CSE 135: Introduction to Theory of Computation

Sungjin Im

University of California, Merced

Spring 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Decision Problems

Decision Problems

Given input, decide "yes" or "no"

- Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G?
- i.e., Compute a boolean function of input

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Decision Problems

Decision Problems

Given input, decide "yes" or "no"

- Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G?
- i.e., Compute a boolean function of input

General Computational Problem

In contrast, typically a problem requires computing some non-boolean function, or carrying out interactive/reactive computation in a distributed environment

• Examples: Find the factors of x. Find the balance in account number x.

Decision Problems

Decision Problems

Given input, decide "yes" or "no"

- Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G?
- i.e., Compute a boolean function of input

General Computational Problem

In contrast, typically a problem requires computing some non-boolean function, or carrying out interactive/reactive computation in a distributed environment

- Examples: Find the factors of x. Find the balance in account number x.
- In this course, we will study decision problems because aspects of computability are captured by this special class of problems

Some code (a.k.a. control): the same for all instances

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- ► As the program starts executing, some memory (a.k.a. state)

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- ► As the program starts executing, some memory (a.k.a. state)
 - Includes the values of variables (and the "program counter")

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- ► As the program starts executing, some memory (a.k.a. state)
 - Includes the values of variables (and the "program counter")

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

State evolves throughout the computation

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- ► As the program starts executing, some memory (a.k.a. state)
 - Includes the values of variables (and the "program counter")

- State evolves throughout the computation
- Often, takes more memory for larger problem instances

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- ► As the program starts executing, some memory (a.k.a. state)
 - Includes the values of variables (and the "program counter")

- State evolves throughout the computation
- Often, takes more memory for larger problem instances
- But some programs do not need larger state for larger instances!

Finite state: A fixed upper bound on the size of the state, independent of the size of the input

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Finite state: A fixed upper bound on the size of the state, independent of the size of the input
 - A sequential program with no dynamic allocation using variables that take boolean values (or values in a finite enumerated data type)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Finite state: A fixed upper bound on the size of the state, independent of the size of the input
 - A sequential program with no dynamic allocation using variables that take boolean values (or values in a finite enumerated data type)

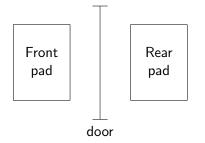
If t-bit state, at most 2^t possible states

- Finite state: A fixed upper bound on the size of the state, independent of the size of the input
 - A sequential program with no dynamic allocation using variables that take boolean values (or values in a finite enumerated data type)

- If t-bit state, at most 2^t possible states
- Not enough memory to hold the entire input

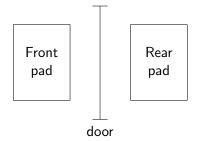
- Finite state: A fixed upper bound on the size of the state, independent of the size of the input
 - A sequential program with no dynamic allocation using variables that take boolean values (or values in a finite enumerated data type)
 - If t-bit state, at most 2^t possible states
- Not enough memory to hold the entire input
 - "Streaming input": automaton runs (i.e., changes state) on seeing each bit of input

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Top view of Door

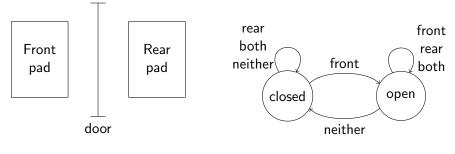
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Top view of Door

Input: A stream of events <front>, <rear>, <both>, <neither> ...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

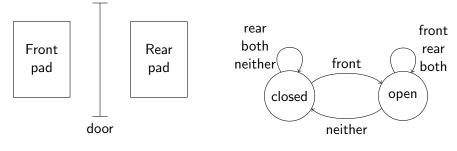


Top view of Door

State diagram of controller

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Input: A stream of events <front>, <rear>, <both>, <neither>...



Top view of Door

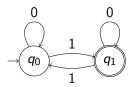
State diagram of controller

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Input: A stream of events <front>, <rear>, <both>, <neither>...
- Controller has a single bit of state.

Details

Automaton A finite automaton has:



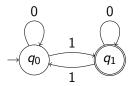
Transition Diagram of automaton

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Details

Automaton

A finite automaton has: Finite set of states, with start/initial and accepting/final states;



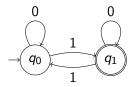
Transition Diagram of automaton

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Details

Automaton

A finite automaton has: Finite set of states, with start/initial and accepting/final states; Transitions from one state to another on reading a symbol from the input.



Transition Diagram of automaton

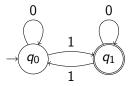
Details

Automaton

A finite automaton has: Finite set of states, with start/initial and accepting/final states; Transitions from one state to another on reading a symbol from the input.

Computation

Start at the initial state; in each step, read the next symbol of the input, take the transition (edge) labeled by that symbol to a new state.



Transition Diagram of automaton

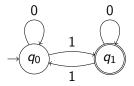
Details

Automaton

A finite automaton has: Finite set of states, with start/initial and accepting/final states; Transitions from one state to another on reading a symbol from the input.

Computation

Start at the initial state; in each step, read the next symbol of the input, take the transition (edge) labeled by that symbol to a new state. Acceptance/Rejection: If after reading the input w, the machine is in a final state then w is accepted; otherwise w is rejected.

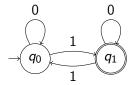


Transition Diagram of automaton

Example: Computation

On input 1001, the computation is

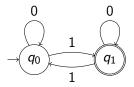
- 1. Start in state q_0 . Read 1 and goto q_1 .
- 2. Read 0 and goto q_1 .
- 3. Read 0 and goto q_1 .
- Read 1 and goto q₀. Since q₀ is not a final state 1001 is rejected.



