proof (contd).

I Case q = q1, a = 0: δ̂(q1,w) ∈ F iff δ̂(q2, u) ∈ F iff u has
even number of 0s and even number of 1s (by ind. hyp. (c))
iff w has odd number of 0s and even number of 1s

I . . . And so on for the other cases of q = q1 and a = 1, q = q2
and a = 0, q = q2 and a = 1, q = q3 and a = 0, and finally
q = q3 and a = 1. �

Corrected Proof
Induction Step: other parts

Proof (contd).

I Case q = q1, a = 0: δ̂(q1,w) ∈ F iff δ̂(q2, u) ∈ F iff u has
even number of 0s and even number of 1s (by ind. hyp. (c))
iff w has odd number of 0s and even number of 1s

I . . . And so on for the other cases of q = q1 and a = 1, q = q2
and a = 0, q = q2 and a = 1, q = q3 and a = 0, and finally
q = q3 and a = 1. �

Proving Correctness of a DFA

Proof Template

Given a DFA M having n states {q0, q1, . . . qn−1} with initial state
q0, and final states F , to prove that L(M) = L, we do the
following.

1. Come up with languages L0, L1, . . . Ln−1 such that L0 = L

2. Prove by induction on |w |, δ̂(qi ,w) ∈ F if and only if w ∈ Li

Proving Correctness of a DFA

Proof Template

Given a DFA M having n states {q0, q1, . . . qn−1} with initial state
q0, and final states F , to prove that L(M) = L, we do the
following.

1. Come up with languages L0, L1, . . . Ln−1 such that L0 = L

2. Prove by induction on |w |, δ̂(qi ,w) ∈ F if and only if w ∈ Li

Proving Correctness of a DFA

Proof Template

Given a DFA M having n states {q0, q1, . . . qn−1} with initial state
q0, and final states F , to prove that L(M) = L, we do the
following.

1. Come up with languages L0, L1, . . . Ln−1 such that L0 = L

2. Prove by induction on |w |, δ̂(qi ,w) ∈ F if and only if w ∈ Li

Typical Problem

Problem
Given a language L, design a DFA M that accepts L, i.e.,
L(M) = L.

How does one go about it?

Typical Problem

Problem
Given a language L, design a DFA M that accepts L, i.e.,
L(M) = L.
How does one go about it?

Methodology

I Imagine yourself in the place of the machine, reading symbols
of the input, and trying to determine if it should be accepted.

I Remember at any point you have only seen a part of the
input, and you don’t know when it ends.

I Figure out what to keep in memory. It cannot be all the
symbols seen so far: it must fit into a finite number of bits.

Methodology

I Imagine yourself in the place of the machine, reading symbols
of the input, and trying to determine if it should be accepted.

I Remember at any point you have only seen a part of the
input, and you don’t know when it ends.

I Figure out what to keep in memory. It cannot be all the
symbols seen so far: it must fit into a finite number of bits.

Strings containing 0

Problem
Design an automaton that accepts all strings over {0, 1} that
contain at least one 0.

Solution
What do you need to remember?

Whether you have seen a 0 so far
or not!

qnoz qzer

1 0, 1

0

Automaton accepting strings with at least one 0.

Strings containing 0

Problem
Design an automaton that accepts all strings over {0, 1} that
contain at least one 0.

Solution
What do you need to remember? Whether you have seen a 0 so far
or not!

qnoz qzer

1 0, 1

0

Automaton accepting strings with at least one 0.

Even length strings

Problem
Design an automaton that accepts all strings over {0, 1} that have
an even length.

Solution
What do you need to remember?

Whether you have seen an odd
or an even number of symbols.

qe qo

0, 1

0, 1

Automaton accepting strings of even length.

Even length strings

Problem
Design an automaton that accepts all strings over {0, 1} that have
an even length.

Solution
What do you need to remember? Whether you have seen an odd
or an even number of symbols.

qe qo

0, 1

0, 1

Automaton accepting strings of even length.

Pattern Recognition

Problem
Design an automaton that accepts all strings over {0, 1} that have
001 as a substring, where u is a substring of w if there are w1 and
w2 such that w = w1uw2.

