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Decision Problems

Decision Problems
Given input, decide “yes” or “no”

I Examples: Is x an even
number? Is x prime? Is
there a path from s to t in
graph G?

I i.e., Compute a boolean
function of input

General Computational
Problem
In contrast, typically a problem
requires computing some
non-boolean function, or carrying
out interactive/reactive
computation in a distributed
environment

I Examples: Find the factors
of x . Find the balance in
account number x .

I In this course, we will study decision problems because aspects
of computability are captured by this special class of problems
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What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)

I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!



What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)

I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!



What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)

I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!



What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)

I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!



What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation

I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!



What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!



What Does a Computation Look Like?

I Some code (a.k.a. control): the same for all instances

I The input (a.k.a. problem instance): encoded as a string over
a finite alphabet

I As the program starts executing, some memory (a.k.a. state)
I Includes the values of variables (and the “program counter”)
I State evolves throughout the computation
I Often, takes more memory for larger problem instances

I But some programs do not need larger state for larger
instances!



Finite State Computation

I Finite state: A fixed upper bound on the size of the state,
independent of the size of the input

I A sequential program with no dynamic allocation using
variables that take boolean values (or values in a finite
enumerated data type)

I If t-bit state, at most 2t possible states

I Not enough memory to hold the entire input

I “Streaming input”: automaton runs (i.e., changes state) on
seeing each bit of input
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An Automatic Door
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State diagram of controller

I Input: A stream of events <front>, <rear>, <both>,
<neither> . . .

I Controller has a single bit of state.
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Finite Automata
Details

Automaton
A finite automaton has:

Finite set of states,
with start/initial and accepting/final states;
Transitions from one state to another on
reading a symbol from the input.

Computation

Start at the initial state; in each step, read the
next symbol of the input, take the transition
(edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the
input w , the machine is in a final state then w
is accepted; otherwise w is rejected.

q0 q1

0 0

1

1

Transition Diagram of

automaton
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Example: Computation

I On input 1001, the computation is

1. Start in state q0. Read 1 and goto q1.
2. Read 0 and goto q1.
3. Read 0 and goto q1.
4. Read 1 and goto q0. Since q0 is not a

final state 1001 is rejected.

I On input 010, the computation is

1. Start in state q0. Read 0 and goto q0.
2. Read 1 and goto q1.
3. Read 0 and goto q1. Since q1 is a final

state 010 is accepted.

q0 q1

0 0

1

1
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Example I

q0

0, 1

Automaton accepts all strings of 0s and 1s
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0 1
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Automaton accepts strings ending in 1
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Example III
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Automaton accepts strings having an odd number of 1s
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Example IV

q0 q1

q2q3

1

1

1

1

0 0 0 0

Automaton accepts strings having an odd number of 1s and odd number

of 0s



Example IV

q0 q1

q2q3

1

1

1

1

0 0 0 0

Automaton accepts strings having an odd number of 1s and odd number

of 0s



Finite Automata in Practice

I grep

I Thermostats

I Coke Machines

I Elevators

I Train Track Switches

I Security Properties

I Lexical Analyzers for Parsers



Alphabet

Definition
An alphabet is any finite, non-empty set of symbols. We will
usually denote it by Σ.

Example

Examples of alphabets include {0, 1} (binary alphabet);
{a, b, . . . , z} (English alphabet); the set of all ASCII characters;
{moveforward, moveback, rotate90}.



Strings

Definition
A string or word over alphabet Σ is a (finite) sequence of symbols
in Σ. Examples are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’

I ε is the empty string.

I The length of string u (denoted by |u|) is the number of
symbols in u. Example, |ε| = 0, |011010| = 6.

I Concatenation: uv is the string that has a copy of u followed
by a copy of v . Example, if u = ‘cat ′ and v = ‘nap′ then
uv = ‘catnap′. If v = ε the uv = vu = u.