Example: Computation

On input 1001, the computation is

- 1. Start in state q_0 . Read 1 and goto q_1 .
- 2. Read 0 and goto q_1 .
- 3. Read 0 and goto q_1 .
- Read 1 and goto q₀. Since q₀ is not a final state 1001 is rejected.
- On input 010, the computation is
 - 1. Start in state q_0 . Read 0 and goto q_0 .
 - 2. Read 1 and goto q_1 .
 - Read 0 and goto q₁. Since q₁ is a final state 010 is accepted.



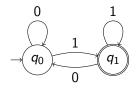
Example I

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example I

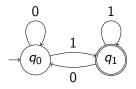
Automaton accepts all strings of 0s and 1s

Example II



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

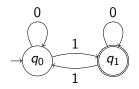
Example II



Automaton accepts strings ending in $\boldsymbol{1}$

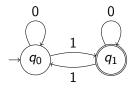
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example III



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

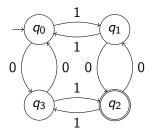
Example III



Automaton accepts strings having an odd number of 1s

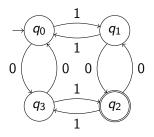
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example IV



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example IV



Automaton accepts strings having an odd number of 1s and odd number of 0s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finite Automata in Practice

▶ grep

- Thermostats
- Coke Machines
- Elevators
- Train Track Switches
- Security Properties
- Lexical Analyzers for Parsers

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Alphabet

Definition

An alphabet is any finite, non-empty set of symbols. We will usually denote it by Σ .

Example

Examples of alphabets include $\{0, 1\}$ (binary alphabet); $\{a, b, \ldots, z\}$ (English alphabet); the set of all ASCII characters; $\{moveforward, moveback, rotate90\}$.

Definition

A string or word over alphabet Σ is a (finite) sequence of symbols in Σ . Examples are '0101001', 'string', ' $\langle moveback \rangle \langle rotate90 \rangle$ '

Definition

A string or word over alphabet Σ is a (finite) sequence of symbols in Σ . Examples are '0101001', 'string', ' $\langle moveback \rangle \langle rotate90 \rangle$ '

• ϵ is the empty string.

Definition

A string or word over alphabet Σ is a (finite) sequence of symbols in Σ . Examples are '0101001', 'string', ' $\langle moveback \rangle \langle rotate90 \rangle$ '

- ϵ is the empty string.
- ► The length of string u (denoted by |u|) is the number of symbols in u. Example, |ε| = 0, |011010| = 6.

Definition

A string or word over alphabet Σ is a (finite) sequence of symbols in Σ . Examples are '0101001', 'string', ' $\langle moveback \rangle \langle rotate90 \rangle$ '

- ϵ is the empty string.
- ► The length of string u (denoted by |u|) is the number of symbols in u. Example, |ε| = 0, |011010| = 6.
- Concatenation: uv is the string that has a copy of u followed by a copy of v. Example, if u = 'cat' and v = 'nap' then uv = 'catnap'. If v = ϵ the uv = vu = u.

Definition

A string or word over alphabet Σ is a (finite) sequence of symbols in Σ . Examples are '0101001', 'string', ' $\langle moveback \rangle \langle rotate90 \rangle$ '

- ϵ is the empty string.
- ► The length of string u (denoted by |u|) is the number of symbols in u. Example, |ε| = 0, |011010| = 6.
- Concatenation: uv is the string that has a copy of u followed by a copy of v. Example, if u = 'cat' and v = 'nap' then uv = 'catnap'. If v = € the uv = vu = u.

u is a prefix of v if there is a string w such that v = uw. Example 'cat' is a prefix of 'catnap'.

Definition

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition

For alphabet Σ, Σ* is the set of all strings over Σ. Σⁿ is the set of all strings of length n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

For alphabet Σ, Σ* is the set of all strings over Σ. Σⁿ is the set of all strings of length n.

• A language over Σ is a set $L \subseteq \Sigma^*$. For example $L = \{1, 01, 11, 001\}$ is a language over $\{0, 1\}$.

Definition

For alphabet Σ, Σ* is the set of all strings over Σ. Σⁿ is the set of all strings of length n.

- A language over Σ is a set $L \subseteq \Sigma^*$. For example
 - $L = \{1, 01, 11, 001\}$ is a language over $\{0, 1\}$.
 - ► A language *L* defines a decision problem:

Definition

- For alphabet Σ, Σ* is the set of all strings over Σ. Σⁿ is the set of all strings of length n.
- A language over Σ is a set $L \subseteq \Sigma^*$. For example
 - $L = \{1, 01, 11, 001\}$ is a language over $\{0, 1\}$.
 - A language L defines a decision problem: Inputs (strings) whose answer is 'yes' are exactly those belonging to L

We will often define languages using the set builder notation. Thus, $L = \{w \in \Sigma^* | p(w)\}$ is the collection of all strings w over Σ that satisfy the property p.

We will often define languages using the set builder notation. Thus, $L = \{w \in \Sigma^* | p(w)\}$ is the collection of all strings w over Σ that satisfy the property p.

Example

•
$$L = \{w \in \{0,1\}^* \mid |w| \text{ is even}\}$$
 is

We will often define languages using the set builder notation. Thus, $L = \{w \in \Sigma^* | p(w)\}$ is the collection of all strings w over Σ that satisfy the property p.

Example

► $L = \{w \in \{0,1\}^* \mid |w| \text{ is even}\}$ is the set of all even length strings over $\{0,1\}$.

