
Brief Announcement: Fast and Better Distributed
MapReduce Algorithms for k-Center Clustering

Sungjin Im
University of California, Merced

Merced, CA 95343
sim3@ucmerced.edu

Benjamin Moseley
Washington University in St. Louis.

St. Louis, MO 63130
bmoseley@wustl.edu

ABSTRACT
We revisit the k-center clustering problem in MapReduce.
Previously, a 10-approximation algorithm that runs in O(1)
rounds was known. In this work, we present two 2-
approximate MapReduce algorithms that run in 3 or 4
rounds. These algorithms are essentially the best one can
hope for in terms of both approximation factor and round
complexity. We then consider the k-center problem with
outliers for the first time in the MapReduce setting. For this
problem, we introduce a 4-approximate 3-round MapReduce
algorithm.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problem]: Com-
putations on discrete structures

General Terms
Algorithms, Theory

Keywords
MapReduce, Clustering, k-center, Outliers.

1. INTRODUCTION
Clustering is a fundamental problem faced in a variety of

fields and, due to this, there is a vast literature on the topic.
See [14] for a survey on the literature on clustering. Gen-
erally, in a clustering problem, the goal is to partition, or
cluster, a given set of points such that the points belong-
ing to the same cluster are similar. Clustering provides a
useful summary of large data sets and often serves as a key
component in numerous applications arising in data min-
ing, information retrieval, bioinformatics, and social network
analysis.

One of the most basic and well-understood clustering
problems is the k-center problem. In the k-center prob-
lem, the input consists of an integer k, a set U of n points

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SPAA’15, June 13–15, 2015, Portland, OR, USA.
ACM 978-1-4503-3588-1/15/06.
http://dx.doi.org/10.1145/2755573.2755607.

along with pairwise distance d(u, v) between any two points
u, v ∈ U . This distance represents the dissimilarity between
the points – similar points are close together while dissimilar
points are farther away from each other. It is generally as-
sumed that the data points lie in a metric space. The points
in U are to be partitioned into k clusters. The partitioning
of points into the clusters can be done explicitly, but alter-
natively can be done by choosing a set of k points. That is,
to define the clustering, one chooses a set C ⊆ U of k points
from U which are called centers. For a subset S ⊆ U let
d(v, S) = minu∈S d(u, v) be the minimum distance of a point
v ∈ U to a point in S. Choosing the set C = {c1, c2, . . . ck}
of k centers naturally defines a partitioning of U into k sets
P1, P2, . . . Pk by setting Pi to contain each point v ∈ U where
d(v, C) = d(v, ci). Here ties are broken arbitrarily in the as-
signment of points to clusters. The goal is to choose the set
C of k centers such that maxu∈U d(u,C) is minimized.

The complexity of the metric k-center problem is well-
understood. The problem is NP-Hard and further for any
ε > 0, no 2−ε-approximation is possible unless P = NP [6,8].
There are 2-approximate algorithms known, giving the best
worst case analysis result one could hope for [6, 8]. Besides
these results, previous work has considered generalizations
of the problem. One of the most popular generalizations is
the k-center with outliers problem [4]. In this problem, the
setting is the same, but additionally an algorithm is allowed
to discard up to z ≥ 0 points from U without penalty. The
set of discarded points needs not be included in the partition-
ing and do not contributed to the objective function. Here
z is a parameter input to the problem. In this problem, it is
assumed that the data is noisy, which occurs frequently in
practice. Unfortunately the quality of clustering solutions
can dramatically change based on a small number of out-
liers data points and, due to this, the k-center with outliers
problem has been considered. For this generalization of the
k-center problem a 3-approximation algorithm is known [4].

Clustering Large Data: Today, a fundamental applica-
tion of clustering is for analyzing large data sets. Unfortu-
nately, once data sets become large enough, most sequential
algorithms are rendered ineffective. This is due to the time
constraints when running a sequential algorithm on the large
data sets and also due to the memory constraints; a single
machine may not have enough memory to fit the entire data
set for a problem. For these reasons, when datasets become
large, practitioners turn to alternative computational frame-
works for data processing, such as distributed computing.