I u is a prefix of v if there is a string w such that v = uw .
Example ‘cat ′ is a prefix of ‘catnap′.
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Languages

Definition

I For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the
set of all strings of length n.

I A language over Σ is a set L ⊆ Σ∗. For example
L = {1, 01, 11, 001} is a language over {0, 1}.

I A language L defines a decision problem:

Inputs (strings)
whose answer is ‘yes’ are exactly those belonging to L
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Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is

the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.



Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is

the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.



Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.



Set Notation

We will often define languages using the set builder notation.
Thus, L = {w ∈ Σ∗ | p(w)} is the collection of all strings w over Σ
that satisfy the property p.

Example

I L = {w ∈ {0, 1}∗ | |w | is even} is the set of all even length
strings over {0, 1}.

I L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is

the
set of all prefixes of 10001.



Set Notation
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Defining an Automaton

To describe an automaton, we to need to specify

I What the alphabet is,

I What the states are,

I What the initial state is,

I What states are accepting/final, and

I What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.



Deterministic

Finite Automata
Formal Definition

Definition
A

deterministic

finite automaton

(DFA)

is M = (Q,Σ, δ, q0,F ),
where

I Q is the finite set of states

I Σ is the finite alphabet

I δ : Q × Σ→ Q “Next-state” transition function

I q0 ∈ Q initial state

I F ⊆ Q final/accepting states

Given a state and a symbol, the next state is “determined”.
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Computation

Definition
For a DFA M = (Q,Σ, δ, q0,F ), let us define a function
δ̂ : Q × Σ∗ → Q such that δ̂(q,w) is M’s state after reading w
from state q.

Formally,

δ̂(q,w) =

{

q

if w = ε

δ(δ̂(q, u), a)

if w = ua

Definition
We say a DFA M = (Q,Σ, δ, q0,F ) accepts string w ∈ Σ∗ iff
δ̂(q0,w) ∈ F .
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Acceptance/Recognition

and Regular Languages

Definition
The language accepted or recognized by a DFA M over alphabet Σ
is L(M) = {w ∈ Σ∗ |M accepts w}.

A language L is said to be
accepted/recognized by M if L = L(M).

Definition
A language L is regular if there is some DFA M such that
L = L(M).
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Formal Example of DFA

Example

q0 q1

0 0

1

1

Transition Diagram of DFA

0 1

q0 q0 q1
q1 q1 q0

Transition Table representation

Formally the automaton is M = ({q0, q1}, {0, 1}, δ, q0, {q1}) where

δ(q0, 0) = q0 δ(q0, 1) = q1
δ(q1, 0) = q1 δ(q1, 1) = q0
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A Simple Observation about DFAs

Proposition

For a DFA M = (Q,Σ, δ, q0,F ), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
By induction! Let’s see . . . �
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Domino Principle

I Line up n dominoes numbered
0, 1, . . . n − 1 such that if we knock one
the next one will fall

I If Fi denotes “ith domino falls”, we have
Fi → Fi+1

I Thus, knocking the 0th domino will cause
all the dominoes to fall because
F0

→ F1 → F2 → · · · → Fn−1
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Plato’s Infinite Domino Principle

Principle

Imagine one domino for each natural number
0, 1, 2, . . ., arranged in an infinite row.
Knocking the 0th domino will knock them all.

Plato

“Proof”
Suppose they don’t all fall. Let k > 0 be the smallest numbered
domino that remains standing. This means domino k − 1 fell. But
then k − 1 will knock k over. Therefore, k must fall and remain
standing, which is a contradiction.
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Plato’s Infinite Domino Principle
Formally

Mathematically we can say

I Fi : ith domino falls

I Suppose for every natural number i , Fi → Fi+1

I Suppose 0th domino is knocked over, i.e., F0
I Then all dominoes will fall, i.e., ∀i .Fi .



Dominoes and Mathematical Induction

Domino Principle

I Infinite sequence of
dominoes

I Knock the 0th domino

I Arrange dominoes such
that knocking one will
knock the next one

I Conclude all dominoes
fall

Induction Principle

I Infinite sequence of statements
S0, S1, . . .