We will often define languages using the set builder notation. Thus, $L = \{w \in \Sigma^* | p(w)\}$ is the collection of all strings w over Σ that satisfy the property p.

Example

- L = {w ∈ {0,1}* | |w| is even} is the set of all even length strings over {0,1}.
- ▶ $L = \{w \in \{0,1\}^* \mid \text{there is a } u \text{ such that } wu = 10001\}$ is

We will often define languages using the set builder notation. Thus, $L = \{w \in \Sigma^* | p(w)\}$ is the collection of all strings w over Σ that satisfy the property p.

Example

- L = {w ∈ {0,1}* | |w| is even} is the set of all even length strings over {0,1}.
- L = {w ∈ {0,1}* | there is a u such that wu = 10001} is the set of all prefixes of 10001.

To describe an automaton, we to need to specify

- What the alphabet is,
- What the states are,
- What the initial state is,
- What states are accepting/final, and
- What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.

Finite Automata

Formal Definition

Definition

A finite automaton where

is
$$M = (Q, \Sigma, \delta, q_0, F)$$
,

- Q is the finite set of states
- Σ is the finite alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ "Next-state" transition function
- $q_0 \in Q$ initial state
- $F \subseteq Q$ final/accepting states

Deterministic Finite Automata

Formal Definition

Definition

A deterministic finite automaton (DFA) is $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ "Next-state" transition function
- $q_0 \in Q$ initial state
- $F \subseteq Q$ final/accepting states

Given a state and a symbol, the next state is "determined".

Definition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, let us define a function $\hat{\delta} : Q \times \Sigma^* \to Q$ such that $\hat{\delta}(q, w)$ is *M*'s state after reading *w* from state *q*.

Definition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, let us define a function $\hat{\delta} : Q \times \Sigma^* \to Q$ such that $\hat{\delta}(q, w)$ is *M*'s state after reading *w* from state *q*. Formally,

$$\hat{\delta}(q,w) = \begin{cases} & \text{if } w = \epsilon \\ & \text{if } w = ua \end{cases}$$

Definition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, let us define a function $\hat{\delta} : Q \times \Sigma^* \to Q$ such that $\hat{\delta}(q, w)$ is *M*'s state after reading *w* from state *q*. Formally,

$$\hat{\delta}(q,w) = \begin{cases} q & \text{if } w = \epsilon \\ & \text{if } w = ua \end{cases}$$

Definition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, let us define a function $\hat{\delta} : Q \times \Sigma^* \to Q$ such that $\hat{\delta}(q, w)$ is *M*'s state after reading *w* from state *q*. Formally,

$$\hat{\delta}(q, w) = \begin{cases} q & \text{if } w = \epsilon \\ \delta(\hat{\delta}(q, u), a) & \text{if } w = ua \end{cases}$$

Definition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, let us define a function $\hat{\delta} : Q \times \Sigma^* \to Q$ such that $\hat{\delta}(q, w)$ is *M*'s state after reading *w* from state *q*. Formally,

$$\hat{\delta}(q,w) = egin{cases} q & ext{if } w = \epsilon \ \delta(\hat{\delta}(q,u),a) & ext{if } w = ua \end{cases}$$

Definition

We say a DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts string $w \in \Sigma^*$ iff $\hat{\delta}(q_0, w) \in F$.

Acceptance/Recognition

Definition

The language accepted or recognized by a DFA M over alphabet Σ is $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Acceptance/Recognition

Definition

The language accepted or recognized by a DFA M over alphabet Σ is $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. A language L is said to be accepted/recognized by M if L = L(M).

Acceptance/Recognition and Regular Languages

Definition

The language accepted or recognized by a DFA M over alphabet Σ is $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. A language L is said to be accepted/recognized by M if L = L(M).

Definition

A language L is regular if there is some DFA M such that L = L(M).

Formal Example of DFA

Example



Transition Diagram of DFA

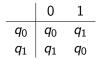
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Formal Example of DFA

Example



Transition Diagram of DFA

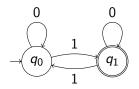


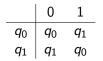
Transition Table representation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Formal Example of DFA

Example





Transition Table representation

Transition Diagram of DFA

Formally the automaton is $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$ where

$$\delta(q_0, 0) = q_0$$
 $\delta(q_0, 1) = q_1$
 $\delta(q_1, 0) = q_1$ $\delta(q_1, 1) = q_0$

A Simple Observation about DFAs

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Simple Observation about DFAs

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

Proof.

By induction! Let's see ...

- ► Line up *n* dominoes numbered 0, 1, ... n - 1 such that if we knock one the next one will fall
- If F_i denotes "*i*th domino falls", we have $F_i \rightarrow F_{i+1}$

Dominoes

- ► Line up *n* dominoes numbered 0, 1, ... n - 1 such that if we knock one the next one will fall
- If F_i denotes "*i*th domino falls", we have $F_i \rightarrow F_{i+1}$
- Thus, knocking the 0th domino will cause all the dominoes to fall because F₀

Dominoes

- ► Line up *n* dominoes numbered 0, 1, ... n - 1 such that if we knock one the next one will fall
- If F_i denotes "*i*th domino falls", we have $F_i \rightarrow F_{i+1}$
- Thus, knocking the 0th domino will cause all the dominoes to fall because F₀ → F₁

Dominoes

- ► Line up *n* dominoes numbered 0, 1, ... n - 1 such that if we knock one the next one will fall
- If F_i denotes "*i*th domino falls", we have $F_i \rightarrow F_{i+1}$
- ▶ Thus, knocking the 0th domino will cause all the dominoes to fall because $F_0 \rightarrow F_1 \rightarrow F_2$

Dominoes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Domino Principle

- ► Line up *n* dominoes numbered 0, 1, ... n - 1 such that if we knock one the next one will fall
- If F_i denotes "*i*th domino falls", we have $F_i \rightarrow F_{i+1}$
- ► Thus, knocking the 0th domino will cause all the dominoes to fall because $F_0 \rightarrow F_1 \rightarrow F_2 \rightarrow \cdots \rightarrow F_{n-1}$

Dominoes

Plato's Infinite Domino Principle

Principle

Imagine one domino for each natural number $0, 1, 2, \ldots$, arranged in an infinite row. Knocking the 0th domino will knock them all.

