Fair Online Scheduling for Selfish Jobs
on Heterogeneous Machines

Sungjin Im
University of California,
Merced

. Merced, CA 95343
sim3@ucmerced.edu

ABSTRACT

Scheduling jobs on multiple machines has numerous applications
and has been a central topic of research in the scheduling litera-
ture. Recently, much progress has been made particularly in online
scheduling with the development of powerful analysis tools. In
this line of wok a centralized scheduler typically dispatches jobs to
machines to exploit the given resources the best to achieve the best
system performance which is measured by a certain global schedul-
ing objective. While this approach has been very successful in at-
tacking scheduling problems of growing complexity, the underly-
ing assumption that jobs follow a centralized scheduler may not be
realistic in certain scheduling settings.

In this paper we initiate the study of online scheduling for self-
ish jobs in the presence of multiple machines. Selfish behavior
of jobs is a common aspect observed in the absence of a central-
ized scheduler. We explore this question in the unrelated machines
setting, arguably one of the most general multiple machine mod-
els. In this model each job can have a completely different pro-
cessing time on each machine. Motivated by several practical sce-
narios, we assume that when a job arrives it chooses the machine
that completes the job the earliest i.e. minimizes the flow time
of the job. The goal is to design a local scheduling algorithm on
each machine with the goal of minimizing the total (weighted) flow
time. We show that the algorithm Smoothed Latest Arrival Proces-
sor Sharing, which was introduced in a recent work by Im et al. 27|
28], yields an O(1/€*)-competitive schedule when given (1 + ¢)
speed. We also extend our result to minimize total flow-time plus
energy consumed. To show this result we establish several interest-
ing properties of the algorithm which could be of potential use for
other scheduling problems.

1. INTRODUCTION

Processing jobs using multiple resources is a fundamental
scheduling problem that arises in various forms in many disci-
plines. Such settings are prevalent and found in server farms and
data centers which consist of a large number of machines. At
a smaller scale, chips are equipped with multiple heterogeneous
cores, and the number of cores per chip is expected to grow expo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SPAA 16, July 11-13, 2016, Pacific Grove, CA, USA
© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. .. $15.00
DOI: http://dx.doi.org/10.1145/2935764.2935773

Janardhan Kulkarni
Microsoft Research

. Redmond, WA 98052

jakul@microsoft.com

nentially to deliver high throughput with less energy consumption.
Routers and middleboxes are common computing resources to pro-
cess packets in network. When resources are viewed as abstract
machines, numerous applications can be captured by this setting.
Not surprisingly, multiple machines scheduling has been a cen-
tral topic of research in the theoretical scheduling community. One
of the most general multiple machines settings is the unrelated ma-
chine model. In this model, there are m machines and n jobs, and
each job j arrives at time ;. Each job j may have an arbitrary pro-
cessing requirement (size) of p;; on each machine ¢ and is associ-
ated with weight w; which stands for its importance. The unrelated
machines setting captures and generalizes identical machines and
related machines where machines run in different speeds. When
multiple jobs compete to be processed earlier, one needs to priori-
tize between jobs according to a global scheduling objective. Per-
haps the most popular objective in online setting is to minimize the
average (or equivalently total) weighted flow time of jobs, where
the flow time of a job j is defined as the length of time a job waits
before it is completed since its arrival, multiplied by its weight w;.
The problem of minimizing the average weighted flow time of
jobs on unrelated machines has been extensively studied both in
online and offline settings; we give an extensive survey of known
results in Section [[.4] Much of the approximation and online al-
gorithms literature on the problem, however, has taken a system-
centric and centralized view of the problem. In this view, the jobs
arriving into the system are assumed to be altruistic, and are at the
discretion of a centralized scheduler that attempts to achieve high
overall system performance. Although this model is a fair abstrac-
tion of scheduling jobs within an operating system or across differ-
ent cores of a single machine, it does not capture scheduling con-
straints arising in data centers or other cloud services [34]f]. In many
applications, implementing centralized and monolithic scheduling
algorithms is not always possible. Furthermore, in many scenar-
ios jobs behave selfishly by choosing machines that give them the
earliest completion time. The selfish behavior of jobs may arise be-
cause the jobs are submitted by self-interested clients or simply as
a consequence of a dispatch rule which is decentralized and greedy.
The examples for latter case include, webpage requests are usually
dispatched to server farms that are least loaded||12]], and DNS query
requests are routed to DNS servers with the least service time. Self-
ish behavior may impact the performance of the system and has to
be taken into consideration when designing scheduling policies.
Much of the work on selfish scheduling of jobs has been consid-
ered mainly in the setting of coordination games, first introduced
in a seminal paper [16]. In this setting, each machine declares a
strongly local scheduling policy. The strategy of each job consists
of choosing the machine which minimizes its own completion time.
Each job knows the processing lengths of other jobs and hence

http://dx.doi.org/10.1145/2935764.2935773

this induces a game amongst the jobs. The objective in the co-
ordination mechanisms is to design scheduling policies which have
small Price of Anarchy (PoA) [33]]. PoA measures the degradation
in the social cost (objective function) at an equilibrium (typically
Nash Equilibrium or Correlated Equilibrium) compared to the of-
fline optimum which can assign each job to any machine. Coordi-
nation mechanisms have been extensively studied in the context
of scheduling for the makespan objectives [4] |11} |10} [31]. Re-
cently, Cole et al. [17] studied the coordination mechanisms for
minimizing the weighted completion objective, and showed that
many scheduling policies such as Shortest Job First, Round Robin
and their weighted extensions to lead to games with constant PoA
when all release dates are same (In this case, a job’s completion
time is equal to its flow time).

