
An Online Scalable Algorithm for Minimizing `k-norms of
Weighted Flow Time on Unrelated Machines

Sungjin Im∗ Benjamin Moseley†

Abstract
We consider the problem of scheduling jobs that arrive online
in the unrelated machine model to minimize `k norms of
weighted flowtime. In the unrelated setting, the processing
time and weight of a job depends on the machine it is
assigned to, and it is perhaps the most general machine
model considered in scheduling literature. Chadha et al.
[10] obtained a recent breakthrough result in obtaining the
first non-trivial algorithm for minimizing weighted flowtime
(that is, the `1 norm) in this very general setting via a novel
potential function based analysis. They described a simple
algorithm and showed that for any ε > 0 it is (1 + ε)-speed
O(1/ε2)-competitive (a scalable algorithm).

In this paper we give the first non-trivial and scalable
algorithm for minimizing `k norms of weighted flowtime in
the unrelated machine model; for any ε > 0, the algorithm
is O(k/ε2+2/k)-competitive. The algorithm is immediate-
dispatch and non-migratory. Our result is of both practical
and theoretical interest. Scheduling to minimize `k norms
of flowtime for some small k > 1 has been shown to
balance total response time and fairness, which is desirable
in practice. On the theoretical side, `k norms for k > 1 pose
substantial technical hurdles when compared to when k = 1
even for the single machine case. Our work develops a novel
potential function as well as several tools that can be used to
lower bound the optimal solution.

1 Introduction
Scheduling jobs which arrive online is a fundamental prob-
lem faced by a variety of systems. In the standard schedul-
ing setting, a sequence of n jobs arrive over time. Each job
has a processing time pi, which is the amount of time the
scheduler must devote to the job. In the online model job
i is released at time ri and this is the first time the sched-
ule becomes aware of the job. The goal of a scheduler is to
optimize the quality of service. Naturally, the definition of

∗Department of Computer Science, University of Illinois, 201 N. Good-
win Ave., Urbana, IL 61801. im3@illinois.edu. Partially supported
by NSF grants CCF-0728782, CNS-0721899, and Samsung Fellowship.
†Department of Computer Science, University of Illinois, 201 N. Good-

win Ave., Urbana, IL 61801. bmosele2@illinois.edu. Partially sup-
ported by NSF grants CCF-0728782 and CNS-0721899.

the quality of service depends on the needs of the specific
system. One of the most popular and natural metrics at the
individual job level is flow time1. The flow time of job i
is the amount of time that elapses between when the job is
released ri and when the job is completed fi. The most well-
known quality of service measure at the overall jobs level is
to minimize the total (or equivalently average) flow time of
the schedule

∑
i fi−ri. This measures the total time all jobs

must wait to be completed. Minimizing the total flow time
is the most common and popular quality of service measures
considered in scheduling theory.

In the simplest setting, each of the jobs is to be sched-
uled on a single machine. It is well known that the algo-
rithm SRPT (Shortest-Remaining-Processing-Time) gives an
optimal schedule. A more complicated scheduling setting
is where jobs can be distributed on m machines (proces-
sors). In this situation, the scheduler must make the deci-
sion of which jobs to assign to which machines along with
the decision of how to order jobs on each machine. There
are two properties which are desirable for the scheduler.
Namely, that the scheduler is non-migratory and immediatly-
dispatches jobs. Migrating a job, which was already as-
signed to a machine, to another machine may be costly or
even impossible. Also, due to memory limitation of the main
scheduler, it is more desirable for jobs to be dispatched to
some machines immediately upon their arrival, rather than
to wait in a pool to be dispatched later.

The simplest multiple machines setting is where all ma-
chines are identical. That is, each job has the same pro-
cessing time on all machines and any job can be scheduled
on any machine. Average flow time has been studied ex-
tensively in the identical machine model [24, 2, 1, 25, 6].
Even in this simple case, the best competitive ratio is
O(min(logP, log n/m)) and there exists a matching lower
bound. Here P is the ratio of the biggest job’s processing
time to the smallest job’s processing time. When a strong
lower bound exists, a popular model of analysis is the re-
source augmentation model [23, 26]. In this model, an al-
gorithm A with processors of speed s is compared to the
optimal solution with processors of speed 1. For any jobs
instance, if the objective value achieved by A is within a fac-

1Flow time is also known as wait time and response time

tor c of that by the optimal solution, the algorithm A is said
to be s-speed c-competitive for the objective. An algorithm
that is (1+ε)-speedO(1)-competitive algorithm is said to be
scalable, since it is O(1)-competitive when given the small-
est amount of resources over the adversary. This is the best
positive result in the worst case analysis model that can be
obtained for problems which have strong lower bounds on
the competitive ratio. In the identical machines setting, [11]
gave a scalable algorithm.

In practice machines may not be identical. For instance,
machines may have different speed processors. One model
that captures this situation is the related machines model.
Here, each machine x has some speed sx. Job i requires
pi
sx

time to complete if it is assigned to machine x. The
related machines model is of practical interest. However,
finding good algorithms has been difficult. There are few
positive results known [18, 17]. The best known algorithm is
O(log2 P)-competitive [17].

The related machines model is not general enough to
capture the variety of today’s systems. Consider the situation
where some jobs require lots of memory, but each machine
does not have the same amount of memory. Or, perhaps a
job can only be scheduled on machines which are attached
to a specific input/output device. Here, the relation between
machines cannot be easily correlated. To capture this more
general model, the unrelated machines model has been
considered. Here each job i has processing time pix when
assigned to machine x. Due to the variety of machines, the
job’s processing time can be arbitrarily different depending
on the machine the job is assigned to. In fact, the processing
times may be infinite on some machines, which captures the
case where a job cannot be assigned to a specific machine.
The unrelated model, is the most general machine model.

Designing algorithms that are competitive for average
flow time on unrelated machines has been difficult. In [19]
it was shown that no online algorithm can have a bounded
competitive ratio for minimizing the average flow time on
unrelated machines without resource augmentation. This
lower bound was shown in the restricted case where there are
only 3 machines and jobs have either unit size on a machine
or infinite size. This example shows that simply restricting
jobs to certain machines makes the problem much harder
than the related or identical models. Another challenge when
designing and analyzing algorithms for unrelated machines
is that different schedules can do different amounts of work
to satisfy the same set of requests. Here scheduling mistakes
are significantly more costly if the optimal solution is doing
less work than the algorithm. This differs from the standard
scheduling setting where any schedule does the same amount
of work to satisfy the same set of jobs. See [12, 20] for
other examples. Until recently no non-trivial algorithms
were known in the online setting for average flow time.
In a breakthrough result a (1 + ε)-speed O(1)-competitive

algorithm was given for any fixed 0 < ε ≤ 1 [10]. This was
also the first O(1)-speed O(1)-competitive algorithm shown
for the more restricted related machines setting.

Unfortunately, algorithms which focus only on minimiz-
ing the total flow time may be extremely unfair to individual
jobs by allowing some jobs to starve for an arbitrarily long
time. Designing a scheduling algorithm that is fair to all jobs
overall is important for practical scheduling algorithms [28].
Due to unfairness, competitive algorithms for average flow
time are not often implemented [21, 4]. In practice, it is
usually more desirable for the system to be predictable for
each job than optimal on average [28, 27]. To balance the
fairness and the overall performance, one of the most well-
studied and practical metrics is to minimize the `k-norm of
flow time k

√∑
i∈[n](fi − ri)k for some k > 1. In practice,

k ∈ [2, 3] is usually considered. Minimizing the `k norms
of flow time was first introduced by the influential paper of
Bansal and Pruhs [4].

In the `k norm objective, the algorithm is severely
penalized when a job waits a substantial amount of time to be
satisfied. This forces the algorithm to minimize the variance
of flow time and, thereby, ensures the predictability of the
system at the individual job level. Further, in the `k-norm,
the flow time is still being considered and the algorithm must
also focus on average quality of service. By optimizing the
`k norm of flow time, the algorithm balances average quality
of service and fairness. This makes online algorithms that are
competitive for the `k-norm of flow time highly desirable in
practice.