Solution
What do you need to remember?

Whether you

I haven’t seen any symbols of the pattern

I have just seen 0

I have just seen 00

I have seen the entire pattern 001

Pattern Recognition

Problem
Design an automaton that accepts all strings over {0, 1} that have
001 as a substring, where u is a substring of w if there are w1 and
w2 such that w = w1uw2.

Solution
What do you need to remember? Whether you

I haven’t seen any symbols of the pattern

I have just seen 0

I have just seen 00

I have seen the entire pattern 001

Pattern Recognition Automaton

qε q0 q00 qp

1

0

1

0

0

1

0, 1

Automaton accepting strings having 001 as substring.

grep Problem

Problem
Given text T and string s, does s appear in T?

Näıve

Solution

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
T1 T2 T3 . . .Tn Tn+1 . . .Tt

Running time = O(nt), where |T | = t and |s| = n.

grep Problem

Problem
Given text T and string s, does s appear in T?

Näıve

Solution

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
T1 T2 T3 . . .Tn Tn+1 . . .Tt

Running time = O(nt), where |T | = t and |s| = n.

grep Problem

Problem
Given text T and string s, does s appear in T?

Näıve Solution

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
T1 T2 T3 . . .Tn Tn+1 . . .Tt

Running time = O(nt), where |T | = t and |s| = n.

grep Problem
Smarter Solution

Solution

I Build DFA M for L = {w | there are u, v s.t. w = usv}
I Run M on text T

Time = time to build M + O(t)!

Questions

I Is L regular no matter what s is?

I If yes, can M be built “efficiently”?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

grep Problem
Smarter Solution

Solution

I Build DFA M for L = {w | there are u, v s.t. w = usv}
I Run M on text T

Time = time to build M + O(t)!

Questions

I Is L regular no matter what s is?

I If yes, can M be built “efficiently”?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

grep Problem
Smarter Solution

Solution

I Build DFA M for L = {w | there are u, v s.t. w = usv}
I Run M on text T

Time = time to build M + O(t)!

Questions

I Is L regular no matter what s is?

I If yes, can M be built “efficiently”?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

grep Problem
Smarter Solution

Solution

I Build DFA M for L = {w | there are u, v s.t. w = usv}
I Run M on text T

Time = time to build M + O(t)!

Questions

I Is L regular no matter what s is?

I If yes, can M be built “efficiently”?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

Knuth-Morris-Pratt (1977)

From Introduction to Algorithms by CLRS

Multiples

Problem
Design an automaton that accepts all strings w over {0, 1} such
that w is the binary representation of a number that is a multiple
of 5.

Solution
What must be remembered?

The remainder when divided by 5.
How do you compute remainders?

I If w is the number n then w0 is 2n and w1 is 2n + 1.

I (a.b + c) mod 5 = (a.(b mod 5) + c) mod 5

I e.g. 1011 = 11 (decimal) ≡ 1 mod 5
10110 = 22 (decimal) ≡ 2 mod 5
10111 = 23 (decimal) ≡ 3 mod 5

Multiples

Problem
Design an automaton that accepts all strings w over {0, 1} such
that w is the binary representation of a number that is a multiple
of 5.

Solution
What must be remembered? The remainder when divided by 5.

How do you compute remainders?

I If w is the number n then w0 is 2n and w1 is 2n + 1.

I (a.b + c) mod 5 = (a.(b mod 5) + c) mod 5

I e.g. 1011 = 11 (decimal) ≡ 1 mod 5
10110 = 22 (decimal) ≡ 2 mod 5
10111 = 23 (decimal) ≡ 3 mod 5

Multiples

Problem
Design an automaton that accepts all strings w over {0, 1} such
that w is the binary representation of a number that is a multiple
of 5.

Solution
What must be remembered? The remainder when divided by 5.
How do you compute remainders?

I If w is the number n then w0 is 2n and w1 is 2n + 1.

I (a.b + c) mod 5 = (a.(b mod 5) + c) mod 5

I e.g. 1011 = 11 (decimal) ≡ 1 mod 5
10110 = 22 (decimal) ≡ 2 mod 5
10111 = 23 (decimal) ≡ 3 mod 5

Multiples

Problem
Design an automaton that accepts all strings w over {0, 1} such
that w is the binary representation of a number that is a multiple
of 5.