Plato

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Plato's Infinite Domino Principle

Principle

Imagine one domino for each natural number $0, 1, 2, \ldots$, arranged in an infinite row. Knocking the 0th domino will knock them all.

Plato

"Proof"

Suppose they don't all fall. Let k > 0 be the smallest numbered domino that remains standing. This means domino k - 1 fell. But then k - 1 will knock k over. Therefore, k must fall and remain standing, which is a contradiction.

Plato's Infinite Domino Principle Formally

Mathematically we can say

- F_i: ith domino falls
- Suppose for every natural number $i, F_i \rightarrow F_{i+1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► Suppose 0th domino is knocked over, i.e., F₀
- ▶ Then all dominoes will fall, i.e., $\forall i.F_i$.

Domino Principle

 Infinite sequence of dominoes

Induction Principle

• Infinite sequence of statements S_0, S_1, \ldots

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Domino Principle

- Infinite sequence of dominoes
- Knock the 0th domino

Induction Principle

- Infinite sequence of statements S_0, S_1, \ldots
- ▶ Prove *S*⁰ is correct [Base Case]

Domino Principle

- Infinite sequence of dominoes
- Knock the 0th domino
- Arrange dominoes such that knocking one will knock the next one

Induction Principle

- Infinite sequence of statements S_0, S_1, \ldots
- Prove S₀ is correct [Base Case]
- ▶ For an arbitrary *i*, assuming S₁ to be correct

establishes S_{i+1} to

be correct

Domino Principle

- Infinite sequence of dominoes
- Knock the 0th domino
- Arrange dominoes such that knocking one will knock the next one

Induction Principle

- Infinite sequence of statements S_0, S_1, \ldots
- Prove S₀ is correct [Base Case]
- For an arbitrary *i*, assuming S₁ to be correct [Induction Hypothesis] establishes S_{i+1} to be correct [Induction Step]

Domino Principle

- Infinite sequence of dominoes
- Knock the 0th domino
- Arrange dominoes such that knocking one will knock the next one
- Conclude all dominoes fall

Induction Principle

- Infinite sequence of statements S_0, S_1, \ldots
- Prove S₀ is correct [Base Case]
- For an arbitrary *i*, assuming S₁ to be correct [Induction Hypothesis] establishes S_{i+1} to be correct [Induction Step]

• Conclude $\forall i. S_i$ is true

An Example

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

An Example

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

Proof.

We will prove this by induction.

An Example

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

Proof.

We will prove this by induction.

• Let
$$S_i$$
 be " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when $|v| = i$ "

An Example

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

Proof.

We will prove this by induction.

- Let S_i be " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = i"
 - Observe that if S_i is true for all *i* then $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ for every *u* and *v*

Example Inductive Proof Base Case

Proof (contd).

To establish S_0 , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = 0"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example Inductive Proof Base Case

Proof (contd).

To establish S_0 , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = 0"

- If |v| = 0 then $v = \epsilon$
- Observe $u\epsilon = u$
- Thus, LHS $= \hat{\delta}(q, u\epsilon) = \hat{\delta}(q, u)$
- Observe by definition of $\hat{\delta}(\cdot, \cdot)$, for any q', $\hat{\delta}(q', \epsilon) = q'$

 $\cdots \rightarrow$

• Thus, $\mathsf{RHS} = \hat{\delta}(\hat{\delta}(q,u),\epsilon) = \hat{\delta}(q,u)$

Proof (contd). Assume S_i , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = i". Need to establish S_{i+1} .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Proof (contd).

Assume S_i , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = i". Need to establish S_{i+1} .

• Consider v such that |v| = i + 1.

Proof (contd).

Assume S_i , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = i". Need to establish S_{i+1} .

• Consider v such that |v| = i + 1. WLOG, v = wa, where $w \in \Sigma^*$ with |w| = n and $a \in \Sigma$

indenion otop

Proof (contd).

Assume S_i , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = i". Need to establish S_{i+1} .

Consider v such that |v| = i + 1. WLOG, v = wa, where w ∈ Σ* with |w| = n and a ∈ Σ

$$\hat{\delta}(q, \textit{uwa}) = \delta(\hat{\delta}(q, \textit{uw}), \textit{a})$$
 defn. of $\hat{\delta}$

Induction Step

Proof (contd).

Assume S_i , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = i". Need to establish S_{i+1} .

Consider v such that |v| = i + 1. WLOG, v = wa, where w ∈ Σ* with |w| = n and a ∈ Σ

$$\hat{\delta}(q, uwa) = \delta(\hat{\delta}(q, uw), a)$$
 defn. of $\hat{\delta}$
= $\delta(\hat{\delta}(\hat{\delta}(q, u), w), a)$ ind. hyp.

Induction Step

Proof (contd).

Assume S_i , i.e., " $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$ when |v| = i". Need to establish S_{i+1} .

