
Scheduling in Bandwidth Constrained Tree Networks
[Extended Abstract]

Sungjin Im
University of California, Merced

Merced, CA 95343
sim3@ucmerced.edu

Benjamin Moseley
Washington University in St. Louis.

St. Louis, MO 63130
bmoseley@wustl.edu

ABSTRACT
In this paper we introduce a new network scheduling model.
Here jobs need to be sent via routers on a tree to machines to
be scheduled, and the communication is constrained by net-
work bandwidth. The scheduler coordinates network com-
munication and job machine scheduling. This type of sched-
uler is highly desirable in practice; yet few works have con-
sidered combing networking with job processing. We con-
sider the popular objective of total flow time in the online
setting. We give a (1+ε)-speed O(1

ε7
)-competitive algorithm

when all routers are identical and all machines are identical
for any fixed ε > 0. Then we go on to show a (2 + ε)-speed
O(1

ε7
)-competitive algorithm when the routers are identical

and the machines are unrelated. To show these results we
introduce an interesting combination of potential function
and dual fitting techniques as well as a reduction of general
tree scheduling to a special case of trees.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problem]: Se-
quencing and scheduling

General Terms
Algorithms, Theory

Keywords
Online scheduling, Flow time, Bandwidth, Tree network.

1. INTRODUCTION
Scheduling jobs online in a distributed computing environ-

ment is fundamental to a variety of applications in practice.
Due to the essential nature of multiple machines scheduling,
there has been a continual effort to design efficient schedul-
ing algorithms for such systems. See [33] for pointers to
previous work. In the most basic multiple machine environ-
ment there are n jobs which arrive over time online that are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3588-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2755573.2755576.

to be scheduled on a set of identical machines. In the on-
line setting, the scheduler becomes aware of a job only when
it arrives. Most systems require online schedulers because
they typically do not know of a job until the client submits
the job to the system. In the identical machines setting each
job Jj requires processing time pj and the processing time
of a job is the same on any machine. The identical machine
model is the most basic multiple machine model.

The identical machine setting, although widely studied
and an important model, does not capture a variety of sys-
tems seen today in practice. Indeed, machines can have dif-
ferent processor speeds, amounts of memory, I/O devices,
and even consume different amounts of energy. Due to
this, a variety of generalized models have been addressed
in scheduling theory. One such model is the related ma-
chine model. In the related machines setting each machine i
runs at some fixed speed si and the processing requirement
of a job Jj on a machine is pj/si. This captures the case
where machines have different processor speeds. However,
some job’s processing time may not only depend on proces-
sor speeds. Indeed, a job has multiple resources it requires
(e.g. I/O devices, memory). Due to the multiple dimensions
of resources a job requires, the unrelated machine model has
been considered. In the unrelated machine model, a job Jj ’s
processing requirement on machine i is pj,i. The processing
time of a job can be arbitrarily different between machines.

There has been an extensive study of scheduling jobs
online in these machine environments. For example, see
[3,6,12–14,18,19,30]. It is fair to say that it has been chal-
lenging to develop algorithms with strong guarantees for the
more general models. This line of work has had two goals.
One is to understand the online complexity of each of these
basic scheduling models and to find good algorithms which
can be used in practice.

Unfortunately, these multiple machine models have made
the unrealistic assumption that a job can be immediately
sent to any machine and start being processed instanta-
neously on the machine. This is generally not the case in
practice. Indeed, jobs typically require access to data be-
fore they can be started on a machine. The job requires its
data to be moved from its current location to the machine
that schedules the job. This can be a main performance
bottleneck in practice because off-site memory accesses take
several orders of magnitude more time than local memory
accesses and computation. For a scheduler to be useful
in practice, it would need to incorporate this time into its
scheduling decisions. Indeed, many distributed systems to-
day are used for large data analysis and, when data sets are

Data Center

Machines
Routers

Figure 1: Tree network

large, the main time constraint for job processing is moving
the massive data between the machines. For instance this is
the case in MapReduce and Hadoop environments [27, 31].
Since this is a main bottleneck in systems, algorithms devel-
oped for multiple machine scheduling may not be used since
they do not take this constraint into consideration.

This type of scheduling constraint has been referred to
as a communication or networking constraint. Addressing
these scheduling issues is not new. Besides a large amount
of work being done in practical scheduling literature, there
has been some theoretical work done offline with the goal of
minimizing makespan [8, 9, 16, 17, 20, 21]. Additionally, over
two decades ago Phillps, Stein and Wein [32] introduced
an interesting model of network scheduling and argued its
importance in practice. In their model, before a job can be
started on a machine, the job and its data need to be moved
to the machine. Here there is a graph that induces the time a
job requires to be moved to a machine. When moving a job’s
data through the network, jobs do not conflict with each
other. That is, jobs can freely share links in the network. In
their model, this essentially results in jobs having different
‘arrival’ times depending on the machine they are scheduled
on.

Since the work of [32], even in the offline setting, there has
been essentially no work which takes networking constraints
into consideration for flow objectives such as total flow time.
Further there has been essentially no previous work in the
online setting. No model has been introduced where there
is congestion constraints in the network. That is, if a job’s
data is being moved through a network then a scheduler will
need to prioritize which job’s data is moved across a partic-
ular link or router at a moment in time. Perhaps the reason
previous work has not considered networking constraints is
because scheduling on multiple machines alone is quite chal-
lenging in itself and it is not clear that positive results can
be shown for such settings or even what an algorithm might
look like.

Tree Network Model: In this paper we consider a
network scheduling problem with congestion constraints on
tree networks. Trees are among the most popular network
topologies [1, 15]. This is because trees scale well to large
networks [2, 23]. In this problem we are given a rooted tree
T . It is assumed that the root node of the tree is the job dis-
tribution center. The leaves of the tree are machines which
perform the job processing. A job must be assigned to a leaf

for processing, which is decided by the scheduler. Each of
the interior nodes of the tree network is a router. A job’s
data need to be routed from the root to the leaf machine
it is to be scheduled on. A job Jj ’s data has some size pj .
If all of the nodes of the tree are identical, then Jj requires
pj time steps on a link to send its data to another router.
Each link can only move one job at each time and cannot
send a job until all of a job’s data has been received from
the previous router. Generally, the different nodes of the
tree could run at different speeds to capture different router
speeds. Finally, once a job’s data has been moved to a leaf
node, the job can be processed at this node. The machines
at the leaves could be modeled using identical, related or
unrelated machines. See Figure 1. This model captures the
widely used tree network topologies seen in practice. Fur-
ther, it can be seen that this model captures bus topologies
where offsite data is routed along a bus to machines the job
is to be scheduled on. A natural generalization of our models
is to allow jobs to be created at different machines (leaves)
in the tree. This extension seems challenging and we leave
this to future work.