For the `k-norm of flow time it is well known that with-
out resource augmentation that every deterministic algorithm
is nΩ(1)-competitive when 1 < k < ∞, even on a single
machine [4]. This contrasts with average flow time, where
SRPT is an optimal algorithm on a single machine. It was
shown in [5] that SRPT is a scalable algorithm to minimize
the `k norm of flow time on a single machine for all k. Later
a scalable algorithm to minimize the `k norm of flow time
on identical machines was given for any k [11]. There are no
known offline approximation algorithms for minimizing the
`k norms of flow time for any k ∈ [1,∞) without resource
augmentation on unrelated machines; note that the `1 norm is
equivalent to average flow time. Further, there are no known
non-trivial online algorithms for minimizing the `k norm of
flow time even on related machines with any amount of re-
source augmentation where 1 < k <∞.

In this paper we will be considering the weighted `k
norms of flow time of a non-migratory schedule. This is a
generalization of the `k norm objective. Here a job i has
a weight wix when assigned to machines x. The goal of
the scheduler is to minimize k

√∑
i∈[n] wiM(x)(fi − ri)k

where M(x) is the machine job x is assigned to. For the
weighted `1 norm of flow time, it was recently shown that

no algorithm can be O(1)-competitive without resource
augmentation on a single machine [3]. It is well known that
the algorithm Highest Density First (HDF) is (1 + ε)-speed
O(1)-competitive for the `1 norm of weighted flow time
on a single machine [7]. The algorithm HDF is a natural
generalization of SRPT where the scheduler always pro-
cesses the job i such that wi

pi
is minimized. In [5] is was

shown that HDF is also (1 + ε)-speed O(1)-competitive
for the `k norms of weighted flow time for k ≥ 1 on
a single machine. Until recently, there have been no
positive non-trivial results on scheduling to minimize the
weighted `k norms of flow time on multiple machines for
any k > 0, even in the identical machines setting. The
algorithm of [10] for minimizing the `1 norm of flow
time on unrelated machines also considers the case where
jobs have weights. Their algorithm is (1 + ε)-speed O(1)-
competitive algorithm for the weighted `1 norm of flow time.

Our Results: In this paper we present the first non-trivial
competitive algorithm for minimizing the weighted `k-norm
of flow time on unrelated parallel machines when k > 1.
We show that our algorithm is scalable for any fixed k ≥ 1,
i.e. (1 + ε)-speed O(1)-competitive for any fixed 0 < ε ≤ 1.
That is, our algorithm is constant competitive when given the
minimal extra amount of resources over the adversary. Our
algorithm is immediate-dispatch and non-migratory. More
specifically, we show the following theorem.

THEOREM 1.1. For any integer k ≥ 1 and for any 0 <
ε ≤ 1, there exists a (1 + ε)-speed O(k

ε2+2/k)-competitive
algorithm for minimizing weighted `k-norms of flowtime
on unrelated machines. In particular, the algorithm is
immediate dispatch and non-migratory.

We also show the following lower bound on any ran-
domized immediate-dispatch non-migratory algorithm. This
lower bound shows that our algorithm is tight up to a con-
stant factor in the competitive ratio for any fixed 0 < ε ≤ 1.

THEOREM 1.2. For the problem of minimizing `k norm
of flow time on unrelated machines, any randomized
immediate-dispatch non-migratory online algorithm, with
any speed s ≥ 1 given, has competitive ratio Ω(ks).

It is important to note that our results translate into the
problem of minimizing the `k norm of stretch. The `k norm

of stretch is k

√∑
i∈[n]

(
fi−ri
piM(i)

)k
for some fixed schedule.

There is a similar lower bound for the `k norm of stretch as
there is for the `k norm of flow time on a single machine
and jobs have no weight [4]. The `k norm of stretch can
be reduced to the weighted `k norm of flow time by setting
wi,x = (1

pi,x
)k. Stretch is a popular metric and is used to

capture the fact that users expect long jobs to take more time

than short jobs. That is, a user is likely to expect to wait
for a job to complete in proportion to the job’s processing
time. This objective is commonly considered in database
applications [8, 9]. By using this reduction, our result
extends to the stretch setting.

Our Techniques: A potential function based argument
will be used to analyze our algorithm. Potential function
arguments have recently been shown to be very powerful
in scheduling analysis. See [15, 16, 20, 10] for examples.
When proving the competitiveness of an online algorithm
in scheduling, two approaches can be used. One is a local
argument. In a local argument, one shows that at any time the
increase in the algorithm’s objective function is comparable
to the increase in the optimal solution’s objective function.
This was, for instance, used by [4, 5] to show scalable
algorithms for the (weighted) `k norms of flow time on
a single machine. However, for some problems, a local
argument cannot be used because this does not hold at all
times. This is the case in the unrelated machines model.
Here, one option is to use a potential function. The main
idea of a potential function is that if the increase in the
algorithm’s objective is too large at some time then there
should be ‘credit’ in the potential function to pay for this
increase.

The potential function we introduce in this paper takes
insights from [20, 10]. Most closely related to our potential
function is that given in [10] which was used to give a
scalable algorithm for minimizing average flow time on
unrelated machines. In [10], the algorithm used was to
place a job on the machine which increases the `1 norm
of flow time the least and then each machine runs HDF
on the jobs assigned to it. Although this algorithm is
simple and natural, the potential function used to prove its
competitiveness is quite non-trivial. The main idea of the
potential function used in [10] is to keep track of the volume
of remaining work of the algorithm as compared to the
adversary. However, this potential cannot be used in the
`k norm setting because the ages of jobs contribute to the
increase in the algorithm’s objective when k > 1, not just
the volume of unfinished jobs. Indeed, the increase in the
`k-norm objective at any time grows with the time for which
each job has been unsatisfied. This is in contrast to the `1-
norm where the increase in the objective at each time only
depends on the number of unsatisfied jobs. Any potential
function which does not incorporate the amount of time each
job in the algorithm’s queue has been unsatisfied for will
not be useful for upper-bounding the algorithm’s `k-norm
flow time. In this paper, we show a novel potential function
that incorporates the volume of remaining work and ages of
jobs in the algorithm’s queue as compared to the adversary’
queue. The potential function combines the ages and volume
of jobs in an interesting way. The authors tried natural

generalizations of the potential function of [10] for the `k
norm, however these generalizations do not seem to lead to a
O(1)-speed O(1)-competitive algorithm for the `k norm of
flow time when k > 1. Like [10], our algorithm runs HDF on
each individual machine. However the machine assignment
our algorithm uses of jobs comes from the potential function
we derive. We tried to analyze the natural algorithm that
assigns a job to a machine that increases the `k norm flow
time the least. However, we were unable to find a potential
function that can show this algorithm to beO(1)-competitive
with speed less than k + ε.

It is important to note that in the analysis of [10],
the optimal solution was restricted to using HDF on each
machine. In our analysis, we will be assuming an arbitrary
optimal solution. We note that designing a potential function
is quite non-trivial for minimizing `k-norm flow time even
on a single processor for any k ≥ 1. One novelty of our
result is a potential function-based argument showing that
HDF is scalable on a single machine for any fixed k ≥ 1.
Some lemmas we present in the analysis, which compare
our algorithm’s status with the arbitrary adversary’s status,
may be of independent interest.

2 Definitions and Preliminaries
Before introducing our algorithm we introduce notation and
given an overview of the analysis. Consider any job se-
quence σ and let k ≥ 1 be fixed. Let OPT denote a fixed
optimal offline solution with 1 speed that does not migrate
jobs. That is, a job is processed on only one machine. Let
s = 1 + 30ε be the speed our algorithm is given where
0 < ε < 1

50 is a fixed constant. Let Ox(t) be the set of
alive jobs assigned to machine x by OPT. Likewise, Ax(t)
will denote the set of unsatisfied jobs assigned to machine
x by our algorithm. Let pOi (t) be the remaining processing
time of job i in OPT’s schedule at time t and pAi (t) be the re-
maining processing time of job i in our algorithm’s schedule.
We define dix = wix

pix
to be the density of job i on machine

x.
For the rest of the paper, if we say `k norm flow time,

we mean the weighted `k norm flow time, i.e. we may
omit the term ‘weighted’. To bound the `k norm flow
time, we will drop the outer kth root and focus on bound-
ing

∑
i∈[n] wi,M(i)(fi − ri)

k, the integral kth power flow
time. To do this, we will focus on bounding the frac-
tional kth power flow time. The total kth power fractional
flow time of a schedule is defined to be

∫∞
t=0

∑
i∈U(t) k(t −

ri)
k−1pAi (t)diM(i)dt, where U(t) is the set of unsatisfied

jobs in the given schedule at time t and M(i) is the machine
job i is assigned to. Equivalently, the fractional kth power
flow time of a schedule is s

∫∞
t=0

∑
i∈J(t)(t − ri)kdiM(i)dt

where J(t) is the set of at most m jobs being processed

at time t. There are at most m jobs because a machine
can be processing at most 1 job at a time. We will fo-
cus mostly on the second definition. We will say that
s
∑
i∈J(t)(t− ri)kdiM(i) is dA

dt , the increase rate of the frac-
tional flow time of are algorithm during [t, t+dt]. Likewise,∑
i∈J∗(t)(t − ri)kdiM∗(i) is dO

dt the increase rate of the op-
timal solutions flow time during [t, t + dt] where J∗(t) are
the jobs OPT works on during [t, t + dt] and M∗(i) is the
machine OPT assigns job i to.