Consider v such that |v| = i + 1. WLOG, v = wa, where w ∈ Σ* with |w| = n and a ∈ Σ

$$\hat{\delta}(q, uwa) = \delta(\hat{\delta}(q, uw), a)$$
 defn. of $\hat{\delta}$
 $= \delta(\hat{\delta}(\hat{\delta}(q, u), w), a)$ ind. hyp.
 $= \hat{\delta}(\hat{\delta}(q, u), wa)$ defn. of $\hat{\delta}$

Conventions in Inductive Proofs

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

Proof.

"We will prove by induction on |v|" is a short-hand for

Conventions in Inductive Proofs

Proposition

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any strings $u, v \in \Sigma^*$ and state $q \in Q$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

Proof.

"We will prove by induction on |v|" is a short-hand for "We will prove the proposition by induction. Take S_i to be statement of the proposition restricted to strings v where |v| = i."

Properties of $\hat{\delta}$

Corollary

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any string $v \in \Sigma^*$, $a \in \Sigma$ and state $q \in Q$, $\hat{\delta}(q, av) = \hat{\delta}(\delta(q, a), v)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Properties of $\hat{\delta}$

Corollary

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any string $v \in \Sigma^*$, $a \in \Sigma$ and state $q \in Q$, $\hat{\delta}(q, av) = \hat{\delta}(\delta(q, a), v)$.

Proof.

From previous proposition we have, $\hat{\delta}(q, av) = \hat{\delta}(\hat{\delta}(q, a), v)$ (taking u = a).

Properties of $\hat{\delta}$

Corollary

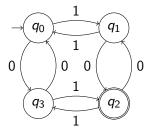
For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and any string $v \in \Sigma^*$, $a \in \Sigma$ and state $q \in Q$, $\hat{\delta}(q, av) = \hat{\delta}(\delta(q, a), v)$.

Proof.

From previous proposition we have, $\hat{\delta}(q, av) = \hat{\delta}(\hat{\delta}(q, a), v)$ (taking u = a). Next,

$$egin{aligned} \hat{\delta}(q, a) &= \delta(\hat{\delta}(q, \epsilon), a) & ext{defn. of } \hat{\delta} \ &= \delta(q, a) & ext{as } \hat{\delta}(q, \epsilon) = q \end{aligned}$$

Language of $M_{\rm odd}$



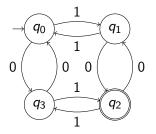
Transition Diagram of $M_{\rm odd}$

・ロト ・四ト ・ヨト ・ヨト

æ

Language of $M_{\rm odd}$

Proposition $L(M_{odd}) = \{w \in \{0,1\}^* \mid w \text{ has an odd}$ number of 0s and an odd number of 1s}.



Transition Diagram of $M_{
m odd}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof about the language of $M_{ m odd}$

Proof.

We will prove by induction on |w| that $\hat{\delta}(q_0, w) \in F = \{q_2\}$ iff w has an odd number of 0s and an odd number of 1s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof about the language of $M_{ m odd}$

Proof.

We will prove by induction on |w| that $\hat{\delta}(q_0, w) \in F = \{q_2\}$ iff w has an odd number of 0s and an odd number of 1s.

▶ Base Case: When $w = \epsilon$, w has an even number of 0s and an even number of 1s and $\hat{\delta}(q_0, \epsilon) = q_0$ so the observation holds.

Proof about the language of $M_{ m odd}$

Proof.

We will prove by induction on |w| that $\hat{\delta}(q_0, w) \in F = \{q_2\}$ iff w has an odd number of 0s and an odd number of 1s.

- ▶ Base Case: When $w = \epsilon$, w has an even number of 0s and an even number of 1s and $\hat{\delta}(q_0, \epsilon) = q_0$ so the observation holds.
- ▶ Induction Step w = 0u: The parity of the number of 1s in uand w is the same, and the parity of the number of 0s is opposite. And $\hat{\delta}(q_0, w) = \hat{\delta}(\delta(q_0, 0), u) = \hat{\delta}(q_3, u)$

Proof about the language of $M_{\rm odd}$ It fails!

Proof.

We will prove by induction on |w| that $\hat{\delta}(q_0, w) \in F = \{q_2\}$ iff w has an odd number of 0s and an odd number of 1s.

- ▶ Base Case: When $w = \epsilon$, w has an even number of 0s and an even number of 1s and $\hat{\delta}(q_0, \epsilon) = q_0$ so the observation holds.
- ▶ Induction Step w = 0u: The parity of the number of 1s in uand w is the same, and the parity of the number of 0s is opposite. And $\hat{\delta}(q_0, w) = \hat{\delta}(\delta(q_0, 0), u) = \hat{\delta}(q_3, u)$
- Need to know what strings are accepted from q₃! Need to prove a stronger statement.

Proof.

We need to a stronger statement that asserts what strings are accepted from each state of the DFA. We will prove by induction on |w| that

(a) δ̂(q₀, w) ∈ F iff w has odd number of 0s & odd number of 1s
(b) δ̂(q₁, w) ∈ F iff
(c) δ̂(q₂, w) ∈ F iff

 $\cdots \rightarrow$

(d) $\hat{\delta}(q_3, w) \in F$ iff

Proof.

We need to a stronger statement that asserts what strings are accepted from each state of the DFA. We will prove by induction on |w| that

(a) δ̂(q₀, w) ∈ F iff w has odd number of 0s & odd number of 1s
(b) δ̂(q₁, w) ∈ F iff w has odd number of 0s & even number of 1s
(c) δ̂(q₂, w) ∈ F iff

 $\cdots \rightarrow$

(d) $\hat{\delta}(q_3, w) \in F$ iff

Proof.

