
Brief Announcement: A QPTAS for Non-preemptive
Speed-scaling

Sungjin Im
EECS, University of California, Merced

Merced, CA
sim3@ucmerced.edu

Maryam Shadloo
EECS, University of California, Merced

Merced, CA
mshadloo@ucmerced.edu

ABSTRACT
Modern processors typically allow dynamic speed-scaling of-
fering an effective trade-off between high throughput and
energy efficiency. In a classical model, a processor/machine
runs at speed s when consuming power sα where α > 1
is a constant. Yao et al. [FOCS 1995] studied the prob-
lem of completing all jobs before their deadlines on a single
machine with the minimum energy in their seminal work
and gave a nice polynomial time algorithm. The influential
work has been extended to various settings. In particular,
the problem has been extensively studied in the presence
of multiple machines as multi-core processors have become
dominant computing units.

However, when jobs must be scheduled non-preemptively,
our understanding of the problem remains fairly unsatisfac-
tory. Often, preempting a job is prohibited since it could be
very costly. Previously, a O((wmax/wmin)α)-approximation
was known for the non-preemptive setting where wmax and
wmin denote the maximum and minimum job sizes, respec-
tively. Even when there is only one machine, the best known
approximation factor had a dependency on α. In this paper,
for any fixed α > 1 and ε > 0, we give the first (1 + ε)-
approximation for this problem on multiple machines which
runs in nO(polylog(n)) time where n is the number of jobs to
be scheduled.

1. INTRODUCTION
Energy efficiency is considered a primary goal in modern

scheduling at various scales [1]. Energy dissipation is a main
concern in mobile devices. Cumulative energy cost over a
long time period can easily exceed the hardware procure-
ment cost. At a larger scale, for example, in data centers,
the importance of energy conservation is well illustrated by
the following quote:

What matters most to the computer designers
at Google is not speed, but power, low power,
because data centers can consume as much elec-
tricity as a city.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’16 July 11-13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4210-0/16/07.

DOI: http://dx.doi.org/10.1145/2935764.2935824

- Dr. Eric Schmidt, CEO of Google [21].

Various methods have been developed to save energy while
meeting/optimizing certain qualities of services [18, 1]. One
of the most widely used technologies is dynamic speed-scaling
where each individual machine can run in different speeds
depending on the energy it consumes. A machine can run
slowly when processing small workload, and run faster to
process high volume of incoming jobs by consuming more
power.

Yao et al. studied a fundamental scheduling problem on
a single machine with dynamic speed-scaling capabilities
in their seminal work [22]. In the problem, which we call
the Energy-efficient Deadline Scheduling Problem
(EDS), there are n jobs. Each job j has a release time
rj , deadline dj , and work volume wj that must be com-
pleted during its lifespan (rj , dj) on the given single machine.
When the machine runs in speed s at time instant t, the ma-
chine consumes power P (s) = sα, where α > 1 is a constant.
A job j completes when it gets processed by wj units. The
goal is to complete all jobs during their respective lifespans
while minimizing the total energy consumption. For EDS,
Yao et al. gave an elegant polynomial time algorithm. The
influential work has been extended to multiple machines [11,
2, 4, 7, 6].

However, all the aforementioned works assume that pre-
emption is allowed for free, meaning that a job being pro-
cessed can be interrupted to process other jobs and can be
resumed later. While preemption is very useful for optimiz-
ing certain objectives, it is prohibited in some applications
– preempting and resuming a job can be very costly, or may
not be allowed due to the way the system works. Unfortu-
nately, non-preemptive scheduling is fundamentally different
from preemptive scheduling and gives a lot of algorithmic
challenges. For example, adding a job j of small lifespan
may change the schedule drastically by forcing other jobs to
either complete before j starts or to start after j completes.