Results: In this paper we initiate the study of scheduling
jobs online in the tree network model. One of the main con-
tributions of this paper is initiating the study of schedulers
that coordinate scheduling on a network and on machines
online. The objective function we consider is minimizing
total (average) flow time. The flow time of a job is the
amount of time the job waits in the system until it is sat-
isfied. By minimizing the total flow time, the scheduler fo-
cuses on optimizing the average quality of service. This is
perhaps the most popular objective considered in scheduling
theory. When scheduling jobs in multiple machine environ-
ments, it is known that strong lower bounds exist online and
offline even in the most basic special cases of the problems we
consider [30]. Due to this, we consider the popular resource
augmentation model introduced in [26] where our algorithm
is given extra speed over the adversary. We say an algorithm
is s-speed c-competitive if each router or machine can run
up to s times faster than that routers/machines in the ad-
versary’s schedule and the algorithm achieves a competitive
ratio of c. For all of our results, we consider non-migratory
algorithms that compare against a non-migratory adversary.
A non-migratory algorithm processes a job only on one ma-
chine (one leaf machine in our model). Our algorithms will
also be immediate-dispatch. An immediate-dispatch algo-
rithm decides the leaf that will process a job as soon as the
job arrives.

In the online setting we consider two cases. The first case
we consider we call the identical endpoint case. Here each
job Jj requires pj time units to be completed on any leaf
machine it is assigned to and further the job requires pj
time units to be sent to any router. We consider this model
because it essentially captures just the networking aspect of
the tree network model. Here we show the following theo-
rem.

Theorem 1 In the tree network model when all routers and
machines are identical there exists a (1 + ε)-speed O(1

ε7
)-

competitive algorithm for any ε > 0.

It is known that any algorithm is ω(1)-competitive even
when scheduling on identical machines [30], a special case of

the identical endpoint model, thus this is essentially the best
positive result one can hope for in this setting using worst
case analysis. We then go on to consider a more general
setting, which we call the unrelated endpoints setting. Here
all the processing requirement on each of the routers for a
job is identical. However, the processing times of each job
on the leaf machines are unrelated (can be completely differ-
ent). Thus, this is a combination of a network with identical
routers and unrelated machines environment where process-
ing times of a job (on the leaves) are unrelated between
machines. Here we show the following.

Theorem 2 In the tree network model when all routers are
identical and machines are unrelated there exists a (2 + ε)-
speed O(1

ε7
)-competitive algorithm for any ε > 0.

Techniques: An overview of our algorithms and analy-
sis is given in Section 3.1 and here we just remark on some
techniques used. In the tree network setting, it is fairly
difficult to adapt existing scheduling techniques. This is be-
cause we have a layered scheduling problem where schedul-
ing decisions made on one router will later affect decisions
on routers further down the tree. Due to this, we will not
have the structure that is usually present when scheduling
on multiple machines, such as having a simple expression for
what a job’s flow time will be assuming no more jobs arrive.
This is usually very important to potential function or dual
fitting analysis. See [24] for a survey on potential functions
for scheduling analysis and [3,22] for recent developments on
dual fitting for scheduling. Due to this, we need to develop
new techniques. We introduce a new potential type analysis
to determine an approximation of a job’s waiting time at
any point in time. Then we consider reducing a general tree
to a simpler more structured tree online. We then combine
these two ideas in conjunction with an online primal-dual
analysis of our algorithm on the simpler tree. Then we show
that if our algorithm works well on the simpler tree, we can
generate online an algorithm which works well for any tree.

Related Work: Scheduling on multiple machine was
first considered on identical machines. For this setting
O(min{logP , log(n/m)})-competitive algorithm is known
for minimizing total flow time and there is a matching lower
bound online [30]. Here P is the ratio of the maximum to
minimum processing time of a job. Assuming resource aug-
mentation a series of works [3, 12–14, 18] has culminated in
a (1 + ε)-speed O(1/ε)-competitive algorithm for unrelated
machines.

As stated, our model is related to packet routing. Most
previous work on packet routing has focused on two models.
The first model studies stability of a network where the goal
is to keep the number of packets in the system bounded when
the system runs for an arbitrary long period of time. See [4,
10,11] for example and pointers to relevant work. The other
model is where routers have a fixed buffer size at each of the
routers and packets can be dropped when the buffer becomes
full. The goal is to maximize the total throughput, i.e. the
number of packets sent [7, 28, 34]. These works differ from
ours because we requires all job (packets) to be completely
processed and we consider the flow time objective over all the
packets. One recent work [5] has considered minimizing total
flow time when routing in a line network. Here for total flow

time, no positive results were shown, but it was shown that
no algorithm can be O(1)-competitive, giving evidence that
the problem is algorithmically challenging. For minimizing
the maximum flow time of packets on a line they give a
(1+ε)-speed O(1)-competitive algorithm for any fixed ε > 0.
In the offline setting, packet routing was studied when each
packet needs to be routed along its own path, but the goal
was to route all packets as early as possible. For example,
see the seminal work in [29].

2. PRELIMINARIES
In this section we introduce notation and the problem

formally. We will be given a rooted tree T on m nodes and
n jobs arrive over time. A job Ji arrives at time ri. We
will assume without loss of generality that all jobs arrive at
distinct times. Each of these jobs needs to be processed by
some leaf machine/node in T . The algorithm decides the
leaf assignment. To be processed on a leaf machine, the
job must have its data transferred from the root to the leaf
machine before it can start being processed. A job’s data
must be transferred through links in the network. No more
than one job can use a fixed edge/link at any moment in
time. For simplicity of explanation, we can view this as a
job requiring processing at each node in the tree on the path
to the leaf it is assigned to. Thus, we no longer discuss jobs
on edges. Further, a job cannot be processed by any node
until it is processed by its parent and no job needs to be
processed by the root node and no leaf is adjacent to the
root. We assume congestion is at the links, thus a job need
not be processed by the root node in this view. Note that
the problem where congestion happens at the routers can be
captured by our setting as well.

One may ask why we consider a model where a job can-
not be processed on a router until it is fully processed by the
parent router. The main reason this is presented in the pa-
per is that this is a more challenging setting to analyze. The
challenge is because extra congestion can happen at internal
routers in the network and this effect is effectively negated
when the jobs can be divided into unit sized packets when
routing. In fact, all the results in this paper can be extended
in a fairly straightforward manner to the case where jobs can
be sent in small pieces on the routers to obtain similar results
in both the identical and unrelated endpoint settings. The
details of this are omitted and will appear in a full version
of this paper. Also, we consider this case because it cap-
tures packet routing, one application of our model. In many
packet routing settings packets must be sent completely to
a router before it can be forwarded. To see how this fits in
our setting, you can imagine packets of data originating at a
data collection site that must be transferred to machines to
be processed. We note that even in the simplest setting for
packet forwarding of unit time packets there are no known
results for flow time on tree networks.

We will consider two models for how the job can be pro-
cessed in the tree. In the identical node setting, a job re-
quires pj units of processing on every node. In the unre-
lated endpoint setting, a job requires pj units of processing
on nodes which are not leaf nodes. On a leaf node v, a
job requires pj,v units of processing which can be arbitrarily
different depending on the leaf.

We will be considering algorithms in the resource augmen-
tation setting, where the algorithm is given extra resources
over the adversary. We will give our nodes extra speed over

the adversary. In some case, we may only augment the speed
of some nodes in the tree for technical reasons. We will as-
sume that a job’s processing time is a power of (1 + ε)k for
some integer k. This can be assumed while only loosing a
(1+ε) extra factor in speed on each of the nodes. For jobs of
size (1 + ε)i on a node v, we say that these jobs are in class
i on v. Our algorithm will utilize the Shortest-Job-First
(SJF) algorithm. This algorithm on a node v just sched-
ules the job with the shortest original processing time on v
amongst the jobs available to process on v. In the case of
ties, the algorithm processes the oldest job in the class.