While coordination games provide valuable insight on the effect
of selfish jobs, the assumption that jobs reach a NE is not very
realistic in many settings, especially for scheduling jobs that arrive
online. In these applications, it is unlikely that an arriving job will
have the complete knowledge of other jobs that will arrive in future,
hence studying the cost at a Nash Equilibrium may not be the right
solution concept. Also in many cases, jobs make one-time decision
on which machine they are assigned to (as in the DNS example),
and are not reassigned.

Unfortunately, there has been very little work on designing effi-
cient scheduling algorithms for greedy jobs in online setting. Now
that resources are growing both in complexity and quantity, we be-
lieve that developing scheduling algorithms for greedy jobs for var-
ious objectives is of increasing importance. In this paper we take
the initiative in this direction. Following our discussion, we as-
sume that upon the arrival each job selfishly and irrevocably se-
lects a machine which minimizes its own flow time looking at only
the sets of jobs assigned to each machine. We also require that
each machine can run only a strongly local scheduling policy that
makes its scheduling decisions based only on the set of jobs as-
signed to it (independent of the processing lengths of jobs on other
machines). Local scheduling policies are more desirable since they
can save communication cost between machines and are easier to
implement. We will consider unrelated machines, and will refer to
this setting as scheduling of greedy jobs on unrelated machines. In
this paper we would like to explore the following concrete ques-
tions:

Are there strongly local online scheduling policies for the un-
related machine setting that are constant competitive for total
weighted flow objective? Can we design scheduling algorithms that
align the best moves for the overall system with that of individual
jobs?

1.1 Our Results and Contributions

Our main result is that Smoothed Latest Arrival Processor Shar-
ing (SLAPS), and its weighted version, recently introduced by Im
et al [27} 28], answers the above questions in the affirmative in the
resource augmentation model. In resource augmentation model,
the online algorithm is allowed to run each machine (1 + ¢) times
faster and is compared to an optimal offline scheduler that runs at
a unit speed [32]]. Without resource augmentation, the competitive
ratio of any online algorithm can be unbounded [23|]. An online
algorithm is said to be scalable if it is O(poly(1/e))-competitive
for all ¢ > 0, and finding a scalable algorithm is in general consid-
ered to be the ultimate goal when there is a strong lower bound on
competitive ratio without speed augmentation.

Our main result is the following.

e For the problem of minimizing the weighted flow time of
greedy jobs on unrelated machines, we show that Weighted

SLAPS is (1 + ¢)-speed O(1/¢?)-competitive for any 0 <
€ < 1 (Theorem|3.1).

We prove several crucial properties of SLAPS that leads to the
desired result. We believe that these properties may be of indepen-
dent interest in analyzing SLAPS for other scheduling problems.

Recently, another important research direction in scheduling the-
ory has been designing energy efficient algorithms. Dynamic speed
scaling is a widely studied setting where machines can be run faster
by consuming more energy. In this setting, one of the most widely
studied models is where a machine consumes energy s when run
at a speed of s. The goal of an energy efficient scheduler is to
minimize total weighted flow time plus total energy consumed.

Our next result is an energy efficient algorithm in our setting.

e For the problem of minimizing the weighted flow time plus
energy of greedy jobs on unrelated machines, we give a
strongly local scheduling policy that is O(a?)-competitive

(Theorem [@.T)).

To the best of our knowledge, these are the first positive results
for scheduling greedy jobs online in the multiple machines setting
(even in the simplest identical machines case) for any scheduling
objectives except minimizing the maximum flow time when all jobs
arrive at time O (makespan). We note that when the scheduler can
assign each job to any machine, the best known results for each
of the above problems are a (1 + ¢€)-speed O(1/¢)-competitive al-
gorithm and a O(«/ log a)-competitive algorithm, respectively [2}
35, [19]. Perhaps, it is surprising that one can obtain results that
nearly match the best known results even when jobs behave self-
ishly.

1.2 Limitations of Previous Approaches

The first scalable algorithm for minimizing weighted flow time
on unrelated machine was given by Chadha et al. in a breakthrough
result [[13]]. The algorithm in [[13] had two properties which are
highly desirable in multiple machines scheduling — immediate dis-
patch and non-migration. That is, the scheduler immediately dis-
patches an incoming job to a machine, and the job never migrates to
other machines. Furthermore, their algorithm consisted of two sur-
prisingly simple components: each machine runs the Highest Den-
sity First (the density of a job is defined as the ratio of its weight
to size), and the dispatch rule is to assign each incoming job to the
machine that increases the objective the least. Later, Anand et al.
[2] improved this result via a novel dual fitting argument to obtain
a slightly better competitive ratio, and extended their result to dy-
namic speed scaling setting.

The scheduling algorithms Highest Density First (HDF) or
Highest Residual Density First (HRDF) that were used to get a
(centralized) scalable algorithm by [[13| [2]], however, result in a
competitive ratio as high as €(n) even when given any constant
speed augmentation in our setting (We defer the proof to the full
version.) The main reason for this catastrophic degradation in the
performance is because the best move for individual jobs can be
very different from the best move for the overall system. In par-
ticular, the greedy dispatch rule — assign incoming job to the ma-
chine that increase the objective by the least— is very crucial and
a common ingredient in the works of 13|26, 2]. Hence, it would
be natural to ask the question: Is the greedy dispatch rule robust?
How critical is it to minimize the increase in the objective when
assigning jobs to machines?