We need to a stronger statement that asserts what strings are accepted from each state of the DFA. We will prove by induction on |w| that

(a) δ̂(q₀, w) ∈ F iff w has odd number of 0s & odd number of 1s
(b) δ̂(q₁, w) ∈ F iff w has odd number of 0s & even number of 1s
(c) δ̂(q₂, w) ∈ F iff w has even number of 0s & even number of 1s

 $\cdots \rightarrow$

(d) $\hat{\delta}(q_3, w) \in F$ iff

Proof.

We need to a stronger statement that asserts what strings are accepted from each state of the DFA. We will prove by induction on |w| that

(a) δ̂(q₀, w) ∈ F iff w has odd number of 0s & odd number of 1s
(b) δ̂(q₁, w) ∈ F iff w has odd number of 0s & even number of 1s
(c) δ̂(q₂, w) ∈ F iff w has even number of 0s & even number of 1s

(d) $\hat{\delta}(q_3, w) \in F$ iff w has even number of 0s & odd number of 1s

 $\cdots \rightarrow$

Corrected Proof Base Case

> Proof (contd). Consider w such that |w| = 0. Then $w = \epsilon$.

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Base Case

Proof (contd).

Consider w such that |w| = 0. Then $w = \epsilon$.

▶ w has even number of 0s and even number of 1s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Base Case

Proof (contd).

Consider w such that |w| = 0. Then $w = \epsilon$.

w has even number of 0s and even number of 1s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• For any
$$q \in Q$$
, $\hat{\delta}(q, w) = q$

Base Case

Proof (contd).

Consider w such that |w| = 0. Then $w = \epsilon$.

▶ w has even number of 0s and even number of 1s

• For any
$$q \in Q$$
, $\hat{\delta}(q, w) = q$

Thus, δ̂(q, w) ∈ F iff q = q₃, and statements (a),(b),(c), and
 (d) hold in the base case.

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

• Case $q = q_0$, a = 0: $\hat{\delta}(q_0, w) \in F$ iff

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

► Case $q = q_0$, a = 0: $\hat{\delta}(q_0, w) \in F$ iff $\hat{\delta}(q_3, u) \in F$ iff

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

Case q = q₀, a = 0: δ̂(q₀, w) ∈ F iff δ̂(q₃, u) ∈ F iff u has even number of 0s and odd number of 1s (by ind. hyp. (d)) iff

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

Case q = q₀, a = 0: δ̂(q₀, w) ∈ F iff δ̂(q₃, u) ∈ F iff u has even number of 0s and odd number of 1s (by ind. hyp. (d)) iff w has odd number of 0s and odd number of 1s

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

Case q = q₀, a = 0: δ̂(q₀, w) ∈ F iff δ̂(q₃, u) ∈ F iff u has even number of 0s and odd number of 1s (by ind. hyp. (d)) iff w has odd number of 0s and odd number of 1s

• Case $q = q_0$, a = 1: $\hat{\delta}(q_0, w) \in F$ iff

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

Case q = q₀, a = 0: δ̂(q₀, w) ∈ F iff δ̂(q₃, u) ∈ F iff u has even number of 0s and odd number of 1s (by ind. hyp. (d)) iff w has odd number of 0s and odd number of 1s

• Case $q = q_0$, a = 1: $\hat{\delta}(q_0, w) \in F$ iff $\hat{\delta}(q_1, u) \in F$ iff

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

- Case q = q₀, a = 0: δ̂(q₀, w) ∈ F iff δ̂(q₃, u) ∈ F iff u has even number of 0s and odd number of 1s (by ind. hyp. (d)) iff w has odd number of 0s and odd number of 1s
- Case q = q₀, a = 1: δ̂(q₀, w) ∈ F iff δ̂(q₁, u) ∈ F iff u has odd number of 0s and even number of 1s (by ind. hyp. (b)) iff

Induction Step: part (a)

Proof (contd).

Suppose (a),(b),(c), and (d) hold for strings w of length n. Consider w = au, where $a \in \{0, 1\}$ and $u \in \Sigma^*$ of length n. Recall that $\hat{\delta}(q, au) = \hat{\delta}(\delta(q, a), u)$.

- Case q = q₀, a = 0: δ̂(q₀, w) ∈ F iff δ̂(q₃, u) ∈ F iff u has even number of 0s and odd number of 1s (by ind. hyp. (d)) iff w has odd number of 0s and odd number of 1s
- Case q = q₀, a = 1: ô(q₀, w) ∈ F iff ô(q₁, u) ∈ F iff u has odd number of 0s and even number of 1s (by ind. hyp. (b)) iff w has odd number of 0s and odd number of 1s

Induction Step: other parts

Proof (contd).

Case q = q₁, a = 0: δ̂(q₁, w) ∈ F iff δ̂(q₂, u) ∈ F iff u has even number of 0s and even number of 1s (by ind. hyp. (c)) iff w has odd number of 0s and even number of 1s

Induction Step: other parts

Proof (contd).

- Case q = q₁, a = 0: δ̂(q₁, w) ∈ F iff δ̂(q₂, u) ∈ F iff u has even number of 0s and even number of 1s (by ind. hyp. (c)) iff w has odd number of 0s and even number of 1s
- And so on for the other cases of q = q₁ and a = 1, q = q₂ and a = 0, q = q₂ and a = 1, q = q₃ and a = 0, and finally q = q₃ and a = 1.

Proving Correctness of a DFA

Proof Template

Given a DFA M having n states $\{q_0, q_1, \ldots, q_{n-1}\}$ with initial state q_0 , and final states F, to prove that L(M) = L, we do the following.