We will require a fair bit of notation in the paper. For
any job Ji and node v, pi,v denotes the processing time of
Ji on v. This may be simplified to pi in the identical node
case. The set L and R are the set of leaf nodes and nodes
adjacent to the root, respectively. For any non-root node v,
let R(v) be the node adjacent to the root such that v is in
the subtree rooted at R(v). Also let L(v) be the set of leaf
nodes in the subtree rooted at v. The value of dv is the total
number of nodes on the path from v to R(v) including v and
R(v). Let ρ(v) be the parent of v and c(v) be the children
of v. For a node v ∈ L and a job Jj let Pv,j be the sum of
the processing time of job Jj on all nodes from the root to
v. Note this is a lower bound on job Jj ’s flow time if it is
assigned to leaf v.

For a given algorithm A, let QAv (t) be the set of jobs that
have arrived by time t, have not completed processing on v,
and have v in the path from the root to the leaf node they are
assigned to in A. If A uses SJF on v, let SAv,i(t) denote the set

of jobs in QAv (t) which have higher priority than Ji on v and
it also includes Ji. That is, the set of jobs that have smaller
processing time than pi, or that have processing time pi and
have arrived earlier than ri. Let dAj (t) be the remaining
number of nodes Jj still requires processing time on. Let
dAv,j(t), for a node v that Jj still needs to be processed on,
be the total number of nodes Jj needs to be processed on to
reach v. Finally pAj,v(t) is the remaining processing time Jj
requires on node v in A at time t.

The goal of the scheduler is to minimize the total flow
time of the schedule. Say an algorithm A completes job Jj
at time CAj (it is completely processed on a leaf node). The

goal is to minimize
∑
Jj

(CAj − rj). This is equivalent to∫∞
t=0

∑
Jj∈

⋃
v∈L Q

A
v (t) 1dt. However, analyzing this objective

seems challenging. Due to this, we will consider a variant of
fractional flow time. Fractional flow time is a standard tech-
nique used in scheduling theory. See [13] for an overview. In
our variant, say that job Jj is assigned to leaf node vj ∈ L.

The goal is to minimize
∫∞
t=0

∑
Jj∈

⋃
v∈L Q

A
v (t)

pAj,vj
(t)

pj,vj
dt. Note

that this only depends on how must a job has been processed
on its leaf node(s). In any valid schedule each job Jj must
be scheduled on a unique leaf node vj ; however, in a linear
programming relaxation the job could possibly be scheduled
on multiple leaf nodes. The following theorem follows im-
mediately from known techniques. For instance, a simple
extension of the proof in [25] gives the following theorem.

Theorem 3 If an (online) algorithm A is s-speed c-
competitive for fractional flow time on trees then there exists
a (1+ε)s-speed O(c/ε)-competitive (online) algorithm A′ for
minimizing total flow time on trees for any constant ε > 0.

Further, if SJF is used by A on the leaves of T then one can
use A as A′.

Now we introduce the LP and the dual below which we
will use throughout the paper. Let xv,j,t denote the amount
which job Jj is scheduled on node v at time t. Let ηj,v
denote the total processing time job Jj requires on all nodes
on the path from the root to node v. Note that for valid
schedule x where each job Jj is assigned to a unique leaf

node vj , each of the two quantities,
∑
v∈L

∑
t xv,j,t ·

t−rj
pj,v

and
∑
v∈L

∑
t xv,j,t · ηj,v/pj,v is a lower bound to job Jj ’s

flow time. The first quantity is a valid lower bound since∑
t

xvi,j,t
pj,v

= 1, and xv,j,t = 0 for all v 6= vj , and (t − rj)
is at most Jj ’s flow time while Jj is being processed. The
second quantity is a valid lower bound that incorporates the
total processing time, Pj,vj , Jj requires on the path to vj
if Jj is assigned to node vj . Hence the sum of these two
quantities is also a valid lower bound within a factor of two.
In the objective, we also count the flow time of a job when
it is finished on a root node. In general, it is sufficient to
count when a job is finished on a leaf, but we will also count
the root because it only increases the optimal solution by a
constant factor. We use these lower bounds on the flow time
of each job in the objective of the LP for technical reasons
that will be useful in the dual fitting analysis. The first
constraint (1) states node processes more than one job in
a time step. The second constraint (2) states thata job is
fully processed on the leaf nodes. Finally the last constraint
(3) says that the amount a job is processed on the children
of a node is at most that of the fraction it is processed on
the node. Note that in an integral solution, a job cannot be
processed on a child of a node until it is processed on the
node.

min

n∑
j∈[n]

(∑
v∈L∪R

∑
t

xv,j,t
(t− rj
pj,v

)
+
∑
v∈L

xv,j,tηj,v/pj,v

)
(LP− Primal)

s.t.

n∑
j=1

xv,j,t ≤ 1 ∀v ∈ [m], t (1)

∑
v∈L

∑
t≥rj

xv,j,t
pj,v

≥ 1 ∀j ∈ [n] (2)

∑
rj≤t′≤t

xv,j,t′

pj,v
≥

∑
rj≤t′≤t

∑
v′∈c(v)

xv′,j,t′

pj,v
∀v ∈ [m], j ∈ [n], t

(3)

xv,j,t ≥ 0 ∀v ∈ [m], j ∈ [n], t ≥ rj

max

n∑
j=1

βj −
m∑
i=1

∑
t

αv,t (LP− Dual)

s.t. − αv,t +
βj
pj,v
−
∑
t′≥t

γρ(v),j,t′

pj,v
≤ t− rj

pj,v
+ ηj,v/pj,v

∀v ∈ L, j ∈ [m], t ≥ rj (4)

−αv,t +
∑
t′≥t

γv,j,t′

pj,v
≤ t− rj

pj,v

∀v ∈ R, j ∈ [m], t ≥ rj (5)

−αv,t +
∑
t′≥t

γv,j,t′

pj,v
−
∑
t′≥t

γρ(v),j,t′

pj,v
≤ 0

∀v /∈ L ∪R, j ∈ [n], t ≥ rj (6)

αv,t ≥ 0 ∀v ∈ [m], t βj ≥ 0 ∀j ∈ [n]

γv,i,t ≥ 0 ∀v ∈ [m], j ∈ [n], t ≥ rj

3. ONLINE SCHEDULING ON TREES
In this section, we show a (1+ε)-speed O(1

ε6
)-competitive

algorithm for the identical node case and a (2 + ε)-speed
O(1

ε6
)-competitive algorithm for the unrelated endpoint

case. Both of the results will use fractional flow time as
defined in Section 2. Using Theorem 3 these results will
imply Theorems 1 and 2.

3.1 Overview of the Algorithm and Analysis
In this section we give an overview of the algorithm and

analysis. Say that we are given a tree T to schedule our
jobs on. Our algorithm will schedule using SJF on each of
the nodes of T amongst jobs which are available to schedule
on that node. To us, it is somewhat surprising that such
a simple greedy scheduling policy can be used on all of the
nodes of the tree without considering jobs on other nodes or
a job’s leaf assignment. With this policy in place, the only
other decision made by the algorithm is assigning jobs to
leaves of the tree.