I Prove S0 is correct [Base Case]

I For an arbitrary i , assuming S1
to be correct

[Induction
Hypothesis]

establishes Si+1 to
be correct

[Induction Step]

I Conclude ∀i . Si is true
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Induction Proofs
An Example

Proposition

For a DFA M = (Q,Σ, δ, q0,F ), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
We will prove this by induction.

I Let Si be “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”

I Observe that if Si is true for all i then δ̂(q, uv) = δ̂(δ̂(q, u), v)
for every u and v ··→
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Example Inductive Proof
Base Case

Proof (contd).

To establish S0, i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = 0”

I If |v | = 0 then v = ε

I Observe uε = u

I Thus, LHS = δ̂(q, uε) = δ̂(q, u)

I Observe by definition of δ̂(·, ·), for any q′, δ̂(q′, ε) = q′

I Thus, RHS = δ̂(δ̂(q, u), ε) = δ̂(q, u) ··→
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Example Inductive Proof
Induction Step

Proof (contd).

Assume Si , i.e., “δ̂(q, uv) = δ̂(δ̂(q, u), v) when |v | = i”. Need to
establish Si+1.

I Consider v such that |v | = i + 1.

WLOG, v = wa, where
w ∈ Σ∗ with |w | = n and a ∈ Σ

δ̂(q, uwa) = δ(δ̂(q, uw), a) defn. of δ̂

= δ(δ̂(δ̂(q, u),w), a) ind. hyp.

= δ̂(δ̂(q, u),wa) defn. of δ̂

�
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Conventions in Inductive Proofs

Proposition

For a DFA M = (Q,Σ, δ, q0,F ), and any strings u, v ∈ Σ∗ and
state q ∈ Q, δ̂(q, uv) = δ̂(δ̂(q, u), v).

Proof.
“We will prove by induction on |v |” is a short-hand for

“We will
prove the proposition by induction. Take Si to be statement of the
proposition restricted to strings v where |v | = i .” �
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Properties of δ̂

Corollary

For a DFA M = (Q,Σ, δ, q0,F ), and any string v ∈ Σ∗, a ∈ Σ and
state q ∈ Q, δ̂(q, av) = δ̂(δ(q, a), v).

Proof.
From previous proposition we have, δ̂(q, av) = δ̂(δ̂(q, a), v) (taking
u = a).

Next,

δ̂(q, a) = δ(δ̂(q, ε), a) defn. of δ̂

= δ(q, a) as δ̂(q, ε) = q

�



Properties of δ̂

Corollary

For a DFA M = (Q,Σ, δ, q0,F ), and any string v ∈ Σ∗, a ∈ Σ and
state q ∈ Q, δ̂(q, av) = δ̂(δ(q, a), v).

Proof.
From previous proposition we have, δ̂(q, av) = δ̂(δ̂(q, a), v) (taking
u = a).

Next,

δ̂(q, a) = δ(δ̂(q, ε), a) defn. of δ̂

= δ(q, a) as δ̂(q, ε) = q

�



Properties of δ̂

Corollary

For a DFA M = (Q,Σ, δ, q0,F ), and any string v ∈ Σ∗, a ∈ Σ and
state q ∈ Q, δ̂(q, av) = δ̂(δ(q, a), v).

Proof.
From previous proposition we have, δ̂(q, av) = δ̂(δ̂(q, a), v) (taking
u = a). Next,

δ̂(q, a) = δ(δ̂(q, ε), a) defn. of δ̂

= δ(q, a) as δ̂(q, ε) = q

�



Language of Modd

Proposition

L(Modd) = {w ∈ {0, 1}∗ | w has an odd
number of 0s and an odd number of
1s}.

q0 q1

q2q3

1

1

1

1

0 0 0 0

Transition Diagram of Modd
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Proof about the language of Modd

It fails!