2.1 Relationship between fractional and integral flow
time We now discuss the relationship between the fraction
kth power flow time and integral kth power flow time. First
notice that the fractional kth power flow time is at most the
integral kth power flow time. Let 0 < ε′ ≤ 1. Consider any
schedule. Let f ′i denote the first time that a 1

1+ε′ fraction of
job i is completed. The fractional kth power flow time of job
i is at least ε′

1+ε′w(iM(i))(t− ai)k. Now say that we increase
the speed of the schedule by (1+ ε′). It can be seen that with
the extra speed that job i will completed by time f ′i . This
implies that the integral kth power flow time of the schedule
is at most

∑
i∈[n](f

′
i − ri)

k. Thus, the kth power integral
flow time of the new schedule is at most (1 + 1

ε′) times
the fractional flow time of the original schedule. Hence, if
we show that some algorithm is s-speed c-competitive for
fractional flow time then this algorithm is (1 + ε′)s-speed
c(1 + 1

ε′)-competitive for integral kth power flow time. For
the rest of this paper, we will focus on bounding the kth
power fractional flow time.

2.2 Overview of Analysis As mentioned, we will be using
a potential function analysis. We overload notation when
the context is clear and let A and OPT denote the total
kth power fractional flow time of our algorithm and the
adversary, respectively. We will define a potential function
Φ that changes over time. Like previous work on potential
functions, we design Φ such that it does not increase when
jobs are completed by OPT and our algorithm [10, 15, 16,
20]. Further, Φ is 0 before jobs arrive and 0 after all jobs
are completed by OPT and the algorithm. The total increase
in Φ due to the arrival of jobs will be at most 0. We call
this the non-continuous change in Φ because it happens only
at instantaneous times when jobs arrive or are completed.
We then bound the change in Φ during an infinitesimal time
where no jobs arrive or are completed. This is the continuous
change in Φ. We will show that the total continuous change
over all times is at most −γA + δOPT where γ and δ are
constants that can depend on k. These are all the events that
effect Φ. Knowing that Φ = 0 at time 0 and time ∞ (any
time after all jobs are completed by our algorithm and the
adversary), we have the total change in Φ is at most 0. Thus,
knowing that −γA + δOPT is an upper bound on the total
continuous change of Φ and that non-continuous changes do

not increase Φ, we have that 0 ≤ −γA+δOPT. This implies
that A ≤ δ

γOPT. This will complete our analysis.

3 Algorithm and Potential Function
Our algorithm is defined as follows. After jobs are assigned
to a machine, each machine runs jobs in a highest density
first (HDF) ordering. That is, if i and j are on the same
machine x and dxi > dxj then i is processed before j.
Without loss of generality, we assume that all jobs have a
unique density. Let S be a set of unsatisfied jobs assigned
to a single machine. Further, say job j ∈ S has density
less than all other jobs in S. Then in a HDF ordering,
job j will have to wait at least 1

s

∑
i∈S p

A
i (t) time units

before it is scheduled when the algorithm has speed s. This
fact will be used in our potential function and the arrival
condition for our algorithm. To simplify notation, we define
V

(set)
(condition) to be the total processing time (volume) of the

jobs in the (set) satisfying the (condition); for example
V
Ax(t)
>dix

:=
∑

j ∈ Ax(t)
djx > dix

pAj (t).

Our algorithm assigns a job to a machine as soon as the
job arrives. A job is assigned to the machine which will
increase our algorithm’s objective function the least, given
the current state of the algorithm. However, our algorithm
will put less emphasis on the current age of jobs than the
remaining amount of time jobs will have to wait to be
satisfied. When a job a arrives at time t, it is immediately
assigned to a machine x which minimizes the following
expression,

∆x(t, a)

= dax

∫ pax

τ=0

(
V
Ax(t)
>dix

+ τ

)k
dτ

+
∑

i ∈ Ax(t)
dix < dax

dix

[∫ pAi (t)

τ=0

(
ε(t− ri) + V

Ax(t)
>dix

+ pax + τ

)k

−
(
ε(t− ri) + V

Ax(t)
>dix

+ τ

)k]
dτ

The first term of the arrival condition is used to capture
the cost that job a will incur if is assigned to machine x.
The second term captures how much job a will increase the
fractional kth power flow time of jobs which now will have
to wait for job a to finish. These are the jobs which have
density less than job a on machine x.

We are now ready to define our potential function. The
potential function is designed so that at any time t there is
enough credit in the potential function to pay for the kth
power flow time of the remaining jobs in the algorithm’s
queue. To do this, for each job iwe put more emphasis on the
remaining time job i has to wait before being finished, where
credit is gained by our algorithm’s doing more work over the
adversary via speed augmentation, over the current age of

a job. The potential function is also carefully constructed
not to increase when jobs arrive. We begin by defining our
potential function Φx for machine x. Our potential function
Φ will then be

∑
x∈[m] Φx. At time t, we define Φx to be,

Φx(t)

=
∑

i∈Ax(t)

dix

∫ pAi (t)

τ=0

(
ε(t− ri) + V

Ax(t)
>dix

+ τ

)k
dτ(3.1)

−
∑

i∈Ox(t)

dix

∫ pOi (t)

τ=0

(
ε(t− ri) + V

Ax(t)
>dix

+ τ

)k
dτ(3.2)

−
∑

i∈Ax(t)

dix

∫ pAi (t)

τ=0

[(
ε(t− ri) + V

Ax(t)
>dix

+ V
Ox(t)
>dix

+ τ

)k
(3.3)

−
(
ε(t− ri) + V

Ax(t)
>dix

+ τ

)k]
dτ

Notice that when a job is completed there is no change
in the potential function. Thus, we need only to analyze
the change in time, processing by OPT and the algorithm,
and the effect of jobs arrival. For the sake of analysis we
let Φx,1(t), Φx,2(t) and Φx,3(t) denote the part of Φx(t) in
(3.1), (3.2) and (3.4) respectively. The second term Φx,2
is included to relate the algorithm’s queue to the optimal
solution’s queue. The third term Φx,3, with the second term,
is designed to eliminate the changes in Φx,1 due to jobs
arriving and being placed on machines by the algorithm.

4 Non-continuous Changes
In this section, we study the non-continuous changes, which
occur only when new jobs are released. Consider any job a
arriving at time t. We now bound the increase in Φ(t) due
to a’s arrival. Say that A assigns a to machine x and OPT
assigns a to machine y 6= x; the case y = xwill be addressed
later. The changes occur only in Φx and Φy . It is easy to see
that ∆Φx,1(t) = ∆x(t, a), and ∆Φx,2(t),∆Φx,3(t) ≤ 0.

We now study the change Φy(t) due to the adversary’s
assigning a to machine y. It is easy to see that ∆Φy,1(t) = 0.
We can upperbound the change in Φy,2(t) and Φy,3(t) due to
the adversary’s placement of job a into machine y as follows.

∆Φy,2(t) = −day
∫ pay

τ=0

(
V
Ay(t)
>day

+ τ
)k

dτ

The change in Φy,3(t) is as follows.

∆Φy,3(t)

= −
∑

i ∈ Ay(t)
diy < day

diy

∫ pAi (t)

τ=0

[(
ε(t− ri) + V

Ay(t)

>diy
+ V

Oy(t)

>diy
+ pay + τ

)k

−
(
ε(t− ri) + V

Ay(t)

>diy
+ V

Oy(t)

>diy
+ τ

)k]
dτ

≤ −
∑

i ∈ Ay(t)
diy < day

diy

∫ pAi (t)

τ=0

[(
ε(t− ri) + V

Ay(t)

>diy
+ pay + τ

)k

−
(
ε(t− ri) + V

Ay(t)

>diy
+ τ

)k]
dτ

Thus we have that ∆Φy,2(t) + ∆Φy,3(t) ≤ −∆y(t, a).
By definition of the machine our algorithm places job a
on, the total change due to job a’s placement is no greater
than 0, that is ∆Φ(t) = ∆Φx(t) + ∆Φy(t) ≤ ∆x(t, a) −
∆y(t, a) ≤ 0. If A and OPT both assign a to the same
machine x, one can easily show that ∆Φx,1(t) = ∆x(t, a)
and ∆Φx,2(t) + ∆Φx,3(t) ≤ −∆x(t, a), thereby obtaining
the same result that ∆Φ(t) ≤ 0.

