
ONLINE SCHEDULING ALGORITHMS
FOR AVERAGE FLOW TIME AND ITS VARIANTS

BY

SUNGJIN IM

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Associate Professor Chandra Chekuri, Chair
Professor Jeff Erickson
Professor Nitin Vaidya
Associate Professor Nikhil Bansal, Eindhoven University of Technology

Abstract

This dissertation focuses on scheduling problems that are found in a client-

server setting where multiple clients and one server (or multiple servers) are

the participating entities. Clients send their requests to the server(s) over time,

and the server needs to satisfy the requests using its resources. This setting

is prevalent in many applications including multiuser operating systems, web

servers, database servers, and so on.

A natural objective for each client is to minimize the flow time (or equivalently

response time) of her request, which is defined as its completion time minus

its release time. The server, with multiple requests to serve in its queue, has

to prioritize the requests for scheduling. Inherently, the server needs a global

scheduling objective to optimize. We mainly study the scheduling objective

of minimizing `k-norms of flow time of all requests, where 1 ≤ k < ∞. These

objectives can be used to balance average performance and fairness.

A popular performance measure for online scheduling algorithms is competitive

ratio. An algorithm is said to be c-competitive if its objective is within a

multiplicative factor c of the optimal scheduler’s objective for any sequence of

requests. Roughly speaking, an algorithm with a small competitive ratio performs

well compared to the optimal scheduler even on a worst case input. However,

for some problems, competitive ratio could be large for any online algorithm. In

such cases, a popular relaxation is resource augmentation where the algorithm

is run on a faster machine and compared to the optimal scheduler with one

speed. In particular, a scheduling algorithm is said to be scalable if it has a small

competitive ratio with any amount of speed augmentation. For problems that

have a large lower bound on the achievable competitive ratio, a scalable algorithm

is essentially the best one can hope for, in the worst case analysis framework.

We give the first scalable algorithms in several scheduling settings for the `1

norm or `k norms of flow time (k ≥ 2). These settings include broadcast schedul-

ing, scheduling jobs of different parallelizability, and scheduling on heterogeneous

machines, and are described below:

• Broadcast scheduling. There is a server that stores pages that contain useful

data. Each request arrives over time asking for a specific page. When

the server broadcasts a page p, all outstanding requests for the same page

are satisfied simultaneously. This is the main difference from standard

ii

scheduling settings where the server must process each request separately.

The broadcast model is motivated by several applications such as multicast

systems and wireless and LAN networks.

• Scheduling jobs of different parallelizability. In this model, jobs have varying

degrees of parallelizability (that is, some jobs may be sped up considerably

when simultaneously run on multiple processors, while other jobs may be

sped up by very little) on a multiprocessor system. The most obvious

settings where this problem arises are scheduling multi-threaded processes

on a chip with multiple cores/processors, and scheduling multi-process

applications in a server farm.

• Scheduling on heterogeneous machines. In this dissertation, two cases

are mainly considered: related machines and unrelated machines. In the

related machines setting, machines may have different speeds. In the more

general unrelated machines setting, jobs may have completely different

processing times depending on the machines they are assigned to.

In all the above models, the online algorithm and the optimal scheduler

may have to do different amount of work to complete the same set of requests.

This makes it challenging to design and analyze scheduling algorithms. The

results presented in this dissertation are enabled by the development of novel

analysis techniques.

iii

This dissertation is dedicated to my parents for their endless love and support

iv

Acknowledgments

I am deeply indebted to my Ph.D. advisor, Chandra Chekuri, for his guidance,

support and encouragement throughout my Ph.D. research. He always helped

me with invaluable and timely advice and continuously fostered my growth as a

researcher. In particular, I am very grateful for his patience with me as a young

graduate student. His high standards and passion for research and teaching

will always be a great inspiration to me.

Thanks to Kirk Pruhs for inviting me many times to collaborate in Pittsburgh.

During my visits, each day was full of stimulating ideas. I will never forget

the fun of wrestling with a problem all day long while there, enjoying discus-

sions with intelligent people. It was also great fun brewing beer, particularly

outside in wintertime.

I wish to thank my formal and informal mentors during my summer internship.

I thank Yajun Wang for his generous time sharing at MSRA. I thank Nikhil Bansal

for inviting me to intern for a summer at IBM T. J. Watson in 2011. Although I

had only a short overlap with him before he moved to the Netherlands, discussing

my research with him was always a great inspiration. My formal mentor there,

Viswanath Nagarajan, showed me how energetic one can be in his approach to

research. Additionally, Maxim Sviridenko, now at the University of Warwick,

taught me the importance of rigorous thinking and was always fun to talk to.

I would like to sincerely thank Jeff Erickson and Nitin Vaidya for serving

on my prelim/dissertation committee. They provided invaluable comments

on my research.

My lab mate, Ben Moseley, has earned my special thanks and appreciation.

We collaborated on many research problems. Whenever I came to office, I was al-

ways excited by the fact that I could chat with him for hours on research problems.

Many findings in this dissertation would not have been possible without him.

I also wish to thank former and current theory folks at UIUC for making my

Ph.D. studies more enjoyable. They are brilliant and often provided a pleasant

distraction during the busy work day.

Finally, I would like to thank my parents for their endless support, love,

trust and commitment. I am extremely fortunate to have my mother and father

as my parents. I also want to thank my older brother Sunghoon. I know how

much he cares for me, and I deeply appreciate that. I also wish to thank my

v

fiancee, Myra, for the times we have cherished together at UIUC and for the

life we will make together forever.

The research in this dissertation has been supported mainly by a Sam-

sung Fellowship and in part by NSF grants CCF-0728782, CNS-0721899, and

CCF-1016684.

vi

Table of Contents

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1
1.1 Notation and Terminology . 4
1.2 Objective Functions . 5
1.3 Analysis Framework . 8

1.3.1 Approximation Ratio . 8
1.3.2 Competitive Ratio . 9
1.3.3 Relaxed Worst Case Analysis: Resource Augmentation . . 10

1.4 Basic Scheduling Algorithms . 11
1.5 Analysis Tools . 13

1.5.1 Local Competitiveness Argument 13
1.5.2 Potential Functions for Online Scheduling 14
1.5.3 Conversion between Fractional and Integral Objectives . . 15

1.6 Problem Definition and Overview of Contributions 15
1.6.1 Broadcast Scheduling . 16
1.6.2 Arbitrary Speed-up Curves (Scheduling Jobs of Different

Parallelizability) . 17
1.6.3 Heterogeneous Machines 18

1.7 Dissertation Outline . 21

Chapter 2 Broadcast Scheduling 22
2.1 Introduction . 22

2.1.1 Our Results . 24
2.1.2 Related Work . 25

2.2 Formal Problem Statement and Notation 25
2.3 Longest Wait First . 27

2.3.1 Preliminaries . 28
2.3.2 Analysis . 29

2.4 First Scalable Algorithm: Latest Arrival time with Waiting (LA-W)
. 32

2.4.1 Algorithm . 33
2.4.2 Analysis . 35

2.5 Concluding Remarks . 46

Chapter 3 Non-clairvoyant Scheduling with Arbitrary Speedup
Curves . 48
3.1 Introduction . 48

3.1.1 Our Results . 50
3.1.2 Related Results . 50

vii

3.2 Formal Problem Statement and Notation 51
3.3 Limitation of Latest Arrival Processor Sharing (LAPS) for the

`k-norms . 52
3.4 Non-clairvoyant Algorithm Weighted LAPS (WLAPS) 52
3.5 Analysis . 54

3.5.1 Restricted Instances are Sufficient 54
3.5.2 Potential Function . 56
3.5.3 Intuition Behind the Potential Function 56
3.5.4 Main Analysis . 57

3.6 Concluding Remarks . 61

Chapter 4 Scheduling on Unrelated Machines 62
4.1 Introduction . 62

4.1.1 Our Results . 64
4.1.2 Our Techniques . 65

4.2 Formal Problem Statement and Notation 66
4.3 Algorithm and Potential Function 67
4.4 Upperbound: Non-continuous Changes 69
4.5 Upperbound: Continuous Changes 70

4.5.1 Analysis Tools . 71
4.5.2 Proof of Lemma 25 and 26 73
4.5.3 Analyzing d

dtΦx,1(t) . 76

4.5.4 Analyzing d
dtΦx,2(t) . 77

4.5.5 Analyzing d
dtΦx,3(t) . 80

4.6 Upperbound: Final Analysis . 83
4.7 Lowerbound . 84
4.8 Concluding Remarks . 84

Chapter 5 Non-clairvoyant Scheduling on Related Machines . 86
5.1 Introduction . 86

5.1.1 Our Results . 89
5.1.2 Related Work . 90

5.2 Formal Problem Statement and Notation 92
5.3 Latest Arrival Processor Sharing (LAPS) on a Heterogeneous

Multiprocessor for Flow Plus Energy 93
5.3.1 Simplifying Assumptions 94
5.3.2 Potential Function Analysis 94

5.4 Lower Bounds on Weighted Flow Time on Related Machines . . 98
5.4.1 Lower Bound for Highest Density First (HDF) 98
5.4.2 A Lower Bound for Weighted Shortest Elapsed Time First

(WSETF) . 99
5.4.3 A Lower Bound for Weighted Latest Arrival Processor

Sharing (WLAPS) . 100
5.4.4 Local Competitiveness Lower Bounds 102

5.5 Concluding Remarks . 103

Chapter 6 Future Research Directions 105

Bibliography . 107

viii

List of Tables

5.1 Guarantees for the standard scheduling algorithms on a single
processor . 91

5.2 Guarantees for the standard scheduling algorithms on a homoge-
neous multiprocessor . 91

5.3 Guarantees for the standard scheduling algorithms on a heteroge-
neous multiprocessor . 91

ix

List of Figures

1.1 The performance curves of online algorithm and the optimal
algorithm [87]. 11

2.1 Events for page p. 29
2.2 Rp(t) denotes the alive requests of page p at time t, i.e. the

requests of page p which arrived during [L(p, t), t]. Likewise,
Rp(τ

β
p (t)) denotes the requests which arrived during [L(p, t), τβp (t)]. 34

2.3 Events for page p. 35
2.4 For any event Ep,x in T2, OPT must broadcast page p during

[t1, t3). 43
2.5 For an event Ep,x in T3, during [t1, ep,x) OPT must make a unique

broadcast for most events which end during [t3, ep,x). 44

x

Chapter 1

Introduction

Scheduling jobs is a fundamental problem that arises in numerous forms and in

various situations. Each job, for example, can be a unit of work that arrives

for service at a computer system or can be of an abstract form that needs to

be done by human power. Scheduling problems can, in an abstract way, be

described as assigning limited resources to jobs over time to satisfy or optimize

a certain objective. Due to its wide appearance in practice, scheduling has been

an important field in many disciplines such as operations research and computer

science. A comprehensive overview on the topic of scheduling can be found in [79].

It was in early 1950’s that operations research and management science

initiated the study of scheduling problems. The motivation stemmed mainly

from production planning in manufacturing process. In early 1960’s, computer

scientists added another angle when they designed scheduling algorithms for

operating systems to expedite program executions. It was a timely research

endeavor particularly due to insufficient and expensive computer resources such as

CPU and memory. Consequently, computer science has become one of the main

disciplines that led the research on scheduling algorithms, finding applications

in compilers, parallel computing, operating systems, databases and so on. This

thesis focuses on the scheduling problems arising in computer science, particularly

in the client-server setting. In this setting, there are multiple clients and one

server (or multiple servers). Clients submit their requests to the server(s) over

time, and the server needs to satisfy the requests. This setting is prevalent in

many applications including multiuser operating systems, web servers, database

servers, and name servers.

Perhaps the most obvious objective for each client is to minimize the flow

time (or equivalently the response time) of her request, which is defined as its

completion time minus its release time. That is, each client wants her request to

be scheduled as early as possible. The server, with multiple requests to serve

in its queue, has to make a scheduling decision of which request to schedule

first. Inherently, the server needs a global objective. One of the most popular

objectives is to minimize the average (or equivalently total) flow time. However,

because focusing on minimizing the average flow time may let some jobs starve

for an unacceptably long time, other objective functions that take fairness under

consideration may be preferred in some situations. In general, we will study the

1

scheduling objectives of minimizing `k-norms of flow time of all requests, where

1 ≤ k <∞; usually k is assumed to be an integer. These objectives can be used to

make a natural balance between average performance and fairness; more weight

is put on fairness as k grows. The values k = 1, 2 and ∞ are of practical interest.

Since scheduling problems can be viewed as optimization problems, the history

of scheduling research particularly in theoretical computer science is tied closely

to the development of algorithms and computational complexity in the broad

context of combinatorial optimization. In early days, scheduling problems were

relatively simple and the focus was mainly to develop optimal algorithms. Since

Karp’s seminal work on NP-hardness, many scheduling problems were shown

to be NP-hard, which implies that no efficient (polynomial-time) algorithms

are likely to exist for such problems. This had shifted a substantial amount of

research to approximation algorithms, seeking efficient algorithms that yield

a solution that is as close to the optimum as possible 1. Such a quality can

be formally measured by the approximation ratio (or factor), which is defined

roughly as the worst ratio between the algorithm’s objective and the optimal

scheduler’s objective. Consequently, many classical and important approximate

scheduling algorithms were developed. For more details, the reader is referred

to several informative surveys [72, 77, 61].

It would be worth comparing such algorithms with theoretical approximation

guarantees to heuristics that are implemented and deployed in practice. Heuristics

are often observed to perform fairly well for most cases of input. However, they

do not provide a guaranteed performance, i.e., for some input, their performance

could be substantially far from the optimum. The approximation factors that are

theoretically proven are often too large to be embraced in practice. Still, such

an analysis is of fundamental and practical interest for the following reasons.

In addition to the guaranteed performance aforementioned, its performance

is often in practice very close to the optimum. This is because pathological

instances rarely occur in practice. Perhaps more importantly, the ideas that

are used in designing provably-good approximation algorithms and in showing

the hardness give invaluable insights into the problem, which can be readily

tuned into practical heuristics. For an overview of the field of approximation

algorithms, the reader is referred to [98, 101].

When the input has online nature, the problem becomes more challenging.

In the online setting, the scheduler becomes aware of each job only when it is

released. There are largely two different models depending on how much the

scheduler becomes aware of a job’s properties upon its arrival. A scheduler is

said to be clairvoyant if it learns all the properties of each job, in particular its

size, upon its arrival. In contrast, a non-clairvoyant algorithm knows only when

a job is released and completed. In either case, the online scheduler does not

have the knowledge of jobs arriving in the future. The absence of knowledge

1Interestingly, Graham’s seminal work on the list scheduling algorithm precedes the intro-
duction of NP-hardness and is believed to be the first approximation algorithm.

2

of future jobs, possibly in addition to computational hardness, clearly makes

the problem more difficult in the online setting.

Competitive ratio is a popular quantity that measures the worse case perfor-

mance of an online algorithm. For an objective to be minimized (or maximized),

an algorithm is said to be c-competitive if for any job instance, its objective is

at most c (or at least 1/c) times the optimal offline scheduler’s objective. It is

important to note that the online algorithm is compared against the optimal

offline scheduler that knows all jobs along with their properties at the beginning.

Although online algorithms are not required to run in polynomial time in the

definition of the competitive ratio, we will assume that they are in the scheduling

context, since in practice usually simple and efficient scheduling policies are

preferred. We will call this analysis model the worst case analysis. This model

has a limitation in that it does not utilize any known distribution of the input.

However, it also has a positive side: the provably-good algorithms in this analysis

model are truly robust to all kinds of input. An extensive overview of online

algorithms under the worst case analysis model can be found in [22]. For an

overview of online scheduling algorithms, the reader is referred to [87, 85].

Unfortunately, for many problems, any online algorithm has an unacceptably

large competitive ratio. This is because an online algorithm often inevitably

makes non-optimal scheduling decisions without the knowledge of future jobs

and such repeated non-optimal decisions finally result in a huge penalty. To

remedy this limitation of the worst case analysis, a popular relaxation called

resource augmentation was introduced by Kalayanasudaram and Pruhs [69]. In

this relaxed model, the online algorithm is given extra speed to process jobs

and compared to the optimal offline scheduler. In other words, the algorithm

runs on a faster machine while the optimal scheduler runs on a 1-speed machine.

Surprisingly, this slight speed augmentation dramatically improves the achievable

competitive ratio. More importantly, this relaxation has been successful in

separating good scheduling algorithms from poor ones. In particular, a scheduling

algorithm is said to be scalable if it has a constant competitive ratio (depending

only on ε) when given (1 + ε)-speed. A scalable algorithm is essentially the

best result one can hope for in the worst case analysis framework/model if the

problem has a strong lower bound on the achievable competitive ratio. This is

because a scalable algorithm, with any small amount of speed augmentation, can

be compared to the optimal scheduler. Scalable algorithms are often observed

to perform well in practice.

In this dissertation, we study three different scheduling models, broadcast

scheduling, scheduling jobs of different parallelizability, and scheduling on het-

erogeneous machines; we will discuss these models in Section 1.6. In each of

these models, we give the first scalable algorithm for minimizing average flow

time (`1 norm) or for `k norms of flow time, k ≥ 2 2.

2In this dissertation, for the easy of analysis, `k norms are considered only when k is a
positive integer. Our results can be easily extend to real values k ≥ 1.

3

1.1 Notation and Terminology

We first define basic notation that will be used throughout this thesis. The

notation may be changed slightly for each of the scheduling models under

consideration. For job i, let ri denote its arrival time (or release time). The

(initial) size of job i is denoted as pi. In some problems, each job may have

a weight wi which stands for its importance. Throughout this dissertation,

we consider the setting where all jobs must be completed. A job, which has

arrived but is not completed, is said to be unsatisfied, alive, or outstanding. We

may say that outstanding jobs are in the scheduler’s queue. Thus any feasible

schedule σ defines each job i’s finish time, Cσi . The superscript σ may be dropped

when it is clear from the context. We let OPT denote an optimal scheduling

algorithm; of course, the “optimality” hinges on the objective function. When

a scheduling algorithm (policy) ALG and an instance σ of jobs are given, we

let ALG(σ) denote the schedule produced by ALG. For notional simplicity,

we allow ALG(σ) also denote the value of the schedule for the given objective

function. Therefore, OPT(σ) may denote an optimal schedule for σ or the

optimal value itself depending on the context.

We now formally define a feasible schedule and a job’s completion time. In

a feasible schedule, at any time, a job can be processed on at most a single

machine; the scheduling model, scheduling jobs of different parallelizability that

will be covered in Chapter 3 is the only exception, and we defer the discussion

on that model to Section 1.6.2. We first need to define preemption.

Preemptive vs. Non-preemptive: A preemptive scheduler can, without any penalty

or delay, preempt a job being processed to work on other jobs and resume it

later (from the point of the job where it was processed last). Some algorithms

such as Round Robin (RR) may preempt a job infinitely many times, since

at any instantaneous time, all outstanding jobs equally share the processor

(such algorithms, in practice, are implemented by making preemptions occur

frequently). In contrast, a non-preemptive scheduler must complete a job without

interruption once the machine starts working on it. In most cases, preemption is

necessary to obtain positive results, and we will be concerned with preemptive

schedulers unless stated otherwise.

The completion time Ci of a job Ji is defined as the first time that it receives

pi amount of work since its arrival. To formally define the completion time Ci,

preempted finite times, the completion time Ci is defined the first time τ such

that
∑h
l=1 sh|Th| ≥ pi, where {Tl}hl=1 are the disjoint time intervals in [ri, Ci],

and sh is the speed that Ji is processed during Tl. The speed of the machine

that Ji is processed on can be non-unit for the following reasons.

• Heterogeneous machines: In the related machines setting, machines may

have different speeds, sx. A job Jj of size pj can be completed within pi/sx

unit times on machine Mx with speed sx. In the more general unrelated

machines setting, each job Ji has a processing time pix on machine Mx it is

4

assigned to. An equivalent view is that Ji has a unit size, and is processed

on machine x at a speed of 1/pix.

• Speed scaling: Most modern machines have speed scaling capability that

can dynamically change the speed of the machines. Machines can be sped

up by consuming more power. The speed function Qx(P) of each machine

Mx is given as an input and specifies the speed that machine x runs on

when using power P ≥ 0.

• Speed augmentation: as previously mentioned, in the relaxation called

resource (or speed) augmentation, the online algorithm is given extra speed

(or is run on a faster machine). If the algorithm is given speed s, a job is

processed s times faster compared to when the algorithm is given just one

speed.

When the number of preemptions of a job Ji is unbounded, it is more

suitable to define its completion time based on the rate (or instantaneous speed)

at which it is processed. For example, on a single machine, the algorithm

RR lets all outstanding jobs get the equal share any instantaneous time. Let

N(t) be the number of outstanding jobs at time t under the schedule of RR.

The job Jj is processed at a speed that is 1/N(t) times the speed that it is

processed when it exclusively uses the whole processing; this is not the case

in the scheduling model where jobs have different parallelizability, and we will

discuss this further in Section 1.6.2 and Chapter 3. The completion time Ci

is then defined as the first time when
∫ Ci
t=ri

s(t)dt ≥ pi, where s(t) is the rate

at which Ji is processed at time t.

We finally define clairvoyant and non-clairvoyant schedulers depending on

how much information is revealed to the scheduler upon a job’s arrival.

Clairvoyant vs. Non-clairvoyant : In some cases, the scheduler may not be aware

of the actual size of a job before its completion. This is often the case for the

scheduler for operating systems. Such a scheduler is said to be non-clairvoyant

and is considered to be more suitable in certain settings. We will study non-

clairvoyant scheduling algorithms when jobs have different parallelizability and

when machines have non-uniform speeds, in Chapters 3 and 5, respectively. These

models are described briefly in Sections 1.6.2 and 1.6.3, respectively. In other

sections, we will be concerned with clairvoyant algorithms that are provided

with all properties of each job upon its arrival, including its size and weight.

1.2 Objective Functions

The scheduling objective of choice may vary depending on the systems’ priority.

In this section, we discuss the objectives that will be studied in this dissertation.

Throughout this dissertation, we are interested in the settings where the server

is required to complete all jobs. For an individual job i, the most popular metric

5

is its flow time (or response time), Ci − ri, which is the length of time between

when the job i (will sometimes be denoted as Ji) is released at time ri and

when it completes at time Ci. To get a quality of service measure for the entire

schedule, one must combine the quality of service measures of the individual

jobs. The most commonly used way to do this is to take the average, or the

sum (the `1 norm) of the flow times of the individual jobs. Formally, the total

flow time (the `1-norm) is defined as
∑
i(Ci − ri). Its weighted version, that

is the total weighted flow time is defined as
∑
iwi(Ci − ri). Total flow time

can be viewed as equivalent to average flow time assuming that all jobs must

be completed which is the case throughout this thesis.

Unfortunately, algorithms which focus only on minimizing the total flow time

may be substantially unfair to individual jobs by allowing some jobs to starve for

an arbitrarily long time. Designing a scheduling algorithm that is fair to all jobs

overall is important for practical scheduling algorithms [96]. Due to unfairness,

competitive algorithms for average flow time are not often implemented [62, 8].

In practice, it is usually more desirable for the system to be predictable for

each job than optimal on average [96, 91]. Indeed, Silberschatz and Galvin’s

classic text Operating Systems Concepts [91] states “A system with reasonable

and predictable response time may be considered more desirable than a system

that is faster on the average, but is highly variable.” and “ . . . for interactive

systems, it is more important to minimize the variance in the response time

than it is to minimize the average response time.”

Hence, in some settings, the `k-norm of flow time k

√∑
i∈[n](Ci − ri)k for

some k > 1 may be a better service measure quality than the `1 norm of job flow

times. In practice, k ∈ {1, 2,∞} is usually considered. Minimizing the `k norms

of flow time was first introduced by the influential paper of Bansal and Pruhs [8].

The `k-norm of weighted flow time is defined as k

√∑
i∈[n] wi(Ci − ri)k. In the

`k norm objective (k ≥ 2), the algorithm is severely penalized when a job waits a

substantial amount of time to be satisfied. Further, in the `k-norm, the flow time

is still being considered and the algorithm must also focus on average quality of

service. By optimizing the `k norm of flow time, the algorithm balances average

quality of service and fairness. This makes online algorithms that are competitive

for the `k-norm of flow time desirable in practice. The following simple example

illustrates the difference between the `1 norm and `2 norm.

A Simple Instance: As a well known concrete example of difference between the

`1 and `2 norms, consider a single-machine instance where two jobs are released

at time 0, and one job is released at each integer time 1, 2, . . . , n. All jobs are

identical, and the system takes one unit of time to finish each job. When the

objective is to minimize the `1 norm of the flow time, one can see that every

non-idling schedule is optimal. In particular, the schedule that has flow time 1

for all jobs except for one of the jobs released at time 0 (which will have flow time

n) is also optimal. This however is not optimal for the `2 norm. Scheduling jobs

6

in order of their release time results in the optimal schedule where all jobs have

flow time at most 2. Thus a schedule that is good under the `2 norm reduces the

variance of the job flow times relative to an optimal schedule for the `1 norm.

We also study objectives involving power minimization. Power minimization

has been an increasingly important issue with the ever-growing size of data to

be processed, which is illustrated by the following quote:

What matters most to the computer designers at Google is not speed,

but power, low power, because data centers can consume as much

electricity as a city. — Eric Schmidt, CEO Google

Another important motivation for power minimization is to make increasingly

available portable computing devices to last longer on limited battery power. The

reader is referred to the informative survey in [68] for an overview of theoretical

investigations on the topic of power minimization.

Speed scaling is one of the main technologies to save energy. Here each

machine can run in various speeds, consuming different amount of power de-

pending on the speed it runs in. Generally, the power grows super-linearly in

the speed. Such a relationship can be expressed as a power function P (s) that

specifies the power the machine consumes when it runs at speed s. The most

popular power function considered in the scheduling literature is P (s) = sα for

some α > 1. Recently, a general power function P has received considerable

attention that needs to satisfy only the following constraints [13, 56, 59] (its

inverse function Q = P−1 is often used.) :

• P is non-negative.

• P is continuous.

• P is differentiable on all but countably many points.

• There is a maximum allowable speed or that the limit inferior of P (s)/s as

s approaches infinity is positive.

In this dissertation, we focus on the objective of minimizing the total flow

time plus the total energy consumption. In the offline setting a most appealing

objective would be to minimize the total flow time within a certain energy

budget. However, in the online setting where a infinite sequence of jobs arrive, a

budget constraint cannot be imposed. Hence it would be reasonable to consider

the following objective.

λ (total flow time) + (total energy consumption)

This objective implies that one is willing to use an additional unit of energy

to improve the overall system performance, measured by the total flow, by an

7

amount of λ. By scaling the power function P (·), one can assume without loss

of generality that λ = 1. This objective will be considered in the heterogeneous

machine setting in Chapter 5. One can consider the `k norms of flow time plus the

total energy consumed, but it does not have a natural interpretation as the above.

A variant objective of minimizing
∑
i∈[n](Ci− ri)k + (total energy consumption)

was considered in [58].

We note that there are serveral other metrics that are considered in the

scheduling literature such as the maximum flow time (the `∞-norm of flow time)

or the maximum throughput (the number of jobs that are completed by their

deadline). This dissertation will focus primarily on the `k norm of (weighted)

flow time when 1 ≤ k <∞, and on total flow time plus energy consumption.

1.3 Analysis Framework

Many scheduling problems are NP-hard as are other combinatorial optimization

problems. Hence it is strongly believed that efficient (polynomial-time) optimal

algorithms do not exist. Further, in the online setting where the online scheduler

cannot see the future jobs, it may be the case that no online algorithm could be

optimal. Given that scheduling algorithms should be efficient enough to yield

schedules in timely manner, we will aim at obtaining efficient (polynomial-time)

algorithms that yield solutions as close to the optimal solution as possible. In

this section, we define approximation ratio (factor) and competitive ratio which

are widely accepted measures of the performance of offline and online algorithms,

respectively. Since this dissertation is focused on scheduling problems, we will give

the definition in the language of scheduling. We also formally describe the popular

relaxation called resource augmentation that is widely used in online scheduling.

Before defining our analysis framework, we first formally define scheduling

problems. A scheduling problem consists of constraints and an objective. The

input is a job instance σ. For example, consider the problem of minimizing

average flow time on a single machine. The job instance σ will be given as a set

of jobs Ji, i ∈ [n] with release time ri and size pi. Any feasible schedule must

satisfy the constraints that at any time at most one job can be processed on

the machine and that all jobs must be completed. The objective is, needless to

say, to minimize average flow time. In general, the scheduling objective is to

be minimized or to be maximized, but to simplify our discussion, we assume

that the objective is to be minimized. All objectives that are considered in

this dissertation are as such. Scheduling problems can vary depending on the

constraints and the objective in consideration.

1.3.1 Approximation Ratio

Recall that ALG(σ) denotes the algorithm ALG’s objective on the job instance σ.

Likewise, OPT(σ) denotes the optimal scheduler OPT’s objective on the same

8

job instance σ. Approximation ratio is used to measure the worst case perfor-

mance of an offline algorithm ALG relative to the optimal scheduler. Note that

ALG has a full access to the entire input σ as the optimal solution does. Formally,

we say that ALG is a c-approximation or equivalently that the approximation

ratio (factor) of ALG is c if the following holds for any job instance σ.

ALG(σ) ≤ αOPT(σ)

Here the algorithm is required to run in polynomial time in the input size.

For more formal definition of approximation ratio, we refer the reader to Ap-

pendix A in [98].

1.3.2 Competitive Ratio

Competitive ratio is a common measure that is used to gauge the performance

of an online algorithm ALG. Recall that an online algorithm is not aware of a

job until it arrives. In general all properties of a job, upon its arrival, is revealed

to the online algorithm ALG (as mentioned earlier, a non-clairvoyant scheduler

remains ignorant of a job’s size even when it arrives). The competitive ratio is

defined as the upper bound on the ratio of the cost of the algorithm’s schedule

to that of the optimal offline schedule on any instance. Formally, we say that

an online algorithm ALG is c-competitive or equivalently that the competitive

ratio of ALG is c if the follow holds for all job instances σ:

ALG(σ) ≤ αOPT(σ)

This analysis model is often called the worst case analysis, since the compet-

itive ratio measures the worst performance of the online algorithm relative to

the optimal scheduler. Note that this model even captures adaptive adversarial

inputs. That is, at each time, the (imaginary) adversary can adaptively create

a sequence of future jobs on the fly that is difficult for the algorithm or that

makes the algorithm’s previous decisions non-optimal when considered with the

new jobs. Particularly when the online algorithm is deterministic, the adversary,

which has no limit in computational power, can completely predict the algo-

rithm’s behavior for all inputs. Hence any adversarial input can be simulated by

this process, and is captured by the worst case analysis model.

For this reason, many online scheduling problems do not admit a small

competitive algorithm. For example, any deterministic non-clairvoyant algorithm

has a competitive ratio of Ω(n1/3) for minimizing average flow on a single machine

[83]; here n is the number of jobs. If no algorithm is proved to perform well in

this model, then it may not have practical implications. Further, if an algorithm

has a large competitive ratio, which may be non-trivial and outstanding in theory,

it may not be sufficient to convince the system designer to choose the algorithm.

Hence several alternative analysis models are also considered.

9

Randomized algorithms: This is a useful model to remove the unfair power from

the adversary that can create an adaptively adversarial input. In this model,

the adversary must commit to an input instance a priori without knowing the

internal random coins of the algorithm. Formally we say that a randomized

algorithm is c-competitive if for all instances the following is satisfied:

E[ALG(σ)] ≤ αOPT(σ)

where E[ALG(σ)] is the expected objective of ALG for instance σ. The use of

randomized algorithms often dramatically improves the best achievable com-

petitive ratio. For example, there exist a O(logn)-competitive non-clairvoyant

randomized algorithm for minimizing average flow time on a singe machine

[18]. This analysis model may not be the best when the algorithm’s scheduling

decisions can affect future jobs.

Average case analysis: In this model, jobs’ properties such as jobs’ arrival rate

and sizes follow a given distribution. Popular distributions include Poisson and

exponential. The algorithm’s performance is averaged on the input distribu-

tion, hence the name average case analysis. Given concrete distributions on

jobs’ properties, one can measure the absolute expected objective of the online

algorithm. This may be useful for provisioning problems, in which the goal is

to buy the minimum amount of computing resources to satisfy a scheduling

objective to a certain desired level. This model, however, may not be suitable

when the distribution is not so predictable.

All models discussed have their advantages and disadvantages. This disser-

tation focuses on the worst case input model which is of fundamental interest.

However, as mentioned above, in this model many problems do not admit an algo-

rithm with small competitive ratio. Thus a relaxed analysis model called resource

augmentation, that still keeps the spirit of worst case analysis, was developed [69].

1.3.3 Relaxed Worst Case Analysis: Resource

Augmentation

One very popular relaxed worst case analysis model called resource augmentation

was introduced by Kalyanasundaram and Pruhs [69]. The essence is that the

online algorithm is given slightly more resource than the optimal schedule, which

allows the online algorithm to compensate for its non-optimal decisions. There

are largely two types of resources that are augmented. The first is speed, so the

augmentation is called speed augmentation. Formally, the algorithm runs with

s(> 1)-speed on each machine, while the optimal schedule runs with 1-speed. In

other words, the algorithm can complete a job in an amount of time that is 1
s

times the time it takes for the optimal scheduler to complete it. We say that the

algorithm is s-speed c-competitive if the algorithm with s-speed has a competitive

10

ratio of c compared to the optimal schedule with 1-speed. The other type of

resource that can be added is a machine. This type of resource augmentation

is thus called machine augmentation. In general, speed augmentation provides

more power to the algorithm than machine augmentation does. Unless stated

otherwise, resource augmentation will refer to speed augmentation.

This relaxed model is justified for the following reasons; for illustration, we

will consider speed augmentation model. The first justification stems from how

the performance degrades as the load on the system increases. In many systems,

there exists a certain threshold of load such that the performance explosively

degrades as the load reaches the threshold. See Figure 1.1. Thus, in a certain

sense, the competitive ratio has a practical implication only when the load is

below the threshold. Since the algorithm can complete each job s times faster

than the optimal schedule does, we can interpret this setting as the algorithm

being given an amount of load 1/s times that the optimal schedule is given to

complete. Thus if an algorithm, with speed s given, has a small competitive ratio,

then it means that the algorithm performs reasonably for a load that is 1/s times

the threshold of load (that the optimal solution can handle). For this reason,

when for any fixed ε > 0, an algorithm with (1 + ε)-speed is O(1)-competitive

compared to the optimal schedule with 1-speed, we say the algorithm is scalable.

Another justification is the increasing availability of speed scaling that allows

processors to be sped up by consuming more power. Thus a scalable algorithm

can perform close to the optimum by consuming a small extra power. For these

reasons, an algorithm being scalable can be a strong evidence to support the

qualitatively superior performance of the algorithm.

Figure 1.1: The performance curves of online algorithm and the optimal algorithm
[87].

1.4 Basic Scheduling Algorithms

We give a quick overview of some of the most popular scheduling policies.

Strictly speaking, scheduling algorithms are considered to be able to perform

11

much more sophisticated computations. For example, a scheduling algorithm

can make the current scheduling decision based on the entire history of past jobs

and scheduling decisions. In contrast, scheduling policies are considered to be

considerably simpler, and make scheduling decisions based on simple rules that

are easy to apply. In this dissertation, both scheduling algorithms and policies

will be interchangeably used. Let A(t) denote the set of jobs alive at time t.

We may equivalently say that jobs in A(t) are in the algorithm A’s queue at

time t. The number of machines that are used will be denoted as m. In all

algorithms, ties are broken in an arbitrary but a fixed way.

• Shortest Remaining Processing Time (SRPT): Always processes the job

with the least remaining work.

• Shortest Job First (SJF): Always schedules the job with the least initial

work.

• Highest Density First (HDF): Always schedules the job Ji such that di = wi
pi

is maximized.

• Round Robin (RR): At each instantaneous time processes all alive jobs

equally. Hence if RR is processing n = |A(t)| jobs on m ≤ n machines at

time t, then during an infinitesimal interval [t, t + dt], each alive job is

processed on each of the m machines for a dt
n amount of time.

• Weighted Round Robin (WRR): At each instantaneous time processes all

alive jobs in proportion to their weight. On a single machine, each job

Ji is processed for a widt∑
j∈A(t) wj

amount of time during [t, t+ dt]. We note

that on multiple machines however this scheduling policy may not be well

defined even if m ≤ n.