Ideally, one would like to keep the policy simple by say
assigning a job to its closest leaf. Unfortunately, this will not
be suitable since it does not consider the congestion in the
tree. Another reasonable scheduling policy to use would be
to assign the job to the leaf such that it causes the minimum
increase in the objective function (assuming no more jobs
arrive). Here one takes into consideration how long the new
job will take to complete and how much the new job will
delay already assigned jobs. Unfortunately, making such an
assignment is not trivial. The main challenge comes from
being unable to determine an exact algebraic expression for
the cost of assigning a job to a leaf.

To circumvent this hurdle, we will prove using a potential
analysis (Lemma 3) an upper bound on how long a job will
wait to be completed if it is assigned to a fixed leaf node
assuming no more jobs arrive. Using this bound, we would
like to assign a job to the leaf such that it minimizes the
increase in cost. Unfortunately, there is another hurdle. In
particular, it seems challenging to analyze the algorithm on
general trees. The difficulty arises due to jobs that conflict
on a node, but are assigned to different leaves. These jobs
maybe cause congestion a particular node, but split in dif-
ferent directions in the tree. For such jobs, it is challenging
to determine whether or not they will actually conflict at a
node or if one will be processed quickly reaching a node not
shared with the other job. This results in the two jobs never
interacting with each other. This comes crucially into play
in the dual fitting analysis.

To overcome this second hurdle, we simplify the problem.
From T we construct a new tree T ′, which we call a broom-
stick. Our analysis begins by showing that the objective of
the optimal scheduler on the broomstick is not much larger
than that for T . Then we analyze the above algorithm on
trees which are broomsticks where we assign a job to the leaf
that minimizes the increase in the algorithm’s cost. By the
structure of the broomstick, jobs will share a common path
until they reach their leaf node if the are both processed

by the same child of the root. This property greatly helps
in setting the dual variables when determining which jobs
conflict with each other.

Finally, once we have an algorithm which works well on
broomsticks, we will show an algorithm for general trees.
Recall that our only remaining task was to determine the leaf
assignment policy for jobs. Our algorithm will construct the
broomstick from T and simulate what an algorithm would
have done on the broomstick. Then the algorithm will assign
a job to a leaf node in T which corresponds to a leaf node on
the broomstick. Finally, by construction of the broomstick,
we will be able to show that the algorithm on T will have an
objective smaller than that of the algorithm on the broom-
stick. Since we know that the broomstick algorithm has
strong guarantees and that the optimal solution on T is sim-
ilar to the optimal solution on the broomstick, we will have
our final result. We believe that the dual fitting techniques
we use for the network setting and the ideas we introduce
in the reduction of the tree to broomsticks will prove useful
in understanding the communication constrained scheduling
problems on other network topologies.

3.2 Bounding the Waiting Time on Interior
Nodes for SJF

The following lemma will prove useful throughout the
analysis. The lemma essentially states that no job will be
delayed by more than a constant factor multiplied by the
processing it requires once it leaves the root node until it
leaves its last identical node. This is a key structural prop-
erty which only holds if the routers are identical; leaf nodes
need not be identical. This lemma will allow us to use SJF
on the nodes of the tree. It will also be useful when reduc-
ing general trees to broomstick trees and in bounding the
algorithm’s objective. The remainder of this section will be
devoted to proving the lemma. One thing to note is that
although we can bound the time on interior nodes, there is
congestion at the root nodes and the endpoints if they are
unrelated. Thus, we cannot simply say assign jobs to the
closest leaf.

For the remainder of the section, fix any tree T in the
unrelated endpoint or identical settings, a time t and any
algorithm A which uses SJF amongst jobs assigned to each
node. The assignment policy A uses to assign jobs to leaves
can be arbitrary. Further, say that A is given s resource
augmentation on all nodes except those adjacent to the root
where s ≥ 1 + ε for some constant ε – later we will scale
up the speed all nodes get uniformly. Note that we are not
speeding up the nodes adjacent to the root. In the identical
setting, we call all nodes of T identical. In the unrelated
endpoint setting, we call the routers identical nodes and the
leafs unrelated nodes. The goal of this section is to prove
the following lemma.

Lemma 1 Say that Jj is assigned to leaf node v ∈ L. The
total time it takes for Jj to be completed on the last identical
node on its path is at most 6

ε2
pjdv after leaving node R(v).

First we bound the volume of work which remains for jobs
which are available to schedule on some identical node that
is not adjacent to the root.

Lemma 2 Consider any time t, job Jj and any identi-
cal node v which is not adjacent to the root such that Jj

still needs to use v at time t. Then it is the case that∑
Ji∈SAv,j(t)\QAρ(v)(t)

pAi,v(t) ≤ 2
ε
pj.

Proof. The quantity
∑
Ji∈SAv,j(t)\QAρ(v)(t)

pAi,v(t) counts

the remaining volume of work A has for jobs which have
higher priority than Jj on v which are currently available to
schedule on v. For the sake of contradiction, say the lemma
is false at some time t. Let t1 be the earliest time before
time t such that node v is always processing a job that has
higher priority than Jj during (t1, t]. Knowing that at time
t1 A is not processing a job of higher priority than Jj on v
it must be the case that

∑
Ji∈SAv,j(t1)\QAρ(v)(t1)

pAi,v(t1) = 0.

Now consider the total volume of work of jobs with higher
priority than Jj which can reach v during (t1, t]. All of
the work that arrives to v must come from jobs which pass
through ρ(v). Say that job Jj is of class k (e.g. pj = (1 +
ε)k). There can be at most one job of each class partially
processed on ρ(v) at any point in time by definition of SJF.
Besides partially processed jobs on ρ(v) at time t1, every job
which reaches v during (t1, t] requires its full processing to
be done on ρ(v) during (t1, t]. This implies that the total
volume of work which can reach v from ρ(v) during (t1, t]
which has higher priority than Jj is at most s(t− t1) + 2

ε
pj

because ρ(v) has speed at most s. Now we know that v is
always busy doing work on jobs which have higher priority
than Jj during (t1, t] by definition of t1 and A. Thus, v
does s(t − t1) volume of work on these jobs during (t1, t].
However, this implies that

∑
Ji∈SAv,j(t)\QAρ(v)(t)

pAi,v(t) ≤ 2
ε
pj ,

a contradiction.

Recall that dAv,i(t) denotes the number of nodes on the
path from where Ji is currently available to schedule to a
node v. Let PAi (t) be the remaining nodes which job Ji
needs to still be processed on at time t which are identical
nodes (do not include an unrelated node). We now use a
potential argument to give our first upper bound of how long
it will take for a job to complete processing, after passing
the first node, on all remaining identical nodes.

Lemma 3 Say A is given speed s on all nodes except those
adjacent to the root for any s ≥ 1+ε. Consider job Jj which
is available to schedule at time t on a node not adjacent
to the root and which is not an unrelated node. Then the
remaining time until either Jj is completed in the identical
case, or reaches an unrelated node in the unrelated endpoint
case, is a most the following assuming no jobs arrive after
time t,

Φj(t) =
1

s
max

v∈PAj (t)

∑

Ji∈SAv,j(t)

pAi,v(t) +
2

ε
(dAj (t)− dAv,j(t))pj

Proof. First we bound the continuous change in

Φj(t). Let v∗ ∈ Pj(t) be the node which maximizes∑
pi∈SAv,j(t)

pAi,v(t) + 2
ε
(dAj (t)−dAv,j(t))pj . We begin by prov-

ing that there must exist a job available to schedule on v∗

which is in SAv∗,j(t). Indeed, say that this is not the case
for the sake of contradiction. First, clearly v∗ is not equal
to the node job Jj is currently available on, because in this
case Jj is in SAv∗,j(t) and we get a contradiction. Now, it

must be the case that SAv∗,j(t) ⊆ SAρ(v∗),j(t) because no job

in SAv∗,j(t) is available to schedule. Further, there can be at

most one job of each class partially processed on node ρ(v)
since SJF is used on node ρ(v). Thus, it must be the case
that

∑
pi∈SAv∗,j(t)

pAi,v∗(t) ≤
∑
pi∈SAρ(v∗),j(t)

pAi,ρ(v∗)(t) + 2
ε
pj .