Indeed, the EDS problem becomes strongly NP-hard with-
out preemption [5] – we will call the EDS problem with
no preemption EDS-N. The best approximation known for

EDS-N is (1 + ε)B̃α due to [8]. Here B̃α :=
∑∞
k=0

kα/e
k!

is
the generalized Bell number which grows exponentially in
α. A key idea of the (1 + ε)B̃α-approximation was to for-
bid certain ‘enclosing’ using a clever configuration LP and
rounding scheme. That is, each job j is allowed to start at
time aj and end at time bj only when the interval (aj , bj)
includes no other jobs lifespans. However, this constraint is
no longer valid when there are multiple machines, render-
ing the configuration LP inapplicable. Prior to our work



the best approximation factor of any polynomial or quasi-
polynomial time algorithms known for EDS-N in the mul-
tiple machines setting was Ω((wmax/wmin)α) [15, 8], where
wmax and wmin denote the maximum and minimum job sizes,
respectively. The dependency on wmax/wmin was unavoid-
able in the previous work since machines had to run at a rate
of Θ(wmax/wmin) to treat jobs as if they were of an equal
size.

1.1 Our result
Our main result is the following.

Theorem 1. For the problem Energy-efficient Dead-
line Scheduling with No Preemption (EDS-N), for
any ε > 0, there exists a (1 + ε)-approximation algorithm

which runs in n
O

(
4α log3 n

ε2

)
time. Further, this result holds

even when there are an arbitrary number of identical ma-
chines.

As mentioned before, the best known approximation fac-
tor prior to our work had an exponential dependency on α.
Further, no constant approximations were known even for a
fixed α when there are more than one machine. Although
we only present our result for identical machines, we note
that our result can be easily extended to a constant number
of heterogeneous machines.

Hence a natural looming question was if one could ob-
tain an approximation arbitrarily close to the optimum. We
answer this question positively by giving the first (1 + ε)-
approximation, albeit with a quasi-polynomial running time.
This is the first (1 + ε)-approximation for the general case.
Previously, polynomial time algorithms were known for in-
stances where all jobs are unit sized [3, 16] or jobs have
agreeable deadlines [22]. 1 Quasi-polynomial-time approx-
imation schemes (QPTAS) were known only for restricted
instances where jobs lifespans form a laminar structure [5,
16]. That is, for any two distinct jobs, one job’s lifespan
is completely included in the other’s, or the two have dis-
joint lifespans. The dynamic programming used in [5, 16]
strongly relies on the fact that laminar instances have a tree
representation. In contrast, our work makes no assumptions
on instances, and our approach is very different. Our result
implies that EDS-N might admit a PTAS.

1.2 Overview of our algorithm and analysis
Our algorithm is inspired by the dynamic programming

framework in [17], which addressed various scheduling ob-
jectives, particularly completing as many jobs as possible
before their deadlines. A simple yet useful observation made
in [17] was that if we know that the scheduling intervals T
where jobs J are scheduled (but neither the actual assign-
ment of jobs to the intervals, nor the assignment of intervals
to machines), then we can find a feasible schedule by finding
a matching between J and T and greedily packing the inter-
vals T into machines. This observation allowed [17] to focus
on finding a ‘good’ set T of intervals that admits a matching
between J and T . Hence [17] used dynamic programming to
find such a set. However, to make the dynamic programming
efficient, [17] made use of a novel sketching scheme, and was
able to find a set T of intervals that admits a ‘fractional’

1The instance is said to be agreeable if for any two jobs j
and j′, rj ≤ rj′ , then dj ≤ dj′ .

matching between J and T where every job is matched by
one unit, while every interval in T is matched by at most
1 + ε units; here a mild speed augmentation was used and
such a fractional matching was said to have congestion 1+ε.
Then, using the integrality of matching, [17] was able to find
an intermediate schedule where each interval in T schedules
at most two jobs, which was turned into a feasible schedule
by either doubling the speed or the number of machines.