Indeed, one can show that if the dispatch rule repeatedly makes
a non-optimal decision in dispatching jobs, even if it is a constant
factor off from the optimal decision, the resulting schedule could be

far from the optimum without substantial speed augmentation. This
is the case no matter what algorithm each machines uses. Thus, it
is imperative that any algorithm in our setting has to unify the best
moves for the overall system and for individual jobs.

Then probably the first algorithm one would try will be Round
Robin (RR) — for a while let us assume that jobs are unweighted
to simplify our discussion. Intuitively, RR processes all jobs at the
same rate, so the overall system performance will be less suscep-
tible to jobs selfish behavior. This intuition turns out to be true,
and one can show that RR achieves a constant competitive ratio
for average flow time when given (2 + €)-speed. However, RR is
known to be not scalable [32f]. Similarly, it is easy to show a lower
bound of 2(n) on Shortest Elapsed Time First (SETF) even with
constant speed augmentation. The next natural candidate algorithm
will be then Latest Arrival Processor Sharing (LAPS) which was
first introduced by Edmonds and Pruhs in a beautiful result and was
shown to be scalable for the average flow time objective in a fairly
general scheduling setting [21]]. The algorithm LAPS generalizes
RR, and round-robins among a fraction of the most recently arriv-
ing jobs; the fraction is given as a parameter. Although LAPS was
developed for scheduling for jobs of different parallelizability [21],
it has been proven to be very useful in other scheduling contexts,
in particular broadcast scheduling [7}|20]]. However, when it comes
to multiple (heterogeneous) machines scheduling, LAPS has a se-
rious weakness that the increase of the objective due to a new job’s
arrival cannot be easily bounded. In a nutshell, it is because LAPS
processes only jobs within a ‘boundary’ and this makes it very hard
to measure the increase. Perhaps this is the reason why there is no
work that used LAPS in non-identical machines settings

SLAPS and its properties. We use SLAPS (and its weighted ver-
sion), recently introduced by Im et al [27, 28], to overcome this
issue. What SLAPS distinguishes itself from LAPS the most is
its proportional invariance. The proportional invariance property
states that the relative speed of two jobs does not change upon the
arrival of new jobs into the machine. This simple property turns out
to be very important in the analysis of SLAPS. In particular, us-
ing the proportional invariance property we establish that the flow
time of a newly arriving job closely approximates the increase in
the objective. We call this crucial property of SLAPS as bounded
externality. Hence, when machines run SLAPS, individual job’s
greedy behavior leads to (approximately) globally good behavior.
This is our key idea in obtaining scalable algorithm when jobs are
greedy. This also answers the question (iii).

SLAPS seems to inherit many important properties of LAPS
which has been very useful for various scheduling problems, for
example see [[7, 20} |14} 22]. One of those properties is that the
scheduling decision is made only based on the ordering of the ar-
rival time of currently existing jobs. This is a very unique prop-
erty that LAPS has (and its special case, RR). In some cases, this
counter intuitive scheduling decision makes the analysis a lot easier
compared to other algorithms that use time-varying feature such as
remaining processing times. SLAPS also makes its scheduling de-
cisions only using the relative arrival ordering of jobs, and it seems
that it can be used in all the places where LAPS was used to obtain
the same results.

Finally, in terms of the service provided to individual jobs, we
think SLAPS is more closer to Round Robin, which can be thought
as a fair scheduling algorithm, than any other scheduling algorithm.
One intuitive way of defining fairness is to let a job wait for at most

"The only exception is [25] that used LAPS to show a scalable
algorithm for average flow time on related machines. But the algo-
rithm in [25] is migratory, which is very different from our setting.

a period of time in proportion to its size. The idea is to distinguish
between jobs asking for different amount of resources, and this was
the key intuition behind the total stretch objective which is the sum
of each job’s flow time divided by its size [9} |6]]. In SLAPS, when
a new job arrives, each existing job gets delayed by an amount up
to a constant times the job’s size, unlike LAPS (See Section E])
For these reasons, we believe that SLAPS is perhaps a more useful
generalization of RR compared to LAPS.

1.3 Our technical contributions

Our analysis uses the elegant dual fitting framework introduced
recently by Anand et al. [2]. So far our discussion was mainly on
the difficulty arising due to the gap between the best moves for indi-
vidual jobs and for entire system performance. Another challenge
in obtaining a scalable algorithm in our setting is that we have to
directly argue with integral flow time of jobs. Fractional flow time
is a very useful relaxation of flow time and simplifies the analysis
substantially, especially when potential functions are used [[13}30].
Another view of flow time of a job is to pay a unit cost/penalty
for each unit of time for which the job waits. In fractional flow
time, the penalty is only for the remaining portion of the job size
(fractional weighted of a job is the remaining portion multiplied the
job’s weight). Roughly speaking, fractional flow time allows us to
view each job as consisting of infinitesimal sized pieces, and hence
any work on the job completes some pieces of the job. In general,
fractional flow time is easier to handle. Hence it is now a standard
approach to obtain a scheduling algorithm first for fractional flow
time and convert it to integral flow using additional round of speed
augmentation, for example [1330].