However, this contradicts the definition of v∗ since dAv∗,j(t) =

dAρ(v∗),j(t) + 1. Now we know that there is a job in SAv∗,j(t)
which is available to schedule at time t on v∗. This im-
plies that a job in SAv∗,j(t) is worked on at time t on v∗ and∑
pi∈SAv∗,j(t)

pAi,v∗(t) must decrease at a rate of s. Thus Φj(t)

decreases at a rate of one.
Now we bound the discontinuous change in Φj(t). This

occurs by job Jj moving to a new node at some time t.
Say that Jj is on node vc and moves to node v′ at time
t. Then PAj (t) becomes PAj (t) \ {vc} and dAj (t) decreases by

one. Let v∗ be the node that maximizes
∑
pi∈SAv,j(t)

pAi,v(t)+

2
ε
(dAj (t) − dAv,j(t))pj just before Jj moves to v′. If vc 6= v∗

then it is easy to see that Φj(t) does not increase after Jj
moves. Consider when v∗ = vc. In this case, any job in
SAv′,j(t) that is not available to schedule at time t is also not
available to schedule on v∗ at time t since v∗ was process-
ing job Jj at t. These jobs contributed the same amount
to
∑
pi∈SAv∗,j(t)

pAi,v∗(t) and
∑
pi∈SAv′,j(t)

pAi,v′(t). Any other

job in SAv′,j(t) that is available to schedule on v′ at t can

contribute at most 2
ε
pj to

∑
pi∈SAv′,j(t)

pAi,v′(t) by Lemma 2.

Thus,
∑
pi∈SAv∗,j(t)

pAi,v∗(t) + 2
ε
pj ≤

∑
pi∈SAv′,j(t)

pAi,v′(t) af-

ter job Jj moves. Since, dAj (t) decreases by one and dAv′,j(t)

decreases by one it is the case that 2
ε
(dAj (t)− dAv∗,j(t))pj be-

fore Jj moves is 2
ε
pj more than 2

ε
(dAj (t) − dAv′,j(t))pj after

Jj moves. Thus, Φj(t) cannot increase after Jj moves since
the term for v′ after Jj moves is no more than the term for
v∗ before Jj moves.

Thus, knowing that Φj(t) will never increase so long as
jobs do not arrive and the expression decreases at a rate of
one at each continuous time, it must be the case that Φj(t)
is an upper bound on the remaining time job Jj waits to be
satisfied so long as no jobs arrive after time t.

Finally we are ready to show Lemma 1.

Proof of [Lemma 1] Let r′j be the first time when Jj is
available to schedule on a node v′ /∈ R. Let ve be the last
identical node on Jj ’s path. Let C′j denote the time that
job Jj finished on ve. Consider Φj in Lemma 3. What
we see is that Φj(r

′
j) ≤ 4

sε
dvepj by Lemma 2. Further,

we see that each job Ji can contribute at most 1
s
pi to the

summation in Φj(t) at any time t by definition of Φj(t).
For a time t ∈ (r′j , C

′
j] the only jobs which can contribute to

Φj(t) which were not contributing to Φj(r
′
j) must come from

R(v′). Now, we know that at time r′j there can be at most
one job partially processed on R(v′) for each class. All of
the above implies that the total increase which can happen
to Φj during (r′j , C

′
j] is 2

sε
pj + 1

s
(C′j − r′j) because R(v′) is

assumed to have one speed.
Now we also know that at any point in time t ∈ (r′j , C

′
j]

it is the case that Φ(t) is non-negative and Φ(t) decreases
at a rate of one. This implies that, (C′j − r′j) ≤ Φj(r

′
j) +

2
sε
pj + 1

s
(C′j−r′j) ≤ 4

sε
dvepj + 2

sε
pj + 1

s
(C′j−r′j). The second

inequality is due to the fact that Φj(r
′
j) ≤ 4

sε
dvepj . Since

s ≥ 1 + ε, we derive C′j − r′j ≤ 6
ε2
dvepj . 2

3.3 Reduction to Broomsticks3.3 Reduction to Broomsticks

v1 v2 v3

v4 v5 v6

v4

v1 v2v3

v5 v6

T T ′: broomstick

Figure 2: Tree reduction

In this section we show our reduction to broomsticks.
Consider any rooted tree T in either the unrelated endpoint
or identical settings and let r be the root vertex. From this
tree we create a new tree T ′. First add a root to T ′. For
every node adjacent to the root in T there is an identical
node in T ′ adjacent to the root. Let v0 denote some node
which is a child of the root in T ′. Let ` denote the length of
the longest path from v0 to a leaf in the subtree rooted at
v0 in T . We create a path P of length ` + 1 from v0 in T ′

consisting of nodes v0, v1, . . . , v`. All node on this path are
identical nodes. Now consider any leaf v which is of distance
`′ from v0 in T and v is in the subtree rooted at v0. For such
a node we create a node adjacent to v`′+1 in P . Note the
distance in T ′ of v to v0 is `′ + 2 now, thus it has been in-
creased by 2. In the identical setting this node is also an
identical node, in the unrelated setting the processing time
of a job on this node is the same as the processing time of
a job on v in T . This is the reduction. See Figure 2 for
a visual representation of the reduction. This theorem will
let us focus on broomsticks in the dual fitting. The proof is
deferred to the full version of this paper.

Theorem 4 Let T be any tree in either the identical or un-
related endpoint settings and T ′ be it’s corresponding broom-
stick. Fix any job sequence and let OPTT denote the value
of the optimal solution on T . Let OPTT ′ denote the value
of the optimal solution on T ′ where all nodes, besides those
connected to the root, are given (1 + ε)2 resource augmenta-
tion and nodes adjacent to the root are given (1+ε) resource
augmentation for some fixed constant ε > 0. It is the case
that OPTT ′ ≤ O(1

ε3
)OPTT .

3.4 Assignment Policy of the Algorithm on a
Broomstick

In this section we define the algorithms which we will use
in the case where the tree is a broomstick. Later in Section
3.7 we will show how this algorithm can be used to generate
an algorithm for general trees. In our algorithm A all of the
nodes of the tree will use SJF amongst the jobs which are
available to schedule on each of the nodes. Thus, it only
remains to define the machine assignment policy when a job
arrives. Before we define this, first we will show some bounds
on how long it will take a job to be completed assuming no
more jobs arrive. This will then be used to greedily decide
which machine to assign a job to.