• Shortest Elapsed Time First (SETF): Works on the job that has been

processed the least. If there are ties the algorithm round robins the jobs

that have been processed the least.

• Weighted Shortest Elapsed Time First (WSETF): Works on the job that

has the minimum ratio of the amount by which it has processed to its

weight. If there are ties, performs WRR among those jobs.

• First In First Out (FIFO): Always schedules the job with earliest arrival

time.

• Latest Arrival Processor Sharing (LAPS): This is an extension of RR and

takes a constant β ∈ (0, 1] as a parameter. It shares the processing equally

among β fraction of the latest arriving jobs. Note that this becomes RR

when β = 1. Formally, A′(t) ⊆ A(t) is such that |A′(t)| = dβ|A(t)|e, and

for any job i ∈ A′(t) and j ∈ A(t) \A′(t), ri ≥ rj . Then LAPS processes

all jobs in A′(t) equally. In other words, LAPS performs RR on the jobs

in A′(t).

12

• Weighted Latest Arrival Processor Sharing (WLAPS): Performs WRR

among the most recently arriving alive jobs whose weights add up to

β fraction of the total weight of all alive jobs. Formally, A′(t) is the

minimal set of jobs with the latest arrival times such that
∑
i∈A′(t)wi >

β
∑
i∈A(t)wi. Then WLAPS performs WRR on the jobs in A′(t); here

the job in A′(t) with the earliest arrival time is considered to have weight∑
i∈A′(t) wi − β

∑
i∈A(t) wi.

Observe that LAPS, when running on multiple machines, requires that

β|A(t)| ≥ m. For its weighted version WLAPS, this may not be sufficient

to guarantee a feasible schedule. This issue does not affect the scheduling

model for jobs of different parallelizability. This will be further discussed in

Section 1.6.2 and Chapter 3.

We note that FIFO is the only non-preemptive algorithm among the above.

The algorithms SRPT, SJF and HDF are clairvoyant while RR, WRR, SETF,

WSETF, FIFO, LAPS and WLAPS are non-clairvoyant.

1.5 Analysis Tools

We give a quick summary of some popular analysis tools that are frequently

used in online scheduling.

1.5.1 Local Competitiveness Argument

In this section we discuss an analysis technique known as local competitiveness.

Until relatively recently, this has been the most popular technique used for worst

case analysis of scheduling algorithms [69, 19, 71]. Let G denote some objective

and let Ga(t) be the cumulative objective in the schedule for algorithm A up to

time t. So
∫∞

0
dGa(t)

dt
dt = Ga is the final objective of A. For example, when G

is total flow then dGa(t)
dt

= |A(t)| and Ga(τ) =
∫ τ

0
|A(t)|dt, where A(t) denotes

the set of jobs alive at time t in A’s schedule. The algorithm A is said to be

locally c-competitive if for all times t,

dGa(t)

dt
≤ c · dGo(t)

dt
(1.1)

For the objective of total flow time, this implies that at all time, the number of

jobs in A’s queue is comparable to the number of jobs in the optimal scheduler’s

queue. Most of the early competitive analyses of online scheduling algorithms

used local competitiveness. For instance the performance of SRPT on a single

machine can be analyzed using local competitiveness. Generally, a proof of local

competitiveness uses one of the following techniques: (1) Show by induction on

time an invariant concerning the algorithm’s queue and the optimal solution’s

queue, or (2) Fix an arbitrary time t and, by examining the history, show that

13

optimal does not have have enough processing capability to prevent the online

algorithm from being locally competitive at time t.

1.5.2 Potential Functions for Online Scheduling

For problems where local competitiveness is not possible, one alternative form of

analysis is amortized local competitiveness. To prove that an online scheduling

algorithm A is c-competitive using an amortized local competitiveness argument,

it suffices to give a potential function Φ(t) such that the following conditions hold.

Boundary condition: Φ is zero before any job is released and Φ is non-negative

after all jobs are finished.

Completion condition: Summing over all job completions by the optimal

solution and the algorithm, Φ does not increase by more than β ·Go for

some β ≥ 0. Most commonly β = 0.

Arrival condition: Summing over all job arrivals, Φ does not increase by more

than α ·GOPT for some α ≥ 0. Most commonly α = 0.

Running condition: At any time t when no job arrives or is completed,

dGa(t)

dt
+

dΦ(t)

dt
≤ c · dGo(t)

dt
(1.2)

Integrating these conditions over time one gets that Ga − Φ(0) + Φ(∞) ≤
(α+ β + c) ·Go by the boundary, arrival and completion conditions. Note that

when Φ is identically 0, equation (1.2) is equivalent to the local competitiveness

equation (1.1). Generally the value of the potential Φ(t) depends only on the state

(generally how much work is left on each of the jobs) of the online algorithm

and the optimal schedule at time t.

The value of the potential function can be thought of as a bank account.

If the increase in the online algorithm’s objective, dGa(t)
dt

, is less than c times

the increase in the benchmark’s objective, dGo(t)
dt

, then the algorithm can save

some money in the bank. Otherwise, it withdraws some money from the bank

to pay for its cost, dGa(t)
dt

. Because of the boundary condition that guarantees a

non-negative deposit at the end, the total amount of money that the algorithm

withdraws never exceeds its total deposit.

The concept of using a potential function to prove competitiveness goes back

at least to the seminal papers by Sleator and Tarjan [94, 95]. The first use

of a potential function to use a amortized local competitive argument was in

[11]; although, the origination of the idea traces back to [38]. [38] contains a

“potential function” but the potential at time t depends not only on the states of

the online algorithm and the optimal schedule at time t, but also on the future

job arrivals and future schedules. So arguably the amortization argument in [38]

is probably closer to a charging argument than to a potential function argument.

14

The more interested reader is referred to the recent tutorial on potential

functions for online scheduling [67].

1.5.3 Conversion between Fractional and Integral

Objectives

A recent technique to obtain a competitive algorithm for an (integral) objective is

to first obtain an algorithm that is competitive for a fractional objective. The frac-

tional objective for an algorithm A is defined to be
∑
i∈[N]

∫∞
t=0

pai (t)
pi

dGa(t,Ji)
dt

dt

where G(t, Ji) is the total cost of job Ji up to time t and pai (t) is the remaining

work of job Ji under A’s schedule at time t. The fractional objective is usually

considered when G(t, Ji) depends only on the flow time of job Ji. As an example.

consider the objective of weighted flow. The fractional weighted flow time of

a job Ji is
∫ Ci
ri
wi

pai (t)
pi

dt. We call
pai (t)
pi

the remaining fraction of Ji at time

t. The total weighted fractional flow time objective is
∫∞
t=0

∑
Ji∈A(t)wi

pai (t)
pi

dt.

An interpretation of the fractional weighted flow time objective is that a job

contributes to the objective in proportion to the amount of remaining work the

job has. Notice that the total fractional weighted flow time of any schedule is

at most the integral weighted flow time of the schedule.

The concept of fractional objectives has proved to be useful for analyzing

online scheduling algorithms. Generally it is easier for an online algorithm to

be competitive for fractional objectives. Further, fractional objectives are often

easier to reason about. To the best of our knowledge, the use of fractional

objectives to aid in the analysis of online scheduling algorithms originates from

[19]. It is generally possible to convert a scheduler A that is good for a fractional

objective into an algorithm A′ that is good for an integer objective with minimal

speed augmentation in the following way: The algorithm A′ always schedules the

exact same jobs as A at any time, except a (1 + ε) factor faster in rate of speed,

unless the job has been completed in A′’s schedule. If A is s-speed c-competitive

for a fractional objective then generally A′ is (1 + ε)s-speed O(c/ε)-competitive

for the corresponding integer objective.

1.6 Problem Definition and Overview of

Contributions

In this section, we define the problems addressed in this dissertation, and provide

a summary of our contributions. As mentioned before, we study the scheduling

models – broadcast scheduling, scheduling of jobs with different parallelizability

and scheduling on heterogeneous machines. A common technical challenge arising

in these models is that two different schedules may have to do different amount

of work. This intuitively makes it hard to compare the online algorithm to the

optimal scheduler. Particularly, we cannot use the popular local competitiveness

15

argument to prove our algorithms’ competitiveness ratio. Our results are enabled

by the development of new and more sophisticated analysis tools, which could

be of potential use for other scheduling problems.

Before covering each of the scheduling models, we compare them at a high

level to help the reader understand the differences between them. Broadcast

scheduling is a single machine setting, while other models have multiple machines.

However, broadcast scheduling is unique in that the machine can process multiple

jobs (requests) simultaneously. This is fundamentally different from the time

sharing preemptive scheduling where the processing power is divided among jobs.

The model of scheduling jobs with different parallelizability distinguishes itself

from others in that a job can be processed simultaneously by multiple machines.

The best situation that captures this model is when jobs are scheduled on a

multi-core processor in which a job’s execution can be expedited by spawning

multiple threads for a job. The heterogeneous machines setting is a more

classic model. In the model, at any time a job can only be processed on a

single machine. In all scheduling models covered this dissertation, preemption

is allowed and incurs no penalty.

1.6.1 Broadcast Scheduling

In this model, there is a server that stores n pages, each of which contains an

individual useful data. Each request Jp,i arrives over time asking for a specific

page p. The server must satisfy all requests. When the server broadcasts a page

p, all outstanding requests for the same page p are satisfied simultaneously 3.

This is the main difference from standard scheduling settings where the server

must process each request separately. The broadcast model is motivated by

several applications such as multicast systems and wireless and LAN networks

[102, 1, 2, 60]. Broadcast scheduling can be seen as a special case of batch

scheduling that has been studied in stochastic and queueing theory literature

on related models [37, 36, 99, 100].

We focus on the problem of minimizing average flow time (the `1 norm).

There is a long series of work for this objective. The most notable results in the

offline setting are as follows. The problem was shown to be NP-hard [46, 29].

The first (offline) scalable algorithm was given by Bansal et al. in [10], and

the best approximation without speed augmentation is a O(log2 n/ log log(n))-

approximation [12].

In the online setting, it was shown that without resource augmentation any

online deterministic algorithm is Ω(n)-competitive [71]. Further, any randomized

online algorithm has a lower bound of Ω(
√
n) on the competitive ratio [10]. These

strong lowerbounds without resource augmentation has led previous work to

focus on finding O(1)-speed O(1)-competitive algorithms. Previously, there have

3In broadcast scheduling, we will use the term request rather than job to emphasize this
unique aspect of broadcast scheduling.

16

been largely two different directions. The first was based on a reduction from

the problem of minimizing average flow time in broadcast scheduling to a non-

clairvoyant scheduling problem. However, the best result that one could obtain

using this reduction was a (2 + ε)-speed O(1)-competitive algorithm [38, 40, 42].

Another approach was based on a natural greedy algorithm called Longest

Wait First (LWF). The algorithm LWF always broadcasts a page that has

accumulated the largest flow time. Edmonds and Pruhs showed that LWF is

6-speed O(1)-competitive, but they also proved that it is not scalable [41]. Since

the algorithm LWF seemed more natural then the algorithms based on reduction,

we aimed at better understanding the novel analysis techniques introduced in

[41], hoping that it might lead to a scalable algorithm. In joint-work with

Chekuri and Moseley, we were able to simplify these techniques to make the key

ideas more transparent. Using this, we were able to show LWF is (4 + ε)-speed

O(1)-competitive [32].

With the better understanding of LWF, we were able to give the first scalable

algorithm which is (1 + ε)-speed O(1/ε11) competitive [65]. The algorithm we

introduced was a variant of LWF that fixed the drawback of LWF. The main

problem of LWF is that it does not care about how fast each page accumulates

flow time. We observed that it might be more effective to broadcast a page p

over page q if page p has more recent requests, even if they have accumulated

similar total flow time. This is because page p will accumulate flow time more

quickly than page q. By formalizing this idea and using our simplified analysis of

LWF in [32], we were able to fix the main problem of LWF, thereby successfully

giving the first scalable algorithm.

This thesis presents the simpler analysis of LWF and the first scalable

algorithm in [32, 65].

Remark 1. Later Bansal et al. gave an elegant and improved algorithm that

is (1 + ε)-speed O(1/ε3) competitive [15] via novel view of fractional broadcast

schedule and online rounding scheme. Their result also works for non-uniform

sized pages. Then we extended their result to the `k-norms of flow time. We first

gave an algorithm that is (k + ε)-speed O(k)-competitive [55], and then improved

the analysis to show the same algorithm is in fact scalable [44]. We note that

LWF is O(k)-competitive with 3k-speed [32].

1.6.2 Arbitrary Speed-up Curves (Scheduling Jobs of

Different Parallelizability)

This model is useful when jobs have varying degrees of parallelizability on

a multiprocessor system. That is, some jobs may be sped up considerably

when simultaneously run on multiple processors, while other jobs may be sped

up by very little. The most obvious settings where this problem arises are

scheduling multi-threaded processes on a chip with multiple cores/processors,

and scheduling multi-processor applications in a server farm.

17

In this model, which was proposed in [43], there are m identical machines

and n jobs of different parallelizability. Formally, each job consists of a sequence

of phases. Each phase needs to finish some amount of work, and has a speedup

function that specifies the rate at which work is processed in that particular

phase (as a function of the number of processors assigned to the job). A speedup

curve function is assumed to be concave which implies that the processing power

per machine does not increase as more machines are used. This model is also

known as the arbitrary speed up curves model, since each job is associated with

possibly a different speedup curve. The scheduler at each time needs to allocate

m machines to the current outstanding jobs. To further capture the practical

setting, we require that our algorithm be non-clairvoyant. That is, the algorithm

is completely unaware of the processing time of the jobs or their parallelizability.

This model has received a considerable interest since it models a very general

parallel computing models. [38, 42, 40, 90, 26]

It is well known that no non-clairvoyant algorithm can be O(1)-competitive

for average flow time, even in the standard single machine model. Due to this

strong lower bound, we will be assuming a resource augmentation model [69].

The first positive result for average flow time in the speed up curves setting

was given by Edmonds [38]. It was shown that that EQUI (Round-Robin) 4 is

(2 + ε)-speed O(1)-competitive. Recently, [42] gave an elegant potential function

analysis to show that Latest Arrival Processor Sharing (LAPS) is scalable.

We extended their result to `k-norms of flow time. We first gave an al-

gorithm that is (k + ε)-speed O(k)-competitive [55], and then improved the

analysis by showing that the same algorithm is (1 + 12ε)-speed O(k12k/ε2k+1)-

competitive [44]. This dissertation presents the improved scalable algorithm

as discussed in [44].

1.6.3 Heterogeneous Machines

When there are multiple machines, we can consider the following three set-

tings in the order of increasing complexity in terms of the relationship between

jobs and machines. The second and third settings are examples of the het-

erogeneous machines.

• Identical machines: All machines are identical. Each job takes the same

amount of time to be processed on all machines.

• (Uniformly) related machines: Machine i processes jobs with speed si.

Hence each job j takes pj/si amount of time on machine i.

• Unrelated machines: Each job j may have a completely different processing

time pij and weight wij on each machine i it is assigned to. Here pij , wij ∈
4EQUI stands for Equi-partition and it allocates machines uniformly to jobs. This has a

spirit very similar to RR (Round Robin). The algorithm name RR is more commonly used in
the standard setting where a job can be processed on at most one machine at all times. In this
dissertation, RR may be used to refer to EQUI.

18

[0,∞]. Equivalently it can be viewed that j has a unit size and is processed

with speed 1/pij on machine j. This is probably the most general model

for multiple machines and captures the above two settings. Further, this

model captures more general settings where a job can be scheduled only on

specific machines or can be substantially sped up on some highly specialized

machines for a certain purpose.

When there are multiple machines present, there are two properties that

are desired from online algorithms. The first one is immediate-dispatch. An

algorithm is said to be immediate-dispatch if it immediately sends an arriving

job to a specific machine. This is particularly useful when the main scheduler

does not have enough memory to hold a lot of incoming jobs. The next property

is non-migratory. We say that an algorithm is non-migratory if a job is sent

to a machine, then the job cannot move to other machines. This property is

desirable when it is costly to move jobs across machines.

Even in the simplest identical parallel machine setting, the problem of

minimizing the average flow time is non-trivial. The best approximation ratio

is O(min(logP, log n/m)), where P is the ratio of the maximum job size to the

minimum job size. This competitive ratio is achieved by SRPT and there exists

a matching lower bound [78]. Avrahami and Azar gave an immediate-dispatch

and non-migratory algorithm which has the same asymptotic competitive ratio

[5]. We note that these remain the best result even for the offline case.

In addition, there exist other interesting results with resource augmentation.

Phillips et al. showed that one can obtain a schedule with 2-speed that is as good

as the optimal schedule [84]. Chekuri et al. gave the first scalable algorithm

which is (1 + ε)-speed O(1/ε3)-competitive [31]. Their algorithm was surprisingly

simple: assign each arriving job to a machine chosen uniformly randomly and

run SRPT or SJF on each machine.

The problem, either in the offline setting or in the online setting, becomes

more challenging in the related machine setting. Until fairly recently, there

were very few positive results known [50, 51]. Garg and Kumar gave the first

non-trivial algorithm which is O(log2 P · logS)-competitive where S is the ratio

of the highest speed and the smallest speed of a machine. Later the same authors

gave an O(logP)-approximation for the offline case and an O(logP · logS)-

competitive algorithm for the online case.

In the unrelated machine setting, there exist only a few positive results without

speed augmentation [52, 53, 93]. Even for the special case called restricted

assignment case where each job can be assigned to a subset of machines, ,i.e.,

pij ∈ {pj ,∞} the best approximation ratio known is O(logP) and there is a

lower bound of Ω(logP/ log logP) [52].

In a breakthrough result, Chadha et al. gave a very simple scalable algorithm

based on a novel potential function [24]. The algorithm is surprisingly simple

and the analysis is based on an elegant potential function.

19

Clairvoyant Scheduling on Unrelated Machines

Inspired by the breakthrough result by Chadha et al. [24], we gave the first

scalable algorithm for the `k-norms of flow time which is (1+ε)-speed O(k/ε2+2/k)-

competitive [66] . Our algorithm, based on a sophisticated potential function,

is also immediate-dispatch and non-migratory. We also showed any immediate-

dispatch and non-migratory algorithm has a competitive ratio of Ω(k). To enable

our analysis, we gave a new lower bound on the optimal scheduler’s objective.

Remark 2. Recently, Anand et al. gave another algorithm that has a slightly

better competitive ratio [3]. More specifically, their lgorithm is (1 + ε)-speed

O(k/ε2+1/k)-competitive. Interestingly, their analysis is based on linear program-

ming and dual fitting.

Non-clairvoyant Scheduling on Related Machines

The first non-trivial non-clairvoyant scheduling on related machines was given

by [56]. They reduced the problem to a singe machine Round Robin scheduling

(RR) and gave a (2 + ε)-speed O(1)-competitive algorithm. We showed Latest

Arrival Processor Sharing (LAPS), a now well-known extension of RR, is scalable

[59]. We note that our result is the first non-clairvoyant scalable algorithm in the

heterogeneous machines setting. Our result extends to a more general setting

where each machine is associated with a speed function that specifies the speed

for the power at which the machine is run and the goal is to minimize the total

(unweighted) flow time plus total energy.

One may wonder if our algorithm and analysis easily follow from those in

[42]. In [42], Edmonds and Pruhs showed that LAPS is scalable using a novel

potential function. Recall that LAPS performs Round-Robin among the βn

fraction of alive jobs that arrived most recently, where n is the number of jobs

that are currently alive and β is the parameter that LAPS is given. However, it

is not clear how this extension should be done in the multiple machines setting.

Namely, we cannot run βn jobs on n machines. Surprisingly, we showed that

running the βn jobs on the fastest βn jobs suffices to yield a scalable algorithm.

Hence our algorithm is fairly different from the ones presented in [42, 56].

However, we note that our algorithm works only for unweighted jobs. When

jobs have varying weights, the problem becomes much more challenging. Suppose

one job has a very heavy weight and we run RR (or LAPS). Then the heavy

weight job should be given all processing power, which yields a non-feasible

schedule. We also show several natural algorithms are not scalable with any

constant speed up.

20

1.7 Dissertation Outline

Our results on broadcast scheduling and scheduling for jobs with different

parallelizability are given in Chapters 2 and 3, respectively. Our results on

scheduling for heterogeneous machines are presented in Chapters 4 and 5, which

cover the unrelated and related machine settings, respectively. In each of these

chapters, several open problems will be described. This dissertation concludes

with some future research directions in Chapter 6.

21

Chapter 2

Broadcast Scheduling

2.1 Introduction

We consider the pull-based broadcast scheduling model. In this model, there

are n pages (representing some form of useful information) available at a server

and requests arrive for pages over time. When the server broadcasts a page

p, all outstanding requests for the same page p are satisfied simultaneously.

This is the main difference from standard scheduling settings where the server

must process each request separately. The broadcast model is motivated by

several applications such as multicast systems and wireless and LAN networks

[102, 1, 2, 60]. Work has also been done in stochastic and queueing theory

literature on related models [37, 36, 99, 100].

In this chapter we concentrate on the online model with the goal of minimizing

the total (or equivalently average) flow time 1. This is one of the most popular

quality of service metrics. The ith request for page p will be denoted Jp,i.

Request is often referred to as job in the scheduling literature. The request

Jp,i arrives at time rp,i and, in the online model, this is when the server is first

aware of the request. Time is slotted and a single page can be broadcasted in

a time slot. This model also captures the algorithmic difficulty of the problem

and this is the model almost exclusively addressed in previous literature. The

total flow time of a given schedule can be written as
∑
p

∑
i(Cp,i − rp,i), where

Cp,i is the time when Jp,i is satisfied.

Besides the practical interest in the model, broadcast scheduling has seen

substantial interest in algorithmic scheduling literature both in the offline and

online settings [16, 2, 1, 17, 60, 71, 46, 48, 49, 10, 12]. It was because the model

is very simple to describe and nevertheless poses algorithmic challenges. To

have a feel of the difficulty, consider the algorithm Most Requests First (MRF)

which broadcasts the page that has the largest number of unsatisfied requests.

This algorithm may seem like the most natural candidate for the problem.

However, it was shown that MRF is not O(1)-competitive even when given

any fixed extra speed [71]. A simple example shows that MRF may repeatedly

broadcast the same page, while ignoring requests which eventually accumulate

a large amount of flow time. The optimal solution can take advantage of the

1 Flow time is often referred to response time or wait time.

22

broadcast setting and satisfy the requests MRF was busy working on by a single

broadcast. This leaves the optimal solution free to work on other requests that

are unsatisfied under MRF’s schedule.

In a nutshell, a main difficulty in the analysis of algorithms comes from the

fact that two different schedules may have to do different amount of work to

satisfy the same set of requests. Intuitively, this makes it hard to compare the

algorithm’s status to the optimal scheduler’s status. In fact, it was shown that

no online algorithm can be locally competitive with an adversary, even with a

constant speed-up [71] 2. Local competitiveness has been one of the most popular

methods of analysis in standard scheduling [69, 19, 71].

The difficulty is also indicated by the strong lower bounds on the achievable

competitive ratio. It was shown that without resource augmentation any online

deterministic algorithm is Ω(n)-competitive [71]. Further, any randomized online

algorithm has a lower bound of Ω(
√
n) on the competitive ratio [10]. Due to

these strong lowerbounds we focus on the resource augmentation model [69]

where an algorithm A is given s ≥ 1 speed and is compared to an optimal offline

solution that has 1 speed; see Section 1.3.3. We will let As be the flow time

accumulated for an algorithm A when given s speed; sometimes we will allow As

to denote the algorithm itself with s speed if there is no confusion in the context.

Even though broadcast scheduling has been studied extensively over the last

decade, the complexity of the problem is not well understood. In the offline

setting, minimizing average flow time was first studied using non-trivial linear

programming techniques coupled with resource augmentation [71, 48, 49]. It

was not until later that a complex reduction showed that this problem was in

fact NP-Hard [46]. Later, a simpler proof of this fact was found [29]. Following

this line of work, a (1 + ε)-speed O(1)-approximation algorithm was eventually

given in [10]. Here, resource augmentation was used even though it is still open

if the problem admits an O(1)-approximation. The problem is substantially

more difficult without resource augmentation. No non-trivial analysis was shown

without resource augmentation until Bansal et al. gave a O(
√
n)-approximation

in [10]. More recently, a O(log2 n/ log log(n))-approximation was shown in [12].

We note that this result relies on highly non-trivial algorithmic techniques.

In the online setting, the strong lowerbound without resource augmentation

has led previous work to focus on finding O(1)-speed O(1)-competitive algorithms.

Previously, there have been two main approaches in this direction. The first

was given by Edmonds and Pruhs in [40]. They showed a non-trivial reduction

from the problem of minimizing average flow time in broadcast scheduling to a

non-clairvoyant scheduling problem. Their reduction takes an algorithm A that is

s-speed c-competitive for the non-clairvoyant scheduling problem and creates an

algorithm B that is 2s-speed c-competitive for the broadcast scheduling problem.

2 An algorithm A is said to be locally competitive if the number of requests in A’s queue is
comparable to the number of requests in the adversary’s queue at each time. See Section 1.5.1
for the formal definition of local competitiveness.

23

Using this reduction, they were able to show an algorithm which is (4 + ε)-speed

O(1)-competitive for minimizing the average flow time in broadcast scheduling

[38, 40]. More recently, the same authors used this reduction to show another

algorithm is (2 + ε)-speed O(1)-competitive [42]. Both of these algorithms can

be extended to the case where pages have varying sizes. Notice that a factor

of 2 in the speed is lost in the reduction and, therefore, the reduction cannot

be used to show a scalable algorithm.

The second was based on the natural greedy algorithm Longest Wait First

(LWF), which was first introduced in [71]. LWF always schedules the page

with the highest flow time. Edmonds and Pruhs showed that LWF is 6-speed

O(1)-competitive using a direct analysis that avoided the use of the reduction

[41]. In this work, new novel techniques were introduced to avoid a local

argument. However, LWF was shown to be nΩ(1)-competitive when given speed

less than 1.618 [41].

2.1.1 Our Results

For the problem of minimizing total flow time in broadcast scheduling, we give

the first online scalable algorithm LA-W for Latest Arrival time with Waiting.

We prove that LA-W is (1 + ε)-speed O(1/ε11)-competitive for any 0 < ε ≤ 1,

giving a positive answer to a central open problem in the area. Our algorithm

LA-W is similar to LWF in that it prioritizes pages with large flow time, however

LA-W also gives preference to requests which have arrived recently. Favoring

requests which have arrived recently has been shown to be useful in [42]. The

algorithm LA-W focuses on pages which have requests that arrived recently.

This is fundamentally different from the algorithm given in [42], which focuses on

requests that arrived recently without considering the page they are requesting.

Unfortunately, in the broadcast setting it is difficult to categorize which pages

have requests that arrived recently, since the arrival of requests can be scattered

over time. To counter this, we develop a novel and robust way to compare the

arrival time of requests between two different pages.

The analysis of LA-W was enabled by our simpler analysis of the algorithm

LWF. Although the techniques presented in [41] were novel, they were quite

complex. In joint work with Chekuri and Moseley, we were able to simplify these

techniques to make the key ideas more transparent. Using this, we were able

to show LWF is (4 + ε)-speed O(1/ε2)-competitive [32] 3. More importantly,

the key ideas and analysis tools were generalized to design and analyze the

first scalable algorithm LA-W.

In this dissertation, we first present the easy analysis showing that LWF

is O(1)-competitive with 5-speed in Section 2.3. We then present the scalable

algorithm LA-W and its analysis in Section 2.4.

3Further it was shown that LWF is O(1)-competitive with 3.4-speed in [32]. Later we
improved the lower bound on the competitive ratio to show that LWF is not O(1)-competitive
with 2 − ε-speed for any ε > 0 [64].

24

Remark 3. Following our work, Bansal et al. gave another scalable algorithm

which is (1 + ε)-speed O(1/ε3)-competitive [15]. They showed that LAPS is

fractionally scalable and converted the fractionally scalable schedule into an

integrally scalable one by using a small amount of extra speed. Their algorithm

works also for varying sized pages.

2.1.2 Related Work

In this section we give an overview of related work in broadcast scheduling.

Charikar and Khuller considered a generalization of average flow time where

the goal is to minimize the average flow time for a fraction of the requests [30].

Besides work on minimizing the total flow time, other objective functions have

been considered in the broadcast model. In [17, 29, 33], it was shown that

the algorithm First In First Out (FIFO) is 2-competitive for the problem of

minimizing the maximum response time. This is the case even for varying sized

pages. It was further shown that for any ε > 0, no online algorithm can have

a competitive ratio of 2 − ε [34]. We note that this remains the best result

even for the offline case. The only known hardness result is that the problem is

NP-complete [29]. For the problem of minimizing the maximum weighted flow

time, a (1 + ε)-speed O(1)-competitive algorithm was been given by [33] 4.

When each request has a deadline, constant competitive algorithms were given

by [73, 28, 103, 35] with the the objective of maximizing the number of requests

satisfied by their deadlines. For the problem of minimizing the `k-norms of flow

time and the delay factor, [32] gave O(k)-speed O(k)-competitive algorithms.

The first scalable algorithm for the `k-norm was given in [44]. For the objective

of minimizing total flow time plus total energy consumption, Moseley gave the

first scalable algorithm [82]. For empirical evaluation, see [60, 2].

2.2 Formal Problem Statement and Notation

In the formal model, the server has n distinct unit-sized pages of information;

the non-uniform sized page case will be discussed soon. The clients send their

respective requests to the server asking for a specific page. This model is called

pull-based, since the clients initiate the requests (in the push-based model,

the server broadcasts the pages according to some frequency). We use Jp,i to

denote i’th request for a page p ∈ {1, . . . , n}. We let rp,i denote the arrival

time of the request Jp,i. The finish time CAp,i of a request Jp,i under a given

schedule/algorithm A is defined to be the earliest time after rp,i when the page

p is transmitted by the scheduler; for notational convenience we may omit A

and simply use Cp,i when the algorithm under consideration is clear in the

context. Note that multiple requests for the same page can have the same

finish time. The total flow time for an algorithm over a sequence of requests

4The result was extended to the varying sized page case in the journal version.

25

is now defined as
∑
p

∑
i(Cp,i − rp,i). The `k norms of flow time is defined

as k

√∑
p

∑
i(Cp,i − rp,i)k.

In broadcast scheduling, considering the weight of requests does not increase

the generality of the problem. This is because the weight wp,i of request Jp,i can

be easily captured by wp,i copies of the same request of unit weight.

Time model: For simplicity, when the speed s > 1 that the server is given

is an integer, we assume the discrete time model. This is the time model we

adopt in the analysis of LWF in Section 2.3. In this model, at each integer

time t, the following things happen exactly in the following order; the scheduler

make a decision of which page p to broadcast; the page p is broadcast and all

outstanding requests of page p are immediately satisfied, thus having finish time

t; new requests arrive. Note that new pages that arrive at t are not satisfied

by the broadcasting at the time t. It is important to keep it in mind that all

these things happen only at integer times. The algorithm with an integer speed

s given can transmit (at most) s pages in each time slot.

When the speed s > 1 that the server is given is fractional, we assume that

the server schedules a page every 1/s time-steps starting from time 0. We use

this time model for the analysis of LA-W in Section 2.4. When A broadcasts a

page p at time t, all alive (unsatisfied) requests for page p which arrived strictly

earlier than t are immediately satisfied by the broadcast. If Jp,i is a request

satisfied by a broadcast, it has flow time t− rp,i. Note that under the schedule

produced by the optimal solution with 1-speed, every request has flow time at

least 1. On the other hand, A with speed s > 1 may finish some requests within

a delay less than one. Though it would seem fair to force A to schedule requests

after at least one time step, we do not assume this because our results will hold

in either case and this assumption improves the readability of the analysis.

Another model was also used in some broadcast scheduling literature [15,

55, 44]. If the speed s > 1 is fractional, let ε := s − bsc. Usually ε > 0 is

considered to be arbitrary small, hence one can assume that 1/ε is integral.

Then at each integer time, the algorithm broadcasts bsc pages, and at every

1/ε time slots, it broadcasts an extra page.

We note that all the above time models are essentially equivalent in the sense

that all existing results translate from one model to another, with a loss of at

most a constant factor in the competitive ratio.

Varying sized pages: Finally, we discuss the case where pages may have non-

uniform sizes. In this case, we need to carefully define when a request for a page

is satisfied if the request arrives midway through the transmission of the page.

The most popular model is the sequential model used in [40, 42, 15, 55, 44]. Let

each page p consist of Lp pieces of information, (1, p), (2, p), ..., (Lp, p). A request

Jp,i can be satisfied only when it receives each piece of page p sequentially.

Preemption is allowed. In other words, the request Jp,iis satisfied at the first

time when it receives all the pieces (1, p), (2, p), ..., (Lp, p) in this order (since its

26

release time rp,i), and there could be other transmits between these transmits.

There are other interesting models when the client has a buffering capability.

For more details, see [86].

2.3 Longest Wait First

This section is devoted to the analysis showing that LWF is O(1)-competitive

with 5-speed. In the broadcast setting LWF with integer speed s is defined

as the following.

Algorithm: LWFs

• At any integer time t, broadcast the s pages with the largest waiting

times, where the waiting time of page p is
∑
Jp,i∈U(t)(t− ap,i).

We first give a high level overview of our analysis of LWF. Let OPT denote

some fixed optimal 1-speed offline solution; we overload notation and use OPT

also to denote the value of the optimal schedule. Recall that for simplicity of

analysis, we assume the discrete-time model in which requests arrive at integer

times. For the same reason we analyze LWF with an integer speed s > 1. We

can assume that LWF is never idle. Thus, in each time step LWF broadcasts

s pages and the optimal solution broadcasts 1 page. We also assume that

requests arrive at integer times. At time t, a request is in the set U(t) if it

is unsatisfied by the scheduler at time t.

Our analysis of LWF is inspired by that in [41]. Here we summarize our

approach and indicate the main differences from the analysis in [41]. Given the

schedule of LWFs on a request sequence σ, the requests are partitioned into two

disjoint sets S (self-chargeable requests) and N (non-self-chargeable requests).

Let the total flow time accumulated by LWFs for requests in S and N be denoted

by LWFSs and LWFNs respectively. Likewise, let OPTS and OPTN be the flow-

time OPT accumulates for requests in S and N , respectively. S is the set of

requests whose flow-time is comparable to their flow-time in OPT. Hence one

immediately obtains that LWFSs ≤ ρOPTS for some constant ρ. For requests

in N , instead of charging them only to the optimal solution, these requests are

charged to the total flow time accumulated by LWF and OPT. It will be shown

that LWFNs ≤ δLWFs + ρOPTN for some δ < 1; this is crux of the proof.

It follows that LWFs = LWFSs + LWFNs ≤ ρOPTS + ρOPTN + δLWFs ≤
ρOPT + δLWFs. This shows that LWFs ≤ ρ

1−δOPT, which will complete our

analysis. Perhaps the key idea in [41] is the idea of charging LWFNs to LWFs

with a δ < 1; as shown in [71], no algorithm for any constant speed can be

locally competitive with respect to all adversaries and hence previous approaches

in the non-broadcast scheduling context that establish local competitiveness

with respect to OPT cannot work.

27

In [41], the authors do not charge LWFNs directly to LWFs. Instead, they

further split N into two types and do a much more involved analysis to bound the

flow-time of the type 2 requests via the flow-time of type 1 requests. Moreover,

they first transform the given instance to canonical instance in a complex way

and prove the correctness of the transformation. Our simpler proof improves

the speed bounds, and can be easily extended to other objectives such as

the `k norms of flow.

2.3.1 Preliminaries

To show that LWFNs ≤ δLWFs + ρOPTN , we will map the requests in N to

other requests scheduled by LWFs which have comparable flow time. An issue

that can occur when using a charging scheme is that one has to be careful not to

overcharge. In this setting, this means for a single request Jp,i we must bound

of the number of requests in N which are charged to Jp,i. To overcome the

overcharging issue, we will appeal to a generalization of Hall’s theorem. Here we

will have a bipartite graph G = (X ∪ Y) where the vertices in X will correspond

to requests in N . The vertices in Y will correspond to all requests scheduled

by LWFs. A vertex u ∈ X will be adjacent to a vertex v ∈ Y if u and v

have comparable flow time and v was satisfied while u was in our queue and

unsatisfied; that is, u can be charged to v. We then use a simple generalization of

Hall’s theorem, which we call Fractional Hall’s Theorem. Here a vertex of u ∈ X
is matched to a vertex of v ∈ Y with weight `u,v where `u,v is not necessarily

an integer. Note that a vertex can be matched to multiple vertices.