Proving Correctness of a DFA

Proof Template

Given a DFA M having n states $\{q_0, q_1, \ldots, q_{n-1}\}$ with initial state q_0 , and final states F, to prove that L(M) = L, we do the following.

1. Come up with languages $L_0, L_1, \ldots, L_{n-1}$ such that $L_0 = L$

Proving Correctness of a DFA

Proof Template

Given a DFA M having n states $\{q_0, q_1, \ldots, q_{n-1}\}$ with initial state q_0 , and final states F, to prove that L(M) = L, we do the following.

- 1. Come up with languages $L_0, L_1, \ldots, L_{n-1}$ such that $L_0 = L$
- 2. Prove by induction on |w|, $\hat{\delta}(q_i, w) \in F$ if and only if $w \in L_i$

Typical Problem

Problem Given a language L, design a DFA M that accepts L, i.e., L(M) = L.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Typical Problem

Problem Given a language L, design a DFA M that accepts L, i.e., L(M) = L. How does one go about it?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Methodology

Imagine yourself in the place of the machine, reading symbols of the input, and trying to determine if it should be accepted.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remember at any point you have only seen a part of the input, and you don't know when it ends.

Methodology

- Imagine yourself in the place of the machine, reading symbols of the input, and trying to determine if it should be accepted.
- Remember at any point you have only seen a part of the input, and you don't know when it ends.
- Figure out what to keep in memory. It cannot be all the symbols seen so far: it must fit into a finite number of bits.

Strings containing 0

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that contain at least one 0.

Solution

What do you need to remember?

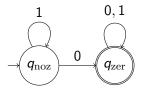
Strings containing 0

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that contain at least one 0.

Solution

What do you need to remember? Whether you have seen a 0 so far or not!



Automaton accepting strings with at least one 0.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Even length strings

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have an even length.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution

What do you need to remember?

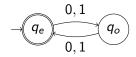
Even length strings

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have an even length.

Solution

What do you need to remember? Whether you have seen an odd or an even number of symbols.



Automaton accepting strings of even length.

Pattern Recognition

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have 001 as a substring, where u is a substring of w if there are w_1 and w_2 such that $w = w_1 u w_2$.

Solution What do you need to remember?

Pattern Recognition

Problem

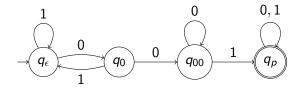
Design an automaton that accepts all strings over $\{0,1\}$ that have 001 as a substring, where u is a substring of w if there are w_1 and w_2 such that $w = w_1 u w_2$.

Solution

What do you need to remember? Whether you

- haven't seen any symbols of the pattern
- have just seen 0
- have just seen 00
- have seen the entire pattern 001

Pattern Recognition Automaton



Automaton accepting strings having 001 as substring.

・ロト ・ 雪 ト ・ ヨ ト

э.

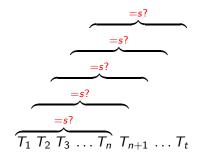
grep Problem

Problem Given text T and string s, does s appear in T?

grep Problem

Problem Given text T and string s, does s appear in T?

Solution

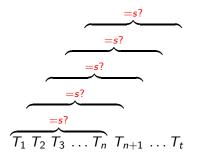


▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

grep Problem

Problem Given text T and string s, does s appear in T?

Naïve Solution



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Running time = O(nt), where |T| = t and |s| = n.

Solution

• Build DFA *M* for $L = \{w \mid \text{there are } u, v \text{ s.t. } w = usv\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Run M on text T

Solution

• Build DFA *M* for $L = \{w \mid \text{there are } u, v \ s.t. \ w = usv\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Run M on text T

Time = time to build M + O(t)!

Solution

• Build DFA *M* for $L = \{w \mid \text{there are } u, v \text{ s.t. } w = usv\}$

- Run M on text T
- Time = time to build M + O(t)!

Questions

- Is L regular no matter what s is?
- If yes, can M be built "efficiently"?

Solution

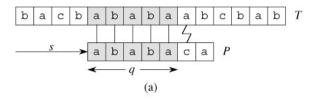
- Build DFA *M* for $L = \{w \mid \text{there are } u, v \text{ s.t. } w = usv\}$
- Run M on text T
- Time = time to build M + O(t)!

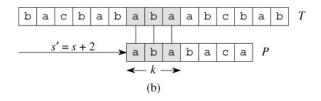
Questions

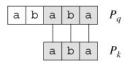
- Is L regular no matter what s is?
- If yes, can M be built "efficiently"?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

Knuth-Morris-Pratt (1977)







(c)

Problem

Design an automaton that accepts all strings w over $\{0, 1\}$ such that w is the binary representation of a number that is a multiple of 5.

Solution

What must be remembered?

Problem

Design an automaton that accepts all strings w over $\{0, 1\}$ such that w is the binary representation of a number that is a multiple of 5.

Solution

What must be remembered? The remainder when divided by 5.

Problem

Design an automaton that accepts all strings w over $\{0, 1\}$ such that w is the binary representation of a number that is a multiple of 5.

Solution

What must be remembered? The remainder when divided by 5. How do you compute remainders?

Problem

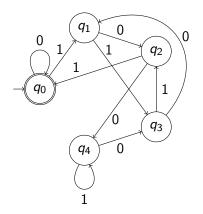
Design an automaton that accepts all strings w over $\{0, 1\}$ such that w is the binary representation of a number that is a multiple of 5.

Solution

What must be remembered? The remainder when divided by 5. How do you compute remainders?