One crucial property needed in the analysis in [2]] for minimiz-
ing the weighted flow time + energy was the monotonicity property
of the underlying algorithm we discussed. Since HRDF (weighted
version of Shortest Remaining Processing Time First) is not mono-
tone, for the analysis of the total weighted flow time plus energy
objective, [2] used Highest Density First (HDF) in place of HRDF.
Unfortunately, HDF is the algorithm inspired by the fractional flow
time view, and hence the analysis was done first on fractional flow
time. This type of analysis cannot be used for our problem since the
quantity each individual job seeks to minimize is its integral flow,
not fractional flow. Hence throughout the analysis we need to argue
only with the integral flow time. A consequence of this restriction
is that, we can not use multiple rounds of speed augmentation typ-
ically seen in the analysis of many scheduling algorithms for flow
time.

1.4 Other Related Work

Minimizing the average weighted flow time of jobs on unrelated
machines has been extensively studied in the offline setting as well.
The problem is known to be NP-hard to approximate within a fac-
tor of ©2(log P) even when all machines are identical, i.e. p;; is the
same for all 7 [24]]. Here P is the ratio of the maximum to the min-
imum job size. The current best result is by Bansal and Kulkarni
[8] that achieves an approximation factor of O(logn log P).

In the online setting, Avrahami and Azar [3] were first to con-
sider immediate-dispatch non-migratory schedules for minimizing
the flow time in the identical machine environment. Chekuri et al.
[[15]] gave the first scalable algorithm for this setting. [[15}|13]] show
that one can obtain a scalable algorithm by assigning jobs to identi-
cal machines at random. For the unrelated machine setting, the first
scalable algorithm for minimizing weighted flow time on unrelated
machine was given by Chadha et al. in a breakthrough result [[13]].
Extensions to the [;-norms of the flow time on unrelated machines
were considered in [29] 2]. Later, Anand et al. [2] improved these

results via a novel dual fitting argument to obtain a slightly better
competitive ratio.

Unfortunately, non-migratory algorithms do not lead any
bounded competitive ratio for the objective of minimizing flow-
time on unrelated machines in the non-clairvoyant setting [25]. On
the other hand, if an algorithm is allowed to change the assignment
of jobs over time, then scalable algorithms were obtained by Im et
al in [27} [28]. In the setting we consider, however, migrating jobs
over time is not allowed.

The flow-time objectives have also been considered when ma-
chines can change their speed by consuming more energy. The
most common objective studied in this line of work is to minimize
total weighted flow time plus total energy consumed. This objec-
tive offers a natural trade-off between weighted flow time and en-
ergy consumed [1]]. Namely, one can improve the overall system
performance by consuming more energy, and vice versa. For this
objective, in the unrelated machines setting, Anand et al. [2] gave
an O(a?)-competitive algorithm when each machine consumes en-
ergy s“ when it runs in speed s. Here the speed of the machine is
set to the total (fractional) || weight of the jobs remaining at that
time following the single machine scheduling result by Bansal et
al. [5]. Intuitively, this is a natural way to balance two competing
objectives, weighted flow time and energy since at each time the
remaining jobs incur a total cost equal to their weight.

Much of the work on selfish scheduling of jobs has been consid-
ered in the setting of coordination games first introduced in a semi-
nal paper [16]. In this setting, each machine declares a strongly lo-
cal scheduling policy. The strategy of each job consists of choosing
the machine which minimizes its own completion time. Each job
knows the processing lengths of other jobs and hence this induces
a game amongst the jobs. The objective in the coordination mech-
anisms is to design scheduling policies which have small Price of
Anarchy (PoA) [33]]. PoA measures the degradation in the social
cost(objective function) at an equilibrium (typically Nash Equilib-
rium or Correlated Equilibrium) compared to the offline optimum
which can assign each job to any machine. Coordination mecha-
nisms have been extensively studied in the context of scheduling
for the makespan objectives [4} |11} 10, |31]. Recently, Cole et
al. [[17]] studied the coordination mechanisms for minimizing the
weighted completion objective and showed that many scheduling
policies such as Shortest Job First, Round Robin and their weighted
extensions to lead to games with constant PoA when all release
dates are same (In this case, a job’s completion time is equal to its
flow time).

However, our proposed model differs from the coordination
mechanism model in many significant ways. In the coordination
mechanisms, each job has the complete information of the system
and knows the size and release dates of other jobs. Furthermore, it
is a simultaneous move game. That is, jobs move around until they
reach an equilibrium (which may take exponential steps and but
is assumed to happen instantaneously). On the other hand, in our
model jobs arrive online and each arriving job only knows about
the set of jobs already present in the system. The jobs choose a
machine looking at only the current state of the system. Hence
the resulting configuration of jobs on machines need not be a Nash
Equilibrium. We believe that our setting is a more realistic model
of real world applications.