Definition 1 (c-covering). Let G = (X ∪ Y,E) be a bipartite graph whose two

parts are X and Y , and let ` : E → [0, 1] be an edge-weight function. We say

that ` is a c-covering if for each u ∈ X,
∑

(u,v)∈E `u,v = 1 and for each v ∈ Y ,∑
(u,v)∈E `u,v ≤ c.

The following lemma follows easily from either Hall’s Theorem or the Max-

Flow Min-Cut Theorem.

Lemma 4 (Fractional Hall’s theorem). Let G = (V = X ∪ Y,E) be a bipartite

graph whose two parts are X and Y , respectively. For a subset S of X, let

NG(S) = {v ∈ Y |uv ∈ E, u ∈ S}, be the neighborhood of S. For every S ⊆ X, if

|NG(S)| ≥ 1
c |S|, then there exists a c-covering for X.

Throughout Section 2.3, we will discuss time intervals and unless explicitly

mentioned we will assume that they are closed intervals with integer end points.

When considering some contiguous time interval I = [s, t] we will say that

|I| = t − s + 1 is the length of interval I; in other words it is the number of

integers in I. For simplicity, we abuse this notation; when X is a set of closed

intervals, we let |X| denote the number of distinct integers in some interval of X.

Note that |X| also can be seen as the sum of the lengths of maximal contiguous

sub-intervals if X is composed of non-overlapping intervals.

28

To be able to apply Lemma 4, we show another lemma which will be used

throughout the analysis of LWF. Lemma 5 says that the union of some fraction

of time intervals is comparable to that of the whole time interval.

Lemma 5. Let 0 ≤ λ ≤ 1 be a constant. Let X = {[s1, t1], . . . , [sk, tk]} be a

finite set of closed intervals and let X ′ = {[s′1, t1], . . . , [s′k, tk]} be an associated

set of intervals such that for 1 ≤ i ≤ k, s′i ∈ [si, ti] and |[s′i, ti]| ≥ λ|[si, ti]|. Then

|X ′| ≥ λ|X|.

Proof. Let I be the union of all intervals in X. I ′ is similarly defined for X ′. We

prove the lemma when I ′ is a contiguous interval; otherwise we can simply sum

over all maximal intervals in I ′. WLOG, we can set I = [s1, t
′] and I ′ = [s′, t′].

This is because I must start with one interval in X, say [s1, t1] and both I

and I ′ must have the same ending point t′ by construction. Since s ≤ s′1, it is

enough to show that
t−s′1+1
t−s1+1 ≥ λ and it follows from the given condition that

|[s′1, t1]| ≥ λ|[s1, t1]|, (i.e. t1 − s′1 + 1 ≥ λ(t1 − s1 + 1)) and t ≥ t1.

2.3.2 Analysis

A fair amount of notation is needed to clearly illustrate our ideas. Following [41],

for each page, we will partition time into intervals via events. Events for page p

are defined by LWFs’s broadcasts of page p. When LWFs broadcasts page p a

new event occurs. An event x for page p will be defined as Ep,x = 〈bp,x, ep,x〉
where bp,x is the beginning of the event and ep,x is the end. Here LWFs broadcast

page p at time bp,x and this is the xth broadcast of page p. Then LWFs broadcast

page p at time ep,x and this is the (x+1)st broadcast of page p. This starts a new

event Ep,x+1. Therefore, the algorithm LWFs does not broadcast p on the time

interval [bp,x + 1, ep,x − 1]. Thus, it can be seen that for page p, ep,x−1 = bp,x.

It is important to note that the optimal offline solution may broadcast page p

multiple (or zero) times during an event for page p. See Figure 2.3.

time

LWF’s xth broadcast of page p LWF’s (x+ 1)st broadcast of page p

OPT broadcasts page p

op,x

bp,x ep,x = bp,x+1

Ep,x Ep,x+1

Figure 2.1: Events for page p.

For each event Ep,x we let Jp,x = {(p, i) | rp,i ∈ [bp,x, ep,x − 1]} denote the

set of requests for p that arrive in the interval [bp,x, ep,x − 1] and are satisfied by

29

LWFs at ep,x. We let Fp,x denote the flow-time in LWFs of all requests in Jp,x.

Similarly we define F ∗p,x to be flow time in OPT for all requests in Jp,x. Note

that OPT may or may not satisfy requests in Jp,x during the interval [bp,x, ep,x].

An event Ep,x is said to be self-chargeable and in the set S if Fp,x ≤ F ∗p,x or

ep,x − bp,x < ρ, where ρ > 1 is a constant which will be fixed later. Otherwise

the event is non-self-chargeable and is in the set N . Implicitly we are classifying

the requests as self-chargeable or non-self-chargeable, however it is easier to

work with events rather than individual requests. As the names suggest, self-

chargeable events can be easily charged to the flow-time of an optimal schedule.

To help analyze the flow-time for non-chargeable events, we set up additional

notation and further refine the requests in N .

Consider a non-self-chargeable event Ep,x. Note that since this event is non-

self-chargeable, the optimal solution must broadcast page p during the interval

[bp,x+1, ep,x−1]; otherwise, Fp,x ≤ F ∗p,x and the event is self-chargeable. Let op,x

be the last broadcast of page p by the optimal solution during the interval [bp,x +

1, ep,x−1]. We define o′p,x for a non-self-chargeable event Ep,x as min{op,x, ep,x−
ρ}. This ensures that the interval [o′p,x, ep,x] is sufficiently long; this is for technical

reasons and the reader should think of o′p,x as essentially the same as op,x.

Let LWFSs =
∑
p,x:Ep,x∈S Fp,x and LWFNs =

∑
p,x:Ep,x∈N Fp,x denote the

the total flow time for self-chargeable and non self-chargeable events respectively.

Similarly, let OPTS =
∑
p,x:Ep,x∈S F

∗
p,x and OPTN =

∑
p,x:Ep,x∈N F

∗
p,x. For a

non-chargeable event Ep,x we divide Jp,x into early requests and late requests

depending on whether the request arrives before o′p,x or not. Letting F ep,x

and F lp,x denote the flow-time of early and late requests respectively, we have

Fp,x = F ep,x + F lp,x. Let LWFN
e

s and LWFN
l

s denote the total flow time of early

and late requests of non-self-chargeable events for LWF’s schedule, respectively.

The following two lemmas follow easily from the definitions.

Lemma 6. LWFSs ≤ ρOPTS.

Lemma 7. LWFN
l

s ≤ ρOPTN .

Thus the main task is to bound LWFN
e

s . For a non-chargeable event Ep,x

we try to charge F ep,x to events ending in the interval [o′p,x, ep,x − 1]. The

lemma below quantifies the relationship between F ep,x and the flow-time of events

ending in this interval.

Lemma 8. For any 0 ≤ λ ≤ 1, if eq,y ∈ [do′p,x + λ(ep,x − o′p,x)e, ep,x − 1] then

Fq,y ≥ λF ep,x.

Proof. Let Fp,x(t) be the total waiting time accumulated by LWF for page p on

the time interval [bp,x, t]. We divide Fp,x(t) into two parts F ep,x(t) and F lp,x(t),

which are the flow time due to early requests and to late requests, respectively.

Note that Fp,x(t) = F ep,x(t) + F lp,x(t). The early requests arrived before time

o′p,x, thus, for any t′ ≥ do′p,x + λ(ep,x − o′p,x)e, F ep,x(t′) ≥ λF ep,x(ep,x) = λF ep,x.

30

Since LWFs chose to transmit q at eq,y when p was available to be transmitted,

it must be the case that Fq,y ≥ Fp,x(eq,y) ≥ F ep,x(eq,y). Combining this with the

fact that F ep,x(eq,y) ≥ λF ep,x, the lemma follows.

With the above setup in place, we now prove that LWFs is O(1) competitive

for s = 5 via a clean and simple proof. We will prove the following main lemma

that bounds the flow-time of early requests of non self-chargeable events.

Lemma 9. For ρ ≥ 1, LWFN
e

5 ≤ 4ρ
5(ρ−1)LWF5.

Assuming the lemma, LWF5 is O(1)-competitive, using the argument out-

lined earlier.

Theorem 1. LWF5 ≤ 90OPT.

Proof. By combining Lemma 6, 7 and 9, we have that LWF5 = LWFS5 +

LWFN
l

5 +LWFN
e

5 ≤ ρOPTS+ρOPTN+ 4ρ
5(ρ−1)LWF5. Setting ρ = 10 completes

the proof.

We now prove Lemma 9. In the analysis, we assume that LWF broadcasts

5 pages at each time; otherwise we can apply the same argument to maximal

subintervals when LWF is fully busy, respectively. Let Ep,x ∈ N . We define

two intervals Ip,x = [o′p,x, ep,x − 1] and I ′p,x = [o′p,x + d(ep,x − o′p,x)/2e, ep,x − 1].

Since ρ ≤ ep,x − o′p,x, it follows that |I ′p,x| ≥
ρ−1
2ρ |Ip,x|. We wish to charge F ep,x

to events (could be in S or N) in the interval I ′p,x. By Lemma 8, each event

Eq,y that finishes in I ′p,x satisfies the property that Fq,y ≥ F ep,x/2. Moreover,

there are 5(bep,x − o′p,x)/2c such events to charge to since LWF5 transmits

5 pages in each time slot. Thus, locally for Ep,x there are enough events to

charge to if ρ is a sufficiently large constant. However, an event Eq,y with

eq,y ∈ I ′p,x may also be charged by many other events if we follow this simple

local charging scheme. To overcome this overcharging, we resort to a global

charging scheme by setting up a bipartite graph G and invoking the fractional

Hall’s theorem (see Lemma 4) on this graph.

The bipartite graph G = (X ∪ Y,E) is defined as follows. There is exactly

one vertex up,x ∈ X for each non-self-chargeable event Ep,x ∈ N and there

is exactly one vertex vq,y ∈ Y for each event Eq,y ∈ A, where A is the set of

all events. Consider two vertices up,x ∈ X and vq,y ∈ Y . There is an edge

up,xvq,y ∈ E if and only if eq,y ∈ I ′p,x. By Lemma 8, if there is an edge between

up,x ∈ X and vq,y ∈ Y then Fq,y ≥ F ep,x/2.

The goal is now to show that G has a 2ρ
5(ρ−1) -covering. Consider any non-

empty set Z ⊆ X and a vertex up,x ∈ Z. Recall that the interval Ip,x contains at

least one broadcast by OPT of page p. Let I =
⋃
up,x∈Z Ip,x be the union of the

time intervals corresponding to events in Z. Similarly, define I ′ =
⋃
up,x∈Z I

′
p,x.

We claim that |Z| ≤ |I|. This is because the optimal solution has 1-speed

and it has to do a separate broadcast for each event in Z during I. Now consider

the neighborhood of Z, NG(Z). We note that |NG(Z)| = 5|I ′| since LWF5

31

broadcasts 5 pages for each time slot in |I ′| and each such broadcast is adjacent

to an event in Z from the definition of G. From Lemma 5, |I ′| ≥ ρ−1
2ρ |I| as we

had already observed that |I ′p,x| ≥
ρ−1
2ρ |Ip,x| for each Ep,x ∈ N . Thus we conclude

that |NG(Z)| = 5|I ′| ≥ 5ρ−1
2ρ |I| ≥ 5ρ−1

2ρ |Z|. Since this holds for ∀Z ⊆ X, by

Lemma 4, there must exist a 2ρ
5(ρ−1) -covering. Let ` be such a covering. Finally,

we prove that the covering implies the desired bound on LWFN
e

5 .

LWFN
e

5

=
∑

up,x∈X
F ep,x [By Definition]

=
∑

up,xvq,y∈E
`up,x,vq,yF

e
p,x [By Def. 1, i.e. for ∀up,x∈X,

∑
vq,y∈Y

`up,x,vq,y=1]

≤
∑

up,xvq,y∈E
`up,x,vq,y2Fq,y [By Lemma 8]

≤ 4ρ

5(ρ− 1)

∑
vq,y∈Y

Fq,y [Change order of
∑

and ` is a 2ρ
5(ρ−1) -covering]

≤ 4ρ

5(ρ− 1)
LWF5. [Since Y includes all events]

This finishes the proof of Lemma 9.

Remark 10. One can easily extend the analysis of LWF given in this section

to show that LWF is (4 + ε)-speed O(1/ε2)-competitive.

2.4 First Scalable Algorithm: Latest Arrival

time with Waiting (LA-W)

In this section, we give the first scalable algorithm for minimizing the total

flow time in broadcast scheduling for unit-sized pages. We start with giving

an overview of the algorithm LA-W. Let Fp(t) be the total waiting time of

unsatisfied requests for page p at time t and let Fmax(t) = maxp Fp(t). LWF

schedules a page p such that Fp(t) = Fmax(t). Notice that LWF schedules the

page without considering the number of outstanding requests for the page. Due

to this, LWF may broadcast a page with a relatively small number of unsatisfied

requests which have been waiting to be scheduled for a long period of time.

However, a page with a small number of requests does not accumulate flow

time quickly. In some cases, pages which have a large number of unsatisfied

requests should be broadcasted since these requests will rapidly accumulate flow

time. Using this insight, [41] was able to show a lower bound of 1.618 on the

speed LWF required to be O(1)-competitive.

32

Our algorithm LA-W keeps the main spirit of LWF by always broadcasting

pages with flow time comparable to Fmax(t) at each time t. However, amongst

the pages with flow time comparable to Fmax(t), LA-W prioritizes pages with

requests which have arrived recently. By prioritizing recent requests, we avoid

the potentially negative behavior of LWF. This is because a page with requests

that arrived recently must have a large number of outstanding requests to have

flow time similar to Fmax. As mentioned, we develop a new way to compare

the arrive time of requests for two different pages. Using this technique, we

will be able to break up time into intervals and show when requests arrive

on these intervals, thus allowing us to determine how LA-W and the optimal

solution must behave on these intervals.

The algorithm LA-W broadcasts pages with unsatisfied requests that arrived

recently to potentially find pages which have a large number of outstanding

requests. The reader may wonder why we chose pages in this manner when

we could simply broadcast the page with many outstanding requests. In fact,

we have considered an algorithm which schedules the page with the largest

number of outstanding requests amongst the pages with flow time comparable

to Fmax(t). For this algorithm, we have established that it is scalable for the

problem of minimizing the maximum weighted flow time in broadcast scheduling

[33]. We however were unable to determine its performance for average flow

time when given less than 2 speed.

2.4.1 Algorithm

We assume that all pages have a unit size, and that requests arrive only at

non-negative integer times. Any scheduling algorithm A with speed s ≥ 1

schedules a page every 1/s time-steps starting from time 0. When A broadcasts

a page p at time t, all alive (unsatisfied) requests for page p which arrived

strictly earlier than t are immediately satisfied by the broadcast. For further

discussion of our time model, see Section 2.2.

Before introducing our algorithm, we state notation that will be used through-

out Section 2.4. For any time interval starting at b and ending at e, we let

|I| = e−b. For a set of requests R, we will let F (R) be the flow time accumulated

for the requests in R by our algorithm. For a page p we will let Fp(t) be the

total flow time accumulated at time t for unsatisfied requests for page p. We

will let F (R, t) be the total flow time accumulated by our algorithm for requests

in the set R at time t. Note that if some requests in R arrive after time t then

these requests do not contribute to the value of F (R, t). We let F ∗(R) denote

the total flow time OPT accumulates for a set of requests R.

We now introduce our algorithm, denoted by LA-W for Latest Arrival time

with Waiting. We assume that LA-W is given s = 1 + ε speed where 0 < ε ≤ 1

is a fixed constant. Our algorithm is parameterized by constants c > 1 and β < 1

depending on ε, later we will define β =
(

ε
1000

)4

and c =
(

10000
ε3

)
. For each page

33

Figure 2.2: Rp(t) denotes the alive requests of page p at time t, i.e. the
requests of page p which arrived during [L(p, t), t]. Likewise, Rp(τ

β
p (t)) denotes

the requests which arrived during [L(p, t), τβp (t)].

p and time t, let Rp(t) denote the set of alive requests for page p at time t. Let

L(p, t) be the last time before time t that our algorithm broadcasted page p. If

there is no such time then L(p, t) = 0. Note that Rp(t) is equivalent to the set of

the requests for page p which arrived during [L(p, t), t]. For a page p and time t

let τβp (t) = argminL(p,t)≤t′≤t(F (Rp(t
′), t) ≥ (1− β)Fp(t)). In other words, τβp (t)

denotes the earliest time t′ no later than time t and no earlier than time L(p, t)

such that the requests in Rp(t
′) have total flow time at least (1−β)Fp(t) at time

t. By this definition, if R[L(p,t),τβp (t)] is the set of requests for page p that arrive

on the interval [L(p, t), τβp (t)] and R[L(p,t),τβp (t)) is the set of requests for page p

that arrive on the interval [L(p, t), τβp (t)) then F (R[L(p,t),τβp (t)], t) ≥ (1− β)Fp(t)

and F (R[L(p,t),τβp (t)), t) < (1 − β)Fp(t). See Figure 2.2.

Algorithm: LA-W
• Let t be a time where our algorithm is not broadcasting a page.

• Let Fmax(t) = maxp Fp(t).

• Broadcast one page according to Rule 2 every b 10
ε c broadcasts, and

broadcast one page according to Rule 1 otherwise.

– Rule 1: broadcast the page p = argmaxp′∈Q(t)τ
β
p′(t),

where Q(t) = {q | Fq(t) ≥ 1
cFmax(t)} breaking ties arbitrarily.

– Rule 2: broadcast a page p where Fp(t) = Fmax(t) breaking ties

arbitrarily.

Our algorithm LA-W broadcasts pages mainly according to Rule 1 while

occasionally broadcasting a page according to Rule 2. The second rule uses

LWF’s scheduling policy which broadcasts a page with the highest flow time. The

first rule chooses a page p with the latest time τβp (t) among the pages with flow

time close to Fmax(t). The value of τβp (t) can be interpreted as the latest arrival

time of any unsatisfied request for page p after discounting requests that arrived

recently that have small flow time. Since the arrival of requests for the same

page p can be scattered over time, we will use τβp (t) as the representative arrival

time of those requests. Notice that if all requests for page p arrive at time t′ then

34

τβp (t) = t′ for any 0 < β ≤ 1. We remark that we do not know if Rule 2 is needed

for LA-W to be (1 + ε)-speed O(1)-competitive. Rule 2 will play a crucial role

in our analysis, but we do not have a proof that Rule 1 alone performs poorly.

2.4.2 Analysis

Figure 2.3: Events for page p.

Let σ be a fixed sequence of requests. OPT denotes a fixed offline optimal

solution. We assume LA-W1+ε is always busy scheduling pages for the sequence

σ. Otherwise, our arguments can be applied to each maximal time interval where

LA-W1+ε is busy. Following the lead of [41, 32], time is partitioned into events

for each page p. Events for page p are defined by LA-W1+ε’s broadcasts of page

p. Each time LA-W1+ε broadcasts a page, an event begins and an event ends.

An event Ep,x = 〈bp,x, ep,x〉 begins at time bp,x and ends at time ep,x. Here,

LA-W1+ε broadcasts page p at time bp,x and at time ep,x. These are the xth

and (x+ 1)st broadcasts of page p by LA-W1+ε. The (x+ 1)st broadcast of page

p starts a new event Ep,x+1 and ep,x = bp,x+1. On the time interval (bp,x, ep,x)

LA-W1+ε does not broadcast page p. The optimal solution can broadcast page

p zero or more times during an event Ep,x. See Figure 2.3.

For an event Ep,x, let Rp,x denote the set of requests satisfied by the (x+

1)st broadcast of page p. Notice that all requests in Rp,x arrive during Ep,x,

formally during [bp,x, ep,x). Let Fp,x = F (Rp,x) be the total flow time LA-W1+ε

accumulates for requests in Rp,x. Likewise let F ∗p,x = F ∗(Rp,x) be the flow time

OPT accumulates for requests in Rp,x. We refer to Fp,x as the flow time of Ep,x.

Similarly to requests, for a set E of events we let F (E) =
∑
Ep,x∈E Fp,x.

Our goal is to show that
∑
p

∑
x Fp,x ≤ O(1)OPT. We start by partitioning

events into two groups. An event Ep,x is called self-chargeable if Fp,x ≤ γF ∗p,x
where γ ≥ 1 is a constant that will be fixed as γ = 10000

ε2β later. Let S be the

set of all self-chargeable events. The other events are called non-self-chargeable

and are in the set N . By definition of self-chargeable events, we can easily

bound F (S) by OPT.

Lemma 11. F (S) ≤ γOPT.

Proof. F (S) =
∑
Ep,x∈S Fp,x ≤

∑
Ep,x∈S γF

∗
p,x ≤ γOPT.

35

We now concentrate on non-self-chargeable events. Notice that for a non-

self-chargeable event Ep,x, the optimal solution must broadcast page p during

Ep,x, formally during (bp,x, ep,x). Otherwise, F ∗p,x ≥ Fp,x and the event is self-

chargeable. We further partition non-self-chargeable events into two classes.

Consider a non-self-chargeable event Ep,x. Let α and k be constants such that

α < 1, k > 1 and βk < 1. We will fix α = ε
100 and k = 10

ε (d1000ce + 2) + 1

later. Ep,x is in the set N1 if for some β ≤ ρ ≤ βk it is the case that at least

dαs(ep,x − τρp (ep,x))e self-chargeable events end on the interval [τρp (ep,x), ep,x).

Notice that the time τρp (ep,x) exists because ρ < 1. A non-self-chargeable event

not in N1 is in N2. The sets N1 and N2 are similar to how [32] partitions

non-self-chargeable events.

The events in N1 can easily be bounded by OPT. We do this by bounding

F (N1) by the flow time of the self chargeable events ending during the events

in N1. Knowing that F (S) ≤ γOPT we will be able to bound F (N1) by OPT.

We will formally show F (N1) ≤ O(1
ε11)OPT later in Lemma 16.

The most interesting events are those which are inN2. Since each event Ep,x in

N2 has a relatively small number of self-chargeable events ending during Ep,x, we

cannot directly bound F (N2) by OPT. Instead, we will show that the total flow

time of events in N2 accounts for only a fraction of LA-W1+ε’s total flow time, i.e.

F (N2) ≤ δLA-W1+ε for some constant δ < 1 which is independent of ε. In [33]

and [41] speed greater than 3.4 was needed to bound F (N2). Our goal is to ensure

δ < 1 with only (1 + ε) speed. Showing this will complete our analysis as follows.

Using this, Lemma 11 and Lemma 16, we have that LA-W1+ε = F (S)+F (N) =

F (S) + F (N1) + F (N2) ≤ γOPT +O(1
ε11)OPT + δLA-W1+ε, which simplifies

to LA-W1+ε ≤
γ+O(1

ε11
)

1−δ OPT. This will imply the following theorem.

Theorem 2. For 0 < ε ≤ 1, the algorithm LA-W is (1 + ε)-speed O(1
ε11)-

competitive for minimizing average flow time in broadcast scheduling with unit

sized pages.

Before continuing, we show some properties of events in N . Say that we

set γ ≥ 1
β . Then it is not hard to show that OPT must broadcast page p

during I = [τβp (ep,x), ep,x) for any non-self-chargeable event Ep,x. Indeed, the

requests for page p that arrive during the interval I have total flow time at least

βFp,x in LA-W1+ε’s schedule by definition of τβ . If OPT does not broadcast

page p during I this implies that these requests also have total flow time βFp,x

in OPT’s schedule. However, then F ∗p,x ≥ βFp,x ≥ 1
γFp,x, contradicting the

fact that Ep,x is non-sef-chargeable.

Lemma 12. Suppose that γ ≥ 1
β . Then, for any non-self-chargeable event Ep,x,

the optimal solution must broadcast page p during the interval [τβp (ep,x), ep,x).

Proof. For the sake of contradiction assume the lemma is false. The event Ep,x

is non-self-chargeable therefore the optimal solution must broadcast page p at

some time during (bp,x, τ
β
p (ep,x)). Let t be the latest broadcasting time of page

36

p by the optimal solution during (bp,x, τ
β
p (ep,x)). Let S[bp,x,t] and S(t,ep,x) be the

set of requests for page p which arrive during [bp,x, t] and (t, ep,x), respectively.

We know that F (S[bp,x,t]) < (1−β)Fp,x by definition of τβp (ep,x) and t < τβp (ep,x).

Thus F (S(t,ep,x)) = F (Rp,x \ S[bp,x,t]) > βFp,x. Since the optimal solution does

not broadcast page p during (t, ep,x), it follows that F ∗p,x ≥ F ∗(S(t,ep,x)) >

βFp,x ≥ 1
γFp,x, which is a contradiction to Ep,x being a non-self-chargeable

event.

Now say that we set γ ≥ 10000
βε2 . Using similar ideas as in Lemma 12, we will

be able to show that |[τβp (ep,x), ep,x)| ≥ 10000
ε2 . This will be used to ensure that

the intervals considered in our remaining arguments are sufficiently long.

Lemma 13. Suppose γ ≥ 10000
ε2β . Then, for any non-self-chargeable event Ep,x,

|[τβp (ep,x), ep,x]| ≥ 10000
ε2 .

Proof. For the sake of contradiction, assume that there exists a non-self-chargeable

event Ep,x such that |[τβp (ep,x), ep,x]| < 10000
ε2 . Let S be the set of requests for page

p which arrive on the interval [τβp (ep,x), ep,x). By definition of τβp (ep,x) it must be

the case that F (S) > βFp,x. We now want to bound the number of requests in S.

Since each request in S can accumulate flow time at most |[τβp (ep,x), ep,x]| < 10000
ε2 ,

we have that F (S) < |S| 10000
ε2 , thus βFp,x < |S| 10000

ε2 . Hence we have that

|S| > ε2

10000βFp,x. The optimal solution must accumulate at least |S| flow time

for the requests in S, therefore F ∗p,x ≥ |S| > ε2

10000βFp,x ≥
1
γFp,x. This is a

contradiction to Ep,x being non-self-chargeable.

To bound F (N1) and F (N2), we need the following two lemmas. For any

event Ep,x, the first lemma will be used to bound the flow time accumulated

for page p at different times during Ep,x. This will help us to compare the flow

time of Ep,x to the flow time of events ending during Ep,x. The proof of this

lemma follows easily by definition of flow time.

Lemma 14. For any event Ep,x, let R′ ⊆ Rp,x. Let t be such that bp,x ≤ t < ep,x.

Suppose that all requests in R′ arrive no later than time t. Then for any

0 ≤ η < 1, F (R′, t + η(ep,x − t)) ≥ ηF (R′). Further, if F (R′) ≥ υFp,x, then

F (R′, t+ η(ep,x − t)) ≥ ηυFp,x.

Proof. F (R′, t+ η(ep,x − t)) =
∑
Jp,i∈R′(t+ η(ep,x − t)− rp,i) =

∑
Jp,i∈R′((1−

η)t+ηep,x−rp,i) ≥
∑
Jp,i∈R′((1−η)rp,i+ηep,x−rp,i) = η

∑
Jp,i∈R′(ep,x−rp,i) =

ηF (R′). The inequality holds, since any request Jp,i in R′ arrives no later than

time t.

The next lemma gives a global charging scheme built on Hall’s theorem, which

is a generalization of the techniques used in [41, 32]. This lemma shows how to

charge the flow time of some events to the total flow time LA-W1+ε accumulates.

Lemma 15. Let A be a set of events. Let µ, κ > 0 be some constants. Let λ ≥ 1

be an integer. For each event Ep,x ∈ A, suppose there exists an interval Ip,x and

a set of events Bp,x such that

37

• The optimal solution broadcasts page p at least λ times during the interval

Ip,x. Further, Ip,x is disjoint with Ip,x′ for any Ep,x′ ∈ A s.t. x′ 6= x.

• |Bp,x| ≥ µ|Ip,x| and Eq,y ∈ Bp,x only if eq,y ∈ Ip,x and Fq,y ≥ κFp,x.

Let B =
⋃

(p,x):Ep,x∈A Bp,x and d = minEp,x∈A |Ip,x|. Then,

F (A) ≤ (
2

λκµ
)(
d+ 1

d
)F (B) ≤ (

2

λκµ
)(
d+ 1

d
)LA-W1+ε.

Proof. We start by creating a bipartite graph G = (X ∪ Y,E). There is one

vertex up,x ∈ X for each event Ep,x ∈ A and there is a vertex vq,y ∈ Y for each

event in Eq,y ∈ B. Let up,x ∈ X and vq,y ∈ Y . There is an edge connecting up,x

and vq,y if and only if Eq,y ∈ Bp,x. For any set Z ⊆ X, let I(Z) be the set of

intervals corresponding to events in Z, i.e. I(Z) = { Ip,x | up,x ∈ Z}. We let⋃
I(Z) denote the union of intervals in I(Z). We denote the sum of length of

maximal subintervals in
⋃
I(Z) by |

⋃
I(Z)|. We will now show that G has a

((2
λµ)(d+1

d))-covering for X.

Consider any fixed set Z ⊆ X. We know the optimal solution must perform λ

unique broadcasts for each event in Z during I(Z) and these broadcasts can only

occur at integral times by definition of OPT. We observe that each maximal

interval I ′ in
⋃
I(Z) contains at most |I ′| + 1 = |I′|+1

|I′| |I
′| ≤ d+1

d |I
′| integers.

Thus it follows that
⋃
I(Z) contains at most d+1

d |
⋃
I(Z)| integers. Therefore

we have

λ|Z| ≤ d+ 1

d
|
⋃
I(Z)|. (2.1)

From now on, for simplicity, we assume that
⋃
I(Z) is one continuous interval;

otherwise our argument can be applied to each maximal subinterval in
⋃
I(Z).

Let I ′ ⊆ I(Z) be such that for any two intervals Ip,x, Iq,y ∈ I ′ it is the case that

Ip,x is not completely contained in Iq,y, and also
⋃
I ′ =

⋃
I(Z). By definition,

|
⋃
I ′| = |

⋃
I(Z)|. (2.2)

We order all intervals in I ′ in the increasing order of starting points. We pick

intervals from I ′ one by one and label them by the order they are picked; the ith

selected interval is denoted by Ii. Starting with I1, we pick Ii+1 so that Ii+1 the

least overlaps with Ii; here we will say Ii+1 overlaps with Ii even when Ii+1 starts

exactly where Ii ends. Let I ′odd and I ′even be the odd indexed and even indexed

intervals, respectively. WLOG, assume that |
⋃
I ′odd| ≥ |

⋃
I ′even|. Since

⋃
I ′odd

and
⋃
I ′even is a partition of

⋃
I ′, we know that |

⋃
I ′odd|+ |

⋃
I ′even| ≥ |

⋃
I ′|.

Thus we have

|
⋃
I ′odd| ≥

1

2
|
⋃
I ′|. (2.3)

Let NG(Z) be the neighborhood of Z. We now show that |NG(Z)| ≥
µ|
⋃
I ′odd|. Note that up,x, corresponding to Ip,x in I ′odd, has at least µ|Ip,x|

38

neighbors. Also note that all intervals in I ′odd are disjoint by construction of

I ′odd. Hence, by summing up all neighbors of vertices corresponding to intervals

in I ′odd, we have

|NG(Z)| ≥ µ|
⋃
I ′odd|. (2.4)

From (2.1), (2.2), (2.3) and (2.4), We have |NG(Z)| ≥ (λµ2)(d
d+1)|Z| and G

has a ((2
λµ)(d+1

d))-covering using Lemma 4. Let ` be such a covering.

F (A)

=
∑

up,x∈X
Fp,x

=
∑

up,xvq,y∈E
`up,xvq,yFp,x [By definition of the covering]

≤
∑

up,xvq,y∈E
`up,xvq,y

Fq,y
κ

[By Fq,y ≥ κFp,x]

≤ (
2

κλµ
)(
d+ 1

d
)
∑

vq,y∈Y
Fq,y

[Change order of the summation and ` is a ((2
λµ)(d+1

d))-covering]

= (
2

κλµ
)(
d+ 1

d
)F (B)

[Since Y is the set of vertices corresponding to events in B]

≤ (
2

κλµ
)(
d+ 1

d
)LA-W1+ε [Since B is a subset of all events]

This lemma can be interpreted as follows. For a set of events A ⊆ N2, we

charge the flow time of each event Ep,x ∈ A to some events ending during Ip,x.

In our analysis, Ip,x will always be a subinterval of Ep,x; thus for any fixed page

p, {Ip,x | Ep,x ∈ A} are disjoint. If the following conditions hold for each event

Ep,x ∈ A, then F (A)� 5LA-W1+ε. (1) There are at least λ broadcasts by OPT

of page p during Ip,x. (2) We can find a sufficiently large fraction of events ending

during Ip,x, denoted by µ, such that each of these events have flow time at least

κFp,x. (3) Ip,x is sufficiently long for all Ep,x ∈ A. The bound we get on F (A)

improves by either finding many broadcasts of page p by OPT during Ip,x or by

finding sufficiently many events with very large flow time ending during Ip,x.

Using the global charging scheme given in Lemma 15, we can bound the flow

time of events in N1 by OPT. This is not too difficult and follows easily by

combining the analysis given in [32], the definition of τ and Lemma 15. The

proof is similar to that given in [32].

Lemma 16. F (N1) ≤ O(1
ε11)OPT.

5A� B should read as A < ξB for some constant ξ < 1.

39

Proof. We apply Lemma 15 using the notation given in the lemma. Let A be the

set of all N1 events. Consider any event Ep,x ∈ A. Let Ip,x = [τρp (ep,x), ep,x) for

some fixed β ≤ ρ ≤ β(10
ε (d1000ce+2)+1) such that at least dαs(ep,x−τρ(ep,x))e

self-chargeable events end on Ip,x. Note that ρ exists by definition of N1 events.

By Lemma 12, the optimal solution must broadcast page p during Ip,x. Due to this

we set λ = 1. Since |Ip,x| ≥ 10000
ε2 by Lemma 13, we have d = minEp,x∈A |Ip,x| ≥

10000
ε2 .

Let Bp,x be the self-chargeable events ending during I ′p,x = [τρp (ep,x)+ α
2 (ep,x−

τρp (ep,x)), ep,x). Note that there are at most dαs2 |Ip,x|e events ending during

Ip,x \ I ′p,x, because the algorithm broadcasts a page every 1
s time steps during

Ip,x \ I ′p,x. Therefore there exist at least dαs|Ip,x|e − dαs2 |Ip,x|e ≥ b
αs
2 |Ip,x|c ≥

αs
4 |Ip,x| self-chargeable events ending during I ′p,x. Hence, |Bp,x| ≥ αs

4 |Ip,x| and

we can set µ = αs
4 .

Let Eq,y ∈ Bp,x. By Lemma 14 and the definition of τρp (ep,x) we know

that at anytime t ∈ I ′p,x it is the case that Fp,x(t) ≥ α
2 (1 − ρ)Fp,x. Since our

algorithm chose to broadcast page q at time ep,x ∈ I ′p,x over page p, we have

Fq,y ≥ α
2c (1− ρ)Fp,x. Therefore we can set κ = α

2c (1− ρ).

In sum, by Lemma 15,

F (N1) ≤ 2

λκµ

d+ 1

d
F (S) = (

16c

α2s
)(

1

1− ρ
)
d+ 1

d
(γOPT) = O(

1

ε11
)OPT.

We now focus on bounding the flow time of events inN2. To exploit Lemma 15,

N2 is partitioned into three disjoint sets T1, T2 and T3. To discuss the high

level interpretation of the sets T1, T2 and T3 we fix an event Ep,x ∈ N2 and

page p and drop the subscript p, x. For the event E we will consider different

subintervals of E defined by τ . Let Ii = [τβ(10
ε i+1)(e), e) for i ∈ N. Notice that

Ii is a subinterval of Ii+1 for all i. We will concentrate on the intervals Ii for

different values of i. Concentrating on these intervals will allow us to break

up the event E so that we can better understand when the requests for page p

arrived during E and how the optimal solution and LA-W1+ε behaved during E.