Lemma 4 Consider any algorithm A which uses SJF on
each of the identical nodes of a tree T that is a broomstick.
Further say that the nodes adjacent to the root are given
resource augmentation s and the nodes not adjacent to the
root are given resource augmentation at least (1+ε)s for any
s ≥ 1 and ε > 0. Let v ∈ L be the leaf node Jj is assigned to.
Then after time t, assuming no more jobs arrive, Jj waits
at most 1

s

∑
Ji∈SAR(v),j

(t) p
A
i,R(v)(t) while available on R(v),

6
ε2
pjdv time steps while available on identical nodes not in

R, and 1
s(1+ε)

∑
Ji∈SAv,j(t)

pAi,v(t) while available to schedule
on v.

Proof. If Jj is available on R(v) or v, then the term∑
Ji∈SAR(v)

(t) p
A
i,R(v)(t) or

∑
Ji∈SAv (t) p

A
i,v(t) decrease at a rate

of at least s or (1 + ε)s, respectively. This is because the
node would either process job Jj or a job of higher priority
than job Jj . These terms can never increase because no job
arrives. Thus, this bounds the time that job Jj can wait on
while available on R(v) or v. Finally, we know that Jj can
wait at most 6

ε2
pjdv time units in identical nodes which are

not in R by Lemma 1

Now we are ready to define the assignment policy of our
algorithm. Note that we simply need to specify the leaf node
that a job should be processed on when a job arrives. Con-
sider a job Ji which arrives at time t = rj . The machine
we assign a job to is the machine which minimizes the up-
per bound in the increase in the objective as predicted in
Lemma 4. In the identical machines case we assign job Ji
to the leaf node v ∈ L which minimizes the following.∑
Ji∈SAR(v),j

(t)

pAi,R(v)(t) +
6

ε2
dvpj + pj

∑
Ji∈QAR(v)

(t),pi>pj

1

Now consider the case where endpoints are unrelated. In this
case, we assign the jot to the node v such that the following
is minimized. ∑

Ji∈SAR(v),j
(t)

pAi,R(v)(t) + pj
∑

Ji∈QAR(v)
(t),pi>pj

1

+
∑

Ji∈SAv,j(t)

pAi,v(t) + pj,v
∑

Ji∈QAv (t),pi,v>pj,v

pAi,v(t)

pi,v
+

6

ε2
dvpj

3.5 Identical Endpoints on Broomsticks
In this section we show that our algorithm for the case of

identical endpoints on a tree which is a broomstick is O(1
ε3

)
competitive for fractional flow time when the algorithm is
given (1 + ε) resource augmentation on nodes adjacent to
the root and (1 + ε)2 resource augmentation on the other
nodes. To do this we consider a dual fitting argument. Let
F (j, v) =

∑
Ji∈SAR(v),j

(t) p
A
i,R(v)(t)+

∑
Ji∈QAR(v)

(t),pi>pj
pj as-

suming t = rj and v ∈ L. Note that we assign Jj to leaf node
argminv∈L{F (j, v) + 6

ε2
dvpj}. Let βj = F (j, v) + 6

ε2
dvpj as-

suming Jj is assigned to v. Let γv,j,t = 0 for all v, j and t 6=
∞. Let γv,j,∞ = F (j, v). Finally, set αv,t = 0 for all v not

adjacent to the root and αv,t =
∑
v′∈L(v)

∑
Ji∈QAv′ (t)

pA
i,v′ (t)

pi,v′

for v adjacent to the root.
The first thing to notice is that

∑
v,t αv,t is exactly the

factional cost for the algorithm. Also, by Lemma 4 we have
that

∑
j βj is more than (1 + ε) times the algorithm’s cost

(here we assume without loss of generality that 0 < ε ≤ 1/4

3.3 Reduction to Broomsticks

since this assumption can be easily removed by scaling ε
appropriately). Thus, the dual objective in this case is at
least ε times the algorithm’s cost. Now we will show that we
can divide all the dual variables by 10

ε2
to obtain a feasible

solution to the dual. This will give an O(1
ε3

)-competitive
algorithm. Our goal will be to show the following theorem
which follows by scaling ε appropriately.

Theorem 5 There is a (1+ε)-speed O(1/ε3)-competitive al-
gorithm for minimizing total fractional flow time on broom-
sticks with all identical nodes.

To show the theorem, we show that each of the constraints
are satisfied.

Lemma 5 Constraint (4) is satisfied.

Proof. Fix any job Jj , any node v ∈ L and any time t.
Our goal is to show that

ε2

10

−αv,t +
βj
pj
−
∑
t′≥t

γρ(v),j,t′

pj

− t− rj
pj

− ηj,v/pj ≤ 0

Say that job Jj is assigned to node v∗. In this case, we
have that βj = F (j, v∗) + 6

ε2
dv∗pj . We also know F (j, v) +

6
ε2
dvpj ≥ F (j, v∗) + 6

ε2
dv∗pj by definition of the algorithm.

Thus it suffices to show that,

ε2

10

−αv,t +
F (j, v) + 6

ε2
dvpj

pj
−
∑
t′≥t

γρ(v),j,t′

pj

− t− rj
pj

−ηj,v/pj ≤ 0,

which holds since
∑
t′>t γρ(v),j,t′ = F (j, ρ(v)) = F (j, v) and

ηj,v = dvpj .

The following lemma is the most challenging part of the
dual fitting proof.

Lemma 6 Constraint (5) is satisfied.

Proof. Fix any job Jj , any node v ∈ R and any time
t ≥ rj . Our goal is to show that,

ε2

10

−αv,t +
∑
t′≥t

γv,j,t′

pj

− t− rj
pj

≤ 0

We know that αv,t =
∑
v′∈L(v)

∑
Ji∈QAv′ (t)

pA
i,v′ (t)

pi,v′
. Also

we have that
∑
t′≥t γv,j,t′ = F (j, v) =

∑
Ji∈SAv,j(rj)

pAi,v(rj)+∑
Ji∈QAv (rj),pi>pj

pj . Let V be the total volume of work that

has been done on jobs in SAv,j(rj) between rj and time t on
v. Recall that since v is a node adjacent to the root, it is
given (1 + ε) resource augmentation and this implies that
V ≤ (1 + ε)(t − rj). Let V ′ be the total volume of jobs Ji
in QAv (rj) where pi > pj that has been processed on the
(only) child of v by time t. Let vc be the child of v. This
implies that pi,vc(rj) ≥ pj for Ji ∈ QAv (rj) where pi > pj .
Thus, it must be case that V ′ ≤ (1+ε)2(t−ri). Indeed, this
is the case because all jobs in QAv (rj) must not have been
scheduled on the node which is a child of v at all before
time rj (note there is only one child of v by definition of the
broomstick). Further, all of these jobs must be eventually

scheduled on this node to be completed and this node has
speed (1 + ε)2. We derive that,

ε2

10

(
− αv,t +

∑
t′≥t

γv,j,t′

pj

)
− t− rj

pj

=
ε2

10

(
−

∑
v′∈L(v)

∑
Ji∈QAv′ (t)

pAi,v′(t)

pi
+

∑
Ji∈SAv,j(rj)

pAi,v(rj) +
∑
Ji∈QAv (rj),pi>pj

pj

pj

)
− t− rj

pj

=
ε2

10

(
−

∑
v′∈L(v)

∑
Ji∈SAv′,j(t)

pAi,v′(t)

pi

−
∑

v′∈L(v)