We obtain our QPTAS by carefully adapting this idea for
EDS-N. First, observe that it is not enough to find a set
T of scheduling intervals that admits a fractional matching
with congestion 1 + ε: Since our objective is minimizing
total energy consumption, we will try to find a minimum
cost integral matching where the edge between a job of size
w and an interval of size p has cost p(w/p)α, which is exactly
the energy needed to schedule the job on the interval. As
in [17], in the integral matching, two jobs may have to be
scheduled on the same interval. If we double the speed to
convert it into a feasible schedule, we may have to use 2α

factor more energy in the worst scenario. Hence, for each
pair of w and p, we will keep track of which intervals T ′ of
length p are used to accommodate (matched with) jobs J ′

of size w. The matching between J ′ and T ′ we find has an
additional nice property that only a few scheduling intervals
in T ′ schedule more than one job from J ′. Then, the energy
overhead for doubling the machines speed on such intervals
can be charged to energy used on other intervals. The actual
algorithm is slightly more complicated, but this is a high-
level idea.

To discuss other difficulties and how our work is different
from [17], we illustrate our dynamic programming at a high
level. Suppose the time horizon is (0, N), i.e. all jobs release
times and deadlines are between 0 and N . For simplicity,
assume that there is only one machine. We first guess the
job jm that is processed at the middle time N/2 (if such a
job exists). Then, we need to decide which jobs should be
scheduled before jm and after. But such decisions can be
exponentially many. This is where [17] uses sketches. The
sketching scheme in [17] shows that jobs can be grouped if
they have ‘similar’ release times, deadlines, and sizes. More
precisely, it was shown that (1) if there is a feasible schedule
for the original instance, then there is a feasible schedule
for the instance simplified via the sketch, and (2) if a set
of scheduling intervals admits a fractional matching with
a congestion 1 for the simplified instance, then it admits
a fractional matching with a congestion (1 + δ)h for the
original instance where h is the depth of divide-and-conquer
tree in the dynamic programming. Hence, if the dynamic
programming has O(polylog(n)) levels and by setting δ =
O(1/polylog(n)) we can find good execution intervals with
a small congestion.

However, we need to carefully adapt this dynamic pro-
gramming to the speed scaling setting since each job can
be processed for a very long or short period of time com-
pared to its size. For example, we need to guess how long
the middle job is processed in each iteration of the dynamic
programming. Further, when some quantities such as job
sizes are not polynomially bounded, the number of levels
can be super-polylogarithmic. [17] handles this issue by
showing that inflexible jobs, whose sizes are not so small
compared to their lifespans, are the main concern, and flex-
ible jobs of specific size w are involved in sketching at most
O(logn) levels. Intuitively, flexible jobs are easy to schedule



since they only need to use machines for short during their
lifespans. In our setting, we have to adapt the notion of
flexible/inflexible jobs in connection to energy consumption
since how long jobs are processed can be very different from
their sizes. Additionally, there are many details that should
be carefully handled.

1.3 Other related work
We first discuss previous work on the preemptive case. As

mentioned earlier, [22] gave a polynomial time algorithm for
EDS when there is a single machine. The algorithm was re-
fined in [19, 20]. When there are multiple machines, one can
think of two cases, migratory and non-migratory, depending
on whether a job can be scheduled on more than one machine
or not. Migratory schedule was studied and polynomial-
time algorithms were given in [11, 2, 4]. The algorithm in
[11] was based on mathematical programing and the oth-
ers were combinatorial. [6] studied the case when machines
are heterogeneous in both migratory and non-migratory set-
tings. In particular, [6] gave a (1 + ε)B̃α-approximation for
heterogeneous machines when the schedule is migratory and
preemptive.

We now shift our discussion to non-preemptive schedul-
ing. Constant approximations depending on α are known
for the single machine case [5, 6, 15]. The current best

approximation ratio (1 + ε)B̃α is due to [8]. [15] gives a

(wmax/wmin)O(α) approximation when there are multiple ma-
chines, and their work can handle heterogeneous machines.

Finally, we briefly discuss other work on non-preemptive
scheduling when machines have fixed speeds. Several O(1)-
approximations [10, 14, 17] are known for the throughput
objective where each job has some profit, and the goal is
to maximize the total profit of the jobs completed by their
deadlines. The problem of scheduling all jobs with the min-
imum number of machines was studied in [12, 13, 17]. Flow
time objectives were studied in [9, 17].