The event E will be in the set T1 if for some i it is the case that page p is not

in the queue Q for a sufficiently large number of broadcasts by LA-W1+ε during

Ii. By definition of Q, if p is not in Q(t) then there exists another page q such

that Fq(t) > cFp(t). Rule 2 of LA-W broadcasts a page with the highest flow

time every b 10
ε c broadcasts. Using this, we will be able to find sufficiently many

events ending during E with flow time much larger than the flow time of event

E. Then Lemma 15 can be used to show that F (T1)� LA-W1+ε. Intuitively,

the requests in T1 cannot account for most of LA-W1+ε’s flow time since there

exists other events with flow time much larger than those in T1.

If the event E is not in the set T1 and if the length of Ii+1 is sufficiently

longer than the length of Ii for many different values of i then the event E

40

will be in the set T2. For such an event E, the requests for page p that arrive

during E will be grouped according to when they arrived. We will show that

each of these groups contributes to a substantial amount of event E’s flow time.

Knowing that E is non-self-chargeable, we will show that OPT must perform

a unique broadcast of page p for each of these groups during E. This allows

us to show that F (T2) � LA-W1+ε using Lemma 15. Intuitively, since the

optimal solution has to perform a lot of broadcasts for each event in T2, there

cannot be many events in T2. Therefore the events in T2 do not account for

a large portion of LA-W1+ε’s flow time.

Finally T3 will consist of all events in N2 that are not in T1 or T2. Using

the definitions of T1, T2 and τ we will be able to show that no events can be in

T3 and this will complete our analysis. Showing that T3 = ∅ is the most difficult

part of the analysis and this is where Rule 1 and resource augmentation plays

a crucial role. We now formally define the sets T1, T2 and T3. For simplicity

of notation, let τβ,ip,x = τ
β(10

ε i+1)
p (ep,x). A N2 event Ep,x is in

• T1 if and only if for some 0 ≤ i ≤ d1000ce + 2 the page p is not in Q

for at least d εs10 |[τ
β,i
p,x, ep,x)|e broadcasts by our algorithm on the interval

[τβ,ip,x, ep,x).

• T2 if and only if Ep,x /∈ T1 and for all 0 ≤ i ≤ d1000ce, τβ,ip,x − τβ,i+1
p,x ≥

ε
10 (ep,x − τβ,ip,x)

• T3 otherwise.

We note that if β and c are chosen such that β(10
ε (d1000ce+ 2) + 1) < 1, then

the time τβ,ip,x must exist for all 0 ≤ i ≤ d1000ce+ 2. The rest of the this chapter

is organized as follows. In Section 2.4.2 we will show that F (T1)� LA-W1+ε.

Then in Section 2.4.2 we will show that F (T2) � LA-W1+ε. Finally we will

show that T3 = ∅ in Section 2.4.2. Before continuing, we fix our constants, so

that our arguments can be verified. As already mentioned, we let β = (ε
1000)4,

c = 10000
ε3 , γ = 10000

ε2β , α = ε
100 and k = 10

ε (d1000ce + 2) + 1. Note that

τ
β,d1000ce+2
p,x = τβkp (ep,x) for any page p by definition of k and τβ,ip,x. Recall that

our algorithm is parameterized by β and c. Here we have chosen c and β so that

the analysis is readable and easy to verify and not to optimize the analysis.

Bounding T1 events

In this section we bound F (T1). By definition of T1, for each event Ep,x ∈ T1 the

page p is not in Q for at least d εs10 |[tp,x, ep,x)|e broadcasts by LA-W1+ε on the

interval [tp,x, ep,x) where tp,x = τβ,ip,x for some fixed 0 ≤ i ≤ d1000ce+ 2. Recall

that our goal is to show that there are many events ending during Ep,x with

flow time much larger than Fp,x. After finding these events, we will charge Fp,x

to these events. We begin by actually finding such events in the next lemma.

41

Lemma 17. For an event Ep,x ∈ T1 there exist at least (ε
2s

205)|[tp,x, ep,x)| events

ending on the interval [tp,x, ep,x) with flow time at least cε
20 (1− βk)Fp,x.

Proof. Let S[bp,x,tp,x] be the requests for page p which arrive during [bp,x, tp,x].

By the definition of tp,x and τ , we have F (S[bp,x,tp,x]) ≥ (1− β(10
ε i+ 1))Fp,x ≥

(1 − βk)Fp,x. Let I = [tp,x + ε
20 (ep,x − tp,x), ep,x). For any time t ∈ I, by

Lemma 14,

F (S[bp,x,tp,x], t) ≥
ε

20
(1− βk)Fp,x. (2.5)

By definition of T1, there are at least d εs10 (ep,x − tp,x)e broadcasts by our

algorithm on the interval [tp,x, ep,x) where page p is not in Q. At most d εs20 (ep,x−
tp,x)e of these broadcasts end on the interval [tp,x, tp,x+ ε

20 (ep,x−tp,x)). Therefore,

there are at least d εs10 (ep,x−tp,x)e−d εs20 (ep,x−tp,x)e ≥ b εs20 (ep,x−tp,x)c broadcasts

by our algorithm on the interval I where page p is not in Q when these broadcasts

were scheduled.

Now consider a time t ∈ I where page p is not in Q(t). By definition of Q, at

time t there must exist some page q such that Fq(t) ≥ cFp(t). Our algorithm

schedules the page with the largest flow time every b 10
ε c broadcasts according to

Rule 2. Therefore, within b 10
ε c broadcasts some page q where Fq(t) ≥ cFp(t) is

broadcasted by the algorithm. Using this and (2.5), there exists an event Eq,y

with flow time at least Fq,y >
cε
20 (1 − βk)Fp,x such that eq,y ∈ [t, t + 1

sb
10
ε c).

Using Lemma 13 to ensure the interval [tp,x, ep,x) is sufficiently long, we conclude

that there exist at least b(b εs20 (ep,x − tp,x)c/b 10
ε c)c ≥ (ε

2s
205)|[tp,x, ep,x)| events

ending during I with flow time at least cε
20 (1− βk)Fp,x.

We can now easily bound F (T1) by LA-W1+ε using Lemmas 15, 17, 12

and 13.

Lemma 18. F (T1) < 83
100LA-W1+ε.

Proof. We apply Lemma 15 using the notation given in the lemma. Consider

any Ep,x ∈ T1. Let Ip,x = [tp,x, ep,x). We know that the optimal solution must

broadcast page p at least once on the interval [tp,x, ep,x) by Lemma 12, since

[τβp (ep,x), ep,x) is a subinterval of [tp,x, ep,x). So we can set λ = 1. By Lemma 17

we have that for any event Ep,x ∈ T1 there exist at least ε2s
205 |[tp,x, ep,x)| events

ending on the interval [tp,x, ep,x) of flow time at least cε
20 (1−βk)Fp,x. If we let the

set Bp,x consist of these events, we can set µ = ε2s
205 and κ = cε

20 (1− βk). Using

Lemma 13 we know that |Ip,x| ≥ 10000/ε2 and therefore d = minEp,x∈A |Ip,x| ≥
10000/ε2. Thus we have

F (T1) ≤ 2

κµλ

d+ 1

d
LA-W1+ε = (

41

50(1 + ε)
)(

1

1− βk
)
d+ 1

d
LA-W1+ε

<
83

100
LA-W1+ε.

42

Bounding T2 events

Figure 2.4: For any event Ep,x in T2, OPT must broadcast page p during
[t1, t3).

In this section, we bound F (T2). Recall that our goal is to show that for any

event Ep,x ∈ T2, the optimal solution must broadcast page p many times during

Ep,x. To find these broadcasts by the optimal solution, we break up each event

Ep,x ∈ T2 into the time intervals [τβ,i+2
p,x , τβ,ip,x). By definition of τ , we know that

the requests for page p that arrive during [τβ,i+2
p,x , τβ,i+1

p,x] account for a substantial

portion of the flow time of event Ep,x. Knowing this and that the length of

[τβ,i+1
p,x , τβ,ip,x) is sufficiently long by definition of events in T2, we will be able

to show that the optimal solution must broadcast page p during [τβ,i+2
p,x , τβ,ip,x).

Otherwise, these requests wait for a sufficiently long time to be scheduled by

OPT and, therefore, OPT must accumulate flow time at least 1
γFp,x for these

requests. This contradicts the fact that events in T2 are non-self-chargeable.

Lemma 19. Let Ep,x be an event in T2. For any integer i s.t. 0 ≤ i ≤ d1000ce,
the optimal solution must broadcast page p during the interval [τβ,i+2

p,x , τβ,ip,x).

Proof. For any fixed integer i such that 0 ≤ i ≤ d1000ce, let t1 = τβ,i+2
p,x ,

t2 = τβ,i+1
p,x , and t3 = τβ,ip,x. Note that t3−t2 ≥ ε

10 (ep,x−t3) and t1 < t2 < t3, since

Ep,x ∈ T2. See Figure 2.4. Let S[t1,ep,x), S(t2,ep,x) and S[t1,t2] be the set of requests

for page p which arrive on the intervals [t1, ep,x), (t2, ep,x) and [t1, t2], respectively.

By definition of t1 and t2, we have that F (S[t1,ep,x)) > β(10
ε (i+ 2) + 1)Fp,x and

F (S(t2,ep,x)) ≤ β(10
ε (i+ 1) + 1)Fp,x. Thus we have,

F (S[t1,t2]) = F (S[t1,ep,x))− F (S(t2,ep,x)) >
10

ε
βFp,x. (2.6)

With the fact t3 − t2 ≥ ε
10 (ep,x − t3), the fact that the requests in S[t1,t2]

arrive by time t2, and (2.6), by applying Lemma 14 we have

F (S[t1,t2], t3) ≥ (
ε

10
)(

10

ε
)βFp,x = βFp,x. (2.7)

For the sake of contradiction, suppose that the optimal solution does not

broadcast page p on the interval [t1, t3). Then

F ∗p,x ≥ F (S[t1,t2], t3) ≥ βFp,x ≥
1

γ
Fp,x. (2.8)

This is a contradiction to Ep,x being non-self-chargeable.

43

Corollary 1. For each event Ep,x ∈ T2, the optimal solution broadcasts page p

at least d500ce times during the interval [τβkp,x, ep,x).

At this point, we have shown the most interesting property of events in T2

and we are almost ready to bound F (T2). Before bounding F (T2), we first find

events to charge to. For each event Ep,x ∈ T2, we want to charge Fp,x to some

events ending during [τβkp,x, ep,x) because we know OPT broadcasts page p many

times during this interval. Knowing that LA-W always broadcasts the page

with flow time close to the highest flow time, we can easily find events ending

during [τβkp,x, ep,x) with sufficiently large flow time.

Lemma 20. Consider any event Ep,x ∈ T2. Let Ip,x = [τβkp,x, ep,x). There

exist at least 49
100 (1 + ε)|Ip,x| events ending during Ip,x with flow time at least

1
2c (1− βk)Fp,x.

Proof. Let I ′p,x = [τβkp,x + 1
2 (ep,x − τβkp,x), ep,x). Note that there are at least

b(1 + ε) 1
2 |Ip,x|c ≥ (1 + ε) 49

100 |Ip,x| events ending during I ′p,x; the inequality is

due to Lemma 13 to ensure |Ip,x| is sufficiently long. Let Eq,y be an event such

that eq,y ∈ I ′p,x. We now show that Fq,y ≥ 1
2c (1− βk)Fp,x. By Lemma 14 and

the definition of τβkp,x we have Fp(eq,y) ≥ 1
2 (1 − βk)Fp,x. Since our algorithm

chose page q over page p at time t, according to either Rule 1 or Rule 2,

Fq,y ≥ 1
cFp(eq,y). Hence we conclude that Fq,y ≥ 1

2c (1− βk)Fp,x.

Finally we bound the flow time of T2 events by charging an event Ep,x ∈ T2

to the events we found in Lemma 20. Notice that the events we are charging to

can have flow time less that Fp,x, but we counter this by finding many broadcasts

of page p by OPT during Ep,x.

Lemma 21. For 0 < ε ≤ 1, F (T2) < 2
100LA-W1+ε.

Proof. We apply Lemma 15. Let Ep,x ∈ T2 and Ip,x = [τβkp,x, ep,x). By Corollary 1

we can set λ = 500c. By letting Bp,x be the set of events found for Ep,x in

Lemma 20, we can set κ = 1
2c (1− βk) and µ = 49

100 (1 + ε). Using Lemma 13 we

know that |Ip,x| ≥ 10000/ε2 and therefore d = minEp,x∈A |Ip,x| ≥ 10000/ε2. The

desired result follows by simple calculation.

There are no events in T3

Figure 2.5: For an event Ep,x in T3, during [t1, ep,x) OPT must make a unique
broadcast for most events which end during [t3, ep,x).

44

In this section we show T3 = ∅. For the sake of contradiction suppose that

T3 is non-empty. Fix an event Ep,x ∈ T3. For some fixed 0 ≤ i ≤ d1000ce we

have that τβ,ip,x − τβ,i+1
p,x < ε

10 (ep,x − τβ,ip,x) because Ep,x /∈ T2. Let t1 = τβ,i+1
p,x and

t2 = τβ,ip,x. Let t3 = t2 + ε
9 (ep,x − t2). Let E be all the non-self-chargeable events

ending during [t3, ep,x) which were scheduled by Rule 1 when page p was in Q.

Our goal is to show that OPT must make a unique broadcast for each event in

E on the interval [t1, ep,x). Then it will be shown that |E| > |[t1, ep,x)|+ 1 by

showing |E| ' (1 + ε)|[t3, ep,x)| > |[t1, ep,x)|+ 1. Since OPT has 1 speed, this

will show that OPT cannot complete these broadcasts on the interval [t1, ep,x).

This contradiction will imply that T3 = ∅. See Figure 2.5.

Recall that by Lemma 12, for any Eq,y ∈ E , the optimal solution must broad-

cast page q on the interval [τβq (eq,y), eq,y) because Eq,y is non-self-chargeable.

Further, note that such broadcasts are unique to Eq,y, i.e. not contained in

Eq,y′ for any y′ 6= y because Eq,y′ and Eq,y are disjoint by definition. For any

Eq,y ∈ E , if we show that τβq (eq,y) ∈ [t1, ep,x) then we will know that OPT

performs these broadcasts on [t1, ep,x). This is where Rule 1 will play a crucial

role in our analysis. We will first show that τβp (t) ≥ t1 for all times t ∈ [t3, ep,x).

By definition, if page q was scheduled by Rule 1 and page p was in Q(t) then

τβp (t) ≤ τβq (t). Hence, for any Eq,y ∈ E we will have that t1 ≤ τβp (eq,y) ≤ τβq (eq,y)

and OPT broadcasts page q on [t1, ep,x).

Lemma 22. For the event Ep,x ∈ T3, at any time t ∈ [t3, ep,x), τβp (t) ≥ t1.

Proof. For the sake of contradiction assume that τβp (t) < t1. Let t′ = τβp (t).

Note that t′ < t1 ≤ t2 < t < ep,x. Let S[t1,ep,x), S(t2,ep,x) and S[t1,t2] be the set of

requests which arrive for page p on the intervals [t1, ep,x), (t2, ep,x), and [t1, t2],

respectively. By definition of t1 and t2, we have F (S[t1,ep,x)) > β(10
ε (i+1)+1)Fp,x

and F (S(t2,ep,x)) ≤ β(10
ε i+ 1)Fp,x. Hence,

F (S[t1,t2]) = F (S[t1,ep,x))− F (S(t2,ep,x)) >
10

ε
βFp,x. (2.9)

By the definition of t′ = τβp (t), we have F (S(t′,t2], t) ≤ F (S(t′,t], t) ≤ βFp(t) ≤
βFp,x. Since t ≥ t2 + ε

9 (ep,x − t2), by Lemma 14, ε
9F (S(t′,t2], ep,x) ≤ F (S(t′,t2], t).

Thus we have,

F (S(t′,t2]) = F (S(t′,t2], ep,x) ≤ 9

ε
F (S(t′,t2], t) ≤

9

ε
βFp,x. (2.10)

Knowing that F (S(t′,t2]) ≥ F (S[t1,t2]), this is a contradiction to (2.9).

Finally we are ready to show that T3 = ∅. This lemma follows by using the

previous lemma and counting the number of broadcasts the optimal solution

must do on the interval [t1, ep,x). It is in the next lemma that we rely strongly

on resource augmentation.

Lemma 23. It must be the case that T3 = ∅.

45

Proof. Recall that E is the set of all the non-self-chargeable events ending during

[t3, ep,x) which were scheduled by Rule 1 when page p was in Q. We first show

|E| > s(1− 34
100 ε)(ep,x−t2) by a simple counting argument. We know that at least

bs(1− ε
9)(ep,x− t2)c events end during [t3, ep,x) by definition of t3 and t2. Among

these events we know that at most αs(ep,x − t2) events are self-chargeable, since

Ep,x ∈ N2; at most ds(ep,x − t2)e/b 10
ε c + 1 ≤ εs 101

900 (ep,x − t2) broadcasts are

scheduled by Rule 2, since our algorithm performs according to Rule 2 every

b 10
ε c broadcasts (the inequality is due to Lemma 13); and at most εs

10 (ep,x − t2)

events were scheduled when p is not in the queue Q, since Ep,x /∈ T1. By

subtracting these numbers from the number of events ending during I ′p,x and

knowing that (ep,x − t2) ≥ 10000
ε2 by Lemma 13, we have

(1− 34

100
ε)(1 + ε)(ep,x − t2) ≤ |E|. (2.11)

Knowing that t2 − t1 < ε
10 (ep,x − t2), we have

|[t1, ep,x]| < (1 +
ε

10
)(ep,x − t2). (2.12)

As discussed previously, Lemma 22 implies that OPT must make a unique

broadcast for each event in E during [t1, ep,x). Since the optimal solution has 1

speed, with Lemma 13, it must be the case that

|E| ≤ |[t1, ep,x)|+ 1 ≤ (1 +
ε

10000
)|[t1, ep,x)|. (2.13)

By combining (2.11), (2.12), and (2.13), we have that (1 − 34
100ε)(1 + ε) <

(1 + ε
10)(1 + ε

10000). For any 0 < ε ≤ 1 this is not true, so we obtain a

contradiction.

By lemmas 18, 21 and 23 we have that F (N2) ≤ 85
100LA-W1+ε. The proof of

Theorem 2 follows easily by combining this and lemmas 11 and 16.

2.5 Concluding Remarks

In this chapter, we gave the first scalable algorithm Latest Arrival time with

Waiting (LA-W) for the objective of minimizing average flow time for unit-sized

pages in broadcast scheduling. The algorithmic development depended crucially

on the better understanding of LWF and its analysis. We currently do not know

if the Rule 2 in LA-W is required to obtain a scalable algorithm. The algorithm

of using only the Rule 1 will be more natural.

As mentioned in Remark 3, following our results, Bansal et al. gave another

scalable algorithm which is (1 + ε)-speed O(1/ε3)-competitive. Moreover, their

algorithm works also for varying-sized pages. The novelty of their analysis is a new

interpretation of LAPS. They showed the algorithm LAPS is fractionally scalable

46

and gave an online rounding scheme that converts the fractional schedule into

an integral schedule. Their work was extended to `k norms of flow time [55, 44].

There remain several interesting open problems in broadcast scheduling.

Assume that all pages are unit-sized. The most interesting open problem is to

improve the O(log n/ log log n)-approximation for the `1 norm, which is currently

the best approximation known [12]. The only known complexity result is that

the problem is NP-hard [46, 29].

Open Problem 1. For the problem of minimizing average flow time for unit-

sized pages in broadcast scheduling, give an approximation algorithm whose

approximation ratio is o(log / log log n), or show that the problem is APX-hard.

Another interesting open problem is regarding minimizing the maximum flow

time. It is known that the problem is NP-hard [29]. The algorithm First In First

Our (FIFO) is 2-competitive [29, 33]. Further it is known that for any ε > 0,

no randomized algorithm has a competitive ratio of 2 − ε [34].

Open Problem 2. For the problem of minimizing the maximum flow time for

unit-sized pages in broadcast scheduling, give an approximation algorithm whose

approximation ratio is strictly less than 2, or show that the problem is APX-hard.

47

Chapter 3

Non-clairvoyant Scheduling
with Arbitrary Speedup
Curves

3.1 Introduction

We consider scheduling dynamically arriving jobs that have varying degrees

of parallelizability (that is, some jobs may be sped up considerably when si-

multaneously run on multiple processors, while other jobs may be sped up by

very little) on a multiprocessor system. The most obvious settings where this

problem arises is scheduling multi-threaded processes on a chip with multiple

cores/processors, and scheduling multi-processor applications in a server farm.

We adopt the following general model of parallelizability, which was apparently

first introduced in [43] and later used in [38, 40, 42, 90, 89, 26]: we have m

identical fixed speed processors. Each job i arrives at time ri, and consists of a

sequence of phases. Each phase needs to finish some amount of work, and has

a speedup function that specifies the rate at which work is processed in that

particular phase (as a function of the number of processors assigned to the job).

The speedup functions have to be nondecreasing (a job doesn’t run slower if it is

given more processors), and sublinear (a job satisfies Brent’s Theorem: increasing

the number of processors doesn’t increase the efficiency of computation), but

the functions are unconstrained otherwise.

The scheduler needs an assignment policy to determine how many processors

are allocated to each job at each point in time. In order to be implementable in

a real system, we require that this policy be online, since the scheduler will not

in general know about jobs arriving in the future. This policy also ideally should

be nonclairvoyant, since a scheduler usually does not know the size/work of a

job when the job is released, nor the degree to which that job is parallelizable.

So a non-clairvoyant algorithm only knows when jobs have been released and

which have finished in the past, and how many processors have been allocated

to each job at each point of time in the past. We will focus on the objective of

minimizing the `k norms of flow time (k ≥ 1), i.e., k

√∑
i∈[n](Ci − ri)k. When

k ≥ 2, this objective is known to make a natural balance between average

performance and fairness. See Section 1.2.

To recap, we address the problem of designing an online non-clairvoyant

assignment policy that is competitive for the objective of the `k norm of the

flow time for jobs with arbitrary speed-up curves.

48

Context and Developing the Right Intuition

To get a feel for the problem, let us consider two special cases. Consider first the

case that all jobs are fully parallelizable (i.e., increasing the number of processors

assigned to a job by a factor f reduces the time required by a factor of f),

which is essentially equivalent to having a single processor. In the initial paper

popularizing resource augmentation analysis [69], the algorithm Shortest Elapsed

Time First (SETF) which shares the processors evenly among all jobs that have

been processed the least (which necessarily are the later arriving jobs) was shown

to be scalable for the `1 norm of flow. This was generalized by [8] to show

that SETF is scalable for all `k norms of flow for 1 ≤ k < ∞. So intuitively,

in the case of parallel work, the “right” algorithm is independent of the norm,

equivalently the “right” algorithm for the `1 norm extends to all `k norms.

Now consider the more general case of jobs with arbitrary speed-up curves, but

only for the `1 norm. [38] showed that the assignment policy EQUI that shares

the processors evenly among all active jobs is (2 + ε)-speed O(1)-competitive for

average flow time. Subsequently, [42] introduced the algorithm Latest Arrival

Processor Sharing (LAPS), which shares the processors evenly among the latest

arriving constant fraction of the jobs, and showed that LAPS is scalable for

average flow time. The intuition behind LAPS was to mimic SETF, by giving

more processors to later arriving jobs, but to spread the processing power more

evenly in case that the latest arriving jobs are sequential (their processing rate

does not increase even if they are assigned more processors). In this special

case, the “right” strategy for arbitrary speed-curves is basically the same as

the “right” strategy for parallel work.

Given these two special cases, it would be natural to think that LAPS should

be scalable for the problem of minimizing `k norms of flow for jobs with arbitrary

speed-up curves. However, we show in Section 3.3 that LAPS is not O(1)-speed

O(1)-competitive for the `k norm of flow when k ≥ 2.

Considering why LAPS fails to be O(1)-competitive for `k norms, even with

faster processors, offers insight into how to design a scalable algorithm. Let

us consider the most popular case of the `2 norm. Just as the total flow time∑
i Fi is the integral over time of the number of jobs unfinished at that time,

the sum of the squares of the flow times
∑
i F

2
i is proportional to the integral

over time, of the ages of the jobs at that time. The key observation in [8] was

that if SETF, with a (1 + ε)-speed processor, has unfinished jobs of a particular

age, then any schedule on a unit speed processor must have a comparable

number of unfinished jobs that are at least as old: this observation implies the

competitiveness of SETF for all `k norms rather directly. The lower bound

instance in Section 3.3 shows that for jobs with arbitrary speed-up curves, LAPS

may have devoted too much processing to sequential jobs in the past, and hence

it may have many more old jobs than is necessary. And as LAPS focuses on new

jobs, these old jobs will remain unfinished, driving up the `2 norm of flow for

49

LAPS relative to optimal. This lower bound instance, and the simple instance

of the stream of unit work jobs, suggests that the online algorithm must give

a greater share of the processing power to older jobs for `2 norm of flow time

for jobs with arbitrary speed-up curves.

Our algorithm addresses this by distributing the processors in proportion to

the age of the jobs, which is the rate at which that job is currently increasing the

`2 norm of flow (more precisely, the sum of squares of flow time,
∑
i∈[n](Ci−ri)2)

Combining this intuition with an idea used in [42] to focus only on a fraction

of the recent jobs, we design an algorithm WLAPS that is scalable for the

`2 norm of flow. Essentially, WLAPS distributes the processors to the latest

arriving constant fraction of jobs. However, the proportion of resources a job

gets is related to the age of the job. The algorithm WLAPS naturally extends

to `k norms for k ≥ 1.

3.1.1 Our Results

Our main result in this chapter is the following:

Theorem 3. There exists a (1 + 12ε)-speed O(k
ε2k+1)-competitive algorithm for

the `k-norm objective for each fixed k where 0 < ε ≤ 1
24k .

Note that our result uses resource augmentation. It is known that no algorithm

is O(1)-competitive without resource augmentation for `k norms, k ≥ 2 [8]. The

competitive ratio of WLAPS, which is shown in our analysis, grows with k. This

is supported by the lower bound on the competitive ratio for the `∞-norm [88].

We conjecture the competitive ratio of WLAPS grow linearly as k grows.

3.1.2 Related Results

Consider first the case that all the work is fully parallelizable and and the `1

norm. It is well known that the online clairvoyant algorithm Shortest Remaining

Processing Time is optimal. The competitive ratio of any deterministic non-

clairvoyant algorithm is Ω(n1/3), and the competitive ratio of every randomized

algorithm against an oblivious adversary is Ω(logn) [83]. A randomized ver-

sion of the Multi-Level Feedback Queue algorithm has a matching asymptotic

competitive ratio [70, 18].

Chan et al. [26] consider the problem of non-clairvoyant scheduling of

jobs with varying degrees of parallelizability on a multiprocessor, where each

machine can be scaled at a different speed. They give a O(logm)-competitive

algorithm for the problem of minimizing the sum of average flow time plus

energy, where the power function varies as sα for constant α, under some

assumptions about the jobs.

50

3.2 Formal Problem Statement and Notation

We now formally define the problem and introduce notation required for our

algorithm and analysis. An arbitrary problem instance consists of a collection

of jobs J = {J1, . . . , Jn} where job Ji has a release/arrival time of ri and a

sequence of phases
〈
J1
i , J

2
i , . . . , J

qi
i

〉
. Each phase is an ordered pair 〈wqi ,Γ

q
i 〉,

where wqi is a positive real number that denotes the amount of work in the

phase and Γqi is a function, called the speedup function, that maps a nonnegative

real number to a nonnegative real number. The function Γqi (p) represents the

rate at which work is processed for phase q of job i when the job is run on p

processors running at speed 1. Henceforth, we may interchangeably use job

i and job Ji when the context is clear.

A feasible schedule Ss for the job set J with n jobs and sm available processors

(one may think of s as a parameter) specifies for each time, and for each job,

a nonnegative real number specifying the number of processors assigned to the

job. Notice that we allow a job to be scheduled on a non-integral number of

machines. Such an assignment would be feasible as long as
∑n
i=1 Ss(i, t) ≤ sm

for all time instants t, where Ss(i, t) is the number of processors schedule Ss
allocates to job i at time t. In words, at any time, the total number of processors

allocated to the jobs must not exceed sm.

For such a schedule Ss, suppose a job i begins its qth phase at time tq. Then,

the completion time of this stage (which is also when the subsequent stage begins)

is the unique time tq+1 such that
∫ tq+1

tq
Γqi (Ss(i, t))dt = wqi . The completion time

Ci of the job is then the completion time of its final phase qi.

In the `k norm objective, the total cost incurred by this solution can then

be expressed as

cost(Ss) =

∑
i∈[n]

(Ci − ri)k
1/k

Recall that a nonclairvoyant algorithm only knows when jobs have been

released and finished in the past, and which jobs have been run on which

processors each time in the past. In particular, for any phase q, the algorithm

does not know the values of wqi , and the speedup function Γqi . In fact, it is not

even aware of the progression of a job from one phase to the next.

Notice that, by having a parameter s to alter the number of available proces-

sors, the notion of resource augmentation we have (implicitly) assumed here is

that of machine augmentation and not speed augmentation. However, since an s

speed processor is as powerful as s unit speed processors when preemption is al-

lowed, our results would translate to the speed augmentation model as well. This

enables us to make the following simplification: for ease of analysis, we scale the

number of processors by a factor of m, and assume that the optimal solution has a

single unit speed processor and the online algorithm has s unit speed processors.

51

3.3 Limitation of Latest Arrival Processor

Sharing (LAPS) for the `k-norms

In this section, we show that LAPS has a large competitive ratio for minimizing

the `k-norms of flow time for jobs with arbitrarily speedup curves. This is the

case even when LAPS is given any constant speed. The main idea of constructing

the adversarial example is to repeatedly request fully sequential jobs to prevent

LAPS from working on parallel jobs. Consequently, LAPS wastes its processing

power procrastinating parallel jobs substantially; unlike in L1-norm flow time,

these delayed jobs will cause a huge penalty.

Theorem 4. Consider any fixed integer k ≥ 2 and any fixed speed s ≤ 1. Further

consider any constant 0 < β ≤ 1 which parameterizes LAPS. Then the algorithm

LAPS is not O(1)-competitive with speed s for the problem of minimizing the `k

norm of flow time where jobs have arbitrarily speed up curves.

Proof. Recall that LAPS works on only β fraction of alive jobs which arrived

most recently; for the definition of LAPS, see Section 1.4. Let σ denote the

adversarial instance. For simplicity of our argument, suppose that LAPS is given

an integer speed s > 1. Let LAPSs(σ) and OPT1(σ) denote the kth power of

flow time for the given instance σ; the subscript s and 1 are used to denote the

speed LAPS and OPT are given, respectively. Let M > 0 be a sufficiently large

integer which will be defined later. The instance σ is constructed as follows.

• At time 0, one fully parallelizable job j0 having size M arrives.

• At each integer time t ∈ [0,M2 − 1], sM sequential unit-sized jobs arrive.

Let Jt denote the set of sequential jobs that arrive at time t.

Note that all sM jobs in Jt are unsatisfied by LAPS during [t, t+ 1), since

they are unit-sized sequential jobs. Therefore during [0,M2], as long as j0 is

alive, it is processed at a rate of at most 1
M , since even in the best case β = 1,

it equally shares the processors with other sM sequential jobs. Thus job j0

is not finished until time M2, which implies that LAPSs(σ) ≥ (M2)k. To the

contrary, let OPT work on only job j0. Then job j0 is finished at time M , and

all sequential jobs are finished in one time step. Hence, OPT1(σ) ≤Mk + sM3.

It is easy to check that LAPSs(σ)/OPT1(σ)→∞ as M →∞.

3.4 Non-clairvoyant Algorithm Weighted

LAPS (WLAPS)

We first describe our non-clairvoyant preemptive algorithm WLAPS for Weighted

Latest Arrival Processor Sharing. As can be deduced from its name, WLAPS

is inspired by LAPS [42], a scalable algorithm for minimizing the total flow

52

time of the jobs (i.e. when k = 1). Before we describe our algorithm, let us

introduce some notation. First and foremost, we will assume that the algorithm

WLAPS is given a speed-up of a factor of s. In other words, we can assume

that WLAPS is given a s-speed processor while the optimal adversary is given

only a unit-speed processor. Let β be a scaling parameter that determines the

fraction of weight we consider at any instant of time. The speed-up s will depend

on β, and we will fix this parameter later.

For each job i ∈ [n], let us define its weight at time t to be wi(t) = k(t−ai)k−1.

Informally, wi(t) denotes the rate of increase of the kth power of the flow time of

job i at time t (which is also the incremental cost incurred by the algorithm due

to job i being alive at time t). At any time t, let Na(t) denote the set of jobs

that are alive in the queue of our algorithm, i.e. Na(t) := {i ∈ [n] | ai ≤ t < Ci},
where Ci is the completion time of job i. Among the set of jobs Na(t), let N ′a(t)

denote the set of those jobs with the latest arrival times whose weights sum

up to βw(t), where w(t) =
∑
i∈Na(t)wi(t).

It would be useful to observe that the objective function we are interested in

is equivalent to (after raising the `k objective by a power of k) minimizing

∑
i∈[n]

(Ci − ri)k =

∫ ∞
0

∑
i∈Na(t)

wi(t)dt

We are now ready to describe our algorithm: At any time t, the algorithm

WLAPS simply distributes its processing power among the jobs in N ′a(t), in

proportion to their weights at time t. Let xi(t) denote the fraction of processing

power job i receives at time t under the schedule of WLAPS. Then,

xi(t) := s · wi(t)
βw(t)

, ∀i ∈ N ′a(t)

Notice that the total processing power used at any time is exactly s. We

remark that when k = 1 our algorithm WLAPS is exactly the same as LAPS,

since the weights of all jobs are identically equal to 1.

A Simplifying Assumption: We assume that there exists a set of latest

arriving jobs whose weights sum up to exactly βw(t). Otherwise, a slight

modification should be made to the algorithm. The set N ′a(t) which WLAPS

works on is now defined to be the minimal set of latest arriving jobs whose

weights exceed βw(t). Let j be the earliest arriving job in N ′a(t). The amount of

processing power that every job gets in N ′a(t) except j stays the same. The job

j receives a processing power of xj(t) := s ·
βw(t)−(

∑
i∈N′a(t)\{j} wi(t))

βw(t) . In words,

roughly speaking, the processing power the job j gets is proportional to its

weight which “overlaps” the β fraction of weights. With this small elaboration,

we can remove the assumption and the analysis easily follows. We however stick

to the simplifying assumption to make our analysis more readable.

53

3.5 Analysis

To show that an algorithm is O(1) competitive in scheduling theory, it suffices

to show that at any time the increase in the algorithm’s objective function is

within a constant of the increase in the optimal solution’s objective function.

This is called a local argument; see Section 1.5.1. For instance, this was used

to show that SETF is a scalable algorithm for the `k norms of flow time on

a single machine in the standard setting. However, it can be easily seen that

in the arbitrary speedup curves setting, no non-clairvoyant algorithm is local

competitive for the `k norm of flow time for any integer k ≥ 1. To avoid a

local argument we use a potential function analysis. This has recently become

popular in scheduling theory [38, 42, 55, 24]. For a quick overview of potential

functions in online scheduling, see Section 1.5.2. In this chapter we introduce

an interesting potential function which takes insights from [42, 55, 24, 15]. The

potential function of [55] is most closely related to our potential function.

In Section 3.5.1, we first show that we only need to consider “extreme” jobs.

Namely, we will show that it suffices to consider only the case where each job is

fully parallelizable or sequential. We then formally define the potential function

that will be used, and give an intuition behind it, in Section 3.5.2 and 3.5.3,

respectively. The main analysis is given in Section 3.5.4.

3.5.1 Restricted Instances are Sufficient

As by now is standard, we can show that we only need to focus on restricted

instances where every job is composed of either fully parallelizable phases or

completely sequential phases. A phase is said to be completely parallelizable

if Γqi (p) = p for all p, and completely sequential if Γqi (p) = 1 for all values

of p. That is, sequential phases progress at the same rate regardless of the

number of processors allocated.

To show this, we perform the following reduction from an arbitrary instance

I of the problem to such a restricted instance I ′ with the following properties

holding true: (i) the schedule produced by the non-clairvoyant algorithm remains

the same for both instances I and I ′, and (ii) the cost of the optimal offline

solution for the instance I ′ is at most the cost of an optimal offline solution for

the first instance I. This would ensure that if our algorithm is α-competitive on

instance I ′, then it has a competitive ratio of at most α on instance I as well.