∑
Ji∈QAv′ (t)\S

A
v′,j(t)

pAi,v′(t)

pi

+

∑
Ji∈SAv,j(rj)

pAi,v(rj) +
∑
Ji∈QAv (rj),pi>pj

pi

pj

)
− t− rj

pj

≤ ε2

10

(
V

pj
−

∑
v′∈L(v)

∑
Ji∈QAv′ (t)\S

A
v′,j(t)

pAi,v′(t)

pi

+

∑
Ji∈QAv (rj),pi>pj

pi

pj

)
− t− rj

pj
(7)

The last inequality holds since V =
∑
Ji∈SAv,j(rj)

pAi,v(rj) −∑
Ji∈SAv,j(rj)

pAi,v(t), and for any descendent v′ of v in T ,

pAi,v′(t) ≥ pAi,v(t). Before we continue to upper bound (7),
we show

V ′ =
∑

Ji∈QAv (rj),pi>pj

pAi,vc(rj)−
∑

Ji∈QAv (t),pi>pj

pAi,vc(t)

=
∑

Ji∈QAv (rj),pi>pj

pi −
∑

Ji∈QAv (t),pi>pj

pAi,vc(t)

≥
∑

Ji∈QAv (rj),pi>pj

pi −
∑

v′∈L(v)

∑
Ji∈QAv′ (t)\S

A
v′,j(t)

pAi,v′(t)

The first equality comes from the definition of V ′. The sec-
ond equality holds since job Ji is not completed on node v at
time rj implies that Ji has not been processed at all on its
unique child node vc. The last inequality follows from that
fact that for any descendant v′ of v in T , pAi,v′(t) ≥ pAi,vc(t)

(also note that QAv′(t) \ SAv′,j(t) = QAv (t), pi > pj since the
algorithm is SJF).

Hence we further derive that,

(7) =
ε2

10

(
V

pj
−

∑
v′∈L(v)

∑
Ji∈QAv′ (t)\S

A
v′,j(t)

pAi,v′(t)

pi

+
∑

Ji∈QAv (rj),pi>pj

pi
pj

)
− t− rj

pj

≤ ε2

10

(
V

pj
+
V ′

pj

)
− t− rj

pj

The last inequality follows since V ≤ (1 + ε)(t − rj) and
V ′ ≤ (1+ε)2(t−ri), and ε ≤ 1. This completes the proof.

Lemma 7 Constraint (6) is satisfied.

Proof. Fix any job Jj , any node v /∈ L∪R and any time
t. Our goal is to show that

ε2

10

−αv,t +
∑
t′≥t

γv,j,t′

pj
−
∑
t′≥t

γρ(v),j,t′

pj

 ≤ 0

We know that
∑
t′>t γρ(v),j,t′ = F (j, ρ(v)) and∑

t′>t γv,j,t′ = F (j, v). By definition of F this implies that∑
t′>t γρ(v),j,t′ =

∑
t′>t γv,j,t′ . Since αv,t is positive, the

lemma follows.

3.6 Unrelated Endpoints on Broomsticks
In this section we show that our algorithm for the case

of unrelated endpoints on a tree which is a broomstick is
O(1

ε3
)-competitive for fractional flow time when the algo-

rithm is given 2(1 + ε) resource augmentation on nodes
adjacent to the root and 2(1 + ε)2 resource augmentation
on the other nodes. To do this we consider a dual fit-
ting argument. Let F (j, v) =

∑
Ji∈SAR(v),j

(t) p
A
i,R(v)(t) +∑

Ji∈QAR(v)
(t),pi>pj

pj and F ′(j, v) =
∑
Ji∈SAv,j(t)

pAi,v(t) +

pj,v
∑
Ji∈QAv (t),pi>pj

pAi,v(t)

pi,v
assuming t = rj and v ∈ L. We

assign Jj to leaf node argminv∈L{F (j, v)+F ′(j, v)+ 6
ε2
pjdv}.

Let βj = F (j, v)+F ′(j, v)+ 6
ε2
dvpj assuming Jj is assigned to

v. Let γv,j,t = 0 for all v, j and t 6=∞. Let γv,j,∞ = F (j, v).
Finally, set αv,t = 0 for all v /∈ L which are not adjacent to

the root, αv,t =
∑
v′∈L(v)

∑
Ji∈QAv′ (t)

pA
j,v′ (t)

pj,v′
for v adjacent

to the root and αv,t =
∑
Ji∈QAv (t)

pAj,v(t)

pj,v
for v ∈ L.

The first thing to notice that that
∑
v,t αv,t is exactly

twice the factional cost for the algorithm. Also, by Lemma 4
we have that

∑
j βj is more than 2(1 + ε) times the algo-

rithm’s cost. Thus, the dual objective in this case is at
least 2ε times the algorithm’s cost (here we without loss of
generality assume that ε ≤ 1/8, and we can remove this as-
sumption easily by scaling ε). Now we will show that we
can divide all the dual variables by 20

ε2
to obtain a feasible

solution to the dual. This will give an O(1/ε3) competitive
algorithm. Our goal will be to show the following theorem
which follows by scaling ε appropriately. The formal proof
will appear in the full version of this paper.

Theorem 6 There is a (2+ε)-speed O(1/ε3)-competitive al-
gorithm for minimizing total fractional flow time on broom-
sticks with all identical routers and unrelated endpoints.

3.7 Algorithm for General Trees
In this section, we put all of the pieces together and give

an algorithm for general trees for fractional flow time. This
and the conversion from fractional flow time will complete
the proofs. Our algorithm works as follows. Let T be any ar-
bitrary tree. We will define an algorithm AT on T . The algo-
rithm is given resource augmentation (1+ε) on nodes besides
those connected to the root for some constant ε > 0. From T
the algorithm creates a new tree T ′ which is a broomstick,
preserving the resource augmentation for non-root nodes.
On T ′ the algorithm simulates the algorithm from the pre-
vious section. Let this algorithm be denoted AT ′ . Say that

job Jj is assigned to node vT
′

j ∈ L in T ′ by AT ′ . The algo-

rithm AT assigns job Jj to the node corresponding to vT
′

j

in T , which we denote by vTj . Then, in AT the algorithm
schedules jobs using SJF on all of the nodes.

Lemma 8 The total flow time of AT is at most that of AT ′ .

Proof. To show the theorem, we will show that the flow
time of each job in AT is at most that the job waits in AT ′ ,
which will imply the lemma. Fix any job Jj assigned to
the leaf node vj . Let dvj be the distance of vj to a node
adjacent to the root in T . First we will show that the time
Jj completes on the ith identical node on its path is only
sooner in AT than in AT ′ . We show this by induction on on
the number of nodes which Jj has finished being processed
on. For the base case, consider a node adjacent to the root.
The schedule on this node is exactly the same in AT as it is
in AT ′ , thus the claim holds. Now consider the ith identical

node which Jj reaches. Let vTi,j and vT
′

i,j denote this node in
T and T ′, respectively. By construction of T ′, any job that

is processed on vTi,j in AT must also be processed by vT
′

i,j in T
(the opposite does not need to hold though). By definition
of SJF and the fact that all jobs arrive to vTi,j in AT before

they arrive to vT
′

i,j in AT ′ by the inductive hypothesis it must

be the case that Jj is complete on vTi,j in AT by the time it

is completed on vT
′

i,j in AT ′ .
Finally, in the case that we have unrelated endpoints, we

show that Jj completes on its leaf node in T by the time it
completes on its leaf node in T ′. From the above every job

processed vTj in AT is also processed on vT
′

j in AT ′ . Further,

the above implies that any job assigned to vTj arrives to vTj in

AT by the time it arrives to vT
′

j in AT ′ . Thus the definition

of SJF implies that Jj completes on vTj in AT by the time

it completes on vT
′

j on AT ′ . Thus the flow time of Jj in
AT is at most the flow time of Jj in AT ′ and we have the
lemma.