- If w is the number n then w0 is 2n and w1 is 2n + 1.
- $(a.b+c) \mod 5 = (a.(b \mod 5) + c) \mod 5$

Automaton for recognizing Multiples



Automaton recognizing binary numbers that are multiples of 5.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A One *k*-positions from end

Problem

Design an automaton for the language $L_k = \{w \mid k \text{th character} \ from end of w is 1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution

What do you need to remember?

A One *k*-positions from end

Problem

Design an automaton for the language $L_k = \{w \mid k \text{th character} from end of w is 1\}$

Solution

What do you need to remember? The last k characters seen so far! Formally, $M_k = (Q, \{0, 1\}, \delta, q_0, F)$

• States =
$$Q = \{\langle w \rangle \mid w \in \{0,1\}^* \text{ and } |w| \le k\}$$

• $\delta(\langle w \rangle, b) = \begin{cases} \langle wb \rangle & \text{if } |w| < k \\ \langle w_2 w_3 \dots w_k b \rangle & \text{if } w = w_1 w_2 \dots w_k \end{cases}$
• $q_0 = \langle \epsilon \rangle$
• $F = \{\langle 1w_2 w_3 \dots w_k \rangle \mid w_i \in \{0,1\}\}$

Lower Bound on DFA size

Proposition

Any DFA recognizing L_k has at least 2^k states.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lower Bound on DFA size

Proposition

Any DFA recognizing L_k has at least 2^k states.

Proof.

Let M, with initial state q_0 , recognize L_k and assume (for contradiction) that M has $< 2^k$ states.

Lower Bound on DFA size

Proposition

Any DFA recognizing L_k has at least 2^k states.

Proof.

Let M, with initial state q_0 , recognize L_k and assume (for contradiction) that M has $< 2^k$ states.

- Number of strings of length $k = 2^k$
- ▶ There must be two distinct string w_0 and w_1 of length k such that $\hat{\delta}(q_0, w_0) = \hat{\delta}(q_0, w_1)$.

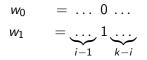
Proof (contd)

Proof (contd).

Let *i* be the first position where w_0 and w_1 differ. Without loss of generality assume that w_0 has 0 in the *ith* position and w_1 has 1.

 $\cdots \rightarrow$

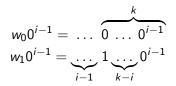
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Proof (contd)

Proof (contd).

Let *i* be the first position where w_0 and w_1 differ. Without loss of generality assume that w_0 has 0 in the *ith* position and w_1 has 1.

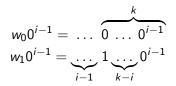


 $\cdots \rightarrow$

Proof (contd)

Proof (contd).

Let *i* be the first position where w_0 and w_1 differ. Without loss of generality assume that w_0 has 0 in the *ith* position and w_1 has 1.



 $w_0 0^{i-1} \not\in L_k$ and $w_1 0^{i-1} \in L_k$. Thus, M cannot accept both $w_0 0^{i-1}$ and $w_1 0^{i-1}$.

Proof (contd). So far, $w_0 0^{i-1} \notin L_n$, $w_1 0^{i-1} \in L_n$, and $\hat{\delta}(q_0, w_0) = \hat{\delta}(q_0, w_1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof (contd) ...Almost there

Proof (contd). So far, $w_0 0^{i-1} \notin L_n$, $w_1 0^{i-1} \in L_n$, and $\hat{\delta}(q_0, w_0) = \hat{\delta}(q_0, w_1)$. $\hat{\delta}(q_0, w_0 0^{i-1})$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Proof (contd) ... Almost there

Proof (contd).
So far,
$$w_0 0^{i-1} \notin L_n$$
, $w_1 0^{i-1} \in L_n$, and $\hat{\delta}(q_0, w_0) = \hat{\delta}(q_0, w_1)$.
 $\hat{\delta}(q_0, w_0 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, w_0), 0^{i-1})$ by Proposition proved

Proof (contd) ... Almost there

Proof (contd).
So far,
$$w_0 0^{i-1} \notin L_n$$
, $w_1 0^{i-1} \in L_n$, and $\hat{\delta}(q_0, w_0) = \hat{\delta}(q_0, w_1)$.
 $\hat{\delta}(q_0, w_0 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, w_0), 0^{i-1})$ by Proposition proved
 $= \hat{\delta}(\hat{\delta}(q_0, w_1), 0^{i-1})$ by assump. on w_0 and w_1

Proof (contd) ... Almost there

Proof (contd).
So far,
$$w_0 0^{i-1} \notin L_n$$
, $w_1 0^{i-1} \in L_n$, and $\hat{\delta}(q_0, w_0) = \hat{\delta}(q_0, w_1)$.
 $\hat{\delta}(q_0, w_0 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, w_0), 0^{i-1})$ by Proposition proved
 $= \hat{\delta}(\hat{\delta}(q_0, w_1), 0^{i-1})$ by assump. on w_0 and w_1
 $= \hat{\delta}(q_0, w_1 0^{i-1})$ by Proposition proved

Proof (contd) ... Almost there

Proof (contd). So far, $w_0 0^{i-1} \notin L_n$, $w_1 0^{i-1} \in L_n$, and $\hat{\delta}(q_0, w_0) = \hat{\delta}(q_0, w_1)$. $\hat{\delta}(q_0, w_0 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, w_0), 0^{i-1})$ by Proposition proved $= \hat{\delta}(\hat{\delta}(q_0, w_1), 0^{i-1})$ by assump. on w_0 and w_1 $= \hat{\delta}(q_0, w_1 0^{i-1})$ by Proposition proved

Thus, *M* accepts or rejects both $w_0 0^{i-1}$ and $w_1 0^{i-1}$. Contradiction!