Let NCAlg denote any non-clairvoyant algorithm. Our reduction works in the

following fashion: For each job i that is released in I, we release the job i′ in I ′

at the same time ri. Now consider an infinitesimally small interval [t, t + dt),

and let NCAlg devote pai processors towards j in this time interval. Also, let the

job be in some phase with parallelizability Γ in this time interval. Therefore,

the online algorithm effectively does a work of w = Γ(pai)dt for job i in time

interval [t, t+ dt). Now, let us focus on the time interval [t∗, t∗ + dt∗) when the

optimal solution works on this exact w amount of the job i (note that it could

54

occur before or after t). Let the optimal solution devote poi processors towards

doing this work w. Notice that the definition of [t∗, t∗ + dt∗) and poi imply that

Γ(poi)dt
∗ = w = Γ(pai)dt, which in turn implies that

Γ(poi)

Γ(pai)
=

dt

dt∗
(3.1)

If poi ≥ pai , then in the new instance I ′, we replace this w amount of work

for job i with w′ = pai dt amount of fully parallelizable work. Notice that by

this change, when w amount of work was finished by the online algorithm in

I, an equivalent w′ amount of work is done in I ′, and so the job progresses at

the same rate for the online algorithm in either instance. Furthermore, since

poi ≥ pai , we have that

poi
pai
≥ Γ(poi)

Γ(pai)
=

dt

dt∗
(3.2)

and therefore an optimal solution for I ′ can fit in the w′ amount of fully

parallelizable work at same time interval [t∗, t∗ + dt∗) when the optimal solution

for I worked on the corresponding w amount of i. Here, the equation (3.2)

follows from the sublinear nature of the speed-up function.

On the other hand, if poi < pai , then in our instance I ′, we replace this w

amount of work for job i with w′ = dt amount of fully sequential work. Notice

that by this change, when w amount of work was finished by the online algorithm

in I, an equivalent w′ amount of work is done in I ′, and again the job progresses

at the same rate for the online algorithm in either instance. Furthermore, since

in this case poi < pai , we have that

1 ≥ Γ(poi)

Γ(pai)
=

dt

dt∗
(3.3)

and therefore dt∗ ≥ dt. Therefore, an optimal solution for I ′ can fit in the

w′ = dt amount of fully sequential work in same time interval [t∗, t∗ + dt∗) when

the optimal solution for I worked on the corresponding w amount of i.

Hence, in either case, we see that the flow time of every job in the non-

clairvoyant online algorithm is same for both instances, and the flow time in

the optimal solution for I ′ is at most that for I. Therefore, it is sufficient to

design non-clairvoyant algorithms which are competitive against such extremal

instances. Furthermore, since any phase of a job is either completely sequential

or completely parallelizable, an algorithm working on s machines is equivalent

to one working on a single machine with speed s. Hence, in the following

section, we shall refer to s as the speed advantage the online algorithm has

over the optimal offline adversary.

55

3.5.2 Potential Function

We assume without loss of generality that all jobs arrive at distinct times. Let

No(t) be the set of released, yet unsatisfied jobs in the optimal solutions schedule.

Let xi(t) denote the amount of parallel work for job i which OPT has done

but WLAPS has not at time t; if WLAPS have processed more parallel work

for job i than OPT, then xi(t) is zero. An analogous quantity yi(t) is defined

for sequential work of job i. Let σi be the total sequential work for job i. To

analyze WLAPS we will use a potential function analysis. For this analysis we

will define a potential function Φ(t). The potential function Φ(t) will not increase

when a job arrives nor when a job is completed by OPT or WLAPS. Further,

Φ(0) = Φ(∞) = 0. During all times [t, t+dt] when no job arrives or is completed,

it will be shown that d
dtWLAPS(t) + d

dtΦ(t) ≤ c d
dtOPT(t), where c is some

constant. Here d
dtWLAPS(t) =

∑
i∈Na(t) wi(t) and d

dtOPT(t) =
∑
i∈No(t) wi(t).

If Φ(t) meets each of these conditions then WLAPS is c competitive. Our

potential function Φ(t) is defined as follows:

Φ(t) :=
∑

i∈Na(t)

(
t− ri +

1

ε

∑
rj ≥ ri
j ∈ Na(t)

xj(t)
)k

+(
2

ε
)2k+1

∑
i∈Na(t)

wi(t)yi(t)

3.5.3 Intuition Behind the Potential Function

Let Φ1(t) be the first term of Φ(t) and Φ2(t) be the second term of Φ(t). The

boundary conditions of our potential function are satisfied trivially. When job

i arrives at time t, the potential function has no change since t − ai = 0 and

xi = 0 on arrival. The optimal solution completing a job has no effect on the

potential function. When algorithm completes a job i the potential function

can only decrease, since all terms are positive.

Before analyzing the change in Φ, we discuss high level intuition of the

analysis. As stated, in [8] it was shown that SRPT and SJF are scalable

algorithms when all jobs have only one phase which is fully parallelizable. To

prove this, the authors used a local argument. They showed that at each time

t, the sum of the agek−1 of the jobs that are still alive under the algorithm’s

schedule is at most a constant c times the corresponding value for those that

are alive under the optimal schedule. When jobs can have a varying degree of

parallelizability, this local property no longer holds. This is why we resort to

a potential function based argument. When the algorithm’s current costs are

less than c times the optimal’s, the algorithm saves some into a bank account

so that when the algorithm’s current costs are higher than this, he can pay for

them by withdrawing these reserves. The potential function measures how much

56

is currently in the bank. The proof must show that at each point in time, these

costs balance, namely that d
dtWLAPS(t) + d

dtΦ(t) ≤ c d
dtOPT(t).

Consider a time t. The increase rate in our objective function at time t is∑
i∈Na(t)wi(t). Likewise the increase rate in the optimal solution’s objective

function is
∑
i∈No(t) wi(t). If the increase in OPT’s objective is comparable to

the increase in WLAPS objective, then we can charge the increase of WLAPS’

objective directly to the optimal solution along with any increase in Φ(t). This is

where the definition of the algorithm is crucially used, since WLAPS is defined

by the ages of jobs, it will help relate the ages of WLAPS’ unsatisfied jobs to

OPT’s unsatisfied jobs. However, if the two objectives are not comparable then

the decrease in Φ(t) must be used to pay for the increase in WLAPS objective.

Here there are two cases either most of the ages of jobs that are being processed

by WLAPS are in a sequential phase or they are in a parallel phase.

First say that most of the ages of the jobs WLAPS are working on are in

a sequential phase. In this case, each of the jobs in a sequential phase gets

processed whether or not WLAPS devotes processing power to the jobs. Since

all of these jobs are being processed at a fast rate, WLAPS will be completing

enough work to show that WLAPS is drifting its queue towards the optimal

solution’s queue. This case is captured by the second term in the potential

function, Φ2. Intuitively, wi(t)yi(t) is an approximation of the remaining cost

job i will pay in the algorithm’s objective function for sequential phases.

The second case is when our algorithm is processing mostly parallel work.

Here, since the algorithm is processing jobs with more speed than the adversary

is, via resource augmentation, we will again drift towards the adversary’s queue.

This case is captured by the first term in the potential function. This is,

Φ1(t) will decrease enough to pay for any increase in the algorithm’s objective.

Intuitively, we derive Φ1 by observing that (t − ri +
∑
rj≥ri,j∈Na(t) xj(t))

k is

an approximation of remaining cost job i will pay in the algorithm’s objective

function for parallel phases.

3.5.4 Main Analysis

For simple notation, let Wi(t) := k
(
t− ri + 1

ε

∑
rj≥ri,j∈Na(t) xj(t)

)k−1

. We will

study each of the changes in Φ(t) separately depending on where the change

comes from. In the final analysis, we will aggregate all the changes.

OPT’s processing: First we consider the change in Φ(t) when the optimal

solution processes jobs which are in a parallel phase. Let job q be the job

with the latest arrival time in Na(t). The largest increase in Φ1(t) occurs

when the optimal solution processes job q. Since the optimal solution has

1-speed, xq(t) increases at a rate of at most 1. Thus we have dtΦ1(t) ≤
1
ε

∑
i∈Na(t) k

(
t − ri + 1

ε

∑
rj≥ri,j∈Na(t) xj(t)

)k−1

= 1
ε

∑
i∈Na(t)Wi(t).

57

We now address the change in Φ2(t). The optimal solution processes each

job i in No(t) at a rate of 1 if i is in sequential phase, thus increasing yi(t) at a

rate of at most 1. Recall that a job in a sequential phase is processed at a rate of

1 whether or not it receives any processing power. In the worst case, every job

in No(t) is in a sequential phase. Thus d
dtΦ2(t) ≤ (2

ε)
2k+1

∑
i∈No(t)wi(t)dt ≤

(2
ε)2k+1 d

dtOPT(t). Hence the total change rate of Φ(t) due to OPT’s processing

is d
dtΦ(t) ≤ 1

ε

∑
i∈Na(t)Wi(t) + (2

ε)
2k+1 d

dtOPT(t).

WLAPS’s processing: We partition Na(t) into S(t) and P(t) such that S(t)

contains all jobs in Na(t) that are in a sequential phase and P(t) contains all

jobs in Na(t) that are in a parallel phase under the schedule of WLAPS at

time t. Let P ′(t) := N ′a(t) ∩ P(t) and S ′(t) = N ′a(t) ∩ S(t). Consider any job

j ∈ P ′(t) \No(t). Since OPT has completed job j, the variable xj(t) is just the

remaining amount of parallel work for job i for WLAPS to process. Therefore,

xj(t) decreases at a rate of −s wi(t)βw(t) by the definition of how WLAPS distributes

its s processors at each time. Note that this change occurs in
∑
rj≥ri,j∈Na(t) xj(t)

for any job i ∈ Na(t) \N ′a(t). This is because all jobs in N ′a(t) (the jobs WLAPS

chooses to process) have arrived no later than any job in Na(t) \N ′a(t). Hence,

d

dt
Φ1(t) ≤ −1

ε

 ∑
j∈P′(t)\No(t)

s
wj(t)

βw(t)

 ·
 ∑
i∈Na(t)\N ′a(t)

Wi(t)

 (3.4)

For the final analysis we need to obtain an upper bound on (3.4). The

following propositions and lemmas will be useful tools. The two following easy

propositions were shown in [55].

Proposition 1. For any job i,
∑
rj≥ri,j∈Na(t) xj(t) ≤ t− ri.

This proposition easily follows since
∑
rj≥ri,j∈Na(t) xj(t) is the amount of

parallel work OPT is ahead of WLAPS for jobs released after time ai. Since

OPT has 1 processor, this is at most t− ai. The following proposition is trivial

since yi(t) can grow at a rate of at most 1 at each time.

Proposition 2. For any job i, yi(t) ≤ t− ri.

The following proposition is easily obtained by applying proposition 1.

Proposition 3.

∑
i∈Na(t)

Wi(t) ≤
∑

i∈Na(t)

(1 +
1

ε
)k−1wi(t) = (1 +

1

ε
)k−1 d

dt
A(t).

By Proposition 1, we can bound a part of (3.4),

58

∑
i∈Na(t)\N ′a(t)

Wi(t) =
∑

i∈Na(t)

Wi(t)−
∑

i∈N ′a(t)

Wi(t)

≥
∑

i∈Na(t)

Wi(t)− (1 +
1

ε
)k−1

∑
i∈N ′a(t)

wi(t)

=
∑

i∈Na(t)

Wi(t)− β(1 +
1

ε
)k−1

∑
i∈Na(t)

wi(t)

≥
[
1− β(1 +

1

ε
)k−1

] ∑
i∈Na(t)

Wi(t) (3.5)

The last equality is due to the definition of N ′a(t), and the last inequality is

due to Wi(t) ≥ wi(t) for all i ∈ Na(t). And by the definition of P ′(t), we have

∑
j∈P′(t)\No(t)

wj(t)

βw(t)

≥ 1

βw(t)

[∑
j∈N ′a(t)

wj(t)−
∑
j∈S(t)

wj(t)−
∑

j∈No(t)

wj(t)
]

= 1− 1

βw(t)

[∑
j∈S(t)

wj(t) +
∑

j∈No(t)

wj(t)
]

(3.6)

From (3.4), (3.5) and (3.6), we have

d

dt
Φ1(t) ≤ −s1

ε

(
1− β(1 +

1

ε
)k−1

)
·(

1− 1

βw(t)

[∑
j∈S(t)

wj(t) +
∑

j∈No(t)

wj(t)
]) ∑

i∈Na(t)

Wi(t) (3.7)

For any job i ∈ S(t) \No(t), yi(t) decreases at a rate of 1 by definition of

sequential work. Thus, d
dtΦ2(t) ≤ −(2

ε)
2k+1

∑
i∈S(t)\No(t)wi(t).

Time Elapse: We now address the change in Φ(t) due to the change in time.

The change in Φ1(t) is d
dtΦ1(t) =

∑
i∈Na(t)Wi(t). The change in Φ2(t) is,

d
dtΦ2(t) = (2

ε)
2k+1

∑
i∈Na(t) k(k − 1)(t − ri)k−2yi(t).

Our goal is now to bound dtΦ2(t) by dtWLAPS(t). To this end, we partition

jobs in Na(t) into ‘old’ jobs O(t) and ‘young’ jobs Y(t). Recall that σi is the

total sequential work for job i. A job i ∈ Na(t) is in Y(t) if (t− ri) ≤ k(2
ε)2k+1σi;

otherwise, the job is in O(t). The increase in Φ2(t) due to jobs in Y(t) will be

charged directly to the optimal solution’s cost in the following lemma. This idea

is similar to that given in [55] and the proof can be found in the appendix.

Lemma 24.

∫ ∞
0

∑
i∈Y(t)

k(k − 1)(t− ri)k−2yi(t)dt ≤ kk+1(
2

ε
)k(2k+1)OPT.

The change in Φ2(t) due to old jobs is at most (2
ε)2k+1

∑
i∈O(t) k(k − 1)(t−

ri)
k−2σi(t) ≤

∑
i∈O(t) k(t− ri)k−1 ≤

∑
i∈Na(t) k(t− ri)k−1, by definition of old

59

jobs. Thus after excluding the young jobs, the total increase in Φ(t) due to

the change in time is, d
dtΦ(t) ≤ 2

∑
i∈Na(t)Wi(t).

Completing the Analysis: For the final analysis, we add the upper bound on

the change for each of the cases we studied in the previous section. Let d
dtΦ′(t)

denote the change (rate) that is obtained from d
dtΦ(t) by removing the increase

due to time elapse for the young jobs. We will show that dtWLAPS(t)+dtΦ′(t) ≤
2(2

ε)
2k+1 d

dtOPT(t). Then we will have

WLAPS =

∫ ∞
0

(
dtWLAPS(t)

)
dt

=

∫ ∞
0

(
dtWLAPS(t) + dtΦ(t)

)
dt [Since Φ(0) = Φ(∞) = 0]

≤
∫ ∞

0

(
dtWLAPS(t) + dtΦ′(t)

)
dt + kk+1(

2

ε
)k(2k+1)OPT

≤
∫ ∞

0

(
2(

2

ε
)2k+1 d

dt
OPT(t)

)
dt + kk+1(

2

ε
)k(2k+1)OPT

≤ 3kk+1(
2

ε
)k(2k+1)OPT

The first inequality comes from Lemma 24, which gives an upper bound on

the total increase due to time elapse over all times for the young jobs. Recall

that we have been considering the objective of minimizing the sum of the kth

power flowtime. Since we are actually interested in `k-norms we take the outer

kth root, which proves Theorem 3.

It now remains to show dtWLAPS(t) + dtΦ′(t) ≤ 2(2
ε)

2k+1 d
dtOPT(t). By

adding the upper bounds we obtained in the previous section, we have

dtWLAPS(t) + dtΦ′(t) ≤(
3 +

1

ε

) ∑
i∈Na(t)

Wi(t) (3.8)

−s1

ε

(
1− β(1 +

1

ε
)k−1

)(
1− 1

βw(t)

[∑
j∈S(t)

wj(t) +
∑

j∈No(t)

wj(t)
]) ∑

i∈Na(t)

Wi(t)

(3.9)

−(
2

ε
)2k+1

∑
i∈S(t)\No(t)

wi(t) (3.10)

+(
2

ε
)2k+1dtOPT(t) (3.11)

We remind the reader that (3.9) and (3.10) come from the change due

to WLAPS’s processing jobs in a parallel phase and jobs in a serial phase,

respectively. Recall that β = εk and s ≥ 1 + 12ε, where 0 < ε ≤ 1
24k . We

consider three cases.

Case (a):
∑
i∈No(t)wi(t) ≥ εβ

∑
i∈Na(t)wi(t). This is the easiest case where

OPT has jobs whose total weight is comparable to that of the jobs in WLAPS’s

60

queue. In this case, by Proposition 3 and simple algebra, (3.8) + (3.11) ≤
4
ε (

2
ε)
k−1 d

dtA(t) + (3.11) ≤ 2(2
ε)

2k+1 d
dtOPT(t).

Case (b):
∑
i∈S(t)\No(t) wi(t) ≥ εβ

∑
i∈Na(t) wi(t). In this case, the decrease due

to WLAPS’s processing jobs in a sequential phase will offset other positive terms.

Again, by Proposition 3 and an easy calculation, (3.8)+(3.10) ≤ 4
ε (2
ε)k−1 d

dtA(t)−
εβ(2

ε)
2k+1 d

dtA(t) ≤ 0. And clearly, (3.11) ≤ 2(2
ε)

2k+1 d
dtOPT(t).

Case (c): Neither case (a) nor case (b). Then we have
∑
i∈No(t)wi(t) +∑

i∈S(t)wi(t) ≤ 3εβ
∑
i∈Na(t)wi(t). This is the case where most (in terms

of weights) of the jobs WLAPS are processing are in a parallel phase. By

simple algebra, (3.8) + (3.9) ≤ 1+3ε
ε

∑
i∈Na(t)Wi(t)− 1

ε s(1− ε(1 + ε
k)k−1)(1−

3ε)
∑
i∈Na(t)Wi(t) ≤ 0. In all cases the desired inequality holds, and this

completes the analysis.

3.6 Concluding Remarks

In this chapter, we considered a natural extension of LAPS, WLAPS for Weighted

Latest Arrival Processor Sharing and showed it is scalable for `k-norms of flow

time when jobs have arbitrary speed up curves. We believe that the competitive

ratio of WLAPS increases as k does, since any algorithm has a competitive ratio

of Ω(log n) for the `∞-norm, even with any constant speed-up [88]. However, we

conjecture that the competitive ratio should not grow exponentially as k grows.

Conjecture 1. Consider the problem of minimizing `k norms of flow time for

jobs with arbitrary speed up curves. Assuming that WLAPS is given a fixed speed

s > 1, its competitive ratio is θ(k).

Even for the `1-norm, the algorithm LAPS takes a parameter β as input.

For LAPS to be scalable, the parameter must depend on the speed it is given.

Edmonds conjectures that any non-clairvoyant deterministic algorithm, to be

scalable, must know the speed it is given.

Conjecture 2. [39] For the problem of minimizing the total flow time for jobs

with arbitrary speed up curves, any deterministic non-clairvoyant algorithm,

without the knowledge of the speed it is given, is not scalable.

61

Chapter 4

Scheduling on Unrelated
Machines

4.1 Introduction

In this chapter, we study online scheduling problems on heterogeneous machines.

In the online setting job i is released at time ri and this is the first time the

schedule becomes aware of the job. We will focus on the objective of minimizing

`k norms of flow time, k

√∑
i∈[n](Ci − ri)k, where n is the number of jobs and

Ci is job i’s competition time 1. The quantity Ci − ri is called job i’s flow

time or response time and measures the time job i waits until it is completed.

As discussed in Section 1.2, `k norms (k ≥ 2) can be used to make a balance

between average performance and fairness. When k = 1, the objective is often

called total flow time or equivalently average flow time. In this chapter we will

study probably the most general heterogeneous machines setting, which is known

as the unrelated machines setting. To give the reader a feel of this setting, we

will discuss serval scheduling settings in increasing order of their complexity

and finally the unrelated machines setting.

In the simplest setting, each of the jobs is to be scheduled on a single machine.

It is well known that the algorithm SRPT (Shortest-Remaining-Processing-Time)

gives an optimal schedule. A more complicated scheduling setting is where jobs

can be distributed on m machines (processors). In this situation, the scheduler

must make the decision of which jobs to assign to which machines along with the

decision of how to order jobs on each machine. There are two properties which

are desirable for the scheduler. Namely, that the scheduler is non-migratory and

immediatly-dispatches jobs. Migrating a job, which was already assigned to a

machine, to another machine may be costly or even impossible. Also, due to

memory limitation of the main scheduler, it could be more desirable for jobs

to be dispatched to some machines immediately upon their arrival, rather than

to wait in a pool to be dispatched later.

The simplest multiple machines setting is where all machines are identical.

That is, each job has the same processing time on all machines and any job can

be scheduled on any machine. Average flow time has been studied extensively

in the identical machine model [78, 6, 5, 84, 18]. Even in this simple case, the

1Later the notation will be changed on heterogeneous machines. Further the more general
objective of weighted `k norms of flow time will be considered. These will be formally described
later in this chapter.

62

best competitive ratio is O(min(logP, logn/m)) and there exists a matching

lower bound. Here P is the ratio of the biggest job’s processing time to the

smallest job’s processing time. When a strong lower bound exists, a popular

model of analysis is the resource augmentation model [69, 85]. In this model, an

algorithm A with processors of speed s is compared to the optimal solution with

processors of speed 1. For any jobs instance, if the objective value achieved by

A is within a factor c of that by the optimal solution, the algorithm A is said to

be s-speed c-competitive for the objective. An algorithm that is (1 + ε)-speed

O(1)-competitive algorithm is said to be scalable, since it is O(1)-competitive

when given the smallest amount of resources over the adversary. See Section 1.3.3

for further elaboration on this model. In the identical machines setting, [31]

gave a scalable algorithm.

In practice machines may not be identical. For instance, machines may have

different speed processors. One model that captures this situation is the related

machines model. Here, each machine x has some speed sx. Job i requires pi
sx

time to complete if it is assigned to machine x. The related machines model is

of practical interest. However, finding good algorithms has been difficult. There

are few positive results known [50, 51]. The best known algorithm without speed

augmentation is O(log2 P)-competitive [51].

The related machines model is not general enough to capture the variety

of today’s systems. Consider the situation where some jobs require lots of

memory, but each machine does not have the same amount of memory. Or,

perhaps a job can only be scheduled on machines which are attached to a specific

input/output device. Here, the relation between machines cannot be easily

correlated. To capture this more general model, the unrelated machines model

has been considered. Here each job i has processing time pix when assigned

to machine x. Due to the variety of machines, the job’s processing time can

be arbitrarily different depending on the machine the job is assigned to. In

fact, the processing times may be infinite on some machines, which captures

the case where a job cannot be assigned to a specific machine. The unrelated

model is probably the most general machine model.

Designing algorithms that are competitive for average flow time on unrelated

machines has been difficult. In [52] it was shown that no online algorithm

can have a bounded competitive ratio for minimizing the average flow time on

unrelated machines without resource augmentation. This lower bound was shown

in the restricted case where there are only 3 machines and jobs have either unit

size on a machine or infinite size. This example shows that simply restricting

jobs to certain machines makes the problem much harder than the related or

identical models. Another challenge when designing and analyzing algorithms for

unrelated machines is that different schedules can do different amounts of work to

satisfy the same set of requests. Here scheduling mistakes are significantly more

costly if the optimal solution is doing less work than the algorithm. This differs

from the standard scheduling setting where any schedule does the same amount of

63

work to satisfy the same set of jobs. See [32, 55] for other examples. Until recently

no non-trivial algorithms were known in the online setting for average flow time.

In a breakthrough result a (1 + ε)-speed O(1)-competitive algorithm was given

for any fixed 0 < ε ≤ 1 [24]. This was also the first O(1)-speed O(1)-competitive

algorithm shown for the more restricted related machines setting.

For the `k-norm of flow time it is well known that without resource augmen-

tation that every deterministic algorithm is nΩ(1)-competitive when 1 < k <∞,

even on a single machine [8]. This contrasts with average flow time, where

SRPT is an optimal algorithm on a single machine. It was shown in [9] that

SRPT is a scalable algorithm to minimize the `k norm of flow time on a single

machine for all k. Later a scalable algorithm to minimize the `k norm of flow

time on identical machines was given for any k [31]. There are no known offline

approximation algorithms for minimizing the `k norms of flow time for any

k ∈ [1,∞) without resource augmentation on unrelated machines; note that

the `1 norm is equivalent to average flow time. Further, there are no known

non-trivial online algorithms for minimizing the `k norm of flow time even on

related machines with any amount of resource augmentation where 1 < k <∞.

In this chapter we will be considering the weighted `k norms of flow time of a

non-migratory schedule. This is a generalization of the `k norm objective. Here

a job i has a weight wix when assigned to machines x. The goal of the scheduler

is to minimize k

√∑
i∈[n] wiM(x)(Ci − ri)k where M(x) is the machine job x is

assigned to. For the weighted `1 norm of flow time, it was recently shown that

no algorithm can be O(1)-competitive without resource augmentation on a single

machine [7]. It is well known that the algorithm Highest Density First (HDF)

is (1 + ε)-speed O(1)-competitive for the `1 norm of weighted flow time on a

single machine [19]. The algorithm HDF is a natural generalization of SRPT

where the scheduler always processes the job i such that wi
pi

is minimized. In

[9], it was shown that HDF is also (1 + ε)-speed O(1)-competitive for the `k

norms of weighted flow time for k ≥ 1 on a single machine. [31] gave a scalable

algorithm for minimize the weighted `k norms of flow time on identical parallel

machines. The algorithm of [24] for minimizing the `1 norm of flow time on unre-

lated machines also considers the case where jobs have weights. Their algorithm

is (1+ε)-speed O(1)-competitive algorithm for the weighted `1 norm of flow time.

4.1.1 Our Results

We present the first non-trivial competitive algorithm for minimizing the weighted

`k-norm of flow time on unrelated parallel machines when k > 1. We show that

our algorithm is scalable for any fixed k ≥ 1, i.e. (1 + ε)-speed O(1)-competitive

for any fixed 0 < ε ≤ 1. That is, our algorithm is constant competitive

when given the minimal extra amount of resources over the adversary. Our

64

algorithm is immediate-dispatch and non-migratory. More specifically, we show

the following theorem.

Theorem 5. For any integer k ≥ 1 and for any 0 < ε ≤ 1, there exists a

(1 + ε)-speed O(k
ε2+2/k)-competitive algorithm for minimizing weighted `k-norm

of flowtime on unrelated machines. In particular, the algorithm is immediate

dispatch and non-migratory.

We also show the following lower bound on any randomized immediate-

dispatch non-migratory algorithm. This lower bound shows that our analysis is

tight up to a constant factor in the competitive ratio for any fixed 0 < ε ≤ 1.

Theorem 6. For the problem of minimizing `k norm of flow time on unrelated

machines, any randomized immediate-dispatch non-migratory online algorithm,

with any speed s ≥ 1 given, has competitive ratio Ω(ks).

It is important to note that our results translate into the problem of mini-

mizing the `k norm of stretch. The `k norm of stretch is k

√∑
i∈[n]

(
Ci−ri
piM(i)

)k
for

some fixed schedule. There is a similar lower bound for the `k norm of stretch as

there is for the `k norm of flow time on a single machine and jobs have no weight

[8]. The `k norm of stretch can be reduced to the weighted `k norm of flow time

by setting wi,x = (1
pi,x

)k. Stretch is a popular metric and is used to capture

the fact that users expect long jobs to take more time than short jobs. That

is, a user is likely to expect to wait for a job to complete in proportion to the

job’s processing time. This objective is commonly considered in database appli-

cations [20, 21]. By using this reduction, our result extends to the stretch setting.

4.1.2 Our Techniques

Our analysis is based on a new novel potential function. The potential function

we introduce takes insights from [55, 24]. Most closely related to our potential

function is that given in [24] which was used to give a scalable algorithm for

minimizing average flow time on unrelated machines. In [24], the algorithm

used was to place a job on the machine which increases the `1 norm of flow

time the least and then each machine runs HDF on the jobs assigned to it.

Although this algorithm is simple and natural, the potential function used to

prove its competitiveness is quite non-trivial. The main idea of the potential

function used in [24] is to keep track of the volume of remaining work of the

algorithm as compared to the adversary. However, this potential cannot be used

in the `k norm setting because the ages of jobs contribute to the increase in

the algorithm’s objective when k > 1, not just the volume of unfinished jobs.

Indeed, the increase in the `k-norm objective at any time grows in proportion

to the time for which each job has been unsatisfied. This is in contrast to the

`1-norm where the increase in the objective at each time only depends on the

65

number of unsatisfied jobs. Any potential function which does not incorporate

the amount of time each job in the algorithm’s queue has been unsatisfied for

will not be useful for upper-bounding the algorithm’s `k-norm flow time.

In this chapter, we show a novel potential function that incorporates the

volume of remaining work and ages of jobs in the algorithm’s queue as compared

to the adversary’ queue. The potential function combines the ages and volume

of jobs in an interesting way. We tried natural generalizations of the potential

function of [24] for the `k norm, however these generalizations do not seem to lead

to a O(1)-speed O(1)-competitive algorithm for the `k norm of flow time when

k > 1. Like [24], our algorithm runs HDF on each individual machine. However

the machine assignment our algorithm uses of jobs comes from the potential

function we derive. We tried to analyze the natural algorithm that assigns a

job to a machine that increases the `k norm flow time the least. However, we

were unable to find a potential function that can show this algorithm to be

O(1)-competitive with speed less than k + ε.

It is worth noting that in the analysis of [24], the optimal solution was

restricted to using HDF on each machine. In our analysis, we will be assuming

an arbitrary optimal solution. We note that designing a potential function is

quite non-trivial for minimizing `k-norm flow time even on a single processor

for any k ≥ 1. One novelty of our result is a potential function-based argument

showing that HDF is scalable on a single machine for any fixed k ≥ 1. Some

lemmas we present in the analysis, which compare our algorithm’s status with

the arbitrary adversary’s status, may be of independent interest.

4.2 Formal Problem Statement and Notation

The problem we consider is formally defined as follows. There are m machines,

and n jobs arrive over time in online fashion. Hence the scheduler becomes

aware of each job only when it arrives. Each job i can have a different weight

wix and a different processing time pix on each machine x it is assigned to.

Such quantities are revealed to the scheduler upon the job i’s arrival. Our goal

is to find an online schedule that is immediate-dispatch and non-migratory to

minimize weighted `k norms of flow time.

We now define some notation that will be used in our algorithm and analysis.

Consider any fixed k ≥ 1. Let OPT denote a fixed optimal offline solution with 1

speed that does not migrate jobs. That is, a job is processed on only one machine.

Let s = 1 + 30ε be the speed our algorithm is given where 0 < ε < 1
50 is a fixed

constant. Let Ox(t) be the set of alive jobs assigned to machine x by OPT.

Likewise, Ax(t) will denote the set of unsatisfied jobs assigned to machine x by

our algorithm. Let pOi (t) be the remaining processing time of job i in OPT’s

schedule at time t and pAi (t) be the remaining processing time of job i in our

algorithm’s schedule. We define dix = wix
pix

to be the density of job i on machine x.

66

For the rest of this chapter, if we say `k norm flow time, we mean the

weighted `k norm flow time, i.e. we may omit the term ‘weighted’. To bound

the `k norm flow time, we will drop the outer kth root and focus on bounding∑
i∈[n]wi,M(i)(Ci − ri)k, the integral kth power flow time. To do this, we will

focus on bounding the fractional kth power flow time. It is known that some

algorithm is s-speed c-competitive for the fractional k power flow time can

be translated (1 + ε′)s-speed c(1 + 1
ε′)-competitive for the integral kth power

flow time, by increasing the speed augmentation by an extra factor of (1 + ε′).

Henceforth, we will focus on bounding the kth power fractional flow time.

The total kth power fractional flow time of a schedule is defined to be∫∞
t=0

∑
i∈U(t) k(t− ri)k−1pAi (t)diM(i)dt, where U(t) is the set of unsatisfied jobs

in the given schedule at time t and M(i) is the machine job i is assigned to.

Equivalently, the fractional kth power flow time of a schedule is s
∫∞
t=0

∑
i∈J(t)(t−

ri)
kdiM(i)dt where J(t) is the set of at most m jobs being processed at time

t. There are at most m jobs because a machine can be processing at most 1

job at a time. We will focus mostly on the second definition. We will say that

s
∑
i∈J(t)(t− ri)kdiM(i) is dA

dt , the increase rate of the fractional flow time of are

algorithm during [t, t+ dt]. Likewise,
∑
i∈J∗(t)(t− ri)kdiM∗(i) is dO

dt the increase

rate of the optimal solutions flow time during [t, t+ dt] where J∗(t) are the jobs

OPT works on during [t, t+ dt] and M∗(i) is the machine OPT assigns job i to.

4.3 Algorithm and Potential Function

Our algorithm is defined as follows. After jobs are assigned to a machine, each

machine runs jobs in a highest density first (HDF) ordering. That is, if i and j

are on the same machine x and dxi > dxj then i is processed before j. Without

loss of generality, we assume that all jobs have a unique density. Let S be a

set of unsatisfied jobs assigned to a single machine. Further, say job j ∈ S

has density less than all other jobs in S. Then in a HDF ordering, job j will

have to wait at least 1
s

∑
i∈S p

A
i (t) time units before it is scheduled when the

algorithm has speed s. This fact will be used in our potential function and the

arrival condition for our algorithm. To simplify notation, we define V
(set)
(condition)

to be the total processing time (volume) of the jobs in the (set) satisfying the

(condition); for example V
Ax(t)
>dix

:=
∑

j ∈ Ax(t)

djx > dix

pAj (t).

Our algorithm assigns a job to a machine as soon as the job arrives. A job is

assigned to the machine which will increase our algorithm’s objective function

the least, given the current state of the algorithm. However, our algorithm

will put less emphasis on the current age of jobs than the remaining amount of

time jobs will have to wait to be satisfied. When a job a arrives at time t, it is

67

immediately assigned to a machine x which minimizes the following expression,

∆x(t, a)

= dax

∫ pax

τ=0

(
V
Ax(t)
>dix

+ τ
)k

dτ

+
∑

i ∈ Ax(t)

dix < dax

dix

[∫ pAi (t)

τ=0

(
ε(t− ri) + V

Ax(t)
>dix

+ pax + τ
)k

−
(
ε(t− ri) + V

Ax(t)
>dix

+ τ
)k]

dτ

The first term of the arrival condition is used to capture the cost that job

a will incur if is assigned to machine x. The second term captures how much

job a will increase the fractional kth power flow time of jobs which now will

have to wait for job a to finish. These are the jobs which have density less

than job a on machine x.

We are now ready to define our potential function. The potential function is

designed so that at any time t there is enough credit in the potential function to

pay for the kth power flow time of the remaining jobs in the algorithm’s queue.

To do this, for each job i we put more emphasis on the remaining time job i has

to wait before being finished, where credit is gained by our algorithm’s doing

more work over the adversary via speed augmentation, over the current age of a

job. The potential function is also carefully constructed not to increase when

jobs arrive. We begin by defining our potential function Φx for machine x. Our

potential function Φ will then be
∑
x∈[m] Φx. At time t, we define Φx to be,

Φx(t)

=
∑

i∈Ax(t)

dix

∫ pAi (t)

τ=0

(
ε(t− ri) + V

Ax(t)
>dix

+ τ
)k

dτ (4.1)

−
∑

i∈Ox(t)

dix

∫ pOi (t)

τ=0

(
ε(t− ri) + V

Ax(t)
>dix

+ τ
)k

dτ (4.2)

−
∑

i∈Ax(t)

dix

∫ pAi (t)

τ=0

[(
ε(t− ri) + V

Ax(t)
>dix

+ V
Ox(t)
>dix

+ τ
)k

(4.3)

−
(
ε(t− ri) + V

Ax(t)
>dix

+ τ
)k]

dτ

For the sake of analysis we let Φx,1(t), Φx,2(t) and Φx,3(t) denote the part

of Φx(t) in (4.1), (4.2) and (4.4) respectively. The second term Φx,2 is included

to relate the algorithm’s queue to the optimal solution’s queue. The third term

Φx,3, with the second term, is designed to eliminate the changes in Φx,1 due to

jobs arriving and being placed on machines by the algorithm.

Overview of Analysis

68

Notice that Φ does not increase when jobs are completed by OPT and our

algorithm. The potential function Φ is designed such that its total increase due

to the arrival of jobs is at most 0. (Also observe that Φ is 0 before jobs arrive

and 0 after all jobs are completed by OPT and the algorithm) We call this the

non-continuous change in Φ because it happens only at instantaneous times

when jobs arrive or are completed. This change is analyzed in Section 4.4.