5 Continuous Changes
In this section, we study the continuous change of Φx during
an infinitesimal interval [t, t+ dt). We will be concentrating
on a single machine x. Let OPTx andAx denote the total kth
power fractional flow time of the jobs assigned to machine
x for OPT and the algorithm, respectively. Let Tx denote
the first time when all jobs, assigned to machine x, are
completed by the algorithm and also by the optimal solution.
Let t0 = 0, t1,, tu be the times when non-continuous
changes occur. For notational purposes let tu+1 = Tx. It
is easy to see that the potential function is differentiable at
all times except when non-continuous changes occur. In our
analysis, differentiation is used only when it is well defined,
which is sufficient for our analysis. Thus by

∫∞
t=0

f(t)dt, we
will mean

∫⋃u
v=0(tv,tv+1)

f(t)dt.
Recall that continuous change come from time elapsing

and job processing. Job completion and arrival are non-
continuous changes, which have been shown to not increase
Φx. Recall that we assume that our algorithm processes
the job of the highest density. Let a(x, t) denote the job of
highest density on machine x at time t. Let b(x, t) denote the
jobs the optimal solution processes on machine x at time t.
For brevity, we will proceed with our analysis assuming that
a(x, t) and b(x, t) exist; if a(x, t) or b(x, t) does not exist,
the analysis only becomes simpler and the upper bound we
will obtain still holds.

Before addressing the change in Φx, we show some
interesting properties of fractional `k norm flow time that
will be used throughout the analysis. The following two
lemmas can be applied to any valid schedule. These will be
used later in particular to bound the change in Φ by OPT. In
fact, these lemmas can be used as a new lower bound on the
optimal solution’s schedules. Both lemmas can be applied to
any problem sequence where all job are assigned to a single
machine. These lemmas may be of independent interest. In
our setting, we can just restrict our attention to the jobs which
are assigned to some specific machine. For a schedule B on
some problem instance I, we let fBi denote the finish time

of job i at time t under B’s schedule. The quantity pBi (t)
denotes the remaining processing time of job i at time under
B’s schedule. Let B(t) denote the alive jobs in the queue
under the schedule of B. We let B(I) denote the total kth
power fractional weighted flow time of B(I)’s schedule.

LEMMA 5.1. Consider any given instance I where all
jobs are assigned to a single machine. Then for any
valid schedule B, with speed s′ given, on the instance I,∫ ∞
t=0

∑
i∈B(t)

di

∫ pBi (t)

s′

τ=0

k
(V B(t)

>di

s′
+ τ
)k−1

dτdt ≤ 1

s′
B(I).

To have a feel of the above lemma, consider when
k = 1, s′ = 1 and an infinitesimal time interval
[d, d + dt). Then the change in (LHS) during the inter-
val is dt

∑
i∈B(t) dip

B
i (t), which is exactly the increase of

weighted fractional flow time during the interval. When
k = 1 this relation is known to be folklore, and usefully used
in scheduling theory. It is, however, not so obvious when
k > 1. The proof is placed in Appendix B.

LEMMA 5.2. Consider any given instance I where all jobs
are assigned to a single machine. Suppose B is a valid
schedule with s′ speed given on the instance I. Let v
be any constant and V

B(t)
>v =

∑
i∈B(t),di>v

p
B(t)
i . Then,

(V
B(t)
>v)k ≤

∑
i ∈ B(t)
di > v

di

∫ pBi (t)

τ=0

k(V
B(t)
>v + τ)k−1dτ . In

particular, for any function g(t) : [0,∞) → R, it holds that∫ ∞
t=0

g(t)
(
V
B(t)
>g(t)/s

′
)k

dt ≤ 1

s′
B(I).

The above lemma, with Lemma 5.1, will enable the
analysis without making any assumption on the adversary’s
scheduling. Especially, Lemma 5.2 is interesting for the fol-
lowing reason. In the lemma, (LHS) is an expression involv-
ing two quantifies which are not related at all. One is a quan-
tity regarding to volume of alive jobs under some schedule
B, and the other is any arbitrary function g(t). Due to this
lemma, we will be able to bound the changes involving our
algorithm’s queue status and the adversary’s schedule, with-
out explicitly correlating the two. The following corollaries
are immediate from the two lemmas.

COROLLARY 5.1.∫ ∞
t=0

da(x,t)(V
O(t)
>da(x,t)

)kdt ≤ OPTx.

COROLLARY 5.2.∫ ∞
t=0

∑
i∈Ox(t)

dix

∫ pOi (t)

τ=0

k(V
O(t)
>dix

+ τ)k−1dτdt ≤ OPTx.

The following proposition will be used throughout the
analysis.

PROPOSITION 5.1. For any constant 0 ≤ ε < 1 and any
integer k ≥ 1, (1 + ε

k)k ≤ 1 + 2ε.

The following two lemmas easily follow using the defi-
nition of kth power of fractional flow time.

LEMMA 5.3.∫ ∞
t=0

db(x,t)

(
ε(t− rb(x,t)) + pOb(x,t)(t)

)k
dt

≤ 2(1 + ε)kOPTx ≤ 2k+1OPTx

LEMMA 5.4.∫ ∞
t=0

∑
i∈Ox(t)

dix

∫ pOi (t)

τ=0

k(ε(t− ri) + τ)k−1dτdt

≤ 2(1 + ε)k−1OPTx ≤ 2kOPTx.

We are now ready to bound the continuous changes in
Φx.Since we are focusing on each specific machine x, as
far as there is no specific reason to highlight the machine,
we drop x from the notation. Note that the changes in Φ(t)
during [t, t + dt] occur because of job processing and the
change in time. The job a(t) is processed by the algorithm
by an amount of sdt, since the algorithm has s speed. The
job b(t) is processed by OPT by an amount of dt, since
OPT has 1 speed. Further, time t will increase by dt. These
are the only changes affecting Φ when no jobs arrive or are
completed. Recall that our goal is to upper bound the total
change in Φ over all time by a multiplicative factor of A and
OPT. In the continuous analysis our goal will be to bound
the total change in Φx by OPTx and Ax for each specific
machine x.

5.1 Analyzing d
dtΦx,1(t)

d

dt
Φx,1(t)

=
∑

i∈A(t)\{a(t)}
di

∫ pAi (t)

τ=0
(ε− s)k

(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1

dτ

+da(t)(ε− s)
(
ε(t− ra(t)) + pAa(t)(t)

)k
−εda(t)

(
ε(t− ra(t))

)k
= −(s− ε)

∑
i∈A(t)

di

∫ pAi (t)

τ=0
k

(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1

dτ

−sda(t)
(
ε(t− ra(t))

)k
(5.4)

5.2 Analyzing d
dtΦx,2(t)

d

dt
Φx,2(t)

= −
d

dt

∑
i∈O(t)

di

∫ pOi (t)

τ=0

(
ε(t− ri) + V

A(t)
>di

+ τ

)k
dτ =

+(s− ε)
∑

i ∈ O(t)
di < da(t)

di

∫ pOi (t)

τ=0
k

(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1

dτ(5.5)

−ε
∑

i ∈ O(t)
di ≥ da(t)

di

∫ pOi (t)

τ=0
k

(
ε(t− ri) + τ

)k−1

dτ(5.6)

+db(t)

(
ε(t− rb(t)) + V

A(t)
>db(t)

+ pOb(t)(t)

)k
(5.7)

Lines (5.5) and (5.6) are due to the change in time and
the algorithm’s processing. Line (5.7) is from OPT’s pro-
cessing. We are concerned with upper bounding the change
in Φ, so can ignore (5.6). We will first bound

∫∞
t=0

(5.5) and
then we will concentrate on bounding

∫∞
t=0

(5.7).