The previous lemma combined with Theorem 4 and The-
orems 5 and 6 complete the proofs of Theorems 1 and 2.

4. CONCLUSION
In this paper, we initiate the study of scheduling online

on a set of machines under networking constraints. As far
as the authors know, this is the first time networking has
been considered in conjunction with scheduling on machines
in the online setting. There are many interesting open ques-
tions. One question is whether the speed required in the
unrelated setting we consider can be reduced from 2 + ε to
1 + ε. There appears to be a challenging hurdle in reduc-
ing the speed which arises from the processing times of jobs
changing once they arrive to the machine that they are to be
processed on. More broadly, it would be of interest to fur-
ther address scheduling under networking constraints in gen-
eral. In particular, what more general networks than those
considered in this paper allow for provably good scheduling
algorithms? What can be shown if jobs arrive at arbitrary
nodes in the network? What can be shown for different ob-
jectives such as maximum flow time or the `k-norms of flow
time? As mentioned, the work by Antoniadis et al. [5] has
addressed this case when the graph is a line network in what
corresponds to our identical setting when all jobs have unit
size. They also showed that the objective of maximum flow
time becomes hard in this setting if the network is a tree.

Acknowledgements. The first author’s research was sup-
ported in part by NSF grant CCF-1409130.

5. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In
SIGCOMM, pages 63–74, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic flow
scheduling for data center networks. In NSDI, pages
281–296, 2010.

[3] S. Anand, N. Garg, and A. Kumar. Resource
augmentation for weighted flow-time explained by
dual fitting. In SODA, pages 1228–1241, 2012.

[4] M. Andrews and L. Zhang. The effects of temporary
sessions on network performance. SIAM J. Comput.,
33(3):659–673, 2004.

[5] A. Antoniadis, N. Barcelo, D. Cole, K. Fox,
B. Moseley, M. Nugent, and K. Pruhs. Packet
forwarding algorithms in a line network. In LATIN,
2014.

[6] N. Avrahami and Y. Azar. Minimizing total flow time
and total completion time with immediate
dispatching. In SPAA ’03, pages 11–18, 2003.

[7] B. Awerbuch, Y. Azar, and S. A. Plotkin.
Throughput-competitive on-line routing. In FOCS,
pages 32–40, 1993.

[8] E. Bampis, R. Giroudeau, and A. Kononov. Scheduling
tasks with small communication delays for clusters of
processors. Annals OR, 129(1-4):47–63, 2004.

[9] D. Bernstein and I. Gertner. Scheduling expressions
on a pipelined processor with a maximal delay of one
cycle. ACM Trans. Program. Lang. Syst., 11(1):57–66,
1989.

[10] A. Borodin, J. M. Kleinberg, P. Raghavan, M. Sudan,
and D. P. Williamson. Adversarial queuing theory. J.
ACM, 48(1):13–38, 2001.

[11] A. Z. Broder, A. M. Frieze, and E. Upfal. A general
approach to dynamic packet routing with bounded
buffers. J. ACM, 48(2):324–349, 2001.

[12] C. Bussema and E. Torng. Greedy multiprocessor
server scheduling. Oper. Res. Lett., 34(4):451–458,
2006.

[13] J. S. Chadha, N. Garg, A. Kumar, and V. N.
Muralidhara. A competitive algorithm for minimizing
weighted flow time on unrelated machines with speed
augmentation. In Symposium on Theory of
Computing, pages 679–684, 2009.

[14] C. Chekuri, A. Goel, S. Khanna, and A. Kumar.
Multi-processor scheduling to minimize flow time with
epsilon resource augmentation. In STOC, pages
363–372, 2004.

[15] Y.-C. Cheng and T. Robertazzi. Distributed
Computation for a Tree-Network with Communication
Delay. IEEE transactions on aerospace and electronic
systems, 26(3), 1990.

[16] D. W. Engels, J. Feldman, D. R. Karger, and
M. Ruhl. Parallel processor scheduling with delay
constraints. In SODA, pages 577–585, 2001.

[17] L. Finta and Z. Liu. Single machine scheduling subject
to precedence delays. Discrete Applied Mathematics,
70(3):247–266, 1996.

[18] K. Fox and B. Moseley. Online scheduling on identical
machines using srpt. In SODA, pages 120–128, 2011.

[19] N. Garg and A. Kumar. Minimizing average flow-time
: Upper and lower bounds. In FOCS, pages 603–613,
2007.

[20] R. Giroudeau and J.-C. König. General scheduling
non-approximability results in presence of hierarchical
communications. European Journal of Operational
Research, 184(2):441–457, 2008.

[21] R. Giroudeau, J.-C. König, F.-K. Mouläı, and
J. Palaysi. Complexity and approximation for the
precedence constrained scheduling problem with large
communication delays. In Euro-Par, pages 252–261,
2005.

[22] A. Gupta, R. Krishnaswamy, and K. Pruhs. Online
primal-dual for non-linear optimization with
applications to speed scaling. In WAOA, 2012.

[23] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. Elastictree: Saving energy in data
center networks. In NSDI, pages 249–264, 2010.

[24] S. Im, B. Moseley, and K. Pruhs. A tutorial on
amortized local competitiveness in online scheduling.
SIGACT News, 42:83–97, June 2011.

[25] S. Im, B. Moseley, and K. Pruhs. Online scheduling
with general cost functions. In SODA, pages
1254–1265, 2012.

[26] B. Kalyanasundaram and K. Pruhs. Speed is as
powerful as clairvoyance. Journal of the ACM,
47(4):617–643, 2000.

[27] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In SODA, pages
938–948, 2010.

[28] A. Kesselman, Y. Mansour, and R. van Stee.
Improved competitive guarantees for QoS buffering.
Algorithmica, 43(1-2):63–80, 2005.

[29] F. T. Leighton, B. M. Maggs, and S. Rao. Packet
routing and job-shop scheduling in o(congestion +
dilation) steps. Combinatorica, 14(2):167–186, 1994.

[30] S. Leonardi and D. Raz. Approximating total flow
time on parallel machines. J. Comput. Syst. Sci.,
73(6):875–891, 2007.

[31] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós.
On scheduling in map-reduce and flow-shops. In
SPAA, pages 289–298, 2011.

[32] C. A. Phillips, C. Stein, and J. Wein. Task scheduling
in networks. SIAM J. Discrete Math., 10(4):573–598,
1997.

[33] K. Pruhs, J. Sgall, and E. Torng. Handbook of
Scheduling: Algorithms, Models, and Performance
Analysis, chapter Online Scheduling. 2004.

[34] A. Srinivasan and C.-P. Teo. A constant-factor
approximation algorithm for packet routing and
balancing local vs. global criteria. SIAM J. Comput.,
30(6):2051–2068, 2000.