We then bound the change in Φ during an infinitesimal time where no jobs

arrive or are completed. This is the continuous change in Φ. We will show that

the total continuous change over all times is at most −γA + δOPT where γ

and δ are constants that can depend on k. These are all the events that effect

Φ. Knowing that Φ = 0 at time 0 and time ∞ (any time after all jobs are

completed by our algorithm and the adversary), we have the total change in

Φ is at most 0. Thus, knowing that −γA + δOPT is an upper bound on the

total continuous change of Φ and that non-continuous changes do not increase

Φ, we have that 0 ≤ −γA + δOPT. This implies that A ≤ δ
γOPT. This

will complete our analysis.

The analysis of the continuous change, due to the change in time, processing by

OPT and the algorithm, is given in Section 4.5. After introducing several useful

analysis tools, we will analyze d
dtΦx,1(t), d

dtΦx,2(t) and d
dtΦx,3(t), respectively.

4.4 Upperbound: Non-continuous Changes

In this section, we study the non-continuous changes, which occur only when

new jobs are released. Consider any job a arriving at time t. We now bound

the increase in Φ(t) due to a’s arrival. Say that A assigns a to machine x and

OPT assigns a to machine y 6= x; the case y = x will be addressed later. The

changes occur only in Φx and Φy. It is easy to see that ∆Φx,1(t) = ∆x(t, a),

and ∆Φx,2(t),∆Φx,3(t) ≤ 0.

We now study the change Φy(t) due to the adversary’s assigning a to machine

y. It is easy to see that ∆Φy,1(t) = 0. We can upperbound the change in Φy,2(t)

and Φy,3(t) due to the adversary’s placement of job a into machine y as follows.

∆Φy,2(t) = −day
∫ pay

τ=0

(
V
Ay(t)
>day

+ τ
)k

dτ

69

The change in Φy,3(t) is as follows.

∆Φy,3(t)

= −
∑

i ∈ Ay(t)

diy < day

diy

∫ pAi (t)

τ=0

[(
ε(t− ri) + V

Ay(t)
>diy

+ V
Oy(t)
>diy

+ pay + τ
)k

−
(
ε(t− ri) + V

Ay(t)
>diy

+ V
Oy(t)
>diy

+ τ
)k]

dτ

≤ −
∑

i ∈ Ay(t)

diy < day

diy

∫ pAi (t)

τ=0

[(
ε(t− ri) + V

Ay(t)
>diy

+ pay + τ
)k

−
(
ε(t− ri) + V

Ay(t)
>diy

+ τ
)k]

dτ

Thus we have that ∆Φy,2(t) + ∆Φy,3(t) ≤ −∆y(t, a). By definition of the

machine our algorithm places job a on, the total change due to job a’s placement

is no greater than 0, that is ∆Φ(t) = ∆Φx(t) + ∆Φy(t) ≤ ∆x(t, a)−∆y(t, a) ≤ 0.

If A and OPT both assign a to the same machine x, one can easily show that

∆Φx,1(t) = ∆x(t, a) and ∆Φx,2(t) + ∆Φx,3(t) ≤ −∆x(t, a), thereby obtaining

the same result that ∆Φ(t) ≤ 0.

4.5 Upperbound: Continuous Changes

In this section, we study the continuous change of Φx during an infinitesimal

interval [t, t+dt). We will be concentrating on a single machine x. Let OPTx and

Ax denote the total kth power fractional flow time of the jobs assigned to machine

x for OPT and the algorithm, respectively. Let Tx denote the first time when

all jobs, assigned to machine x, are completed by the algorithm and also by the

optimal solution. Let t0 = 0, t1,, tu be the times when non-continuous changes

occur. For notational purposes let tu+1 = Tx. It is easy to see that the potential

function is differentiable at all times except when non-continuous changes occur.

In our analysis, differentiation is used only when it is well defined, which is

sufficient for our analysis. Thus by
∫∞
t=0

f(t)dt, we will mean
∫⋃u

v=0(tv,tv+1)
f(t)dt.

Recall that continuous change come from time elapsing and job processing.

Job completion and arrival are non-continuous changes, which have been shown

to not increase Φx. Recall that we assume that our algorithm processes the job

of the highest density. Let a(x, t) denote the job of highest density on machine x

at time t. Let b(x, t) denote the jobs the optimal solution processes on machine

x at time t. For brevity, we will proceed with our analysis assuming that a(x, t)

and b(x, t) exist; if a(x, t) or b(x, t) does not exist, the analysis only becomes

simpler and the upper bound we will obtain still holds.

In the analysis, we will be mostly focusing on each specific machine x and

bounding the continuous changes in Φx. Hence we may drop “x” from the

70

notation, as far as there is no specific reason to highlight the machine. Note

that the changes in Φ(t) during [t, t+ dt] occur because of job processing and

the change in time. The job a(t) is processed by the algorithm by an amount

of sdt, since the algorithm has s speed. The job b(t) is processed by OPT by

an amount of dt, since OPT has 1 speed. Further, time t will increase by dt.

These are the only changes affecting Φ when no jobs arrive or are completed.

Recall that our goal is to upper bound the total change in Φ over all time by a

multiplicative factor of A and OPT. In the continuous analysis our goal will be

to bound the total change in Φx by OPTx and Ax for each specific machine x.

Before addressing the continuous change in Φx, in Section 4.5.1 we show some

useful lemmas that will be used throughout the analysis; for better readability,

some of the lemmas will be proven in the following section. For the analysis of
d
dtΦx(t), we analyze each of d

dtΦx,1(t), d
dtΦx,2(t) and d

dtΦx,3(t).

4.5.1 Analysis Tools

We present the following two lemmas that can be applied to any valid schedule;

for better readability, we give the proof in the following section. These will be

used later in particular to bound the change in Φ by OPT. In fact, these lemmas

can be used as a new lower bound on the optimal solution’s schedules. Both

lemmas can be applied to any problem sequence where all job are assigned to a

single machine. These lemmas may be of independent interest. In our setting,

we can just restrict our attention to the jobs which are assigned to some specific

machine. For a schedule B on some problem instance I, we let CBi denote the

finish time of job i at time t under B’s schedule. The quantity pBi (t) denotes the

remaining processing time of job i at time under B’s schedule. Let B(t) denote

the alive jobs in the queue under the schedule of B. We let B(I) denote the

total kth power fractional weighted flow time of B(I)’s schedule.

Lemma 25. Consider any given instance I where all jobs are assigned to a

single machine. Then for any valid schedule B, with speed s′ given, on the

instance I,

∫ ∞
t=0

∑
i∈B(t)

di

∫ pBi (t)

s′

τ=0

k
(V B(t)

>di

s′
+ τ
)k−1

dτdt ≤ 1

s′
B(I).

To have a feel of the above lemma, consider when k = 1, s′ = 1 and an

infinitesimal time interval [d, d + dt). Then the change in (LHS) during the

interval is dt
∑
i∈B(t) dip

B
i (t), which is exactly the increase of weighted fractional

flow time during the interval. When k = 1 this relation is known to be folklore,

and usefully used in scheduling theory. It is, however, not so obvious when k > 1.

Lemma 26. Consider any given instance I where all jobs are assigned to a

single machine. Suppose B is a valid schedule with s′ speed given on the instance

71

I. Let v be any constant and V
B(t)
>v =

∑
i ∈ B(t)

di > v

p
B(t)
i . Then,

(V
B(t)
>v)k ≤

∑
i ∈ B(t)

di > v

di

∫ pBi (t)

τ=0

k(V
B(t)
>v + τ)k−1dτ .

In particular, for any function g(t) : [0,∞)→ R, it holds that∫ ∞
t=0

g(t)
(
V
B(t)
>g(t)/s

′
)k

dt ≤ 1

s′
B(I).

The above lemma, with Lemma 25, will enable the analysis without making

any assumption on the adversary’s scheduling. Especially, Lemma 26 is interesting

for the following reason. In the lemma, (LHS) is an expression involving two

quantifies which are not related at all. One is a quantity regarding to volume of

alive jobs under some schedule B, and the other is any arbitrary function g(t).

Due to this lemma, we will be able to bound the changes involving our algorithm’s

queue status and the adversary’s schedule, without explicitly correlating the two.

The following corollaries are immediate from the two lemmas.

Corollary 2.

∫ ∞
t=0

da(x,t)(V
O(t)
>da(x,t)

)kdt ≤ OPTx.

Corollary 3.

∫ ∞
t=0

∑
i∈Ox(t)

dix

∫ pOi (t)

τ=0

k(V
O(t)
>dix

+ τ)k−1dτdt ≤ OPTx.

The following proposition will be used throughout the analysis.

Proposition 4. For any constant 0 ≤ ε < 1 and any integer k ≥ 1, (1 + ε
k)k ≤

1 + 2ε.

The following two lemmas easily follow using the definition of kth power

of fractional flow time.

Lemma 27.∫ ∞
t=0

db(x,t)

(
ε(t− rb(x,t)) + pOb(x,t)(t)

)k
dt ≤ 2(1 + ε)kOPTx ≤ 2k+1OPTx

Proof. By considering whether (t− ri) ≥ τ or not, we have

(LHS) ≤2k
[∫ ∞

t=0

db(x,t)(t− rb(x,t))kdt +

∫ ∞
t=0

db(x,t)(p
O
b(x,t)(t))

kdt
]

The first term
∫∞
t=0

db(x,t)(t − ri)
kdt is easily upper bounded by OPTx

from the definition of kth power of fractional flow time. The second term∫∞
t=0

db(x,t)(p
O
b(x,t)(t))

kdt can be bounded also by OPTx by observing that each

job i can contribute at most
∫ pix
τ=0

dix(pix − τ)kdτ , the minimum value of kth

power of fractional flow time for job i be completed by any schedule.

72

Lemma 28. ∫ ∞
t=0

∑
i∈Ox(t)

dix

∫ pOi (t)

τ=0

k(ε(t− ri) + τ)k−1dτdt

≤ 2(1 + ε)k−1OPTx ≤ 2kOPTx.

Proof. By considering whether (t− ri) ≥ τ or not, we have

(LHS)

≤ 2k−1
[∫ ∞

t=0

∑
i∈Ox(t)

dip
O
i (t)k(t− ri)k−1dt

+

∫ ∞
t=0

∑
i∈Ox(t)

dix

∫ pOi (t)

τ=0

k(τ)k−1dτdt
]

By the definition of kth power of fractional flow time and Corollary 3, the lemma

easily follows.

4.5.2 Proof of Lemma 25 and 26

We first explain a “slicing” technique that will be used for the proof of Lemma 25

and 26. For this technique, we will focus on an instance where there is a single

machine and since we are focusing on a single machine, we drop the machine

x notation. Let s′ denote the speed the schedule considered is given. In the

slicing technique each job i is replaced with a set of jobs Ji of uniform processing

time ∆′ = s′∆ and uniform weight w′i = wi∆
′

pi
, where ∆ is a sufficiently small

constant. Note that each new job having size s′∆ in Ji requires ∆ amount of

time to be finished. There are a total of pi
∆′ jobs in Ji. Notice that each job’s

density is the same as that of job i and total volume of jobs in Ji is the same

as the size of job i, i.e. pi = V Ji . These jobs all arrive at the same time job

i arrives. This method was used in [9] to reduce the problem of minimizing

`k-norm of weighted flow time to its unweighted version. To our best knowledge,

it has not been formally stated anywhere that the slicing transformation does

not affect the weighted fractional `k norm of flow time.

To formally define the transformation, we need more notation. For the (old)

given instance of jobs I, let B(I) denote the schedule under the scheduling

policy B. We call jobs in I ′ new to distinguish them from jobs in I. The new

schedule B′(I ′) for the new instance I ′ is naturally defined from the old schedule

B(I). That is, at any time t, job i is processed under B(I) if and only if a job

in Ji is processed under B′(I ′); this mapping is well-defined since the slicing

preserves the volume in replacing each job i with the jobs Ji. For each i, jobs

in Ji are ordered in an arbitrary but fixed way. We let Ji(t) denote the jobs

in Ji which are alive at time t. Note that pi(t) in B’s schedule is the same

as V Ji(t) in B′’s schedule. We say that an objective function (or expression)

73

fFUNC is resilient to slicing if it gives the same value for two instances I and

I ′. When I and I ′ are well-understood in the context, they may be dropped.

The following lemma easily follows from the definition of kth power of weighted

fractional flow time and the slicing transformation.

Lemma 29. The weighted kth power of fractional flow time is resilient to slicing

for any schedule B.

Proof. Consider a unit time slot [t, t+ ∆). Let j ∈ Ji be the job in I ′ completed

during the time slot. Its contribution to weighted kth power of fractional flow

time is
∫∆

τ=0
dj(t− rj + τ)ks′dτ . In the instance I, ∆′ amount of work for job i

is done, which gives exactly the same contribution.

We now discuss the relationship between integral kth power flow time of the

new instance and the fractional kth power flow time of the old instance. We

assume that the time is partitioned into unit time slots of size ∆ and during

each time slot exactly one job is completed. Without loss of generality, we can

further assume that jobs arrive only at the beginning of a time slot. These are

valid assumptions assuming ∆ is sufficiently small. We let T denote the set of

unit times. We will be interested in considering the integral kth power flow time

of the new instance. Let N
(set)
(condition) denote the number of alive jobs in the (set)

that satisfy the (condition). In the slotted time model, we will consider dFUNC,

the discrete version of fFUNC for the new instance I ′. This will be explicitly

defined when it is used. When there is a need to stress that I ′ is obtained by

slicing jobs into (s′∆)-sized jobs, we will use I ′(∆).

Then if lim∆→0 dFUNC(I ′(∆)) = fFUNC(I), we will be able to work with the

discrete version of the function dFUNC for I ′ to obtain the desired result regarding

to the given function fFUNC for I. We will move between the discrete and

continuous time models depending on whichever gives an easier analysis. Notice

that this property holds for between fractional kth power flow time of the original

instance and integral kth power flow time of the new instance when ∆→ 0.

We are now ready to prove Lemma 25 and 26.

Proof of [Lemma 25] By Lemma 29, we know that (RHS) is resilient to slic-

ing. We first show that so is (LHS). Recall that we use I ′ to denote the new

instance obtained by slicing jobs. Let fFUNC denote the function which takes

an instance and gives the value of (LHS) on the schedule by B on the instance.

To save notation, for job i ∈ B(t) and for any job j ∈ Ji(t), we will abuse

the notation >dj to include not only the jobs of density at least dj but also

the jobs in Ji(t) of the same density which are finished before job j in the

schedule B′. Consider an infinitesimal interval [t, t+ dt). Then the change in

fFUNC(B(I)) for a job i is di
∫ pBi (t)/s′

τ=0
k((V

B(t)
>di

/s′) + τ)k−1dτdt. It can be easily

shown to be equal to
∑
j∈Ji(t) di

∫∆

τ=0
k((V

B(t)
>di

/s′) + (V
Ji(t)
>dj

/s′) + τ)k−1dτdt =∑
j∈Ji(t) dj

∫∆

τ=0
k((V

B′(t)
>dj

/s′) + τ)k−1dτdt , which is exactly the increase in

fFUNC(B(I ′)) for jobs Ji, thus proving (LHS) being resilient to slicing.

74

To proceed our argument in the slotted time model, we need to define the

discrete version of both sides. Define dFUNC, a discrete version of fFUNC as follows.

dFUNC(B′) = ∆
∑
t∈T

∑
j∈B′(t)

dj∆k(∆N
B′(t)
>dj

)k−1

= ∆k+1
∑
t∈T

∑
j∈B′(t)

djk(N
B′(t)
>dj

)k−1

It is easy to see that dFUNC(B′) goes arbitrarily close to fFUNC(B) when

∆ → 0. Define the discrete version dFLOWk for fFLOWk as follows.

dFLOWk(B′) = s′∆k+1
∑
t∈T

∑
j∈B(t)

djk(
Cj − t

∆
)k−1

The discrete function dFLOWk scatters each job j’s kth power of flow time over

time. Job j contributes s′∆2k(Cj− t)k−1 to dFLOWk at each unit time t; thus one

can think of j being released at time Cj and having increasing contribution in

the reverse time order, and being finished at time rj . More concretely, it can be

noted that each job j’s contribution to dFLOWk is approximately its kth power of

weighted flow time from the following: ∆′dj(Cj−rj)k = ∆′
∫ Cj
t=rj

k(fj−t)k−1dt '
s′∆2

∑
t∈T

∑
j∈B(t) k(Cj−t)k−1; here “ ' ” holds only when Cj−rj is sufficiently

big compared to ∆, but by noting that the number of such exceptional jobs are

negligible, dFLOWk can be shown to converge to fFLOWk when ∆ → 0.

To complete our analysis, it is sufficient to show the following on each unit

time slot [t, t + ∆].

∑
j∈B′(t)

dj(N
B′(t)
>dj

)k−1 ≤
∑

j∈B′(t)

dj(
fj − t

∆
)k−1.

For simple notation, let B′(t) = {1, 2, 3, ..., u}, and d1 ≥ d2 ≥ d3 ≥ ... ≥ du.

Then
∑
j∈B′(t) dj(N

B′(t)
>dj

)k−1 =
∑
i∈[u] du(u− 1)k−1. Since only one job can be

completed at each unit time,
fj−t

∆ is a distinct integer for all j ∈ B′(t). It is

easy to see that
∑
j∈B′(t) dj(

fj−t
∆)k−1 has the minimum value when

fj−t
∆ = j,

completing the proof. �

Proof of [Lemma 26] For this lemma we need the following proposition,

Proposition 5. For any x1, x2, ..., xn ≥ 0,

(

n∑
i=1

xi)
k =

n∑
i=1

k

∫ xi

τ=0

(

n∑
j>i

xj + τ)k−1dτ .

75

Proof.

(RHS) =

n∑
i=1

((

n∑
j≥i

xj)
k − (

n∑
j>i

xj)
k)

=

n∑
i=1

(

n∑
j≥i

xj)
k −

n∑
i=2

(

n∑
j≥i

xj)
k

= (LHS)

By Proposition 5, we have

v
(∑
di>v

(pBi (t)/s′)
)k

= v
∑

i ∈ B(t)

di > v

∫ pBi (t)/s′

τ=0

k
(∑

j ∈ B(t)

dj > max(di, v)

(pj(t)/s
′) + τ

)k−1

dτ

≤
∑
i∈B(t)

di

∫ pBi (t)/s′

τ=0

k
(

(V
B(t)
>di

/s′) + τ
)k−1

dτ

By multiplying both sides by s′k, we obtain the first inequality. The above

inequality, with Lemma 25, immediately implies the second desired inequality. �

4.5.3 Analyzing d
dt

Φx,1(t)

d

dt
Φx,1(t)

=
∑

i∈A(t)\{a(t)}

di

∫ pAi (t)

τ=0

(ε− s)k
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1

dτ

+da(t)(ε− s)
(
ε(t− ra(t)) + pAa(t)(t)

)k
−εda(t)

(
ε(t− ra(t))

)k
= −(s− ε)

∑
i∈A(t)

di

∫ pAi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1

dτ

−sda(t)

(
ε(t− ra(t))

)k
(4.4)

76

4.5.4 Analyzing d
dt

Φx,2(t)

d

dt
Φx,2(t)

= − d

dt

∑
i∈O(t)

di

∫ pOi (t)

τ=0

(
ε(t− ri) + V

A(t)
>di

+ τ
)k

dτ =

+(s− ε)
∑

i ∈ O(t)

di < da(t)

di

∫ pOi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1

dτ (4.5)

−ε
∑

i ∈ O(t)

di ≥ da(t)

di

∫ pOi (t)

τ=0

k
(
ε(t− ri) + τ

)k−1

dτ (4.6)

+db(t)

(
ε(t− rb(t)) + V

A(t)
>db(t)

+ pOb(t)(t)
)k

(4.7)

Lines (4.5) and (4.6) are due to the change in time and the algorithm’s

processing. Line (4.7) is from OPT’s processing. We are concerned with upper

bounding the change in Φ, so can ignore (4.6). We will first bound
∫∞
t=0

(4.5)

and then we will concentrate on bounding
∫∞
t=0

(4.7).

Bounding the total change of (4.5) over time

By considering whether V
A(t)
>di

≤ k
ε (ε(t − ri) + τ) or not, we have

∫ ∞
t=0

(4.5)dt ≤

(s− ε)(1 +
k

ε
)k−1

∫ ∞
t=0

di
∑

i ∈ O(t)

di < da(t)

∫ pOi (t)

τ=0

k(ε(t− ri) + τ)k−1dτdt

(4.8)

+(s− ε)(1 +
ε

k
)k−1k

∫ ∞
t=0

∑
i ∈ Ox(t)

di < da(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

(4.9)

Via simple algebra and Lemma 28, we have (4.8) ≤ (4k
ε)kOPTx. The second

term (4.9) can be bounded by the following lemma.

77

Lemma 30. ∫ ∞
t=0

∑
i∈Ox(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

≤ 1

k
(
k

ε
)k−1OPTx

+3ε

∫ ∞
t=0

∑
i∈A(t)

di

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτdt

Proof. Consider any fixed time t. We can assume that all jobs in A(t) and O(t)

have infinitesimal size, since both sides are resilient to slicing. We partition Ox(t)

into I(t) and I ′(t) depending on whether a job i satisfies V
A(t)
>di

≤ k
ε V

O(t)
>di

or not.

For the set I(t), by Corollary 3, we have∫ ∞
t=0

∑
i∈I(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

≤ (
k

ε
)k−1

∫ ∞
t=0

∑
i∈I(t)

di

∫ pOi (t)

0

(V
O(t)
>di

+ τ)k−1dτdt

≤ 1

k
(
k

ε
)k−1OPTx.

We now focus on I ′(t). We first show that there exists a family of disjoint

sets Gi(t) ⊆ A(t),∀i ∈ I ′(t) satisfying all the following conditions:

1. ∀i ∈ I ′(t), V Gi(t) = 1
ε p
O
i (t)

2. ∀i ∈ I ′(t), ∀j ∈ Gi(t), V A(t)
>dj

≥ (1− 1
k)V

O(t)
>di

3. ∀i ∈ I ′(t), ∀j ∈ Gi(t), dj ≥ di.

The family can be constructed as follows. For simple notation, let I ′(t) = [u]

and jobs are indexed in decreasing order of density, that is d1 ≥ d2 ≥ ... ≥ du.

We inductively define G1(t) to Gu(t). To each group Gi(t), we assign 1
εp
O
i (t)

volume of jobs from {j ∈ A(t) | (1− 1
k)V

A(t)
>di

≤ V
A(t)
>dj

≤ V
A(t)
>di
}\ (

⋃
1≤i′<iGi′(t)).

This can be done because

V (
⋃

1≤i′<iGi′ (t)) +
1

ε
pOi (t)

=
1

ε

∑
i′∈[i]

pOi (t) ≤ 1

ε
V
O(t)
≥di ≤

1

k
V
A(t)
>di

.

The last inequality comes from the definition of I ′(t); here the infinitesimal size

of pOi (t) is ignored.

78

We are now ready to complete the proof. For each i ∈ I ′(t), the term

dip
O
i (t)(V

A(t)
>di

)k−1 in (LHS) is charged to the term in (RHS).

∑
j∈Gi(t)

dj

∫ pAj (t)

τ=0

(V
A(t)
>dj

+ τ)k−1dτ

≥ di
1

ε
pOi (t)((1− 1

k
)V

A(t)
>di

)k−1 ≥ di
3ε
pOi (t)(V

A(t)
>di

)k−1

The first inequality holds because of the three conditions each group Gi

satisfies. Hence we have,∫ ∞
t=0

∑
i∈I′(t)

dip
O
i (t)(V

A(t)
>di

)k−1dt

≤ 3ε

∫ ∞
t=0

∑
i∈I′(t)

∑
j∈Gi(t)

dj

∫ pAj (t)

τ=0

(V
A(t)
>dj

+ τ)k−1dτdt

≤ 3ε

∫ ∞
t=0

∑
i∈A(t)

di

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτdt

This completes the proof.

By summing each of these expressions we have,∫ ∞
t=0

(4.5)dt

≤ 3(
4k

ε
)kOPTx

+9ε(s− ε)
∫ ∞
t=0

∫ pAi (t)

τ=0

k(V
A(t)
>di

+ τ)k−1dτdt

(4.10)

Bounding the total change of (4.7) over time

By considering whether V
A(t)
>db(t)

≤ k
ε

(
ε(t− rb(t)) + pOb(t)(t)

)
or not, we have

∫ ∞
t=0

(4.7)dt

≤ (1 +
ε

k
)k
∫ ∞
t=0

db(t)(V
A(t)
>db(t)

)k

+(1 +
k

ε
)kdb(t)

(
ε(t− rb(t)) + pOb(t)(t)

)k
dt

≤ (1 + 2ε)

∫ ∞
t=0

∑
i ∈ A(t)

di > db(t)

di

∫ pAi (t)

τ=0

k
(
V
A(t)
>di

+ τ
)k−1

dτdt

+2(
4k

ε
)kOPTx (4.11)

The last inequality follows by applying Lemma 26 and 27.

79

4.5.5 Analyzing d
dt

Φx,3(t)

We first study the change coming from our algorithm’s processing and time

elapse, which is

(s− ε)
∑

i∈Ax(t)

di

∫ pAi (t)

τ=0

k
[(
ε(t− ri) + V

A(t)
>di

+ V
O(t)
>di

+ τ
)k−1

−
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1]

dτ (4.12)

+sda(t)

[(
ε(t− ra(t)) + V

O(t)
>da(t)

)k
−
(
ε(t− ra(t))

)k]
(4.13)

We need the following lemma whose proof is very similar to that of Lemma 30.

The lemma is slightly different from Lemma 30; roughly speaking the (LHS) is

from the algorithm’s perspective rather than from the optimal solution’s.

Lemma 31. ∫ ∞
t=0

∑
i∈A(t)

dip
A
i (t)(V

O(t)
>di

)k−1dt

≤ (
ε2

k
)k−1

∫ ∞
t=0

di
∑
i∈A(t)

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτdt

+
3k

ε2
OPTx.

Proof. We partition jobs in Ax(t) into I(t) and I ′(t); each job i in A(t) satisfying

V
O(t)
>di

≤ ε2

k V
A(t)
>di

is in I(t), otherwise it is in I ′(t). For the set I(t), it is trivial

to see that ∑
i∈I(t)

dip
A
i (t)(V

O(t)
>di

)k−1

≤ (
ε2

k
)k−1

∑
i∈A(t)

di

∫ pAi (t)

τ=0

(V
A(t)
>di

+ τ)k−1dτ

For the other set I ′(t), we will show that∑
i∈I′(t)

dip
A
i (t)(V

O(t)
>di

)k−1

≤ 3k2

ε2

∑
i∈O(t)

di

∫ pOi (t)

τ=0

(V
O(t)
>di

+ τ)k−1dτ

The remaining proof is very similar to that of Lemma 30. As in the proof

of Lemma 30, we can assume that jobs in A(t) and O(t) have infinitesimal size.

Also similarly, we can find a family of disjoint sets Gi(t) ⊆ O(t), i ∈ I ′(t) such

that

1. ∀i ∈ I ′(t), V Gi(t) = ε2

k2 p
A
i (t).

80

2. ∀i ∈ I ′(t), ∀j ∈ Gi(t), V O(t)
>dj

≥ (1− 1
k)V

O(t)
>di

.

3. ∀i ∈ I ′(t), ∀j ∈ Gi(t), dj ≥ di.

This can be found as follows. For simple notation, let I ′(t) := [u] and jobs are

indexed in decreasing order of density, that is d1 ≥ d2 ≥ ... ≥ du. We inductively

define G1(t) to Gu(t). To each group Gi(t), we assign ε2

k2 p
A
i (t) volume of jobs

from {j ∈ O(t)|(1 − 1
k)V

O(t)
>di

≤ V
O(t)
>dj

≤ V
O(t)
>di
} \
⋃
i′∈[i−1]Gi′(t). This can be

done because

V (
⋃
i′∈[i−1]Gi(t)) +

ε2

k2
pAi (t)

=
ε2

k2

∑
i′∈[i]

pAi (t) ≤ ε2

k2
V
A(t)
>di

≤ 1

k
V
O(t)
>di

.

The last inequality is due to the definition of I ′(t) ignoring the infinitesimal

size of pAi (t).

We are now ready to complete our proof. For each i ∈ I ′(t), the term

pAi (t)(V
O(t)
>di

)k−1 in (LHS) is charged to

∑
j∈Gi(t)

dj

∫ pOj (t)

τ=0

(V
O(t)
>dj

+ τ)k−1dτ

≥ diV
Gi(t)((1− 1

k
)V

O(t)
>di

)k−1 ≥ ε2

3k2
dip

A
i (t)(V

O(t)
>di

)k−1

Hence we have∫ ∞
t=0

∑
i∈I′(t)

dip
A
i (t)(V

O(t)
>di

)k−1dt

≤ 3k2

ε2

∫ ∞
t=0

∑
i∈I′(t)

∑
j∈Gi(t)

dj

∫ pOi (t)

τ=0

(V
O(t)
>di

+ τ)k−1dτdt

≤ 3k2

ε2

∫ ∞
t=0

∑
i∈Ox(t)

di

∫ pOi (t)

τ=0

(V
O(t)
>di

+ τ)k−1dτdt

≤ 3k

ε2
OPTx

The last inequality is due to Corollary 3. This completes the proof.

We first bound
∫∞
t=0

(4.12)dt. We can assume that k ≥ 2 since (4.12) = 0

when k = 1. By considering whether or not V
O(t)
>di

≤ ε
k

(
ε(t− ri) + V

A(t)
>di

+ τ
)

,

81

and via simple algebra, we have

(4.12)

≤ 2ε(s− ε)
∑

i∈Ax(t)

di

∫ pAi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1

dτ

+(1 +
k

ε
)k−1(s− ε)k

∑
i∈Ax(t)

dip
A
i (t)(V

O(t)
>di

)k−1

By Lemma 31, the fact s ≤ 2, and a simple algebra it follows that∫ ∞
t=0

(4.12)dt

≤ 5ε(s− ε)
∫ ∞
t=0

∑
i∈Ax(t)

di

∫ pAi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1

dτdt

+(
2k

ε
)k+1OPTx

(4.14)

We now bound (4.13). By considering whether V
O(t)
>da(t)

≤ ε
k (ε(t − ra)) or not,

we have

(4.13) ≤ 2εsda(t)

(
ε(t− ra(t))

)k
+ s(1 +

k

ε
)kda(t)(V

O(t)
>da(t)

)k.

Thus, by Corollary 2,∫ ∞
t=0

(4.13)dt ≤ 2εsda(t)

∫ ∞
t=0

(
ε(t− ra(t))

)k
dt + 2(

2k

ε
)kOPTx

(4.15)

We now study the change coming from OPT’s processing in Φ3, which

is as follows.

∑
i ∈ A(t)

di < db(t)

di

∫ pAi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>di

+ V
O(t)
>di

+ τ
)k−1

dτ (4.16)

≤ (1 +
ε

k
)k−1

∑
i ∈ A(t)

di < db(t)

di

∫ pAi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1

dτ

+(1 +
k

ε
)k−1

∑
i ∈ A(t)

di < db(t)

kdip
A
i (t)(V

O(t)
>di

)k−1

82

The inequality easily follows by considering whether V
O(t)
>di

≤ ε
k

(
ε(t− ri) +

V
A(t)
>di

+ τ
)

or not. And by Lemma 31 and simple algebra, we obtain

∫ ∞
t=0

(4.16)dt

≤ (1 + 2ε)

∫ ∞
t=0

∑
i ∈ A(t)

di < db(t)

di

∫ pAi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>di

+ τ
)k−1

dτdt

(4.17)

+3ε

∫ ∞
t=0

∑
i∈A(t)

di

∫ pAi (t)

τ=0

k
(
V
A(t)
>di

+ τ
)k−1

dτdt + (
2k

ε
)k+1OPTx

(4.18)

Here (4.18) was obtained assuming k ≥ 2. When k = 1,
∫∞
t=0

(4.16)dt ≤ (4.17).

Thus the above upper bound holds for all k ≥ 1.

4.6 Upperbound: Final Analysis

We complete our analysis by aggregating all changes, both non-continuous and

continuous. By gathering all continuous changes for each machine x ∈ [m]

studied in the previous section, we obtain∫ ∞
t=0

d

dt
Φx(t)dt

=

∫ ∞
t=0

[
d

dt
Φx,1(t) +

d

dt
Φx,2(t) +

d

dt
Φx,3(t)]dt

≤
∫ ∞
t=0

(4.4)dt + (4.10) + (4.11) + (4.14) + (4.15) + (4.17) + (4.18)

≤ ((1 + 2ε)− (1− 17ε)(s− ε))
∑

i∈Ax(t)

dix

∫ pAi (t)

τ=0

k
(
ε(t− ri) + V

A(t)
>dix

+ τ
)k−1

dτ

−s(1− 2ε)εk
∫ ∞
t=0

da(x,t),x(t− ra(x,t))
kdt

+8(
4k

ε
)K+1OPTx

≤ −s(1− 2ε)εkAx + 8(
4k

ε
)k+1OPTx

The second inequality can be obtained by combining (4.11) with (4.17).

The last inequality holds when 1 + 30ε ≤ s ≤ 2, and 0 < ε ≤ 1
50 . Since Φ

is 0 before no jobs are released and also after all jobs are completed by A

and OPT, the total change of Φ is 0. Recall that the sum of non-continuous

changes is at most 0. Thus the total continuous change of Φ over time is

non-negative. Hence from the above inequality for each machine x, we have

0 ≤
∑
x∈[m]

∫∞
t=0

d
dtΦ(t)xdt ≤ −s(1 − 2ε)εkA + 8(4k

ε)k+1OPT.

83

Thus we obtain (A)1/k ≤ O(k
ε2+1/k)(OPT)1/k. By scaling ε appropriately

in the algorithm we have the following theorem,

Theorem 7. For any integer k ≥ 1 and for any 0 < ε ≤ 1, there exists a

(1 + ε)-speed O(k
ε2+1/k)-competitive algorithm for minimizing weighted `k-norms

of fractional flowtime on unrelated machines. In particular, the algorithm is

immediate dispatch and non-migratory.

Using the relation between integral kth power flow time and fractional kth

power flow time discussed in Section 1.5.3, we can show Theorem 5.

4.7 Lowerbound

In this section we prove Theorem 6.

Proof of [Theorem 6] Suppose that we have m = 2k machines. We create the

following adversarial instance I. It has k groups of jobs: Gα, α ∈ [k]. Jobs in

each group (set) Gα can be assigned to only a subset of machines Mα where

|Gα| = |Mα| = 2k+1−α. All jobs have uniform size. For simplicity, we assume

that all jobs are released at time 0, but the algorithm is given jobs to schedule

one by one; this can be simulated by letting jobs have sufficiently large size

and arrive at distinct integer times during [0, 2m]. We will assume that the

jobs in Gi arrives before Gj if i < j.

Let LOADα denote the average load of the machines Mα for jobs in group

G1, G2, ..., Gα, i.e. the number of jobs from G1, G2, ..., Gα assigned to the

machines Mα divided by |Mα|. We will decide Mα in an adversarial manner

so that LOADα ≥ α. Also we maintain M1, M2, ..., Mα form an inclusion-wise

chain, that is Mα ⊆ ... ⊆ M2 ⊆ M1. All jobs in the first group G1 can be

assigned to any machine, i.e. M1 = [m]. Then eachMα for α ≥ 2 is inductively

defined, after the algorithm’s decision on the jobs Gα−1, to be the half machines

from Mα−1 having the largest number of jobs assigned. Using the fact that the

average load onMα is at least LOADα−1 and adding Gα will increase the average

load by at least one, it can be easily shown that LOADα ≥ α for all α ∈ [k].