Acknowledgements
This work was supported in part by NSF grant CCF-1409130.

2. REFERENCES
[1] S. Albers. Energy-efficient algorithms. Commun.

ACM, 53(5):86–96, 2010.

[2] S. Albers, A. Antoniadis, and G. Greiner. On
multi-processor speed scaling with migration. In
SPAA, pages 279–288. ACM, 2011.

[3] E. Angel, E. Bampis, and V. Chau. Throughput
maximization in the speed-scaling setting. arXiv
preprint arXiv:1309.1732, 2013.

[4] E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed
scaling on parallel processors with migration. In
Euro-Par 2012 Parallel Processing, pages 128–140.
Springer, 2012.

[5] A. Antoniadis and C.-C. Huang. Non-preemptive
speed scaling. J. of Scheduling, 16(4):385–394, Aug.
2013.

[6] E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and
M. Sviridenko. Energy efficient scheduling and routing
via randomized rounding. In FSTTCS, pages 449–460,
2013.

[7] E. Bampis, D. Letsios, and G. Lucarelli. Green
scheduling, flows and matchings. In Algorithms and
Computation, pages 106–115. Springer, 2012.

[8] E. Bampis, D. Letsios, and G. Lucarelli. Speed-scaling
with no preemptions. In Algorithms and Computation,
pages 259–269. Springer, 2014.

[9] N. Bansal, H.-L. Chan, R. Khandekar, K. Pruhs,
B. Schieber, and C. Stein. Non-preemptive min-sum
scheduling with resource augmentation. In FOCS,
pages 614–624, 2007.

[10] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber.
Approximating the throughput of multiple machines
in real-time scheduling. SIAM J. Comput.,
31(2):331–352, 2001.

[11] B. D. Bingham and M. R. Greenstreet. Energy
optimal scheduling on multiprocessors with migration.
In ISPA, pages 153–161. IEEE, 2008.

[12] J. Chuzhoy, S. Guha, S. Khanna, and J. S. Naor.
Machine minimization for scheduling jobs with
interval constraints. In FOCS, pages 81–90, 2004.

[13] J. Chuzhoy and J. Naor. New hardness results for
congestion minimization and machine scheduling. J.
ACM, 53(5):707–721, 2006.

[14] J. Chuzhoy, R. Ostrovsky, and Y. Rabani.
Approximation algorithms for the job interval
selection problem and related scheduling problems.
Math. Oper. Res., 31(4):730–738, 2006.

[15] V. Cohen-Addad, Z. Li, C. Mathieu, and I. Milis.
Energy-efficient algorithms for non-preemptive
speed-scaling. In Approximation and Online
Algorithms, pages 107–118. Springer, 2014.

[16] C.-C. Huang and S. Ott. New results for
non-preemptive speed scaling. In Mathematical
Foundations of Computer Science 2014, pages
360–371. Springer, 2014.

[17] S. Im, S. Li, B. Moseley, and E. Torng. A dynamic
programming framework for non-preemptive
scheduling problems on multiple machines [extended
abstract]. In SODA, pages 1070–1086, 2015.

[18] S. Irani and K. Pruhs. Algorithmic problems in power
management. SIGACT News, 36(2):63–76, 2005.

[19] M. Li, B. J. Liu, and F. F. Yao. Min-energy voltage
allocation for tree-structured tasks. Journal of
Combinatorial Optimization, 11(3):305–319, 2006.

[20] M. Li, A. C. Yao, and F. F. Yao. Discrete and
continuous min-energy schedules for variable voltage
processors. PNAS, 103(11):3983–3987, 2006.

[21] J. Markoff and S. Lohr. Intel’s huge bet turns iffy, new
york times, september 29, 2002.

[22] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced cpu energy. In FOCS, pages
374–382. IEEE, 1995.