5.2.1 Bounding the total change of (5.5) over time By
considering whether V A(t)

>di
≤ k

ε (ε(t − ri) + τ) or not, we
have ∫ ∞

t=0
(5.5)dt ≤

(s− ε)(1 +
k

ε
)k−1

∫ ∞
t=0

di
∑

i ∈ O(t)
di < da(t)

∫ pOi (t)

τ=0
k(ε(t− ri) + τ)k−1dτdt

(5.8)

+(s− ε)(1 +
ε

k
)k−1k

∫ ∞
t=0

∑
i ∈ Ox(t)
di < da(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

(5.9)

Via simple algebra and Lemma 5.4, we have (5.8) ≤
(4k
ε)kOPTx. The second term (5.9) can be bounded by the

following lemma.

LEMMA 5.5.∫ ∞
t=0

∑
i∈Ox(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

≤ 1

k
(
k

ε
)k−1OPTx

+3ε

∫ ∞
t=0

∑
i∈A(t)

di

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτdt

We give a sketch of the proof here deferring the formal
proof to Appendix B. We partition Ox(t) into I(t) and I ′(t)
depending on whether a job i satisfies V A(t)

>di
≤ k

εV
O(t)
>di

or
not. For the easier set I(t) the total cost of (5.5) restricted to

I(t) over time can be bounded by a multiplicative of OPTx
using Corollary 5.2. For the other set I ′(t), we use the fact
that there exists a large volume of jobs of density bigger
than di for each job i ∈ I ′(t) in A’s queue than in OPT’s
queue. Then we will be able to show that the total cost of
(5.5) regarding to I ′(t) is the second term in the inequality
in the lemma.

By summing each of these expressions we have,

∫ ∞
t=0

(5.5)dt

≤ 3(
4k

ε
)kOPTx

+9ε(s− ε)

∫ ∞
t=0

∫ pAi (t)

τ=0

k(V
A(t)
>di

+ τ)k−1dτdt

(5.10)

5.2.2 Bounding the total change of (5.7) over time By
considering whether V A(t)

>db(t)
≤ k

ε

(
ε(t− rb(t)) + pOb(t)(t)

)
or

not, we have

∫ ∞
t=0

(5.7)dt

≤ (1 +
ε

k
)k
∫ ∞
t=0

db(t)(V
A(t)
>db(t)

)k

+(1 +
k

ε
)kdb(t)

(
ε(t− rb(t)) + pOb(t)(t)

)k
dt

≤ (1 + 2ε)

∫ ∞
t=0

∑
i ∈ A(t)
di > db(t)

di

∫ pAi (t)

τ=0

k

(
V
A(t)
>di

+ τ

)k−1

dτdt

+2(
4k

ε
)kOPTx

(5.11)

The last inequality follows by applying Lemma 5.2 and
5.3.

5.3 Analyzing d
dtΦx,3(t) We first study the change com-

ing from our algorithm’s processing and time elapse, which
is

(s− ε)
∑

i∈Ax(t)

di

∫ pAi (t)

τ=0
k

[(
ε(t− ri) + V

A(t)
>di

+ V
O(t)
>di

+ τ

)k−1

−
(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1]
dτ(5.12)

+sda(t)

[(
ε(t− ra(t)) + V

O(t)
>da(t)

)k
−
(
ε(t− ra(t))

)k]
(5.13)

We need the following lemma whose proof is very
similar to that of Lemma 5.5. The lemma is slightly different
from Lemma 5.5; roughly speaking the (LHS) is from

the algorithm’s perspective rather than from the optimal
solution’s. The proof can be found in Appendix B.

LEMMA 5.6.∫ ∞
t=0

∑
i∈A(t)

dip
A
i (t)(V

O(t)
>di

)k−1dt

≤ (
ε2

k
)k−1

∫ ∞
t=0

di
∑
i∈A(t)

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτdt

+
3k

ε2
OPTx.

We first bound
∫∞
t=0

(5.12)dt. We can assume that k ≥ 2
since (5.12) = 0 when k = 1. By considering whether or not
V
O(t)
>di

≤ ε
k

(
ε(t− ri) + V

A(t)
>di

+ τ
)

, and via simple algebra,
we have

(5.12)

≤ 2ε(s− ε)
∑

i∈Ax(t)

di

∫ pAi (t)

τ=0

k

(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1

dτ

+(1 +
k

ε
)k−1(s− ε)k

∑
i∈Ax(t)

dip
A
i (t)(V

O(t)
>di

)k−1

By Lemma 5.6, the fact s ≤ 2, and a simple algebra it
follows that∫ ∞

t=0
(5.12)dt

≤ 5ε(s− ε)
∫ ∞
t=0

∑
i∈Ax(t)

di

∫ pAi (t)

τ=0
k

(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1

dτdt

+(
2k

ε
)k+1OPTx

(5.14)

We now bound (5.13). By considering whether
V
O(t)
>da(t)

≤ ε
k (ε(t− ra)) or not, we have

(5.13) ≤ 2εsda(t)

(
ε(t−ra(t))

)k
+s(1+

k

ε
)kda(t)(V

O(t)
>da(t)

)k.

Thus, by Corollary 5.1,∫ ∞
t=0

(5.13)dt ≤ 2εsda(t)

∫ ∞
t=0

(
ε(t− ra(t))

)k
dt + 2(

2k

ε
)kOPTx

(5.15)

We now study the change coming from OPT’s process-
ing in Φ3, which is as follows.∑

i ∈ A(t)
di < db(t)

di

∫ pAi (t)

τ=0
k

(
ε(t− ri) + V

A(t)
>di

+ V
O(t)
>di

+ τ

)k−1

dτ(5.16)

≤ (1 +
ε

k
)k−1

∑
i ∈ A(t)
di < db(t)

di

∫ pAi (t)

τ=0
k

(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1

dτ

+(1 +
k

ε
)k−1

∑
i ∈ A(t)
di < db(t)

kdip
A
i (t)(V

O(t)
>di

)k−1

The inequality easily follows by considering whether
V
O(t)
>di

≤ ε
k

(
ε(t−ri)+V

A(t)
>di

+τ
)

or not. And by Lemma 5.6
and simple algebra, we obtain∫ ∞

t=0
(5.16)dt

≤ (1 + 2ε)

∫ ∞
t=0

∑
i ∈ A(t)
di < db(t)

di

∫ pAi (t)

τ=0
k

(
ε(t− ri) + V

A(t)
>di

+ τ

)k−1

dτdt

(5.17)

+3ε

∫ ∞
t=0

∑
i∈A(t)

di

∫ pAi (t)

τ=0
k

(
V
A(t)
>di

+ τ

)k−1

dτdt + (
2k

ε
)k+1OPTx

(5.18)

Here (5.18) was obtained assuming k ≥ 2. When k = 1,∫∞
t=0

(5.16)dt ≤ (5.17). Thus the above upper bound holds
for all k ≥ 1.

6 Final Analysis
We complete our analysis by aggregating all changes, both
non-continuous and continuous. By gathering all continuous
changes for each machine x ∈ [m] studied in the previous
section, we obtain

∫ ∞
t=0

d

dt
Φx(t)dt

=

∫ ∞
t=0

[
d

dt
Φx,1(t) +

d

dt
Φx,2(t) +

d

dt
Φx,3(t)]dt

≤
∫ ∞
t=0

(5.4)dt + (5.10) + (5.11) + (5.14)

+(5.15) + (5.17) + (5.18)

≤ ((1 + 2ε) − (1 − 17ε)(s− ε)) ·∑
i∈Ax(t)

dix

∫ pAi (t)

τ=0

k

(
ε(t− ri) + V

A(t)
>dix

+ τ

)k−1

dτ

−s(1 − 2ε)εk
∫ ∞
t=0

da(x,t),x(t− ra(x,t))
kdt

+8(
4k

ε
)K+1OPTx

≤ −s(1 − 2ε)εkAx + 8(
4k

ε
)k+1OPTx

The second inequality can be obtained by combining
(5.11) with (5.17). The last inequality holds when 1 + 30ε ≤
s ≤ 2, and 0 < ε ≤ 1

50 . Since Φ is 0 before no jobs
are released and also after all jobs are completed by A
and OPT, the total change of Φ is 0. Recall that the sum

of non-continuous changes is at most 0. Thus the total
continuous change of Φ over time is non-negative. Hence
from the above inequality for each machine x, we have 0 ≤∑
x∈[m]

∫∞
t=0

d
dtΦ(t)xdt ≤ −s(1−2ε)εkA+8(4k

ε)k+1OPT.
Thus we obtain (A)1/k ≤ O(k

ε2+1/k)(OPT)1/k. By
scaling ε appropriately in the algorithm we have the follow-
ing theorem,

THEOREM 6.1. For any integer k ≥ 1 and for any 0 <
ε ≤ 1, there exists a (1 + ε)-speed O(k

ε2+1/k)-competitive
algorithm for minimizing weighted `k-norms of fractional
flowtime on unrelated machines. In particular, the algorithm
is immediate dispatch and non-migratory.