Note that the algorithm has kth power of flow time at least (k/s)k due to the

jobs in group Gk. On the other hand, there exists a schedule where every machine

is assigned at most two jobs: all and only jobs in Gα are assigned toMα \Mα+1;

Mk+1 = ∅. This can be easily seen by noting that Mα \ Mα+1, α ∈ [k] are

disjoint sets of machines and |Gα|/|Mα \Mα+1| = 2. Thus this schedule has

kth power of flow time at most m(1k + 2k) = 2k(2k + 1). The desired lower

bound on the competitive ratio immediately follows. �

4.8 Concluding Remarks

In this chapter we introduced a scalable algorithm for the weighted `k norm of

flow time in the unrelated machines model for any fixed k > 0. It is important

84

to note that our algorithm must know the speed (ε) to be scalable. That is the

algorithm uses ε to determine the machine assignment of jobs. Knowing the speed

the algorithm is given has recently been shown to be useful in scheduling analysis

[65, 42, 33]. One possible candidate algorithm that does not depend on ε is the

algorithm that assigns a job to the machines which increases the (fractional)

kth norm of flow time the least. We currently do not know if this algorithm

is scalable or not. We were able only to show that it is O(1)-competitive with

speed k + ε. Recently, Anand et al. gave another scalable algorithm based on a

dual fitting [3]. Their algorithm is slightly simpler than ours, but still requires

the knowledge of the speed it is given.

Open Problem 3. Consider any integer k ≥ 2. For the problem of minimizing

the weighted `k norm of flow time in the unrelated machines model, give a scalable

algorithm that does not depend on ε, or show that no such algorithm exists.

Our lower bound is restricted to immediate-dispatch and non-migratory

algorithms. Without these restrictions, there may exist a scalable algorithm

whose competitive ratio does not depend on k.

Open Problem 4. Consider any integer k ≥ 2. For the problem of minimizing

the weighted `k norm of flow time in the unrelated machines model, give a scalable

algorithm whose competitive ratio does not depend on k, or show that no such

algorithm exists.

In the offline setting, there exist only a few positive results without speed

augmentation [52, 53, 93]. All these results can handle only special cases.

For example, [52] shows an O(logP)-approximation and a nearly matching

lowerbound when each job can go to a specific subset of machines, and has the

same size on all machines in the subset; here P is the ratio of the maximum

size of a job to the minimum size of a job.

Open Problem 5. Consider the problem of minimizing average flow time

offline in the unrelated machines model. Let n be the number of jobs and P be

the ratio of the maximum size of a job on any machine to the minimum size

of a job on any machine. For the problem, give an approximation algorithm

whose approximation factor is poly-logarithmic in n and P , or show that no such

algorithm exists.

85

Chapter 5

Non-clairvoyant Scheduling
on Related Machines

5.1 Introduction

Around 2002, the consequences of Moore’s law finally impacted computer proces-

sor designers as they hit a “thermal wall”, where it was no longer economically

viable to cool the ever-hotter traditional uniprocessor architectures. One tech-

nology adopted to surmount this thermal wall is multiprocessor chips. The

common rule of thumb is that the power used by a processor is roughly cubic

in the speed of the processor. In theory m processors with speed s/m could

potentially handle the same load as one speed-s processor, but with a factor

of 1/m2 less power (assuming that the power consumption of each processor

grows in proportion to s3). Moore’s gap, which is the difference in the achievable

performance predicted by Moore’s law and the actual performance of commercial

processors, is largely explained by difficulty of getting many slower processors to

approximate the performance of one fast processor in practice.

Current commercial chip architectures mostly commonly consist of a homo-

geneous collection of identical processors. However, many computer architects

believe that architectures consisting of heterogeneous processors/cores will be

the dominant architectural design in the future [23, 74, 75, 80, 81]. The main

advantage of a heterogeneous architecture over a homogeneous architecture is

that it allows for the inclusion of processors whose design is specialized for

particular types of jobs, with the intent that jobs be assigned to a processor

best suited for that job. Most notably, it is envisioned that these heterogeneous

architectures will consist of a small number of high-power high-performance

processors for critical jobs, and a larger number of lower-power lower-performance

processors for less critical jobs. Naturally, the lower-power processors would

be more energy efficient in terms of the computation performed per unit of

energy expended, and would generate less heat per unit of computation. An

example of a such a heterogeneous multiprocessor is the STI Cell chip. For a

given area and power budget, heterogeneous multiprocessor architectures can

give a order of magnitude better performance than homogeneous multiprocessor

architectures [63]. This makes research into scheduling policies for heterogeneous

processors of fundamental importance (see the position paper [23] for further

arguments about the importance of this research direction).

86

Currently the most pervasive technology for achieving power heterogeneity

is that of speed-scalable processors. Speed-scalable processors have a collection

of available speeds, and the power consumed at the various speeds is a convex

function of the speed. The speed of the processors can be dynamically scaled

over time. A system that sits atop a speed-scalable processor needs not only

an online scheduling policy to determine which job to run on which processor,

but also a speed scaling policy for setting the speed of these processors. In

the homogeneous setting, each processor runs at the same speed when using a

particular power setting while in the heterogeneous setting the speed for a given

power depends on the specific processor being considered.

Following the line of research in [56, 57], we investigate worst-case perfor-

mance guarantees (or competitive ratios) achievable by algorithms for scheduling

heterogeneous multiprocessor architectures. Throughout this chapter we focus

on a type of heterogeneous multiprocessor scheduling which is best described as

related heterogeneous multiprocessors and is defined as follows. We adopt the

following formal model as in [56]. We are given a collection of m processors/ma-

chines, with processor i having a speed function Qi: for every value P , Qi(P) is

the speed obtained when the processor is run at a power of P . Notice that the

speed depends on the processor being considered. One can assume without loss

of generality that Qi is concave, continuous, and Qi(0) = 0 [13]. If processors

are not running a job then they can be shut down, and consume no power. We

note that an important special case of this model is the related machines model,

where each processor ican only run at a single fixed speed si and each processor

consumes no power (We say that a processor runs at a fixed speed if there is only

one possible speed for the processor and it consumes no energy).

Jobs arrive in an online fashion over time, with job Jj arriving in the system

at its release/arrival time rj . The job has a positive size pj , and a positive

importance/weight wj . Each job can be scheduled on only one processor at each

time and can be preempted. The goal is to devise a scheduling policy and an

associated speed scaling policy to minimize some weighted combination of the

average (weighted) flow time
∑
j wjFj of the jobs and the total energy consumed.

Here, the flow time Fj of a job Jj is the difference between its completion

time and its release time. We can assume without loss of generality that the

objective is total (or equivalently average) weighted flow time plus total energy

consumption by scaling the speed functions or job weights. This objective makes

a balance between the system performance and power consumption; we defer

more discussion about this objective to Section 5.2.

In particular, we will be interested in obtaining non-clairvoyant algorithms.

A non-clairvoyant algorithm has to make scheduling decisions without knowing

the actual job size until completing each job. Studying the performance of

non-clairvoyant algorithms is of particular importance because schedulers in

general purpose systems generally do not know the size of the job upon its

arrival. To recap, we study non-clairvoyant scheduling algorithms for mini-

87

mizing total (weighted) flow time plus total energy consumption on (related)

heterogeneous machines.

When there is only a single processor, i.e. m = 1, the problem is fairly

well understood. Even for a single processor of fixed speed, it is known that

any randomized algorithm has a competitive ratio of Ω(logn) without speed

augmentation [83]. Also the non-clairvoyant algorithms SRPT (Shortest Elapsed

Time First) and LAPS are known to be scalable 1 . For the definition of these

algorithms, we refer the reader to Section 1.4. Also the weighted version of these

algorithms (WSETF and WLAPS, reps.) are also scalable for weighted average

flow time [9, 15]. For a single processor that is speed-scalable, LAPS (WLAPS)

is known to be scalable for total (weighted) flow time plus energy [27].

When all m processors are homogeneous, [76] considered the special case

where the allowable speeds are bounded and the power that each processor

consumes is polynomial in the speed it is run. They considered a non-clairvoyant

algorithm that combines a varian of RR (Round Robin) and the speed scaling

policy from [14], showed it is scalable.

The heterogeneous machines setting seems much more challenging. Most

of the analysis techniques for scheduling algorithms in the homogeneous mul-

tiprocessor fixed speed setting do not extend to the heterogeneous fixed speed

multiprocessor setting for one or both of the following reasons. Firstly, contrary

to conventional intuition, priority algorithms such as SRPT and SJF are not

locally competitive2 (even with any constant factor speed augmentation) as

they are on a homogeneous fixed speed multiprocessor [84]. (See Section 5.4.4.)

Secondly, unlike the homogeneous case, it is difficult to establish lower bounds on

when the optimal solution completes these jobs. E.g., the total work of a set of

jobs divided by the total speed of the processors is not useful: even though a set

of processors may have large aggregate speed, each individual processor may be

very slow. For the same reason, the number of processors is not a useful quantity.

In fact, even when in the heterogeneous machines setting where each machine

has a fixed speed, the only algorithm, either clairvoyant or non-clairvoyant, that

is known to be scalable is the one given by Chadha et al. [24]. Unfortunately,

this algorithm is far from being non-clairvoyant. When the online scheduler is

non-clairvoyant, the only non-trivial result known in the heterogeneous machines

setting was given by Gupta et al. [56]. They showed RR (Round Robin) is

(2 + ε)-speed O(1)-competitive with an appropriate speed scaling policy.

1A scheduling algorithm is scalable if it possess a constant competitive ratio when provided
a processor that is a factor (1 + ε) faster than optimal solution [69, 42]. See Section 1.3.3 for
more details of resource augmentation.

2An algorithm is locally competitive if at all times the increase in the algorithm’s objective
is within a constant factor of the increase in the optimal solution’s objective. For weighted flow
time this means that the total weight of unsatisfied jobs in the algorithm’s schedule is within a
constant factor of the total weight of unsatisfied jobs in the optimal solution’s schedule at all
times.

88

5.1.1 Our Results

We give the first non-clairvoyant scalable algorithm for the objective of min-

imizing total (unweighted) flow time plus energy when machines are related.

That is, we show that the following algorithm, which combines the LAPS [42]

(Latest Arrival Processor Sharing) policy with a non-trivial speed-scaling policy

is scalable for the objective of total flow plus energy on a heterogeneous multipro-

cessor. The speed-scaling policy uses the so-called Speed Abstraction Problem

that determines the maximum aggregate speed that is achievable subject to

(i) the number of machines, and (ii) and total power used, both being at most

the number of unfinished jobs given in [56]. This improves upon the result

of [56] which shows that the scheduling algorithm Equipartition is (2 + ε)-speed

O(1)-competitive for the same objective. We note that this is the first example of

a scalable non-clairvoyant algorithm for speed-scalable heterogeneous processors,

or even fixed-speed related machines. We note that there is a strong lower bound

on the competitive ratio without resource augmentation [83].

At a high level, the main technical difficulty in showing LAPS is scalable

is the following. Consider the related machines model where machines have a

fixed speed and do not consume any energy. In this case, typical arguments

for LAPS on homogeneous multiprocessors proceed by (i) showing that we can

treat m identical machines as just a single processor of speed m as long as we

restrict each job to not run at more than unit speed at any time, and (ii) on

this one machine instance, showing that we can just distribute the speed of

the system among the εn most recently arriving jobs, and still make enough

progress on the overall objective. However, we run into trouble in both steps for

heterogeneous systems. For (i) it is not clear what the single machine instance

should be, because the machines could have vastly different speed profiles, and

we can’t therefore place such natural restrictions on jobs to capture the fact

that a job can run only on one machine. So sticking with multiprocessors, the

problem then with (ii) is that εn could always be smaller than m, the number

of machines. In this case it is not possible to fully utilize the resources of m

machines without running a job simultaneously on two machines, which is an

infeasible schedule. However, we show that the algorithm which shares the εn

fastest machines between the εn latest arriving jobs is scalable. We use this as a

starting point for our general algorithm in the speed-scaling case. Because of

the issues discussed above, our analysis is also forced to reason directly about

a heterogeneous multiprocessor system.

If we were to consider weights, the situation however becomes more challeng-

ing. We show in Section 5.4 that the standard extension of priority algorithms 3

for the weighted flow objective, namely HDF, WSETF, and WLAPS (Weighted

3We say a scheduling algorithm is a priority algorithm if the jobs are assigned a single
parameter (which can possibly change with time) called its priority, and the scheduling decision
is based solely on each job’s priority. For example, in SRPT, the priority of each job is simply
the remaining processing time of the job.

89

Latest Arrival Processor Sharing), are all not O(1)-speed O(1)-competitive, even

for the related machines setting when machines have different but fixed speeds

and consume no energy. Note that as mentioned above, these algorithms are scal-

able for the homogeneous case when all processors have the same speed [42, 47].

Intuitively, perhaps the underlying reason is that when we have both related

machines and weighted jobs there is an extra dimension to the problem over

both the cases of weighted jobs on homogeneous machines and unweighted jobs

on heterogeneous machines. The natural extensions of priority algorithms fail to

capture the interplay between these dimensions. We believe that this justifies

the analysis of non-standard algorithms in [24, 57].

On the whole, our results suggest that scheduling heterogeneous multiproces-

sors may be inherently more difficult than scheduling homogeneous multiproces-

sors, or at the very least, require substantially different algorithms.

5.1.2 Related Work

In this section, we summarize both clairvoyant and non-clairvoyant algorithms

that are rested to our problems. For a single processor of fixed speed, the well-

known priority algorithms 4 covered in standard introductory operating systems

texts are known to be scalable (i.e. possess a constant competitive ratio when

provided a processor that is a factor (1 + ε) faster than the optimal solution)

for the unweighted case—these include SRPT (Shortest Remaining Processing

Time), SJF (Shortest Job First), SETF (Shortest Elapsed Time First), and their

weighted versions are known to be scalable for the weighted case [69, 19, 42, 8, 15].

(See Section 1.4 for definitions of these algorithms.) Likewise, for a single

processor that is speed-scalable, we can obtain near-optimal algorithms in the

weighted or unweighted settings by combining the standard priority scheduling

algorithms with a natural speed-scaling policy where the power is set to be a

small multiple of the total weight of the unsatisfied jobs [14, 13, 4, 25, 27]. It

is easy to see that such a speed-scaling policy is natural (for the objective of

weighted flow times plus energy) because it balances the increase in the weighted

flow time objective with the increase in the energy objective.

Many of these standard priority scheduling algorithms are known to be

scalable for the problem of homogeneous fixed-speed multiprocessors [97, 47, 42].

As mentioned previously, [76] gave a scalable algorithm in the homogenous

processors setting for some special cases of speed functions. [26] gave a logarithmic

competitive algorithm when jobs can be processed by multiple processors.

For heterogeneous multiprocessors however, the landscape is not so well-

charted. Scalable clairvoyant algorithms are known for weighted flow on fixed

speed processors [24], and for weighted flow plus energy on speed-scalable

4We say a scheduling algorithm is a priority algorithm if the jobs are assigned a single
parameter (which can possibly change with time) called its priority, and the scheduling decision
is based solely on each job’s priority. For example, in SRPT, the priority of each job is simply
the remaining processing time of the job.

90

Fixed Speed Processor

Clairvoyant Non-Clairvoyant

Unweighted SRPT optimal SETF scalable [69]
SJF scalable [19] LAPS scalable [42]

Weighted HDF scalable [19] WSETF scalable [8]

Speed-Scalable Processor

Clairvoyant Non-Clairvoyant

Unweighted SRPT competitive [14, 13, 4] LAPS scalable [25]
SJF scalable [13]

Weighted WLAPS scalable [15]

Table 5.1: Guarantees for the standard scheduling algorithms on a single processor

Fixed Speed Processors

Clairvoyant Non-Clairvoyant

Unweighted SRPT scalable [97, 47] LAPS scalable [42]
SJF scalable [97]

Weighted HDF scalable [97] WLAPS scalable [15]

Table 5.2: Guarantees for the standard scheduling algorithms on a homogeneous
multiprocessor

Fixed Speed Processors

Clairvoyant Non-Clairvoyant

Weighted HDF not scalable [*] WSETF not scalable [*]
Scalable Algorithm [24] WLAPS not scalable [*]

Speed-Scalable Processors

Clairvoyant Non-Clairvoyant

Unweighted PS (2 + ε)-speed O(1)-competitive [56]
LAPS Variant scalable [*]

Weighted Scalable Algorithm [57]

Table 5.3: Guarantees for the standard scheduling algorithms on a heterogeneous
multiprocessor

processors [56]. These algorithms are quite different, and more complicated

than the standard priority algorithms. It is also known that the non-clairvoyant

scheduling algorithm RR (Round Robin) is (2 + ε)-speed O(1)-competitive for

the objective of unweighted flow plus energy on speed-scalable processors [56].

We summarize previously known results together with our results in Table 5.1,

5.2 and 5.3. Our results are marked by [*]. See the following summary to see

what scheduling algorithm each short name refers to. Any algorithm that starts

with “W” implies the weighted version of its unweighted counterpart. Note that

showing an upper bound for the non-clairvoyant setting subsumes the clairvoyant

setting. Likewise, an upper bound for the speed scaling setting subsumes the

fixed processor setting. A lower bound for an algorithm in the fixed processor

setting then implies a lower bound for the algorithm in the speed scaling setting.

91

5.2 Formal Problem Statement and Notation

In the (related) heterogeneous processors setting, we are given m processors/ma-

chines, with processor i having a speed function Qi. For every value P ≥ 0, Qi(P)

is the speed obtained when the processor is run at a power of P . The achieved

speed depends on the processor being considered. One can assume without loss

of generality that for all i ∈ [m], tQi is concave, continuous, and Qi(0) = 0 [13].

If a processor has no job to run, it can be shut down, and consume no power.

We note that an important special case of this model is the related machines

model, where each processor ican only run at a single fixed speed si and each

processor consumes no power (We say that a processor runs at a fixed speed if

there is only one possible speed for the processor and it consumes no energy).

Each job Jj arrives online in the system at its release/arrival time rj with

a size pj > 0 and possibly with weight wi > 0. Each job can be scheduled on

only one processor at each time and can be preempted. The flow Fj of a job

Jj is its completion time Cj minus its release time rj . This is the amount of

time that the job waits to be satisfied. The weighted flow for a job Jj is wjFj ,

and the weighted flow for a schedule is
∑
j wjFj .

Our goal is to minimize the total weighted flow time plus the total energy

used. The intuitive rationale for the objective of weighted flow plus energy can

be understood as follows: assume that the possibility exists to invest E units of

energy to decrease the flow of jobs J1, . . . , Jk by x1, . . . , xk respectively for some

k > 0. An optimal scheduler for this objective would make such an investment if

and only if
∑k
i=1wixi ≥ E. So the importance wj of job Jj can be viewed as

specifying an upper bound on the amount of energy that the system is allowed

to invest to reduce Jj ’s flow time by one unit of time. Hence jobs with higher

weight are more important, since higher investments of energy are permissible

to justify a fixed reduction in the job’s flow time.

Particularly, we require our algorithm to be non-clairvoyant. That is, our

algorithm must make scheduling decisions without knowing the actual jobs sizes

until completing them respectively.

We give the following summary of terminology to clarify the scheduling

problems that are mentioned in this chapter.

• Speed-Scalable Processors vs. Fixed-Speed Processors: A fixed

speed processor has only one allowable speed, the power used can be assumed

to be zero without loss of generality. A speed-scalable processor can change

its speed over time and the energy consumed depends on the speed used.

• Homogeneous Multiprocessor vs. Heterogeneous Multiprocessor:

In the homogeneous setting, the speed function of every processor is the same.

That is, each processor runs at the same speed for a given amount of power.

However, at any given time, the processors can run at different speeds by

using different powers. In the heterogeneous setting, each processor has its

own specified speed function.

92

• Unweighted vs. Weighted Jobs: In the unweighted setting each job is

of equal importance, i.e., all weights are assumed to be one. In the weighted

case, jobs have varying importance/weights associated.

• Clairvoyant vs. Non-Clairvoyant Scheduler: A clairvoyant scheduler

learns the job size when it is released. A non-clairvoyant scheduler does not

learn a job’s size and must make scheduling decisions without this information.

5.3 Latest Arrival Processor Sharing (LAPS)

on a Heterogeneous Multiprocessor for

Flow Plus Energy

In this section we show that a natural extension of the LAPS algorithm is scalable

for the objective of minimizing the total flow time plus energy on a heterogeneous

multiprocessor. Recall that in this model, each processor i is speed-scalable

with an independent speed function Qi, and the scheduler at each time must

decide on the speed-scaling policy and the job assignment policy. We begin by

describing these policies for our algorithm LAPS.

LAPS Speed Scaling Policy. At each time t, a collection of processors and

associated speed settings are selected to maximize the aggregate speed extracted,

subject to the constraints that (i) the number of processors selected is at most

dε|A(t)|e, and (ii) the aggregate power used is at most dε|A(t)|e where A(t) is

the set of unfinished jobs for the online algorithm. More formally, the total speed

extracted is given by the algorithm GreedySS(ε|A(t)|) defined below. Note that

if there are more machines than dε|A(t)|e being used then our algorithm idles

some of the processors even though there are jobs that could be scheduled.

LAPS Job Selection Policy. The extracted speed is evenly shared among

the dε|A(t)|e jobs that arrived the most recently. Such a distribution is possible

because the number of machines running at non-zero speed in the speed scaling

policy defined by GreedySS is at most dε|A(t)|e, and in this case, it is easy to

have the algorithm cycle through different permutations to share the dε|A(t)|e
jobs on the chosen machines.

The Speed Abstraction Problem and the GreedySS Algorithm. We now

define the speed extraction problem and define an optimal greedy algorithm

GreedySS for this problem. The definition of the algorithm and proof of Lemma 32

appears in [56]. We re-state it for completeness.

Speed Extraction Problem. Given an integer power budget W , assign an

integer power budget of Ei to each processor i so as to maximize the total

extracted speed
∑
iQi(Ei) subject to the constraints that Ei is a non-negative

integer, and
∑
iEi ≤ W .

93

Algorithm GreedySS. Intuitively the algorithm partitions the power budget

into units, and assigns each unit to the machine which offers the best increase to

the total speed that can be extracted. Note that we only constrain all feasible

solutions for the above speed extraction problem to set integral values for the Ei’s,

and make no such assumption about the different power settings of the machines

in general. We now give the pseudo-code of GreedySS for completeness:

• Initially set Ei := 0 for all processors i. Ei will eventually be the power used

by processor i.

• For j = 1 to W do

• Let k = arg maxiQi(Ei + 1)−Qi(Ei)

• Increment Ek to Ek + 1

• Set the speed si of each processor i to be Qi(Ei)

Lemma 32. [56] The greedy algorithm GreedySS optimally solves the speed

extraction problem.

5.3.1 Simplifying Assumptions

In order to convey the main idea of our analysis more clearly, we make the

following simplifying assumptions. These assumptions will affect the resulting

competitive ratio by a factor of at most Oε(1).

(A): We assume that OPT is the GKP algorithm [56] which is a clairvoyant

online algorithm that is (1 + ε)-speed O(1/ε)-competitive (by doing this, we only

lose an additional factor of O(1/ε) in the competitive ratio). In particular, we

crucially use the following property of the GKP algorithm: if GKP has |O(t)|
jobs unsatisfied at any time t, then the most speed it can use (in total over

all machines) at this time is GreedySS(|O(t)|). This follows from the fact that

the GKP algorithm always runs any machine at a power that is at most the

number of unfinished jobs assigned to the machine; this gives a valid solution

for the Speed Extraction problem, and the quantity GreedySS(|O(t)|) can only

be larger by its optimality.

(B): We assume that the arrival times of jobs are distinct to simplify the analysis—

we can handle identical arrivals by making infinitesimally small perturbations

in the arrival times.

(C): We assume that LAPS is given (1 + 10ε) speed-up for some given pa-

rameter 0 < ε < 1/10.

5.3.2 Potential Function Analysis

In this section we define and analyze a potential function to bound the com-

petitiveness of LAPS. A tutorial on the use of potential functions to analyze

94

scheduling problems can be found in [67]. Before we define the potential function,

we introduce some notation. Denote the completion time of job Ji as CAi (and

COi) for the online algorithm (and optimal schedule respectively). At any time

t, let A(t) denote the set of unsatisfied jobs in the algorithm’s schedule, and

likewise O(t) is the set of unsatisfied jobs in OPT’s schedule. We also let pAi (t)

denote the remaining work at time t for job Ji in the algorithm’s schedule, and

pOi (t) is the remaining work at time t for job Ji in OPT’s schedule. Also define

zi(t) = max{pAi (t)−pOi (t), 0}. For a job Ji, let rank(i, t) :=
∑
ji′∈A(t),ri′≤ri

1 de-

note the number of unfinished jobs that arrived earlier. For any integer value W ,

let Q(W) := GreedySS(W) denote the value of the optimal solution to the Speed

Extraction problem with budget W . Our potential function is defined as follows.

Φ(t) =
2

ε2

∑
Ji∈A(t)

rank(i, t)zi(t)

Q(rank(i, t))

Now we bound the changes in the potential function. When bounding the

changes, the following lemma will be useful. The proof of the following lemma

is straightforward given the definition of Q.

Lemma 33. For any integers A and B such that B ≥ A, we have that Q(A) ≥
A
BQ(B).

Proof. Consider the run of the algorithm GreedySS(B), and consider the B

increments that it made. By definition of GreedySS, Q(B) is the sum of the

incremental speeds we obtained at each step, and these values are monotonically

non-increasing. As a result, if we only consider the first A of these increments,

we get a feasible solution to the Speed Extraction Problem on input A, and this

has value at least (A/B)Q(B).

The next two corollaries follow immediately from the above Lemma.

Corollary 4. For any integer i ≥ 2, we have that i−1
Q(i−1) ≤

i
Q(i)

Corollary 5. For any integer n and 0 < ε ≤ 1, Q
(
dεne

)
≥ εQ(n).

We are now ready to proceed with an amortized analysis. Let λ > 0 be some

constant. Our aim is to show the following equation holds at all times t:

2|A(t)|+ dtΦ(t) ≤ 2λ|O(t)|. (5.1)

We will also show that Φ(0) = Φ(∞) = 0, and Φ does not experience any

increase at discontinuities. By integrating over time, we can then conclude that

the total cost of the online algorithm (flow time plus energy) is at most λ times

that of the optimal algorithm. We now consider various cases:

Job Arrival: Consider when job Ji arrives. This job has the largest rank out

of all the jobs in A(t). When Ji arrives the rank of every other job remains the

same and the terms in Φ corresponding to other jobs do not change. There is a

95

new term added to the potential function corresponding to job Ji, but we know

that zi(ri) = 0. Hence there is no overall change to the potential function value.

Job Completion: Consider a time t when job Ji completes in the online

algorithm. The term in the potential function corresponding to Ji must be 0

since zi(Ci) = 0 by definition. This term drops out of the potential function,

causing no change in the potential value. The ranks of all the other jobs which

arrive after Ji will decrease by 1, but by Corollary 4, the net change for these

terms is negative. Therefore the completion of a job Ji may cause a discontinuity

at Φ(t), but we have ensured that Φ does not increase. Further, it can be seen

that when OPT completes a job there is no effect on the potential function.

Job Processing: Here we consider the change in Φ due to the processing

of jobs by the algorithm and the optimal solution in an infinitesimally small

time interval [t, t+ dt) when there are no job arrivals or completions. We will

break the analysis into two cases.

Case (a): |O(t)| ≥ ε2|A(t)|. In this case, we ignore the change in Φ due to the

algorithm’s processing. This can be justified since the algorithm’s processing

can only decrease Φ. We will charge the algorithm’s flow time and any increase

in the potential function directly to the optimal solution. We first upper bound

the increase in Φ. To this end, recall that the most speed OPT uses is Q(|O(t)|)
because assumption (A) states that OPTis the GKP algorithm. By Corollary 4,

the adversary can increase Φ the most by working on the job with the highest

rank. Let |O(t)| = c|A(t)| where c ≥ ε2. We obtain the following upper bound

on the increase in Φ due to OPT’s processing:

2

ε2
|A(t)|

Q(|A(t)|)
Q(|O(t)|) =

2

ε2
|A(t)|Q(c|A(t)|)

Q(|A(t)|)

There are two cases. If c ≥ 1 then we appeal to Lemma 33 and infer

that 2
ε2 |A(t)|Q(c|A(t)|)

Q(|A(t)|) ≤
2
ε2 |A(t)|c = 2

ε2 |O(t)|. Otherwise, 2
ε2 |A(t)|Q(c|A(t)|)

Q(|A(t)|) ≤
2
ε2 |A(t)| ≤ 2

ε4 |O(t)| since Q is non-decreasing and |A(t)| ≤ 1
ε2 |O(t)|. Thus the

increase is at most a constant times the optimal solution’s current cost. This

bound combined with the fact that the algorithm’s cost is at most 2|A(t)| ≤
2
ε2 |O(t)|, we get that the term 2|A(t)|+ dtΦ(t) is at most 4

ε4 |O(t)|. Thus, setting

the constant λ from above to be 2/ε4 suffices.

Case (b): |O(t)| ≤ ε2|A(t)|. In this case, we need to use the potential function

to pay for the increase in the algorithm’s objective. First consider the change

in Φ due to the adversary’s processing of jobs. Again by assumption (A), the

most speed OPT can use at time t is Q(|O(t)|). By Corollary 4, the largest

increase in the potential function would occur when OPT uses all of the power

invested on the job with the highest rank. Therefore the largest increase in the

potential due to OPT’s processing is upper bounded by:

96

2

ε2
|A(t)|Q(|O(t)|)
Q(|A(t)|)

≤ 2

ε2
|A(t)|Q(dε|A(t)|e)

Q(|A(t)|)
[By definition of Q and |O(t)| ≤ ε2|A(t)| ≤ dε|A(t)|e]

Now consider the change in the potential function due to the algorithm’s

processing. Again, by the definition of our algorithm, we know that the algorithm

round robins the dε|A(t)|e latest arriving jobs on at most dε|A(t)|e machines

whose total speed extracted is Q(dε|A(t)|e). Let A′(t) be the set of jobs that the

algorithm processes. For any job Ji which the algorithm processes, rank(i, t) ≥
(1− ε)|A(t)| and Q(rank(i, t)) ≤ Q(|A(t)|). Further, we know that the z variables

decrease for at least dε|A(t)|e − ε2|A(t)| jobs since the optimal solution has at

most ε2|A(t)| jobs in its queue by assumption. For these jobs zi decreases at

a rate of 1
ε|A(t)|Q(dε|A(t)|e)(1 + 10ε) using the fact that the algorithm is given

(1+10ε) resource augmentation and the definition of the algorithm. Thus we have

that the change in Φ due to the algorithm’s processing is at most the following

− 2

ε2

∑
Ji∈A′(t)\O(t)

rank(i, t)

Q(rank(i, t))
· 1

dε|A(t)|e
Q(dε|A(t)|e)(1 + 10ε)

≤ − 2

ε2

∑
Ji∈A′(t)\O(t)

(1− ε)|A(t)|
Q(rank(i, t))

· 1

dε|A(t)|e
Q(dε|A(t)|e)(1 + 10ε)

[Since rank(i, t) ≥ (1− ε)|A(t)| for Ji ∈ A′(t)]

≤ − 2

ε2
· (1− ε)|A(t)|
Q(|A(t)|)

· 1

dε|A(t)|e
∑

Ji∈A′(t)\O(t)

Q(dε|A(t)|e)(1 + 10ε)

[Since Q(|A(t)|) ≥ Q(rank(i, t)) for all Ji ∈ A(t)]

≤ − 2

ε2
· (1− ε)|A(t)|
Q(|A(t)|)

· 1

dε|A(t)|e
·
(
dε|A(t)|e − ε2|A(t)|

)
Q(dε|A(t)|e)(1 + 10ε)

[Since |A′(t)| = dε|A(t)|e]

≤ − 2

ε2
· (1− ε)2|A(t)|

Q(|A(t)|)
·Q(dε|A(t)|e)(1 + 10ε)

Thus the total net change in the potential function is at most,

2

ε2
|A(t)|Q(dε|A(t)|e)

Q(|A(t)|)
− 2

ε2
(1− ε)2|A(t)|Q(dε|A(t)|e)(1 + 10ε)

Q(|A(t)|)

≤ −2

ε
|A(t)|Q(dε|A(t)|e)

Q(|A(t)|)
[Since ε ≤ 1/10]

≤ −2|A(t)| [By Corollary 5]

Thus, the net change in the potential function plus the increase in the

algorithm’s objective is non-positive. So this gives us the restriction that λ ≥ 0.

Therefore, we get that λ = 2
ε4 suffices in all cases.

97

For the final analysis, we add the upper bound on the change for each

of the cases we studied above. Let d
dtΦ(t) denote the change (rate) of Φ(t),

dtLAPS(t) denote the change of our algorithm’s objective and d
dtOPT(t) denote

the change in the optimal solution’s objective. We have that dtLAPS(t) +

dtΦ(t) ≤ 2
ε4

d
dtOPT(t) by the previous arguments. Thus,

LAPS =

∫ ∞
0

(
dtLAPS(t)

)
dt

=

∫ ∞
0

(
dtLAPS(t) + dtΦ(t)

)
dt

[Since Φ(0) = Φ(∞) = 0]

≤
∫ ∞

0

(2

ε4
d

dt
OPT(t)

)
dt =

2

ε4
OPT

However, since we assumed that OPT runs the GKP algorithm (which is

in itself (1 + ε)-speed O(1/ε)-competitive from [56]), we get that the overall

competitive ratio of our non-clairvoyant algorithm is O(1/ε5). We stress that

we have not tried to optimize the competitive ratio but rather to show that the

related machines setting admits a non-clairvoyant scalable algorithm.

Theorem 8. The algorithm LAPS is (1 + ε)-speed O(1/ε5)-competitive for the

problem of flow time plus energy on related machines.

5.4 Lower Bounds on Weighted Flow Time on

Related Machines

In this section we show that the standard priority algorithms for the weighted

flow objective, namely HDF, WSETF, and the most natural adaptation of

WLAPS (weighted latest arrival processor sharing), are not O(1)-speed O(1)-

competitive for total weighted flow time on uniformly related machines. This

is the heterogeneous processor setting where each machine runs at a fixed

speed and consumes no power. When each machine consumes no power, the

objective just simplifies to minimizing the total weighted flow time. As previously

stated, this is a special case of the speed scaling heterogeneous processor setting

with the objective of total weighted flow time plus energy. In each of the

following subsections, we first explain how these priority algorithms generalize to

heterogeneous machines, and then provide the lower bound examples. Finally, in

Section 5.4.4, in the heterogeneous processors setting, the performance of SRPT

and SJF cannot be shown via the popular local competitiveness argument as

was the case in the homogeneous processors setting.

5.4.1 Lower Bound for Highest Density First (HDF)

In HDF, the priority of a job is its density, i.e., job Ji has a priority equal to

its weight divided by its size wi
pi

. The algorithm on a single processor, always

98

schedules the highest density job. This naturally extends to related machines by

scheduling the job of the kth highest density on the kth fastest machine at all times.

The work of [19] shows that this algorithm is O(1)-speed O(1)-competitive when

all machines have the same speed. However, when the speeds can be different,

the following example shows that HDF has unbounded competitive ratio on

related machines, even when provided any constant speed augmentation.

Theorem 9. For any constants α,B > 0, there exists an instance I(α,B) of

related machines scheduling for which HDF is not B-competitive for the objective

of weighted flow with a speed augmentation of α.

Proof. For this proof, let cost(A) denote the total weighted flow time of an

algorithm A. The instance I is defined in the following manner. There is a “fast”

machine of speed S, and infinitely many “slow” machines of speed 1. At time

t = 0, a “heavy” job of weight W and length L arrives. Then, at each time i
αS ,

for integer 0 ≤ i < SL, a “small” job of weight w = 4W/L and length 1 arrives

(all the parameters S,W,L will be set appropriately when required).

Note that each small job has a density w, which is greater than the density

of the heavy job, W/L. Hence as long as there is a small job that is unfinished,

the heavy job will not run on the fast machine in HDF’s schedule. Now, since

each small job completes on the fast machine after a time of 1
αS , the next small

job arrives as soon as its preceding small job is finished by HDF by the way we

have set up the instance. This is repeated until all small jobs complete and takes

exactly SL 1
αS = L

α units of time. This implies that the heavy job is processed

entirely on slow machines by HDF, and as a result, HDF incurs a weighted flow

time of at least cost(HDF) ≥W L
α .

The optimal solution, however, will run the heavy job on the fast machine

until completion, and run each small job on a dedicated unit speed machine.

Recall that there are enough slow machines to run all small jobs simultaneously.

The cost of the optimal solution is cost(OPT) = W L
S +wSL = W L

S + 4WS. We

set the length of the heavy job so that W L
S = 4SW , i.e., L = 4S2. This implies

a lower bound on the competitive ratio of W L
α

/
2W L

S = S
2α . To complete the

proof, we set S = 4αB.