Proof.
We will prove by induction on |w | that δ̂(q0,w) ∈ F = {q2} iff w
has an odd number of 0s and an odd number of 1s.

I Base Case: When w = ε, w has an even number of 0s and an
even number of 1s and δ̂(q0, ε) = q0 so the observation holds.

I Induction Step w = 0u: The parity of the number of 1s in u
and w is the same, and the parity of the number of 0s is
opposite. And δ̂(q0,w) = δ̂(δ(q0, 0), u) = δ̂(q3, u)

I Need to know what strings are accepted from q3! Need to
prove a stronger statement. �
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Corrected Proof

Proof.
We need to a stronger statement that asserts what strings are
accepted from each state of the DFA. We will prove by induction
on |w | that

(a) δ̂(q0,w) ∈ F iff w has odd number of 0s & odd number of 1s

(b) δ̂(q1,w) ∈ F iff

w has odd number of 0s & even number of 1s

(c) δ̂(q2,w) ∈ F iff

w has even number of 0s & even number of
1s

(d) δ̂(q3,w) ∈ F iff

w has even number of 0s & odd number of 1s

··→
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Corrected Proof
Base Case

Proof (contd).

Consider w such that |w | = 0. Then w = ε.

I w has even number of 0s and even number of 1s

I For any q ∈ Q, δ̂(q,w) = q

I Thus, δ̂(q,w) ∈ F iff q = q3, and statements (a),(b),(c), and
(d) hold in the base case. ··→
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Corrected Proof
Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n.
Consider w = au, where a ∈ {0, 1} and u ∈ Σ∗ of length n.

Recall
that δ̂(q, au) = δ̂(δ(q, a), u).

I Case q = q0, a = 0: δ̂(q0,w) ∈ F iff δ̂(q3, u) ∈ F iff u has
even number of 0s and odd number of 1s (by ind. hyp. (d))
iff w has odd number of 0s and odd number of 1s

I Case q = q0, a = 1: δ̂(q0,w) ∈ F iff δ̂(q1, u) ∈ F iff u has
odd number of 0s and even number of 1s (by ind. hyp. (b))
iff w has odd number of 0s and odd number of 1s ··→
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Proof (contd).

I Case q = q1, a = 0: δ̂(q1,w) ∈ F iff δ̂(q2, u) ∈ F iff u has
even number of 0s and even number of 1s (by ind. hyp. (c))
iff w has odd number of 0s and even number of 1s

I . . . And so on for the other cases of q = q1 and a = 1, q = q2
and a = 0, q = q2 and a = 1, q = q3 and a = 0, and finally
q = q3 and a = 1. �
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Proving Correctness of a DFA

Proof Template

Given a DFA M having n states {q0, q1, . . . qn−1} with initial state
q0, and final states F , to prove that L(M) = L, we do the
following.

1. Come up with languages L0, L1, . . . Ln−1 such that L0 = L

2. Prove by induction on |w |, δ̂(qi ,w) ∈ F if and only if w ∈ Li
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Typical Problem

Problem
Given a language L, design a DFA M that accepts L, i.e.,
L(M) = L.

How does one go about it?
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Methodology

I Imagine yourself in the place of the machine, reading symbols
of the input, and trying to determine if it should be accepted.

I Remember at any point you have only seen a part of the
input, and you don’t know when it ends.

I Figure out what to keep in memory. It cannot be all the
symbols seen so far: it must fit into a finite number of bits.
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Strings containing 0

Problem
Design an automaton that accepts all strings over {0, 1} that
contain at least one 0.

Solution
What do you need to remember?

Whether you have seen a 0 so far
or not!

qnoz qzer

1 0, 1

0

Automaton accepting strings with at least one 0.
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Even length strings

Problem
Design an automaton that accepts all strings over {0, 1} that have
an even length.

Solution
What do you need to remember?