The difference between fractional and integral weights will be dis-
cussed at the end of Section [T}

2. ALGORITHM SMOOTH LATEST AR-
RIVAL PROCESSOR SHARING (SLAPS)
AND ITS PROPERTIES

To make our presentation more readable, we first describe the un-
weighted version of the algorithm (SLAPS) and discuss how it can
be extended to weighted jobs in Section[2.2} See [27}[28] for more
details. For the total flow time objective, the algorithm SLAPS is
exactly the algorithm that will run on all machines. Also for the
objective of total flow time plus energy, this algorithm will be used
with appropriate dynamic speed scaling. The algorithm SLAPS
is non-clairvoyant and local in the sense that if it is run on a ma-
chine, its scheduling decision relies only on the jobs assigned to
the machine. Hence we will not need to refer to a specific machine
to describe SLAPS. Our algorithm SLAPS is parameterized by a
non-negative integer k£, and we may use SLAPS, to highlight the
parameter it uses. Let A(t) denote the set of alive jobs at time ¢.
Order the jobs in A(t) in increasing order of their arrival time. Let
mj,+ denote job j’s rank at time ¢ in this order. Here the earliest
arriving job in A(t) has rank 1 and the latest arriving job in A(t)
has rank | A(¢)|. We assume without loss of generality that all jobs
have distinct arrival times by breaking ties arbitrarily but consis-
tently. Let s > 1 denote the speed that the algorithm is given. We
distribute the total processing power available among the jobs in
A(t) by giving each job j the following speed:

k
Tjt

1k + 2k + L+ (JAR) DR’

We will refer h;(t) as j’s share or speed at time ¢. Observe that
the total share of all jobs in A(t) is exactly s (when A(t) # ().
This completes the description of the algorithm that each machine
runs.

It is worth noting that SLAPS is exactly ROUND ROBIN (RR).

hy(t) = s (1)

2.1 Properties of SLAPS

We discuss several interesting properties of the algorithm
SLAPS which will be useful throughout the analysis. We first sum-
marize these useful properties in words. The formal description can
be found below and in Lemmal[3.2]

e Proportional Invariance: The relative speed that each job gets
does not change when more jobs arrive.

e Bounded Externality: The total delay seen by all the jobs
already present in the system (increase in the total flow time)
upon arrival of a new job is bounded by the flow time of the
newly arriving job, assuming it is the last job arriving into
the system. See Lemma[3.2}

e Monotonicity: Consider two schedules o and o’ where the
set of jobs in o is a subset of jobs in o’. Then, at any point in
time, if a job j is alive in both schedules, j is processed only
slower in o’. Further, at any time, ¢’ has no less alive jobs
than o.

In order to formally describe the above properties, we need to
define some notation. Consider a set of jobs S say at time ¢. Now
consider another set S’ of alive jobs which arrive later than all jobs
in S. Jobs in S U S are possibly partially processed. Let h]S(t)
denote job j’s share of speed when the algorithm has only the jobs
in S in its current queue A(t). Similarly, define hfusl (') for the
case where the algorithm has only the jobs in S U S’ in its current
queue A(t') at some time ¢’. Here we are implicitly assuming that
the algorithm’s instantaneous scheduling decision is oblivious to
the remaining job sizes.

Proportional Invariance. For any two jobs 7,5’ € S and any

time instants ¢ and ¢’ it is the case that h5(t) /hf, (t) =
h;SUS (t/)/h}S’IUS (t/)

The property follows from the definition of SLAPS since each
newly arriving job slows down the jobs in the set S by exactly the
same factor. An interesting consequence of this property is that
there exists an one-to-one mapping of time instants between two
schedules such that remaining sizes of jobs in the set S are exactly
the same.

Now fix time any time ¢, and consider two sets S and S’ defined
as above. Let o denote the schedule induced when the algorithm
works on jobs in S from time ¢. Likewise, o’ denote the schedule
induced when the algorithm works on jobs in S from time ¢ and

jobs in S’ arrive later than ¢. Let hg) denote the job j’s share of

speed in the schedule specified in the superscript. Let ni.‘) denote
the number (total weight) of alive jobs in the schedule specified
in the superscript. Note that we added o to A(7) as superscript
to emphasize that A% (7) denotes the set of alive jobs at time 7 in
schedule o.

Monotonicity. For any time 7 > t, n? < ni/. Also for any job
Jj € A%(T), hi (1) > h7 (7).

The monotonicity property follows from the definition of
SLAPS since the rank of existing jobs does not change due to new
jobs arrival but some portion of the processing power is given to
new jobs. We stated these properties formally since there is a sim-
ilar property that does not hold: when some jobs are completed,
every job’s speed can only increase. Although this seemingly-true
property holds when £ = 0 (RR), it is not the case for general k.
We prove the bounded externality property in Lemma 3.2]

2.2 Weighted Version of sLAPS

In this section we extend the algorithm SLAPS to work for
weighted jobs. The main intuition is to think of a job j of weight
w; as w; copies of unweighted job with the same arrival time.
Then the share of job j is defined as the total share of job j’s
copies; we assume wlog that w; is an integer. More formally, define
wj = Zj’eA(t):rjlgrj wyr,and f(x) = 1% +2F + ..+ 2" Let
5’ be the job that arrives the latest before job j. Then job j’s share

is defined as h; (t) := s - W
J
unit weights, this definition is exactly the same as the one given for
unweighted jobs.
We state a useful inequality that is used frequently in the analy-

sis.

. Note that when jobs have

Proposition 2.1 Consider any integer k > 0, and n > 1. Then it
Sfollows

kE+1 nk kE+1
<
n+k+1 " 1k4+2k4 . +nk — n

PROOF. To show the first inequality we use 1% + 28 + ... +
(n—1)F < [a¥dz = n*"'/(k + 1). For the second, use
1F 42k 4 4 nfF> f;:o zFde. O

3. TOTAL (AVERAGE) FLOW TIME

In this section we show that SLAPS induces a scalable algorithm
(schedule) when each job chooses to go to the machine that mini-
mizes its flow time. In order to present our analysis more transpar-
ently, we proceed our analysis assuming all jobs are unweighted,
i.e. w; = 1, and the analysis for weighted jobs is presented is sim-
ilar and we omit the proof in this version. We remind the reader

that each job’s decision is also myopic in the sense that its deci-
sion is made solely based on the current status of machines with-
out considering future jobs. As mentioned before, our model is
immediate-dispatch and non-migratory: every job chooses the ma-
chines immediately upon its arrival, and no job migrates to other
machines once assigned to a machine. We prove the following the-
orem. For simplicity, 1/¢ is assumed to be an integer.