The MapReduce [13] paradigm has emerged as the de
facto standard distributed computing framework for pro-

cessing large data sets. A MapReduce computation begins
with data being randomly (or arbitrarily) assigned to a set
of machines. The data is processed in successive rounds.
During a round, the dataset is processed in parallel across
the machines without inter-machine communication. Com-
munication occurs between the machines only during suc-
cessive rounds. Along with being widely used in practice,
MapReduce has recently been of interest to the theoretical
and machine learning communities [1–3, 5, 7, 9–12]. A for-
mal computational model of the MapReduce framework was
given in [9]. The main parameters of the model are that the
number of machines and memory on the machines are sub-
linear in the input size to the problem; a natural constraint
for problems where the data is assumed to be large. The
computation performed during a round is assumed to take
a polynomial time and the goal is to minimize the number
of rounds, the main time bottleneck in MapReduce compu-
tations. See [10] for details of the formal model. Ideally,
an algorithm runs in a small constant number of rounds.
Notice that by forcing the machine to have sublinear mem-
ory renders the adaptation of sequential algorithms to the
MapReduce setting challenging. Further, the formal param-
eters of the model enforce the constraint that no machine
ever sees the entire input to the problem over the entire
computation, forcing the algorithm designer to use a highly
parallelized algorithm.

The MapReduce framework is widely used by practition-
ers for clustering large data sets [5, 10, 15]. Unfortunately,
known sequential algorithm techniques for the k-center prob-
lem cannot be efficiently implemented in the MapReduce
setting. For example, one well known k-center algorithm
starts with a set C = ∅. The algorithm begins by adding
an arbitrary point form U to C. Then, the algorithm it-
eratively adds the point u from U to C such that d(u,C)
is maximized until |C| = k. Any naive implementation of
the this algorithm in the MapReduce setting would be quite
inefficient, running in Θ(k) rounds. This is because in each
step of the algorithm, the point chosen is dependent on the
previous points chosen to be in C. Due to this, an adapta-
tion of the algorithm to MapReduce would only add a single
point to C in one round.

To have an fast efficient MapReduce algorithm for the k-
center problem, it is required that many points can be added
to the solution set in one round. However, to do this, new al-
gorithmic techniques are required beyond known sequential
techniques. Previously, [5] considered the k-center clustering
in MapReduce for the first time. This work showed an O(1)-
round algorithm by iteratively sampling from the universe
U to construct a sublinear sized set S that is a sketch of the
original universe U . After constructing S in a distributed
fashion, the algorithm then clusters S on a single machine
using a known sequential k-center algorithm, resulting in a
10-approximation for the k-center problem in MapReduce in
O(1) rounds.

The work of [5] was the first to address the k-center prob-
lem in MapReduce theoretically. However, the work left
several open questions. In particular, is there an algorithm
that returns the best possible 2-approximate clustering in
O(1)-rounds? Further, the k-center with outliers problem
has not been previously considered in MapReduce. Can one
design an efficient approximation algorithm for k-center with
outliers in MapReduce?

Results: In this work, we consider the k-center problem in
the MapReduce setting and its generalization with outliers.
Throughout this work, we assume that the distance between
points is given by oracle access to the function d and that
the oracle can be stored on the machines without using addi-
tional memory. This is typically the case, for instance, if the
points are in Euclidean space. Our work begins by showing
a computationally simple MapReduce algorithm that gives
the best possible 2-approximation to the k-center problem
in MapReduce if the value of the of the optimal solution,
OPT, is known in advance. This algorithm deviates from
previous work [5] by not constructing a sketch of the uni-
verse U , but rather using a sampling technique to effectively
simulate a known sequential greedy algorithm the k-center
problem.

For all of our algorithms, we state the minimum memory
the algorithm requires on the machines, which is sublinear.
All of our algorithms only require that the total number of
machines is such that the entire dataset can be stored across
all the machines. We note that the memory requirement
implicitly assumes that k, the number of clusters, is small.
For problems where the number of clusters is pre-specified,
it is almost always the case that the number of clusters is
assumed to be small [5, 10]. This is because, otherwise, one
typically considers a clustering problem where the algorithm
determines the clusters, since when the number of clusters
is large one usually is not aware of the ‘right’ number of
clusters a priori.