Whether you have seen an odd
or an even number of symbols.

qe qo

0, 1

0, 1

Automaton accepting strings of even length.
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Pattern Recognition

Problem
Design an automaton that accepts all strings over {0, 1} that have
001 as a substring, where u is a substring of w if there are w1 and
w2 such that w = w1uw2.

Solution
What do you need to remember?

Whether you

I haven’t seen any symbols of the pattern

I have just seen 0

I have just seen 00

I have seen the entire pattern 001
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Pattern Recognition Automaton

qε q0 q00 qp

1

0

1

0

0

1

0, 1

Automaton accepting strings having 001 as substring.



grep Problem

Problem
Given text T and string s, does s appear in T?

Näıve

Solution

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
T1 T2 T3 . . .Tn Tn+1 . . .Tt

Running time = O(nt), where |T | = t and |s| = n.
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grep Problem
Smarter Solution

Solution

I Build DFA M for L = {w | there are u, v s.t. w = usv}
I Run M on text T

Time = time to build M + O(t)!

Questions

I Is L regular no matter what s is?

I If yes, can M be built “efficiently”?

Knuth-Morris-Pratt (1977): Yes to both the above questions.
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Knuth-Morris-Pratt (1977)

From Introduction to Algorithms by CLRS



Multiples

Problem
Design an automaton that accepts all strings w over {0, 1} such
that w is the binary representation of a number that is a multiple
of 5.

Solution
What must be remembered?

The remainder when divided by 5.
How do you compute remainders?

I If w is the number n then w0 is 2n and w1 is 2n + 1.

I (a.b + c) mod 5 = (a.(b mod 5) + c) mod 5

I e.g. 1011 = 11 (decimal) ≡ 1 mod 5
10110 = 22 (decimal) ≡ 2 mod 5
10111 = 23 (decimal) ≡ 3 mod 5
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Automaton for recognizing Multiples

q0

q1

q4

q2

q3

0
1

0

1
1

0

1

0

0

1

Automaton recognizing binary numbers that are multiples of 5.



A One k-positions from end

Problem
Design an automaton for the language Lk = {w | kth character
from end of w is 1}

Solution
What do you need to remember?

The last k characters seen so far!
Formally, Mk = (Q, {0, 1}, δ, q0,F )

I States = Q = {〈w〉 | w ∈ {0, 1}∗ and |w | ≤ k}

I δ(〈w〉, b) =

{
〈wb〉 if |w | < k
〈w2w3 . . .wkb〉 if w = w1w2 . . .wk

I q0 = 〈ε〉
I F = {〈1w2w3 . . .wk〉 | wi ∈ {0, 1}}
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Lower Bound on DFA size

Proposition

Any DFA recognizing Lk has at least 2k states.

Proof.
Let M, with initial state q0, recognize Lk and assume (for
contradiction) that M has < 2k states.

I Number of strings of length k =

2k

I There must be two distinct string w0 and w1 of length k such
that δ̂(q0,w0) = δ̂(q0,w1). ··→
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Proof (contd)

Proof (contd).

Let i be the first position where w0 and w1 differ. Without loss of
generality assume that w0 has 0 in the ith position and w1 has 1.

w0

0i−1

= . . .

k︷ ︸︸ ︷

0 . . .

0i−1

w1

0i−1

= . . .︸︷︷︸
i−1

1 . . .︸︷︷︸
k−i

0i−1

w00i−1 6∈ Lk and w10i−1 ∈ Lk . Thus, M cannot accept both
w00i−1 and w10i−1.

··→
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Proof (contd)
. . . Almost there

Proof (contd).

So far, w00i−1 6∈ Ln, w10i−1 ∈ Ln, and δ̂(q0,w0) = δ̂(q0,w1).

δ̂(q0,w00i−1) = δ̂(δ̂(q0,w0), 0i−1) by Proposition proved

= δ̂(δ̂(q0,w1), 0i−1) by assump. on w0 and w1

= δ̂(q0,w10i−1) by Proposition proved

Thus, M accepts or rejects both w00i−1 and w10i−1.
Contradiction!
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