Theorem 3.1 Suppose that the online algorithm is given 1 + 3¢
speed for any 0 < e < 1. If all machines run SLAPSy where
k = 1/e, the resulting schedule is O(1/€*)-competitive for the
objective of average flow time of all jobs.

We begin our analysis by proving the bounded externality prop-
erty of SLAPS. We will show that the increase in total flow time
due to job j’s arrival and the flow time of job j (assuming no more
jobs arrive) are comparable. Let F;;(r;) denote the flow time of
job 7 when it chooses machine ¢ at time 7; assuming that no more
jobs arrive. Let A;; denote the increase in the total flow time. More
precisely, A;; is the increase of flow time of all jobs that are in the
queue of machine ¢ upon the arrival of job j plus job j’s flow time
F;;(rj). We remark once more that A;; and Fj;(r;) are defined
assuming that j is the last job on machine 3.

Lemma 3.2 A;; < (k4 2)F;;(r;).

PROOF. For notational simplicity, consider any fixed machine
i, and re-index jobs so that every job j' in A;(¢) has rank j'. Let
1,2, ...,n be the jobs in A;(t). Throughout the proof we drop the
machine ¢ from the notation if there is no confusion from the con-
text. Let n 4 1 be the newly arriving job. The proportional invari-
ance property of SLAPS states that all jobs are slowed down by
exactly the same factor upon the arrival of a new job. This allows
us to define a mapping between the schedules before and after the
new job n + 1 arrives.

Let o denote the schedule of jobs 1,2, ...,n on machine ¢ de-
fined from time 7,41 assuming that no more jobs arrive, and o’
the schedule of jobs 1,2,...,n,n + 1. The schedule o’ is also
defined from time 7,41 assuming that no more jobs arrive. Let
C' denote the completion time of job n + 1 in ¢’. We can de-
fine a one-to-one map between the time steps in two schedules o
and o’ with the same remaining processing times of jobs 1,2, ..., n.
Formally, let (¢f (t), ¢5 (t), - .. g5 (t)), denote the vector of remain-
ing processing times of jobs in the schedule ¢ and similarly define
(qi" (), @ (t),... @ (t)). For every time instant ¢ in the sched-
ule o, we find the corresponding time instant ¢’ in ¢’ such that,
vector of remaining processing times of jobs are equal. Note that,
this mapping is only possible due to proportional invariance prop-
erty of SLAPS. Define the unique function g(t) : [rn4+1,C] —
[rn+1,C’] that maps time steps in o to o’. Here C denotes the
time step in o corresponding to the time C” in ¢’. It is easy to see
that ¢’ > C due to the monotonicity property of SLAPS. Let
g~ (t) denote the time step in o corresponding to ¢ in ¢”.

Consider any infinitesimal time interval [¢, ¢ + dt) in [ry4+1, C’]
where no job is completed. Obviously, flow time of job n + 1
is Frt1(rnt1) := C’' — rpp1. Now we look at how much the
schedule o slows down during [t,¢ + dt) compared to ¢’. That
is, we will compare the length of two intervals, [t,¢ + dt) and
[g7'(t), g~ (t + dt)). The new job n + 1 slows down other jobs
processing, and each alive job in 1,2, ...,n experiences a delay
of dt — (g~ !(t 4+ dt) — g~ *(¢)). Let n; be the number of alive
jobs amongst 1,2, ...,n in o during [¢,¢ + dt). From the defini-
tion we know that each job (except n + 1) is processed in o’
at a slower rate as it is in o, and the exact slow down factor is

1k ok gnk
1k 42k 4 4nb 4 (ng+1)k"
ing [t,t + dt) in o’ from o is at most,

Hence the total increase of flow time dur-

(ne +1)* .
1% 42k + .+ (ng + 1)k

< (k+1)— dt4dt < (k+2)dt

ne - dt + dt)

nt—l—l

The quantity consists of two parts: the first part is due to the
increase of flow of “old" jobs and the second (dt) is part of the flow
time of job n + 1. The first inequality is due to Proposition2.1] We
charge the first part to the second, which completes the proof. [

3.1 Dual Fitting

To prove Theorem [3.I} we use the dual fitting framework in
[2]. We first write a linear programming relaxation of the prob-
lem LPgimal described below which was first given by [2]. It has
a variable x;;; for each machine i € [m], each job j € [n] and
each unift time slot ¢ > r;. If the machine ¢ processes the job j
during the whole time slot ¢, then this variable is set to 1. The first
constraint says that every job has to be completely processed. The
second constraint says that a machine cannot process more than one
unit of jobs during any time slot. Note that the LP allows a job to
be processed simultaneously across different machines.