Using the relation between integral kth power flow time
and fractional kth power flow time discussed in Section 2.1,
we can show Theorem 1.1.

7 Lowerbound on the competitive ratio of the algorithm
In this section we prove Theorem 1.2.

Proof. Suppose that we have m = 2k machines. We create
the following adversarial instance I. It has k groups of jobs:
Gα, α ∈ [k]. Jobs in each group (set) Gα can be assigned
to only a subset of machines Mα where |Gα| = |Mα| =
2k+1−α. All jobs have uniform size. For simplicity, we
assume that all jobs are released at time 0, but the algorithm
is given jobs to schedule one by one; this can be simulated by
letting jobs have sufficiently large size and arrive at distinct
integer times during [0, 2m]. We will assume that the jobs in
Gi arrives before Gj if i < j.

Let LOADα denote the average load of the machinesMα

for jobs in group G1, G2, ..., Gα, i.e. the number of jobs
from G1, G2, ..., Gα assigned to the machines Mα divided
by |Mα|. We will decideMα in an adversarial manner so
that LOADα ≥ α. Also we maintainM1,M2, ...,Mα form
an inclusion-wise chain, that isMα ⊆ ... ⊆M2 ⊆M1. All
jobs in the first group G1 can be assigned to any machine,
i.e. M1 = [m]. Then each Mα for α ≥ 2 is inductively
defined, after the algorithm’s decision on the jobs Gα−1, to
be the half machines fromMα−1 having the largest number
of jobs assigned. Using the fact that the average load onMα

is at least LOADα−1 and addingGα will increase the average
load by at least one, it can be easily shown that LOADα ≥ α
for all α ∈ [k].

Note that the algorithm has kth power of flow time at
least (k/s)k due to the jobs in group Gk. On the other hand,
there exists a schedule where every machine is assigned at
most two jobs: all and only jobs in Gα are assigned to
Mα \Mα+1;Mk+1 = ∅. This can be easily seen by noting
thatMα \Mα+1, α ∈ [k] are disjoint sets of machines and
|Gα|/|Mα \Mα+1| = 2. Thus this schedule has kth power
of flow time at most m(1k + 2k) = 2k(2k + 1). The desired
lower bound on the competitive ratio immediately follows.

8 Discussions and Conclusions
In this paper we introduced a scalable algorithm for the `k
norm of flow time in the unrelated machines model for any
fixed k > 0. It is important to note that our algorithm knows
the speed (ε). That is the algorithm uses ε to determine
the machine assignment of jobs. Knowing the speed the
algorithm is given has recently been shown to be useful in
scheduling analysis [22, 16, 13, 14]. One possible candidate
algorithm that does not depend on ε is the algorithm that
assigns a job to the machines which increases the (fractional)
kth norm of flow time the least. We currently do not know
if this algorithm is scalable or not. The authors were able
only to show that it is O(1)-competitive with speed k + ε. It
would be of interest to give a scalable algorithm that does not
depend on ε or show that no such algorithm exists. Our lower
bound is restricted to immediate-dispatch algorithms. Thus
there may exist a scalable non-immediate-dispatch algorithm
whose competitive ratio does not grow with k. It would be
interesting if one can obtain a scalable algorithm compared
to the migratory optimal schedule.

Acknowledgements: We thank Chandra Chekuri for many
helpful discussions and his support.

References

[1] Nir Avrahami and Yossi Azar. Minimizing total flow time and
total completion time with immediate dispatching. Algorith-
mica, 47(3):253–268, 2007.

[2] Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and Oded
Regev. Minimizing the flow time without migration. SIAM J.
Comput., 31(5):1370–1382, 2002.

[3] Nikhil Bansal and Ho-Leung Chan. Weighted flow time does
not admit o(1)-competitive algorithms. In SODA ’09: Pro-
ceedings of the Nineteenth Annual ACM -SIAM Symposium
on Discrete Algorithms, pages 1238–1244, Philadelphia, PA,
USA, 2009. Society for Industrial and Applied Mathematics.

[4] Nikhil Bansal and Kirk Pruhs. Server scheduling in the lp
norm: a rising tide lifts all boat. In STOC, pages 242–250,
2003.

[5] Nikhil Bansal and Kirk Pruhs. Server scheduling in the
weighted lp norm. In Martin Farach-Colton, editor, LATIN,
volume 2976 of Lecture Notes in Computer Science, pages
434–443, 2004.

[6] Luca Becchetti and Stefano Leonardi. Nonclairvoyant
scheduling to minimize the total flow time on single and par-
allel machines. J. ACM, 51(4):517–539, 2004.

[7] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Kirk Pruhs. Online weighted flow time and
deadline scheduling. J. Discrete Algorithms, 4(3):339–352,
2006.

[8] Michael A. Bender, Soumen Chakrabarti, and S. Muthukr-
ishnan. Flow and stretch metrics for scheduling continuous
job streams. In SODA ’98: Proceedings of the ninth annual
ACM-SIAM symposium on Discrete algorithms, pages 270–
279, 1998.

[9] Michael A. Bender, S. Muthukrishnan, and Rajmohan Rajara-
man. Improved algorithms for stretch scheduling. In SODA
’02: Proceedings of the thirteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 762–771, 2002.

[10] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Mu-
ralidhara. A competitive algorithm for minimizing weighted
flow time on unrelatedmachines with speed augmentation. In
STOC, pages 679–684, 2009.

[11] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit
Kumar. Multi-processor scheduling to minimize flow time
with epsilon resource augmentation. In László Babai, editor,
STOC, pages 363–372, 2004.

[12] Chandra Chekuri, Sungjin Im, and Benjamin Moseley.
Longest wait first for broadcast scheduling. In WAOA ’09:
Proceedings of 7th Workshop on Approximation and Online
Algorithms, 2009.

[13] Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Min-
imizing maximum response time and delay factor in broad-
casting scheduling. In ESA ’09: Proceedings of the sev-
enteenth annual European symposium on algorithms, pages
444–455, 2009.

[14] Chandra Chekuri and Benjamin Moseley. Online scheduling
to minimize the maximum delay factor. In SODA ’09: Pro-
ceedings of the Nineteenth Annual ACM -SIAM Symposium
on Discrete Algorithms, pages 1116–1125, Philadelphia, PA,
USA, 2009. Society for Industrial and Applied Mathematics.

[15] Jeff Edmonds. Scheduling in the dark. Theor. Comput. Sci.,
235(1):109–141, 2000.

[16] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes
with arbitrary speedup curves. In SODA ’09: Proceedings of
the Nineteenth Annual ACM -SIAM Symposium on Discrete
Algorithms, pages 685–692, Philadelphia, PA, USA, 2009.
Society for Industrial and Applied Mathematics.

[17] Naveen Garg and Amit Kumar. Better algorithms for mini-
mizing average flow-time on related machines. In ICALP (1),
pages 181–190, 2006.

[18] Naveen Garg and Amit Kumar. Minimizing average flow
time on related machines. In Jon M. Kleinberg, editor, STOC,
pages 730–738. ACM, 2006.

[19] Naveen Garg and Amit Kumar. Minimizing average flow-
time : Upper and lower bounds. In FOCS, pages 603–613,
2007.

[20] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy,
Benjamin Moseley, and Kirk Pruhs. Scheduling jobs with
varying parallelizability to reduce variance. In SPAA ’10:
22nd ACM Symposium on Parallelism in Algorithms and
Architectures, 2010.

[21] Mor Harchol-Balter, Mark E. Crovella, and Sungsim Park.
The case for srpt scheduling in web servers. Technical report,
1998.

[22] Sungjin Im and Benjamin Moseley. An online scalable
algorithm for average flow time in broadcast scheduling. In
SODA ’10: Proceedings of the Twentieth Annual ACM -SIAM
Symposium on Discrete Algorithms, 2010.

[23] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful
as clairvoyance. J. ACM, 47(4):617–643, 2000.

[24] Stefano Leonardi and Danny Raz. Approximating total flow
time on parallel machines. J. Comput. Syst. Sci., 73(6):875–

891, 2007.
[25] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein.

Optimal time-critical scheduling via resource augmentation.
Algorithmica, 32(2):163–200, 2002.

[26] Kirk Pruhs. Competitive online scheduling for server sys-
tems. SIGMETRICS Perform. Eval. Rev., 34(4):52–58, 2007.