Solution
What must be remembered? The remainder when divided by 5.
How do you compute remainders?

I If w is the number n then w0 is 2n and w1 is 2n + 1.

I (a.b + c) mod 5 = (a.(b mod 5) + c) mod 5

I e.g. 1011 = 11 (decimal) ≡ 1 mod 5
10110 = 22 (decimal) ≡ 2 mod 5
10111 = 23 (decimal) ≡ 3 mod 5

Automaton for recognizing Multiples

q0

q1

q4

q2

q3

0
1

0

1
1

0

1

0

0

1

Automaton recognizing binary numbers that are multiples of 5.

A One k-positions from end

Problem
Design an automaton for the language Lk = {w | kth character
from end of w is 1}

Solution
What do you need to remember?

The last k characters seen so far!
Formally, Mk = (Q, {0, 1}, δ, q0,F)

I States = Q = {〈w〉 | w ∈ {0, 1}∗ and |w | ≤ k}

I δ(〈w〉, b) =

{
〈wb〉 if |w | < k
〈w2w3 . . .wkb〉 if w = w1w2 . . .wk

I q0 = 〈ε〉
I F = {〈1w2w3 . . .wk〉 | wi ∈ {0, 1}}

A One k-positions from end

Problem
Design an automaton for the language Lk = {w | kth character
from end of w is 1}

Solution
What do you need to remember? The last k characters seen so far!
Formally, Mk = (Q, {0, 1}, δ, q0,F)

I States = Q = {〈w〉 | w ∈ {0, 1}∗ and |w | ≤ k}

I δ(〈w〉, b) =

{
〈wb〉 if |w | < k
〈w2w3 . . .wkb〉 if w = w1w2 . . .wk

I q0 = 〈ε〉
I F = {〈1w2w3 . . .wk〉 | wi ∈ {0, 1}}

Lower Bound on DFA size

Proposition

Any DFA recognizing Lk has at least 2k states.

Proof.
Let M, with initial state q0, recognize Lk and assume (for
contradiction) that M has < 2k states.

I Number of strings of length k =

2k

I There must be two distinct string w0 and w1 of length k such
that δ̂(q0,w0) = δ̂(q0,w1). ··→

Lower Bound on DFA size

Proposition

Any DFA recognizing Lk has at least 2k states.

Proof.
Let M, with initial state q0, recognize Lk and assume (for
contradiction) that M has < 2k states.

I Number of strings of length k = 2k

I There must be two distinct string w0 and w1 of length k such
that δ̂(q0,w0) = δ̂(q0,w1). ··→

Lower Bound on DFA size

Proposition

Any DFA recognizing Lk has at least 2k states.

Proof.
Let M, with initial state q0, recognize Lk and assume (for
contradiction) that M has < 2k states.

I Number of strings of length k = 2k

I There must be two distinct string w0 and w1 of length k such
that δ̂(q0,w0) = δ̂(q0,w1). ··→

Proof (contd)

Proof (contd).

Let i be the first position where w0 and w1 differ. Without loss of
generality assume that w0 has 0 in the ith position and w1 has 1.

w0

0i−1

= . . .

k︷ ︸︸ ︷

0 . . .

0i−1

w1

0i−1

= . . .︸︷︷︸
i−1

1 . . .︸︷︷︸
k−i

0i−1

w00i−1 6∈ Lk and w10i−1 ∈ Lk . Thus, M cannot accept both
w00i−1 and w10i−1.

··→

Proof (contd)

Proof (contd).

Let i be the first position where w0 and w1 differ. Without loss of
generality assume that w0 has 0 in the ith position and w1 has 1.

w00i−1 = . . .

k︷ ︸︸ ︷
0 . . . 0i−1

w10i−1 = . . .︸︷︷︸
i−1

1 . . .︸︷︷︸
k−i

0i−1

w00i−1 6∈ Lk and w10i−1 ∈ Lk . Thus, M cannot accept both
w00i−1 and w10i−1.