Min 309 Y w (S 1) e
J

i >y Pi

(LPprimal)

3P DRI
Pij

iot>ry
Somp <1 Vi, t
jit>r;
Tijt > 0 Vi7j,t : tZTj

We briefly discuss how the objective function lower bounds the
total weighted flow time of a feasible integral schedule where each
job is processed on a single machine. For more details see [2].
Say job j is assigned to machine . In the objective function, one
can easily see the term Zt»j wj - (%) - x;j¢ is at most job j’s
weighted flow time due to the first constraint. In fact, the quantity is
the fractional weighted flow time of the job j, which is well known
to be at most its integral weighted flow time, minus w;p;; /2. The
remaining term Et>rj wj - (1/2) - @ij¢ equals w;pi;/2. Hence,
LPprimal is a valid relaxation. We note that the ‘1/2’ in the objec-
tive is crucial since otherwise the LP can cheat by processing a job
simultaneously on a lot of machines, thereby paying very little for
the job.

Now we write the dual of the above linear program.

Max Z Yj — Z Z Zit (LPgual)
J [t
A t— T 1 .o
== —zit < wj + - Vi, 5,t 1t > 1y
- i (p 5) i
y; =2 0 Vj
Zit 2 0 V’i,t

Setting dual variables: We proceed our analysis by defining the
dual variables as follows. As mentioned before, we will assume
that all jobs have weight 1, and extend to arbitrary weights later.
Say job j chose to go to machine i. We set y; to be 1/8 times the

flow time of job j at the time of its arrival assuming that no more
jobs arrive, ie. y; = Fi;(r;)/8. We set zi to be 1/8(k + 3)
times the total number of alive jobs at the time ¢ on machine i, i.e.
Zit = % where n;: denotes the total number of jobs that are
alive at time ¢ on machine .

Bounding the dual objective: By Lemmawe know that Zj Yj
is 1/8(k + 2) times the total flow time. Also due to the well known
fact that the sum of number of alive jobs over all times equals the to-
tal flow time, we conclude that 3, 3, zie = F*/8(k + 3), where
F# is the total flow time of all jobs in our algorithm. Therefore,
the dual objective is Q(1/k%) = O(¢?) times the total flow time,
which establishes the competitive ratio claimed in Theorem 3.1] if
the dual variables satisfy all the constraints.

It now remains to show that this definition of dual variables sat-
isfies the dual constraints. Note that we need to satisfy the dual
constraint for any pair of job j and machine ¢. We consider two
cases.

Case 1: Job j chooses machine i. We first show the constraint
is satisfied assuming that job j is the job arriving the last, then
later will lift this assumption using the monotonicity property of
SLAPS.

For any time t € [r;,r; + Fi;(r;)], Fij(r;) — (t — rj) is the
remaining flow time of job j. We observe that the speed with which
the job j is processed can only increase as time passes. This follows
from the proposition stated below and noting that j is the highest
ranked job.

Proposition 3.3 n* /(1% + 2% + ... + n") is decreasing in n.

)) k_(1—1)k
PROOF. Weviewnk/(1k+2k+~-~+”k)as%
le[n

We use the following: given positive a;, b; such that 3+ > 32 >

.. > % it follows that DR v Zirel “i Hence it suffices
by 2irep—1 i 2irep bi
k_(q_1)k . L o
to show —=U=D" — 1 — (1 — 1/0)* is decreasing in {, which is

indeed the case. [

Hence we deduce that Fi]' (Tj) — (t — Tj) < pij/hij (t)
where h;;(t) is the speed job j gets at time ¢. Also we know

by Proposition that for all ¢ > r;, hi;(t) > s- >

Sii

it k=
PO
k+1

kAl
Hence we get,

_ Fiy(ry) = (t=15)
Pij Pij

Nt
- (1
A+ 7

<

(1+ ? 'BZit) <148z

Note that we used the facts that s = 1 + 3e and k = 1/e. Ar-
ranging terms shows the dual constraints are satisfied.

We now explain why the assumption that no more jobs arrive
after j is w.l.o.g. Note that y; relies only on the jobs arriving no
later than job j, hence has no dependency on jobs arriving after
job j. Finally, the monotonicity property of SLAPS states that for
any fixed time ¢ > r;, when more jobs arrive into machine ¢, the
number of alive jobs at time ¢ on machine ¢, n;; can only increase.
Hence, if more jobs arrive, it only gives more slack to the dual
constraint.

Case 2: Job j chooses a machine other than i. Say that job j chose
to go to machine i # i. As in the previous case, we can without

loss of generality assume that no more jobs arrive. Throughout the
analysis we will be concerned with two schedules o and ¢’. The
first schedule o is the real schedule which describes how jobs are
processed on machine ¢ since time ;. The second schedule is a
fictitious schedule on machine ¢ obtained if job j were assigned
to machine 4, rather i’. The proof from the case one implies that
dual constraints are satisfied if we were to consider the schedule
o’. However, we need to work with schedule ¢. One cause of
concern is that the number of alive jobs in o may be much less than
the number of alive jobs in o’. However, by carefully mapping the
two schedules we show that this is not the case.