[27] Abraham Silberschatz and Peter Galvin. Operating System
Concepts, 4th edition. Addison-Wesley, 1994.

[28] Andrew S. Tanenbaum. Modern Operating Systems. Prentice
Hall Press, Upper Saddle River, NJ, USA, 2007.

A Slicing transformation
In this section we explain a “slicing” technique that will be
used for our analysis. For this technique, we will focus on
an instance where there is a single machine and since we
are focusing on a single machine, we drop the machine x
notation. Let s′ denote the speed the schedule considered is
given. In the slicing technique each job i is replaced with
a set of jobs Ji of uniform processing time ∆′ = s′∆ and
uniform weight w′i = wi∆

′

pi
, where ∆ is a sufficiently small

constant. Note that each new job having size s′∆ in Ji
requires ∆ amount of time to be finished. There are a total of
pi
∆′ jobs in Ji. Notice that each job’s density is the same as
that of job i and total volume of jobs in Ji is the same as the
size of job i, i.e. pi = V Ji . These jobs all arrive at the same
time job i arrives. This method was used in [5] to reduce the
problem of minimizing `k-norm of weighted flow time to its
unweighted version. To our best knowledge, it has not been
formally stated anywhere that the slicing transformation does
not affect the weighted fractional `k norm of flow time.

To formally define the transformation, we need more
notation. For the (old) given instance of jobs I, let B(I)
denote the schedule under the scheduling policy B. We call
jobs in I ′ new to distinguish them from jobs in I. The new
schedule B′(I ′) for the new instance I ′ is naturally defined
from the old schedule B(I). That is, at any time t, job i is
processed under B(I) if and only if a job in Ji is processed
under B′(I ′); this mapping is well-defined since the slicing
preserves the volume in replacing each job i with the jobs
Ji. For each i, jobs in Ji are ordered in an arbitrary but
fixed way. We let Ji(t) denote the jobs in Ji which are alive
at time t. Note that pi(t) in B’s schedule is the same as
V Ji(t) in B′’s schedule. We say that an objective function
(or expression) fFUNC is resilient to slicing if it gives the
same value for two instances I and I ′. When I and I ′
are well-understood in the context, they may be dropped.
The following lemma easily follows from the definition of
kth power of weighted fractional flow time and the slicing
transformation.

LEMMA A.1. The weighted kth power of fractional flow
time is resilient to slicing for any schedule B.

Proof of [Lemma A.1] Consider a unit time slot [t, t + ∆).

Let j ∈ Ji be the job in I ′ completed during the time slot. Its
contribution to weighted kth power of fractional flow time is∫∆

τ=0
dj(t − rj + τ)ks′dτ . In the instance I, ∆′ amount

of work for job i is done, which gives exactly the same
contribution. 2

We now discuss the relationship between integral kth
power flow time of the new instance and the fractional kth
power flow time of the old instance. We assume that the
time is partitioned into unit time slots of size ∆ and during
each time slot exactly one job is completed. WLOG we can
further assume that jobs arrive only at the beginning of a time
slot. These are valid assumptions assuming ∆ is sufficiently
small. We let T denote the set of unit times. We will be
interested in considering the integral kth power flow time
of the new instance. Let N (set)

(condition) denote the number
of alive jobs in the (set) that satisfy the (condition). In the
slotted time model, we will consider dFUNC, the discrete
version of fFUNC for the new instance I ′. This will be
explicitly defined when it is used. When there is a need
to stress that I ′ is obtained by slicing jobs into (s′∆)-sized
jobs, we will use I ′(∆).

Then if lim∆→0 dFUNC(I ′(∆)) = fFUNC(I), we will
be able to work with the discrete version of the function
dFUNC for I ′ to obtain the desired result regarding to the
given function fFUNC for I. We will move between the dis-
crete and continuous time models depending on whichever
gives an easier analysis. Notice that this property holds for
between fractional kth power flow time of the original in-
stance and integral kth power flow time of the new instance
when ∆→ 0.

B Omitted Proofs

Proof of [Lemma 5.1] By Lemma A.1, we know that
(RHS) is resilient to slicing. We first show that so is
(LHS). Recall that we use I ′ to denote the new instance
obtained by slicing jobs. Let fFUNC denote the function
which takes an instance and gives the value of (LHS) on
the schedule by B on the instance. To save notation, for
job i ∈ B(t) and for any job j ∈ Ji(t), we will abuse
the notation >dj to include not only the jobs of density
at least dj but also the jobs in Ji(t) of the same density
which are finished before job j in the schedule B′. Consider
an infinitesimal interval [t, t + dt). Then the change in

fFUNC(B(I)) for a job i is di
∫ pBi (t)/s′

τ=0
k((V

B(t)
>di

/s′) +

τ)k−1dτdt. It can be easily shown to be equal
to

∑
j∈Ji(t)

di
∫∆

τ=0
k((V

B(t)
>di

/s′) + (V
Ji(t)
>dj

/s′) +

τ)k−1dτdt =
∑
j∈Ji(t)

dj
∫∆

τ=0
k((V

B′(t)
>dj

/s′)+τ)k−1dτdt

, which is exactly the increase in fFUNC(B(I ′)) for jobs
Ji, thus proving (LHS) being resilient to slicing.

To proceed our argument in the slotted time model, we
need to define the discrete version of both sides. Define

dFUNC, a discrete version of fFUNC as follows.

dFUNC(B′) = ∆
∑
t∈T

∑
j∈B′(t)

dj∆k(∆N
B′(t)
>dj

)k−1

= ∆k+1
∑
t∈T

∑
j∈B′(t)

djk(N
B′(t)
>dj

)k−1

It is easy to see that dFUNC(B′) goes arbitrarily close
to fFUNC(B) when ∆ → 0. Define the discrete version
dFLOWk for fFLOWk as follows.

dFLOWk(B′) = s′∆k+1
∑
t∈T

∑
j∈B(t)

djk(
fj − t

∆
)k−1

The discrete function dFLOWk scatters each job j’s kth
power of flow time over time. Job j contributes s′∆2k(fj −
t)k−1 to dFLOWk at each unit time t; thus one can think of j
being released at time fj and having increasing contribution
in the reverse time order, and being finished at time rj . More
concretely, it can be noted that each job j’s contribution to
dFLOWk is approximately its kth power of weighted flow
time from the following: ∆′dj(fj − rj)k = ∆′

∫ fj
t=rj

k(fj −
t)k−1dt ' s′∆2

∑
t∈T

∑
j∈B(t) k(fj − t)k−1; here “ ' ”

holds only when fj − rj is sufficiently big compared to ∆,
but by noting that the number of such exceptional jobs are
negligible, dFLOWk can be shown to converge to fFLOWk

when ∆→ 0.
To complete our analysis, it is sufficient to show the

following on each unit time slot [t, t+ ∆].∑
j∈B′(t)

dj(N
B′(t)
>dj

)k−1 ≤
∑

j∈B′(t)

dj(
fj − t

∆
)k−1.

For simple notation, let B′(t) = {1, 2, 3, ..., u}, and d1 ≥
d2 ≥ d3 ≥ ... ≥ du. Then

∑
j∈B′(t) dj(N

B′(t)
>dj

)k−1 =∑
i∈[u] du(u − 1)k−1. Since only one job can be completed

at each unit time, fj−t∆ is a distinct integer for all j ∈ B′(t).
It is easy to see that

∑
j∈B′(t) dj(

fj−t
∆)k−1 has the minimum

value when fj−t
∆ = j, completing the proof. 2

Proof of [Lemma 5.2] For this lemma we need the following
proposition,

PROPOSITION B.1. For any x1, x2, ..., xn ≥ 0,

(

n∑
i=1

xi)
k =

n∑
i=1

k

∫ xi

τ=0

(

n∑
j>i

xj + τ)k−1dτ .

Proof.