5.4.2 A Lower Bound for Weighted Shortest Elapsed

Time First (WSETF)

In this section we show a lower bound on the well-known algorithm WSETF

(weighted shortest elapsed first) in the related machines setting for total weighted

flow time. We begin by describing the algorithm: at any time t, let qj(t) denote

the the amount of work that job Jj has been processed by. For any unfinished

job Jj , define its priority at time t to be wj/qj(t). Then WSETF assigns the

job with the ith highest priority on the ith fastest machine. We remark that this

algorithm is scalable on a single processor [8]. We now show that an instance

quite similar to the bad example for HDF is also bad for WSETF.

99

Theorem 10. For any constants α,B > 0, there exist related machine instances

I(α,B) where WSETF is not B-competitive for weighted flow with a speed

augmentation of α.

Proof. For this proof, let cost(A) denote the total flow time of an algorithm A.

The instance I is defined in the following manner and is similar to the lower

bound on HDF. There is a “fast” machine of speed S, and infinitely many “slow”

machines of speed 1. At time t = 0, a “heavy” job of weight W and (unknown)

length L arrives. Then, at each time L
2αS + i

αS , for integer 0 ≤ i < SL
2 , a “small”

job of weight w and length 1 arrives (all the parameters S,W,L,w will be set

appropriately when required). For notational convenience, we will assume that
SL
2 is an integer.

At time t = L
2αS , the priority of the heavy job is W

L/2 = 2W
L , since it has

run on the fast machine and there is α speed augmentation for WSETF. Note

that by definition, the priority of any job can only decrease over time. We now

set the value of w such that the worst-case priority of a small job (i.e., when

it completes) is larger than this quantity. This implies that as long as a small

job is unfinished, the heavy job can not run on the fast machine. The condition

required for this is w
1 ≥

2W
L . We therefore set w = 2W

L . Since each small job

completes on the fast machine in 1
αS time steps, a small job arrives as soon as its

preceding small job is finished by WSETF. This will be repeated until all small

jobs complete. This takes exactly SL
2

1
αS = L

2α units of time. This implies that

the entire second half of the heavy job is processed on slow machines by WSETF.

Thus, WSETF incurs a weighted flow time of at least cost(WSETF) ≥W L
2α .

The optimal solution, however, will run the heavy job on the fast machine until

completion, and run each small job on a dedicated unit speed machine. Recall that

there are enough slow machines to accommodate all small jobs simultaneously.

The cost of the optimal solution is then cost(OPT) = W L
S + SL

2 w = W L
S +SW .

We set the length of the heavy job so that W L
S = SW , i.e., L = S2. This implies

a lower bound on the competitive ratio of W L
2α

/
2W L

S = S
4α . To complete the

proof, we simply set S = 8αB.

5.4.3 A Lower Bound for Weighted Latest Arrival

Processor Sharing (WLAPS)

Finally, in this section we show a lower bound on WLAPS. In order to simplify

the presentation, we describe a lower bound instance for the Weighted Processor

Sharing (WPS) algorithm (or Equipartition or Round-Robin) for total weighted

flow time on related machines. Subsequently, we explain how this also translates

to a lower bound for WLAPS. This is because WLAPS can be shown to always

be dominated by WPS when WPS is given a constant amount of resource

augmentation over WLAPS by definition of the algorithms. As usual, we begin

with the algorithm description.

100

On a single fixed-speed machine, at any time, the algorithm WPS works on

a job Jj with weight wj at a speed of its “fair share”, i.e., a fraction
wj
W of the

speed where W is the total weight of unfinished jobs. How do we generalize this

to multiple related machines? Ideally, we would like to process job Jj at a rate of
wj
W S, where S is the total speed of the fastest n machines where n is the number

of unfinished jobs. However, this may not always be achievable. For example, if

there is a single job Jj with very large weight and n− 1 jobs of negligible weight

then job Jj can only be processed at the speed of the fastest processor because a

job can only be processed by a single processor at any point in time. This is much

less than its fair share of the fastest n processors. As a result, the most natural

extension of WPS to the setting of heterogeneous processors, is to assume that

each job Jj is given
wj
W share of the bWwj c fastest processors. Therefore, job Jj is

processed with a total speed of

bW/wjc∑
i=1

wj si
W

, where the machines are ordered in

decreasing order of speed. It is not difficult to see that this scheduling policy

can be achieved without scheduling a job on more than one machine at the same

time. (Essentially, every job is scheduled to an extent of 1 across machines,

and every machine has utilization of at most 1. Then we can decompose this

fractional assignment into a convex combination of integer schedules, and then

preemptively follow this combination). One can define the WLAPS algorithm in

a similar fashion: WLAPS uses the WPS algorithm assuming that the latest ε

fraction of the unsatisfied jobs that arrived the latest are the only jobs in the

queue where 0 ≤ ε ≤ 1 is a constant that parametrizes WLAPS.

Theorem 11. For any constants α,B > 0, there exist related machine instances

I(α,B) where WPS is not B-competitive for weighted flow with any constant

speed augmentation α.

Proof. Consider the following instance. There are n jobs, with job Jj having a

weight of wj = 1/j and length lj which will be determined later. There are n

machines with machine i with speed 1/
√
i. We will set the lengths of the jobs in

such a way that all jobs complete at the same time in WPS.

We can bound the cost of WPS as follows. For such an instance, it is easy

to see that the total speed at which job Jj is processed by the WPS algorithm

is exactly α
∑jHn
i=1

1
jHn

1√
i

where α is the speed augmentation WPS has over the

optimal solution. Set lj to be precisely the above sum so that WPS completes

all the jobs at exactly t = 1. Thus, WPS incurring a weighted flow time of∑
j wj = Hn = Ω(log n).

Now we bound the cost of the optimal solution. Consider the following

alternate schedule which simply schedules job Jj on machine j. Noticing that

lj = α 1
jHn

∑jHn
i=1

1√
i
≤ O(α√

jHn
), we get that the weighted flow time for this

schedule is at most∑
j

wj lj
sj

=
∑
j

1√
j
lj ≤

O(α)√
Hn

∑
j

1

j
≤ O(α

√
log n)

101

which gives the Ω(
√

log n) bound on the competitive ratio of WPS for any speed

augmentation of α.

The careful reader might observe that the above algorithm does not utilize

every machine to an extent of 1. Indeed, consider the example of one heavy

job and a large number of very small jobs. Then the utilization of machines

3, 4, . . . is negligibly small because each tiny job only occupies wj/W of these

machines while much of the total weight in W comes from the heavy job (even

though the heavy job is never going to be scheduled on these slower machines).

A better algorithm with possibly better performance is one where we re-weight

the jobs’ fair shares on each machine depending on which jobs have not yet been

scheduled to full utilization. However, it can be shown that the above example

has an unbounded competitive ratio even for this modified algorithm.

Now we show how the previous lemma extends to lower bound the per-

formance of WLAPS.

Corollary 6. For any constants α,B > 0, there exist related machine instances

I(α,B) where WLAPS is not B-competitive for weighted flow with any constant

speed augmentation α.

Proof. Note that by definition of WPS and WLAPS, when WPS is given a

constant factor greater resource augmentation WPS schedule can only be better

for total flow time than WLAPS. In particular, this holds when WPS is given

more than a 1
ε factor greater resource augmentation over WLAPS where ε

is the constant that parametrizes WLAPS. Thus a lower bound of c on the

competitive ratio of WPS for any constant resource augmentation this implies a

lower bound of c on the competitive ratio of WLAPS for any constant resource

augmentation.

5.4.4 Local Competitiveness Lower Bounds

A scheduling algorithm A is said to be locally competitive if the number (or

total weight) of unfinished jobs at any time t under A’s schedule is comparable

to the number (or total weight) of unfinished jobs in the optimal schedule. Local

competitiveness implies that the algorithm’s competitive ratio can be bounded

for (weighted) flow time because the (weight) number of the unsatisfied jobs

in a schedule at some time is the instantaneous increase in the objective at

that time. Many scheduling algorithms have been proved to have bounded

competitiveness using a local competitiveness argument. In particular, SRPT

and SJF can be shown to be scalable on identical parallel machines via a local

competitiveness argument. We however show that these algorithms are not

locally competitive on related machines even with any constant speedup. Recall

that in the related machines setting machines/processors have different fixed

speeds and consume not power. We show that local competitiveness cannot

be shown even in the unweighted setting.

102

Theorem 12. For any s ≥ 1, assume that SRPT or SJF is given s-speed

augmentation. Then there exists a schedule and time t such that the schedule

finished all jobs at time t while SRPT or SJF has unsatisfied jobs.

Proof. We first describe the instance. There are k + 1 groups of machines,

M0,M1, ...,Mk. Group Mi has h2(k−i) machines of speed hi where h is a

sufficiently large constant. There are k + 1 groups of jobs, J0,J1, ...,Jk. Group

Ji has h2(k−i) jobs of size hi. For notational convenience, we will use subscript

to denote a subset of groups. For example, M≥i =
⋃
i′≥iMi′ .

Note that one can finish all jobs by time 1 by scheduling each job in Ji on

one machine in Mi. We will show that SRPT cannot finish all jobs by time k
s .

Then the theorem follows by setting k = s+ 1 and t = 1. At time 0, SRPT fills

all machines in M≥1 with the jobs in J0. This is because jobs in J0 are the

shortest jobs and |J0| = h2k >
∑k
i=1 h

2(k−i) = |M≥1|. Until time 1
2s , no job in

J0 can be finished by SRPT unless it is processed on one of the machines in

M≥1. The total volume of jobs in J0 that can be processed onM≥1 for 1
2s time

units by s speed resource augmented machines is at most 1
2

∑k
i=1 h

2(k−i)hi =
1
2

∑k
i=1 h

2k−i ≤ h2k−1. The last inequality holds for sufficiently large h. Further,

machines in M0 can process at most h2k/2 volume of jobs in J0 during [0, 1
2s].

Hence we have a lower bound h2k − h2k/2− h2k−1 = h2k/2− h2k−1 on the total

remaining volume of the unfinished jobs in J0 at time 1
2s . This is because the

total volume of jobs in J0 is h2k and a total volume of at most h2k/2 + h2k−1

can be processed during [0, 1
2s] by SRPT with s resource augmentation. Since

this lower bound is larger than |M≥1|, we know that during [0, 1
2s], all jobs in

J≥1 were scheduled only on machines in M0. It is easy to see that each job in

J≥1 has been processed by a fraction of at most 1
h .

The remaining proof can be completed by repeating this argument. Formally,

one can show the following: At time `
2s for integer 1 ≤ ` ≤ k, each job in J≥` has

remaining size that is at least (1− 1/h)` times its initial size. The proof for SJF

is the same, since SJF and SRPT produce the same schedule on any instance

where all jobs arrive at the same time by definition of the algorithms.

5.5 Concluding Remarks

In this chapter, we gave the first non-clairvoyant scalable algorithm for min-

imizing total (unweighted) flow time plus total energy consumed on (related)

heterogeneous machines. In contrast, for the weighted objective, we do not

have any algorithm that is O(1)-speed O(1)-competitive algorithm even when

machines have fixed speeds. We have already shown that natural/popular al-

gorithms such as HDF, WSETF or WLAPS do not work. The only candidate

algorithm we have is a variant of the algorithm by Chadha et al. [24]. Roughly

speaking, their clairvoyant algorithm assigns each incoming job to the machine

that gives the minimum increase of the total fractional weight flow time. One

103

obvious way of converting this algorithm into a non-clairvoyant one is to guess

job sizes: Initially assume each job has a unit size, and double the size whenever

necessary, i.e., assume that the size is 2l+1 if it is not finished after processing

it for 2l time units. However, this completely destroys the analysis framework

used in [24]. The recent paper [3] that gives an alternate proof based on dual

fitting seems to have a similar problem.

Open Problem 6. For the problem of minimizing weighted flow time on related

machines (when machines have fixed speeds), find an O(1)-speed O(1)-competitive

algorithm, or show that no such algorithm exists.

Another interesting problem is to investigate the performance of some fixed

priority algorithms such as SRPT or SJF for the unweighted objective. We

believe that they are scalable at least when the machines have fixed speeds. The

main difficulty in the analysis comes from the fact that we do not have a clean

mathematical expression for total flow time even when all jobs arrive at time zero.

Conjecture 3. For the problem of minimizing weighted flow time on related

machines (when machines have fixed speeds), the algorithms SRPT and SJF are

scalable.

104

Chapter 6

Future Research Directions

Since the celebrated resource augmentation analysis model was introduced [69], a

large amount of work has been done in this model. Another important milestone

in the history of scheduling research was the development of potential functions

for online scheduling [11, 67]. Potential functions enabled a large number of

analyses to be performed in online scheduling where local competitiveness cannot

be used. This dissertation aligns with this research direction and presents

several scalable algorithms in various settings. Most of our results are based

on potential function arguments.

Although most of potential functions for online scheduling seem to have

a certain standard form (see Section 1.5.2), it would be fair to say that our

understanding of potential functions is limited. For example, consider the

problem in Chapter 3 of minimizing the `k norms of flow time for jobs of different

parallelizability. It is not clear that the potential function used is the “right”

one in capturing the discrepancy between the online algorithm’s status and the

optimal scheduler’s status, although it yields the analysis of a scalable algorithm.

Particularly, we do not know if the competitive ratio should exponentially grow

with k. Or it may be the case that our competitive ratio is the best that can

be shown via the “standard” potential functions.

We believe that our understanding of potential functions could substantially

improve by bridging the techniques in offline and online settings, which at first

sight seems somewhat irrelevant. In the online setting, the popular techniques

are local competitiveness argument and potential functions. In the offline setting,

more diverse techniques have been used such as linear programming relaxation,

rounding, and dynamic programming. Two recent works by Anand et al. [3] and

Günther et al. [54] show how online scheduling can benefit from the algorithmic

ideas and analysis tools in the offline setting.

Anand et al. [3] used linear program and dual fitting to give a fairly clean

analysis of several interesting results. Very interestingly, using dual fitting,

they gave an alternative proof of the breakthrough result in [24]. Based on a

novel potential function, [24] showed that a natural algorithm is scalable for

minimizing average flow time in the unrelated machines setting (see Chapter 4).

In contrast to its conciseness and elegance, the potential function gave little

insight on why such a simple algorithm works. Dual fitting in [3] seems to give

105

a more natural explanation for this. This primal-dual type analysis for online

scheduling was recently further explored in [58].

Another good example is the recent work by Günther et al. [54]. Let us

focus on one of the problems they consider, namely minimizing total weighted

completion time, i.e.
∑
j wjCj , on a single machine where preemption is allowed.

Recall that wj , rj and Cj denote job j’s weight, release time and completion

time, respectively. This problem admits a constant completive algorithm, and

there is a constant lower bound known [45, 92]. There was a gap between the

upper and lower bounds before [54]. To remove this gap, [54] exploits a variety of

techniques that were developed in the offline setting. This was enabled by their

novel idea that simplifies online instances so that only a finite set of future jobs

need to be considered. As a result, they were able to obtain an online algorithm

whose competitive ratio is arbitrarily close to the optimal competitive ratio. It

would be interesting if one can extend their approach to more difficult objectives

such as minimizing total weighted flow time, i.e.,
∑
j wj(Cj − rj).

Finally, we believe that studying the power of knowing the speed that the

algorithm is given will be an important research direction. As mentioned earlier,

some of recently found scalable algorithms require the knowledge of the speed

and are parameterized by the speed [42, 66, 33, 44, 59]. Those algorithms are

not as natural as other algorithms that do not change with the speed. In fact, all

the scalable algorithms we develop and present in this dissertation are as such.

We do not know how crucial the knowledge of the speed is in obtaining a scalable

algorithm. Edmonds conjectures that any deterministic algorithm must know

the speed for minimizing average flow time for jobs of different parallelizability,

and makes an attempt to prove his conjecture [39].

106

Bibliography

[1] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-based data delivery
using broadcast disks. Personal Communications, IEEE [see also IEEE
Wireless Communications], 2(6):50–60, Dec 1995.

[2] Demet Aksoy and Michael J. Franklin. R x W: A scheduling approach for
large-scale on-demand data broadcast. IEEE/ACM Trans. Netw., 7(6):
846–860, 1999.

[3] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for
weighted flow-time explained by dual fitting. In SODA ’12: Proceedings of
the Twenty-thrid Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1228–1241, 2012.

[4] Lachlan L. H. Andrew, Minghong Lin, and Adam Wierman. Optimality,
fairness, and robustness in speed scaling designs. In SIGMETRICS ’10:
Proceedings of the 2010 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 37–48, 2010.

[5] Nir Avrahami and Yossi Azar. Minimizing total flow time and total
completion time with immediate dispatching. Algorithmica, 47(3):253–268,
2007.

[6] Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and Oded Regev. Minimiz-
ing the flow time without migration. SIAM J. Comput., 31(5):1370–1382,
2002.

[7] Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit
o(1)-competitive algorithms. In SODA ’09: Proceedings of the Nineteenth
Annual ACM -SIAM Symposium on Discrete Algorithms, pages 1238–1244,
2009.

[8] Nikhil Bansal and Kirk Pruhs. Server scheduling in the Lp norm: a rising
tide lifts all boat. In STOC ’03: Proceedings of the Thirty-fifth Annual
ACM Symposium on Theory of Computing, pages 242–250, 2003.

[9] Nikhil Bansal and Kirk Pruhs. Server scheduling in the weighted lp
norm. In LATIN ’04: Proceedings of the Sixth Latin American Theoretical
Informatics, pages 434–443, 2004.

[10] Nikhil Bansal, Moses Charikar, Sanjeev Khanna, and Joseph (Seffi) Naor.
Approximating the average response time in broadcast scheduling. In
SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 215–221, 2005.

107

[11] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage
energy and temperature. J. ACM, 54(1), 2007.

[12] Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko. Improved ap-
proximation algorithms for broadcast scheduling. SIAM J. Comput., 38
(3):1157–1174, 2008.

[13] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an
arbitrary power function. In SODA ’09: Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 693–701,
2009.

[14] Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted
flow time. SIAM J. Comput., 39(4):1294–1308, 2009.

[15] Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath Nagarajan.
Better scalable algorithms for broadcast scheduling. In ICALP ’10: Pro-
ceedings of the Thirty-seventh International Colloquium on Automata,
Languages and Programming, pages 324–335. Springer, 2010.

[16] Amotz Bar-Noy, Randeep Bhatia, Joseph (Seffi) Naor, and Baruch Schieber.
Minimizing service and operation costs of periodic scheduling. Math. Oper.
Res., 27(3):518–544, 2002.

[17] Yair Bartal and S.Muthukrishnan. Minimizing maximum response time in
scheduling broadcasts. In SODA ’00: Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 558–559. SIAM,
2000. ISBN 0-89871-453-2.

[18] Luca Becchetti and Stefano Leonardi. Nonclairvoyant scheduling to mini-
mize the total flow time on single and parallel machines. J. ACM, 51(4):
517–539, 2004.

[19] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Kirk Pruhs. Online weighted flow time and deadline scheduling. Journal
of Discrete Algorithms, 4(3):339–352, 2006.

[20] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. Flow
and stretch metrics for scheduling continuous job streams. In SODA
’98: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 270–279, 1998.

[21] Michael A. Bender, S. Muthukrishnan, and Rajmohan Rajaraman. Im-
proved algorithms for stretch scheduling. In SODA ’02: Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
762–771, 2002.

[22] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[23] F.A. Bower, D.J. Sorin, and L.P. Cox. The impact of dynamically hetero-
geneous multicore processors on thread scheduling. Micro, IEEE, 28(3):17
–25, may-june 2008.

108

[24] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara.
A competitive algorithm for minimizing weighted flow time on unrelated
machines with speed augmentation. In STOC ’09: Proceedings of the Forty-
first Annual ACM Symposium on Theory of Computing, pages 679–684,
2009.

[25] Ho-Leung Chan, Jeff Edmonds, Tak Wah Lam, Lap-Kei Lee, Alberto
Marchetti-Spaccamela, and Kirk Pruhs. Nonclairvoyant speed scaling for
flow and energy. In STACS, pages 255–264, 2009.

[26] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed scaling of processes
with arbitrary speedup curves on a multiprocessor. In SPAA ’09: Proceed-
ings of the Twenty-first Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 1–10, 2009.

[27] Sze-Hang Chan, Tak Wah Lam, and Lap-Kei Lee. Non-clairvoyant speed
scaling for weighted flow time. In ESA ’10: Proceedings of the Eighteenth
Annual European Symposium on Algorithms, pages 23–35, 2010.

[28] Wun-Tat Chan, Tak Wah Lam, Hing-Fung Ting, and Prudence W. H.
Wong. New results on on-demand broadcasting with deadline via job
scheduling with cancellation. In COCOON ’04: Proceedings of the Tenth
Annual International Computing and Combinatorics Conference, pages
210–218, 2004.

[29] Jessica Chang, Thomas Erlebach, Renars Gailis, and Samir Khuller. Broad-
cast scheduling: algorithms and complexity. In SODA ’08: Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 473–482, 2008.

[30] Moses Charikar and Samir Khuller. A robust maximum completion time
measure for scheduling. In SODA ’06: Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm, pages 324–333,
2006.

[31] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-
processor scheduling to minimize flow time with epsilon resource aug-
mentation. In STOC ’04: Proceedings of the Thirty-sixth Annual ACM
Symposium on Theory of Computing, pages 363–372, 2004.

[32] Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Longest wait first
for broadcast scheduling [extended abstract]. In WAOA ’09: Proceedings
of the Seventh Workshop on Approximation and Online Algorithms, pages
62–74. Springer, 2009.

[33] Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Minimizing maxi-
mum response time and delay factor in broadcast scheduling. In ESA ’09:
Proceedings of the Seventeenth Annual European Symposium on Algorithms,
pages 444–455. Springer, 2009. The journal version will appear in Theory
of Computing, Special Issue in Honor of Rajeev Motwani.

[34] Chandra Chekuri, Avigdor Gal, Sungjin Im, Samir Khuller, Jian Li,
Richard Matthew McCutchen, Benjamin Moseley, and Louiqa Raschid.
New models and algorithms for throughput maximization in broadcast
scheduling - (extended abstract). In WAOA ’10: Proceedings of the Eighth
Workshop on Approximation and Online Algorithms, pages 71–82. Springer,
2010.

109

[35] Marek Chrobak, Christoph Dürr, Wojciech Jawor, Lukasz Kowalik, and
Maciej Kurowski. A note on scheduling equal-length jobs to maximize
throughput. J. of Scheduling, 9(1), 2006.

[36] R. K. Deb. Optimal control of bulk queues with compound poisson arrivals
and batch service. Opsearch., 21:227–245, 1984.

[37] R. K. Deb and R. F. Serfozo. Optimal control of batch service queues.
Adv. Appl. Prob., 5:340–361, 1973.

[38] Jeff Edmonds. Scheduling in the dark. Theor. Comput. Sci., 235(1):
109–141, 2000.

[39] Jeff Edmonds. Every deterministic nonclairvoyant scheduler has a subopti-
mal load threshold. Manuscript, 2010.

[40] Jeff Edmonds and Kirk Pruhs. Multicast pull scheduling: When fairness is
fine. Algorithmica, 36(3):315–330, 2003.

[41] Jeff Edmonds and Kirk Pruhs. A maiden analysis of longest wait first.
ACM Trans. Algorithms, 1(1):14–32, 2005.

[42] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary
speedup curves. In SODA ’09: Proceedings of the Nineteenth Annual ACM
-SIAM Symposium on Discrete Algorithms, pages 685–692, 2009.

[43] Jeff Edmonds, Donald D. Chinn, Tim Brecht, and Xiaotie Deng. Non-
clairvoyant multiprocessor scheduling of jobs with changing execution
characteristics. J. Scheduling, 6(3):231–250, 2003.

[44] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online scalable schedul-
ing for the `k-norms of flow time without conservation of work. In SODA
’11: Proceedings of the Twenty-first Annual ACM -SIAM Symposium on
Discrete Algorithms, pages 109–119, 2011.

[45] Leah Epstein and Rob van Stee. Lower bounds for on-line single-machine
scheduling. Theor. Comput. Sci., 1-3(299):439–450, 2003.

[46] Thomas Erlebach and Alexander Hall. Np-hardness of broadcast schedul-
ing and inapproximability of single-source unsplittable min-cost flow. J.
Scheduling, 7(3):223–241, 2004.

[47] Kyle Fox and Benjamin Moseley. Online scheduling on identical machines
using SRPT. In SODA ’11: Proceedings of the Twenty-first Annual ACM
-SIAM Symposium on Discrete Algorithms, pages 120–128, 2011.

[48] Rajiv Gandhi, Samir Khuller, Yoo-Ah Kim, and Yung-Chun (Justin)
Wan. Algorithms for minimizing response time in broadcast scheduling.
Algorithmica, 38(4):597–608, 2004.

[49] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind
Srinivasan. Dependent rounding and its applications to approximation
algorithms. J. ACM, 53(3):324–360, 2006.

[50] Naveen Garg and Amit Kumar. Minimizing average flow time on related
machines. In STOC ’08: Proceedings of the Thirty-eighth Annual ACM
Symposium on Theory of Computing, pages 730–738, 2006.

110

[51] Naveen Garg and Amit Kumar. Better algorithms for minimizing average
flow-time on related machines. In Proceedings of the Thirty-thrid Inter-
national Colloquium on Automata, Languages and Programming, pages
181–190, 2006.

[52] Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and
lower bounds. In FOCS’ 07: Proceedings of the Forty-eighth Annual IEEE
Symposium on Foundations of Computer Science, pages 603–613, 2007.

[53] Naveen Garg, Amit Kumar, and V. N. Muralidhara. Minimizing total flow-
time: The unrelated case. In ISAAC ’08: Proceedings of the Nineteenth
International Symposium on Algorithms and Computation, pages 424–435,
2008.

[54] Elisabeth Günther, Olaf Maurer, Nicole Megow, and Andreas Wiese. A new
approach to online scheduling: Approximating the optimal competitive
ratio. CoRR, abs/1204.0897, 2012.

[55] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Mose-
ley, and Kirk Pruhs. Scheduling jobs with varying parallelizability to
reduce variance. In SPAA ’10: Proceedings of the Twenty-second ACM
Symposium on Parallelism in Algorithms and Architectures, pages 11–20,
2010.

[56] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Nonclair-
voyantly scheduling power-heterogeneous processors. In Green Computing
Conference, pages 165–173, 2010.

[57] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Scalably
scheduling power-heterogeneous processors. In ICALP ’10: Proceedings of
the Thirty-seventh International Colloquium on Automata, Languages and
Programming, pages 312–323, 2010.

[58] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online
primal-dual for non-linear optimization with applications to speed scaling.
CoRR, abs/1109.5931, 2011.

[59] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Mose-
ley, and Kirk Pruhs. Scheduling heterogeneous processors isn’t as easy
as you think. In SODA ’12: Proceedings of the Twenty-thrid Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1242–1253, 2012.

[60] Alexander Hall and Hanjo Täubig. Comparing push- and pull-based broad-
casting. or: Would “microsoft watches” profit from a transmitter?. In WEA
’03: Proceedings of the Second International Workshop on Experimental
and Efficient Algorithms, pages 148–164, 2003.

[61] Leslie A. Hall. Approximation algorithms for np-hard problems. chapter
Approximation algorithms for scheduling, pages 1–45. PWS Publishing
Co., Boston, MA, USA, 1997. ISBN 0-534-94968-1.

[62] Mor Harchol-Balter, Mark E. Crovella, and Sungsim Park. The case for
srpt scheduling in web servers. Technical report, 1998.

[63] Nikos Hardavellas. Exploiting dark silicon for energy efficiency, 2011.
Article to appear in IEEE Micro.

111

[64] Sungjin Im and Benjamin Moseley. An improved analysis of longest wait
first. Manuscript, 2009.

[65] Sungjin Im and Benjamin Moseley. An online scalable algorithm for
average flow time in broadcast scheduling. In SODA ’10: Proceedings of
the Twentieth Annual ACM -SIAM Symposium on Discrete Algorithms,
2010.

[66] Sungjin Im and Benjamin Moseley. Online scalable algorithm for mini-
mizing `k-norms of weighted flow time on unrelated machines. In SODA
’11: Proceedings of the Twenty-first Annual ACM -SIAM Symposium on
Discrete Algorithms, pages 95–108, 2011.

[67] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized
local competitiveness in online scheduling. SIGACT News, 42(2):83–97,
2011.

[68] Sandy Irani and Kirk Pruhs. Algorithmic problems in power management.
SIGACT News, 36(2):63–76, 2005.

[69] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoy-
ance. J. ACM, 47(4):617–643, 2000.

[70] Bala Kalyanasundaram and Kirk Pruhs. Minimizing flow time nonclair-
voyantly. J. ACM, 50(4):551–567, 2003.

[71] Bala Kalyanasundaram, Kirk Pruhs, and Mahendran Velauthapillai.
Scheduling broadcasts in wireless networks. Journal of Scheduling, 4
(6):339–354, 2000.

[72] David Karger, C. Stein, and Joel Wein. Scheduling algorithms. In M.J.
Atallah, editor, Handbook on Algorithms and Theory of Computation,
chapter 34. 1999.

[73] Jae-Hoon Kim and Kyung-Yong Chwa. Scheduling broadcasts with dead-
lines. Theor. Comput. Sci., 325(3):479–488, 2004.

[74] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I. Farkas.
Single-ISA heterogeneous multi-core architectures for multithreaded work-
load performance. In ISCA ’04: Proceedings of the Thirty-first Annual
International Symposium on Computer Architecture, pages 64–75, 2004.

[75] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core architec-
ture optimization for heterogeneous chip multiprocessors. In PACT ’06:
Proceedings of the 15th International Conference on Parallel Architectures
and Compilation Techniques, pages 23–32, New York, NY, USA, 2006.

[76] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H.
Wong. Competitive non-migratory scheduling for flow time and energy.
In SPAA ’08: Proceedings of the Twentieth Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 256–264, 2008.

[77] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and
David B. Shmoys. Chapter 9 sequencing and scheduling: Algorithms and
complexity. In A.H.G. Rinnooy Kan S.C Graves and P.H. Zipkin, editors,
Logistics of Production and Inventory, volume 4 of Handbooks in Operations
Research and Management Science, pages 445 – 522. Elsevier, 1993.

112

[78] Stefano Leonardi and Danny Raz. Approximating total flow time on
parallel machines. J. Comput. Syst. Sci., 73(6):875–891, 2007.

[79] Joseph Y-T. Leung. Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. CRC Press, Boca Raton, FL, USA, 2004.

[80] R. Merritt. CPU designers debate multi-core future. EE Times, Feb. 2010.

[81] Tomer Y. Morad, Uri C. Weiser, Avinoam Kolodny, Mateo Valero, and
Eduard Ayguade. Performance, power efficiency and scalability of asym-
metric cluster chip multiprocessors. IEEE Comput. Archit. Lett., 5:14–17,
2006.

[82] Benjamin Moseley. Scheduling to minimize energy and flow time in broad-
cast scheduling. CoRR, abs/1007.3747, 2010.

[83] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant schedul-
ing. Theor. Comput. Sci., 130(1):17–47, 1994.

[84] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. Optimal
time-critical scheduling via resource augmentation. Algorithmica, 32(2):
163–200, 2002.

[85] Kirk Pruhs. Competitive online scheduling for server systems. SIGMET-
RICS Performance Evaluation Review, 34(4):52–58, 2007.

[86] Kirk Pruhs and Patchrawat Uthaisombut. A comparison of multicast pull
models. Algorithmica, 42(3-4):289–307, 2005.

[87] Kirk Pruhs, Jiri Sgall, and Eric Torng. Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, chapter Online Scheduling. 2004.

[88] Kirk Pruhs, Julien Robert, and Nicolas Schabanel. Minimizing maximum
flowtime of jobs with arbitrary parallelizability. In WAOA ’10: Proceedings
of the Eighth Workshop on Approximation and Online Algorithms, pages
237–248, 2010.

[89] Julien Robert and Nicolas Schabanel. Non-clairvoyant batch sets scheduling:
Fairness is fair enough. In ESA ’07: Proceedings of the Fifteenth Annual
European Symposium on Algorithms, pages 741–753, 2007.

[90] Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with
precedence constraints. In SODA ’08: Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 491–500,
2008.

[91] Abraham Silberschatz and Peter Galvin. Operating System Concepts, 4th
edition. Addison-Wesley, 1994.

[92] René Sitters. Competitive analysis of preemptive single-machine scheduling.
Oper. Res. Lett., 38(6):585–588, 2010.

[93] René A. Sitters. Approximation and online algorithms. chapter Minimizing
Average Flow Time on Unrelated Machines, pages 67–77. Springer-Verlag,
Berlin, Heidelberg, 2009. ISBN 978-3-540-93979-5.

[94] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of
list update and paging rules. Commun. ACM, 28(2):202–208, 1985.

113

[95] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[96] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press,
Upper Saddle River, NJ, USA, 2007. ISBN 9780136006633.

[97] Eric Torng and Jason McCullough. SRPT optimally utilizes faster machines
to minimize flow time. ACM Trans. Algorithms, 5:1:1–1:25, December
2008.

[98] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

[99] J. Weiss. Optimal control of batch service queues with nonlinear waiting
costs. Modeling and Simulation, 10:305–309, 1979.

[100] J. Weiss and S. Pliska. Optimal policies for batch service queueing systems.
Opsearch, 19(1):12–22, 1982.

[101] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[102] J. Wong. Broadcast delivery. Proceedings of the IEEE, 76(12):1566–1577,
1988.

[103] Feifeng Zheng, Stanley P. Y. Fung, Wun-Tat Chan, Francis Y. L. Chin,
Chung Keung Poon, and Prudence W. H. Wong. Improved on-line broadcast
scheduling with deadlines. In COCOON ’06: Proceedings of the Twelfth
Annual International Computing and Combinatorics Conference, pages
320–329. Springer, 2006.

114

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Notation and Terminology
	Objective Functions
	Analysis Framework
	Approximation Ratio
	Competitive Ratio
	Relaxed Worst Case Analysis: Resource Augmentation

	Basic Scheduling Algorithms
	Analysis Tools
	Local Competitiveness Argument
	Potential Functions for Online Scheduling
	Conversion between Fractional and Integral Objectives

	Problem Definition and Overview of Contributions
	Broadcast Scheduling
	Arbitrary Speed-up Curves (Scheduling Jobs of Different Parallelizability)
	Heterogeneous Machines

	Dissertation Outline

	Chapter 2 Broadcast Scheduling
	Introduction
	Our Results
	Related Work

	Formal Problem Statement and Notation
	Longest Wait First
	Preliminaries
	Analysis

	First Scalable Algorithm: Latest Arrival time with Waiting (LA-W)
	Algorithm
	Analysis

	Concluding Remarks

	Chapter 3 Non-clairvoyant Scheduling with Arbitrary Speedup Curves
	Introduction
	Our Results
	Related Results

	Formal Problem Statement and Notation
	Limitation of Latest Arrival Processor Sharing (LAPS) for the k-norms
	Non-clairvoyant Algorithm Weighted LAPS (WLAPS)
	Analysis
	Restricted Instances are Sufficient
	Potential Function
	Intuition Behind the Potential Function
	Main Analysis

	Concluding Remarks

	Chapter 4 Scheduling on Unrelated Machines
	Introduction
	Our Results
	Our Techniques

	Formal Problem Statement and Notation
	Algorithm and Potential Function
	Upperbound: Non-continuous Changes
	Upperbound: Continuous Changes
	Analysis Tools
	Proof of Lemma 25 and 26
	Analyzing ddt x,1(t)
	Analyzing ddt x,2(t)
	Analyzing ddt x,3(t)

	Upperbound: Final Analysis
	Lowerbound
	Concluding Remarks

	Chapter 5 Non-clairvoyant Scheduling on Related Machines
	Introduction
	Our Results
	Related Work

	Formal Problem Statement and Notation
	Latest Arrival Processor Sharing (LAPS) on a Heterogeneous Multiprocessor for Flow Plus Energy
	Simplifying Assumptions
	Potential Function Analysis

	Lower Bounds on Weighted Flow Time on Related Machines
	Lower Bound for Highest Density First (HDF)
	A Lower Bound for Weighted Shortest Elapsed Time First (WSETF)
	A Lower Bound for Weighted Latest Arrival Processor Sharing (WLAPS)
	Local Competitiveness Lower Bounds

	Concluding Remarks

	Chapter 6 Future Research Directions
	Bibliography