Theorem 1. There exists a 3-round MapReduce algo-
rithm for k-center that when knowing OPT returns a 2-
approximate solution. The algorithm uses O(kn1/2 logn)
memory on each machine w.h.p. Further, the total commu-
nication required is at most O(kn1/2 logn) w.h.p. assuming
that the data is initially stored on the machines.

This result does require knowledge of the value of the op-
timal solution, OPT. However, the algorithm can guess the
value of the optimal solution and run the algorithm for each
guess of the optimal solution in parallel. Let ∆ be the max-
imum distance between two points of U and the minimum
distance be 1. Notice that value of ∆ is an upper bound
on the optimal solution’s cost. The algorithm can geomet-
rically guess the value of the optimal solution by powers of
(1+ε) for some ε > 0, (1+ε)0, (1+ε)1, ..., (1+ε)log1+ε ∆, and
run the algorithm for each possible guess. By increasing the
communication by a O(log1+ε ∆) factor and the approxima-
tion (1+ε) factor, the algorithm can simulate the knowledge
of OPT thereby yielding a 2(1 + ε)-approximate solution.

Unfortunately, this result could be seen as unsatisfactory
if the maximum distance between points, ∆ is very large
since one cannot preform the O(log1+ε ∆) guesses of OPT
in parallel. Due to this, we extend the previous algorithm
to not require information about the value of the optimal
solution. Here we show an intricate way to circumvent the
actual knowledge of OPT by using an additional round.

Theorem 2. There exists a 4-round MapReduce algo-
rithm for k-center that returns a 2-approximate solution
and uses memory at most O(kn1/2 logn) on each machine
w.h.p. Further, the total communication required is at most
O(k2n1/2 logn) w.h.p. assuming that the data is initially
stored on the machines.

Finally, we consider the k-center problem with outliers
for the first time in the MapReduce setting. Here we give

a result assuming that the algorithm guesses the value of
the optimal solution in parallel. As before, we can simulate
the knowledge of OPT by guessing the value of OPT and
running the algorithm in parallel for each guess. Here the
algorithm requires an additional z factor in memory. Recall
that z is the number of outliers. Although it could be the
case that the number of outliers is large in practice, our work
shows that if z is smaller than O(n1/2−ε) then there is an

efficient MapReduce algorithm that uses at most Õ(n1−ε)
memory for any ε > 0.

Theorem 3. There exists a 3-round MapReduce algo-
rithm for k-center with outliers that when knowing OPT
returns a 4-approximate solution and uses memory at most
O(kzn1/2 logn) on each machine w.h.p. Further, the to-

tal communication required is at most O(kzn1/2 logn) w.h.p.
assuming that the data is initially stored on the machines.

2. K-CENTER KNOWING OPT
In this section, to give a taste of our results, we present

an algorithm, along with a sketch of the analyisis, that pro-
duces a 2-approximate solution for the k-center problem in
2-rounds assuming it knows the value, OPT, of the optimal
solution. If the maximum distance between any two points is
polynomially bounded then by guessing Θ(log1+ε ∆) values
for OPT and running this algorithm for each guess of OPT
in parallel the algorithm will produce a (2+ε)-approximation
in O(1)-rounds for any ε > 0.

Algorithm: Set S = S1 = S2 = ∅. The algorithm samples
each point in U independently with probability 1/n1/2 and
maps them to a single machine. Let X1 be the set of sampled
points. The sampling can be done in the first map phase. In
the reduce phase, the machine with the sampled points runs
the following greedy algorithm. It starts with a solution set
S and first adds an arbitrary point from X1 to S. Then it
iteratively adds any point i ∈ X1 to S if d(S, i) > 2OPT and
|S| < k. Let S1 be the set S the algorithm has computed
when no point in X1 could be added to S. If |S1| = k, then
the algorithm output S1. Otherwise, in the next round, the
algorithm checks for each points i if d(S1, i) > 2OPT. Let
X2 := {i ∈ U | d(S1, i) > 2OPT} be this set of points. One
can determine X2 by sending S1 to each machine and if the
condition d(S1, i) > 2OPT holds for each point in U on this
machine. Then the algorithm maps all the points in X2 and
S1 to a single machine. Let S2 = S1. The points in X2 are
iteratively added to S2 where, at any time, a point i ∈ X2

is added if d(i, S2) > 2OPT and |S2| < k. Let S2 be the
resulting set. The algorithm outputs S2.