(RHS) =

n∑
i=1

((

n∑
j≥i

xj)
k − (

n∑
j>i

xj)
k)

=

n∑
i=1

(

n∑
j≥i

xj)
k −

n∑
i=2

(

n∑
j≥i

xj)
k

= (LHS)

By Proposition B.1, we have

v
(∑
di>v

(pBi (t)/s′)
)k

= v
∑

i ∈ B(t)
di > v

∫ pBi (t)/s′

τ=0

k
(∑

j ∈ B(t)
dj > max(di, v)

(pj(t)/s
′) + τ

)k−1

dτ

≤
∑
i∈B(t)

di

∫ pBi (t)/s′

τ=0

k
(

(V
B(t)
>di

/s′) + τ
)k−1

dτ

By multiplying both sides by s′k, we obtain the first in-
equality. The above inequality, with Lemma 5.1, immedi-
ately implies the second desired inequality. 2

Proof of [Lemma 5.3] By considering whether (t− ri) ≥ τ
or not, we have

(LHS)

≤ 2k
[∫ ∞

t=0

db(x,t)(t− rb(x,t))
kdt +

∫ ∞
t=0

db(x,t)(p
O
b(x,t)(t))

kdt

]
The first term

∫∞
t=0

db(x,t)(t−ri)kdt is easily upper bounded
by OPTx from the definition of kth power of fractional flow
time. The second term

∫∞
t=0

db(x,t)(p
O
b(x,t)(t))

kdt can be
bounded also by OPTx by observing that each job i can
contribute at most

∫ pix
τ=0

dix(pix−τ)kdτ , the minimum value
of kth power of fractional flow time for job i be completed
by any schedule. 2

Proof of [Lemma 5.4] By considering whether (t− ri) ≥ τ
or not, we have

(LHS)

≤ 2k−1
[∫ ∞

t=0

∑
i∈Ox(t)

dip
O
i (t)k(t− ri)k−1dt

+

∫ ∞
t=0

∑
i∈Ox(t)

dix

∫ pOi (t)

τ=0

k(τ)k−1dτdt
]

By the definition of kth power of fractional flow time and
Corollary 5.2, the lemma easily follows. 2

Proof of [Lemma 5.5] Consider any fixed time t. We can
assume that all jobs in A(t) and O(t) have infinitesimal size,
since both sides are resilient to slicing. We partition Ox(t)
into I(t) and I ′(t) depending on whether a job i satisfies
V
A(t)
>di

≤ k
εV

O(t)
>di

or not. For the set I(t), by Corollary 5.2,
we have

∫ ∞
t=0

∑
i∈I(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

≤ (
k

ε
)k−1

∫ ∞
t=0

∑
i∈I(t)

di

∫ pOi (t)

0

(V
O(t)
>di

+ τ)k−1dτdt

≤ 1

k
(
k

ε
)k−1OPTx.

We now focus on I ′(t). We first show that there exists
a family of disjoint sets Gi(t) ⊆ A(t),∀i ∈ I ′(t) satisfying
all the following conditions:

1. ∀i ∈ I ′(t), V Gi(t) = 1
ε p
O
i (t)

2. ∀i ∈ I ′(t), ∀j ∈ Gi(t), V A(t)
>dj

≥ (1− 1
k)V

O(t)
>di

3. ∀i ∈ I ′(t), ∀j ∈ Gi(t), dj ≥ di.

The family can be constructed as follows. For simple
notation, let I ′(t) = [u] and jobs are indexed in decreasing
order of density, that is d1 ≥ d2 ≥ ... ≥ du. We inductively
define G1(t) to Gu(t). To each group Gi(t), we assign
1
ε p
O
i (t) volume of jobs from {j ∈ A(t) | (1 − 1

k)V
A(t)
>di

≤
V
A(t)
>dj

≤ V
A(t)
>di
} \ (

⋃
1≤i′<iGi′(t)). This can be done

because

V (
⋃

1≤i′<iGi′ (t)) +
1

ε
pOi (t)

=
1

ε

∑
i′∈[i]

pOi (t) ≤ 1

ε
V
O(t)
≥di ≤

1

k
V
A(t)
>di

.

The last inequality comes from the definition of I ′(t); here
the infinitesimal size of pOi (t) is ignored.

We are now ready to complete the proof. For each
i ∈ I ′(t), the term dip

O
i (t)(V

A(t)
>di

)k−1 in (LHS) is charged
to the term in (RHS)

∑
j∈Gi(t)

dj

∫ pAj (t)

τ=0

(V
A(t)
>dj

+ τ)k−1dτ

≥ di
1

ε
pOi (t)((1− 1

k
)V

A(t)
>di

)k−1 ≥ di
3ε
pOi (t)(V

A(t)
>di

)k−1

The first inequality holds because of the three conditions
each group Gi satisfies. Hence we have,∫ ∞

t=0

∑
i∈I′(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

≤ 3ε

∫ ∞
t=0

∑
i∈I′(t)

∑
j∈Gi(t)

dj

∫ pAj (t)

τ=0

(V
A(t)
>dj

+ τ)k−1dτdt

≤ 3ε

∫ ∞
t=0

∑
i∈A(t)

di

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτdt

This completes the proof. 2

Proof of [Lemma 5.6] We partition jobs in Ax(t) into I(t)

and I ′(t); each job i in A(t) satisfying V O(t)
>di

≤ ε2

k V
A(t)
>di

is
in I(t), otherwise it is in I ′(t). For the set I(t), it is trivial to
see that

∑
i∈I(t)

dip
A
i (t)(V

O(t)
>di

)k−1

≤ (
ε2

k
)k−1

∑
i∈A(t)

di

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτ

For the other set I ′(t), we will show that∑
i∈I′(t)

dip
A
i (t)(V

O(t)
>di

)k−1

≤ 3k2

ε2

∑
i∈O(t)

di

∫ pOi (t)

τ=0

(V
O(t)
>di

+ τ)k−1dτ

The remaining proof is very similar to that of
Lemma 5.5. As in the proof of Lemma 5.5, we can assume
that jobs in A(t) and O(t) have infinitesimal size. Also sim-
ilarly, we can find a family of disjoint sets Gi(t) ⊆ O(t), i ∈
I ′(t) such that

1. ∀i ∈ I ′(t), V Gi(t) = ε2

k2 p
A
i (t).

2. ∀i ∈ I ′(t), ∀j ∈ Gi(t), V O(t)
>dj

≥ (1− 1
k)V

O(t)
>di

.

3. ∀i ∈ I ′(t), ∀j ∈ Gi(t), dj ≥ di.
This can be found as follows. For simple notation, let

I ′(t) := [u] and jobs are indexed in decreasing order of
density, that is d1 ≥ d2 ≥ ... ≥ du. We inductively define
G1(t) to Gu(t). To each group Gi(t), we assign ε2

k2 p
A
i (t)

volume of jobs from {j ∈ O(t)|(1 − 1
k)V

O(t)
>di

≤ V
O(t)
>dj

≤
V
O(t)
>di
} \
⋃
i′∈[i−1]Gi′(t). This can be done because

V (
⋃

i′∈[i−1]Gi(t)) +
ε2

k2
pAi (t)

=
ε2

k2

∑
i′∈[i]

pAi (t) ≤ ε2

k2
V
A(t)
>di

≤ 1

k
V
O(t)
>di

.

The last inequality is due to the definition of I ′(t)
ignoring the infinitesimal size of pAi (t).

We are now ready to complete our proof. For each
i ∈ I ′(t), the term pAi (t)(V

O(t)
>di

)k−1 in (LHS) is charged
to

∑
j∈Gi(t)

dj

∫ pOj (t)

τ=0

(V
O(t)
>dj

+ τ)k−1dτ

≥ diV
Gi(t)((1− 1

k
)V

O(t)
>di

)k−1 ≥ ε2

3k2
dip

A
i (t)(V

O(t)
>di

)k−1

Hence we have

∫ ∞
t=0

∑
i∈I′(t)

dip
A
i (t)(V

O(t)
>di

)k−1dt

≤ 3k2

ε2

∫ ∞
t=0

∑
i∈I′(t)

∑
j∈Gi(t)

dj

∫ pOi (t)

τ=0

(V
O(t)
>di

+ τ)k−1dτdt

≤ 3k2

ε2

∫ ∞
t=0

∑
i∈Ox(t)

di

∫ pOi (t)

τ=0

(V
O(t)
>di

+ τ)k−1dτdt

≤ 3k

ε2
OPTx

The last inequality is due to Corollary 5.2. This completes
the proof. 2

	Introduction
	Definitions and Preliminaries
	Relationship between fractional and integral flow time
	Overview of Analysis

	Algorithm and Potential Function
	Non-continuous Changes
	Continuous Changes
	Analyzing ddt x,1(t)
	Analyzing ddt x,2(t)
	Bounding the total change of (5.5) over time
	Bounding the total change of (5.7) over time

	Analyzing ddt x,3(t)

	Final Analysis
	Lowerbound on the competitive ratio of the algorithm
	Discussions and Conclusions
	Slicing transformation
	Omitted Proofs