··→

Proof (contd)

Proof (contd).

Let i be the first position where w0 and w1 differ. Without loss of
generality assume that w0 has 0 in the ith position and w1 has 1.

w00i−1 = . . .

k︷ ︸︸ ︷
0 . . . 0i−1

w10i−1 = . . .︸︷︷︸
i−1

1 . . .︸︷︷︸
k−i

0i−1

w00i−1 6∈ Lk and w10i−1 ∈ Lk . Thus, M cannot accept both
w00i−1 and w10i−1. ··→

Proof (contd)
. . . Almost there

Proof (contd).

So far, w00i−1 6∈ Ln, w10i−1 ∈ Ln, and δ̂(q0,w0) = δ̂(q0,w1).

δ̂(q0,w00i−1) = δ̂(δ̂(q0,w0), 0i−1) by Proposition proved

= δ̂(δ̂(q0,w1), 0i−1) by assump. on w0 and w1

= δ̂(q0,w10i−1) by Proposition proved

Thus, M accepts or rejects both w00i−1 and w10i−1.
Contradiction!

�

Proof (contd)
. . . Almost there

Proof (contd).

So far, w00i−1 6∈ Ln, w10i−1 ∈ Ln, and δ̂(q0,w0) = δ̂(q0,w1).

δ̂(q0,w00i−1)

= δ̂(δ̂(q0,w0), 0i−1) by Proposition proved

= δ̂(δ̂(q0,w1), 0i−1) by assump. on w0 and w1

= δ̂(q0,w10i−1) by Proposition proved

Thus, M accepts or rejects both w00i−1 and w10i−1.
Contradiction!

�

Proof (contd)
. . . Almost there

Proof (contd).

So far, w00i−1 6∈ Ln, w10i−1 ∈ Ln, and δ̂(q0,w0) = δ̂(q0,w1).

δ̂(q0,w00i−1) = δ̂(δ̂(q0,w0), 0i−1) by Proposition proved

= δ̂(δ̂(q0,w1), 0i−1) by assump. on w0 and w1

= δ̂(q0,w10i−1) by Proposition proved

Thus, M accepts or rejects both w00i−1 and w10i−1.
Contradiction!

�

Proof (contd)
. . . Almost there

Proof (contd).

So far, w00i−1 6∈ Ln, w10i−1 ∈ Ln, and δ̂(q0,w0) = δ̂(q0,w1).

δ̂(q0,w00i−1) = δ̂(δ̂(q0,w0), 0i−1) by Proposition proved

= δ̂(δ̂(q0,w1), 0i−1) by assump. on w0 and w1

= δ̂(q0,w10i−1) by Proposition proved

Thus, M accepts or rejects both w00i−1 and w10i−1.
Contradiction!

�

Proof (contd)
. . . Almost there

Proof (contd).

So far, w00i−1 6∈ Ln, w10i−1 ∈ Ln, and δ̂(q0,w0) = δ̂(q0,w1).

δ̂(q0,w00i−1) = δ̂(δ̂(q0,w0), 0i−1) by Proposition proved

= δ̂(δ̂(q0,w1), 0i−1) by assump. on w0 and w1

= δ̂(q0,w10i−1) by Proposition proved

Thus, M accepts or rejects both w00i−1 and w10i−1.
Contradiction!

�

Proof (contd)
. . . Almost there

Proof (contd).

So far, w00i−1 6∈ Ln, w10i−1 ∈ Ln, and δ̂(q0,w0) = δ̂(q0,w1).

δ̂(q0,w00i−1) = δ̂(δ̂(q0,w0), 0i−1) by Proposition proved

= δ̂(δ̂(q0,w1), 0i−1) by assump. on w0 and w1

= δ̂(q0,w10i−1) by Proposition proved

Thus, M accepts or rejects both w00i−1 and w10i−1.
Contradiction! �

	Introducing Finite Automata
	Problems and Computation
	Finite Automata: Informal Overview
	Examples
	Applications

	Formal Definitions
	Alphabets, Strings and Languages
	Deterministic Finite Automaton
	Inductive Proofs for DFAs

	Designing DFAs
	General Method
	Examples