Sketch of Analysis: We first show that X1 includes
O(n1/2 logn) points w.h.p. This is an easy consequence of
standard Chernoff bounds. Then, we bound the size of the
set X2: If |S1| < k after the first phase of the algorithm,

then set X2 includes at most O(kn1/2 logn) points w.h.p.
Intuitively, there cannot be many points that are ‘far’ from
the points in X1 w.h.p. This is because the algorithm then
would have sampled some of these points. Then, the mem-
ory usage and communication cost claimed in Theorem 1
easily follow.

Now it remains to show our algorithm gives a 2-
approximation. Let S∗ be the set output by the algorithm,
which is output as S1 at the end of the first phase if |S1| = k
and otherwise S∗ = S2 at the end of the algorithm. Notice
that whenever the algorithm adds a point to the set S1 it

never gets removed. The same holds for S2 and S1∪S2 = S∗.
Further, notice after the first iteration of the algorithm, any
point i such that d(S1, i) > 2OPT is in the set X2. Thus,
the only points discarded after the first phase are close to
the set S1. Say that there is some point i ∈ U such that
d(S∗, i) > 2OPT. Since i would have been in the set X2,
it must be the case that |S∗| = k. Further, knowing that a
point is only added to the solution if its distance is greater
than 2OPT from the points already in the solution set, there
must be k + 1 points of distance greater than 2OPT from
each other. Two of these points must be served by the same
center in the optimal solution, but, by the triangle inequal-
ity, this contradicts the definition of OPT.

Acknowledgements. The first author’s research was sup-
ported in part by NSF grant CCF-1409130.

3. REFERENCES
[1] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev.

Parallel algorithms for geometric graph problems. In
STOC, pages 574–583, 2014.

[2] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and
S. Vassilvitskii. Scalable k-means++. PVLDB,
5(7):622–633, 2012.

[3] M. Balcan, S. Ehrlich, and Y. Liang. Distributed
k-means and k-median clustering on general
communication topologies. In NIPS, pages 1995–2003,
2013.

[4] M. Charikar, S. Khuller, D. M. Mount, and
G. Narasimhan. Algorithms for facility location
problems with outliers. In SODA, pages 642–651, 2001.

[5] A. Ene, S. Im, and B. Moseley. Fast clustering using
MapReduce. In KDD, pages 681–689, 2011.

[6] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38(0):293 – 306, 1985.

[7] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting,
searching, and simulation in the mapreduce
framework. In ISAAC, pages 374–383, 2011.

[8] D. S. Hochbaum and D. B. Shmoys. A best possible
heuristic for the k-center problem. Mathematics of
Operations Research, 10(2):180–184, 1985.

[9] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In SODA, pages
938–948, 2010.

[10] R. Kumar, B. Moseley, S. Vassilvitskii, and
A. Vattani. Fast greedy algorithms in mapreduce and
streaming. In SPAA, pages 1–10, 2013.

[11] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii.
Filtering: A method for solving graph problems in
MapReduce. In SPAA, pages 85–94, 2011.

[12] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and
A. Krause. Distributed submodular maximization:
Identifying representative elements in massive data. In
NIPS, pages 2049–2057, 2013.

[13] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, 2009.

[14] R. Xu and D. Wunsch. Survey of Clustering
Algorithms. IEEE Trans Neural Netw, 16(3):645–678,
2005.

[15] W. Zhao, H. Ma, and Q. He. In M. G. Jaatun,
G. Zhao, and C. Rong, editors, CloudCom.