As we did in the proof of Lemma[3.2] we can define one-to-one
mapping between o and ¢’ so that the two schedules have exactly
the same remaining processing time for all jobs except j which
are assigned to machine . We will use g(¢) to denote the unique
time step in ¢’ corresponding to ¢ in 0. We let C’ denote job j’s
completion time in o’. Let C = ¢~ *(C’). Consider any time
t € [r;,C]. Consider an infinitesimal time interval [¢,¢ + dt) in
[r;, C]. We note that the length of the interval in ¢’ corresponding
to [t,t + dt) in o is at most

(ni + 1)" E+1 1 (&
— - dt < dt + 1+ —)"dt @3
1k 42k 4nk — ¢ (nu) ®)
where n;; is the number of alive jobs at time ¢ on machine ¢ in
schedule o. This is because every alive job in ¢ is processed slower
than in o’ by a factor of (327" 1%) /(327 1¥). The inequality
is due to Proposition[2.1]

Note that job j is alive at time g(¢) in schedule o, and that is
the only difference from the schedule o at time ¢. We now consider
two cases. If ny > k + 1, (3) is at most 4dt. Now suppose that
n;: < k+ 1. Since job j has the highest rank, the fraction the job j
gets from the total speed s in o is at least (ns; + 1)*/(1F + 2% +
o (R +1)F) > ﬁm > 1/2 by Proposition Hence
the total length of such time steps is at most 2p;;. Hence we have
shown that for any ¢ € [r;,C),

dt +

g(t) =t < 4(t — ;) + 2py; 4)
We are now ready to complete our analysis.
8y; — (t—ry) _ Fuy(ry) =t —rj)
Pij Pij
< F”(r])p;(t—r]) [Since job j chose i’ over 7]
ij
_ Fiy(ry) = (g(t) —r5) + (9(t) = 1)
Pij
1 nit + 1 (g(t) —t)
< (1 5
_s(+k+1)+ v ®)
4(t —ry
< 2+8zn+%+2 ©6)
ij

The inequality in (5) follows from the same argument in the pre-
vious case since ¢’ is constructed by assigning job j to i. Here
note that the ‘1” is added to n;; to count job j. The inequality (6)
follows from (@). By rearranging terms, we complete the analysis.

4. EXTENSION TO TOTAL FLOW + EN-
ERGY

In this section we extend the online greedy scheduling problem
to the speed scaling setting. In this setting, each machine’s speed
can be adjusted dynamically, and consumes power s* when it runs
with speed s where o > 1 is a constant which is uniform to all ma-
chines. The goal is to design local scheduling policy and a dynamic

speed scaling algorithm to minimize the total flow time plus energy
consumption. We aim to prove the following theorem.

Theorem 4.1 There exists an online algorithm such that when
each machine runs the algorithm, and each job goes to the ma-
chine that minimizes its flow time without considering future jobs,
the resulting schedule is O(ozz)—competitive for the problem of min-
imizing the total flow time plus energy in the unrelated machines
setting.

4.1 Algorithm

As before, each machine will run SLAPS, with & = [a]. In
the analysis, for simplicity, we will assume that « is an integer
greater than 1; this assumption can be easily removed, and the
same analysis goes through. The speed of machine ¢ at time ¢
is set to nzlt/ %. Here n;; denotes the total number of alive jobs
at time ¢ that are assigned to machine 7. For the sake of analy-
sis, we will assume that each machine gets more speed by factor
s = max (%L, %ﬁ;-&-%) if @ < 4and s = &2 otherwise,
than it should get for consuming n;;. That is, each machine ¢ con-
sumes power equal to n;; and gets speed s - n:t “. Note that the
total power is equal to s* times the total flow time. However, this
is only O(1) times the cost of flow time. Hence we will focus on
bounding the total flow time, and factor in the energy cost at the
end of analysis. Our algorithm for setting the speed at each time
instant is same as the one used in [5, 23]].

4.2 Analysis of Total Flow + Energy

In this section we give the proof of theorem[.I] Taking similar
steps as in the analysis of the average flow time objective, we will
show that the increase in total flow time due to job j’s arrival and
the flow time of job j at the time of arrival are comparable. We
use the same notation Fj;(r;) and A;;. We prove a similar bound
as one in the Lemma [4.2] taking into consideration the effect of
dynamic speed scaling.

Lemma 4.2 A;; < (k+ 2)F;(r;).

PROOF. The proof is similar to that of Lemma [4.2] hence we
will omit few details and highlight the differences. Recall that, o
denotes the schedule of jobs 1,2, ..., n on machine ¢ defined from
time 7,41 assuming that no more jobs arrive, and o’ the schedule
of jobs 1,2, ...,n,n+ 1. Note that, jobs are renamed to match their
rank and n + 1 is the latest arriving job. Let g(t) : [rn41,C] —
[rn+1, C'] be the function which maps time steps in o to o’ where
remaining processing lengths of jobs are same. Unlike in the case
of proof of Lemma[d.2] here two schedules run at different speeds.
However, proportional invariance property still holds and it is easy
to see that every job is slowed by exactly the same amount. Hence,
g(t) is well defined.

Consider any infinitesimal time interval [¢, ¢ + dt) in [ry4+1, C’]
where no job is completed. Clearly, flowtime of job n + 1 is
Frot1(rn+1) = C — rpg1. Now we look at how much the
schedule o’ slows down during [¢,¢ + dt) compared to o during
[g7'(t), g™ (t + dt)). The new job n + 1 slows down other jobs,
and recall that delay seen by each job is dt— (g~ * (t+dt)—g~ ' (¢)).
Here we also need to consider the fact that machine ¢ runs at speed
n!/®in o and (ni + 1)/ in o’. It is easy to see that the slow
down factor is

1° 428 4 4 nb C(na 1)V
1k 4+ 2k + 4 nk + (ni + 1)k nl/®

(ng+1)1/
1/

a

Here the second term is greater than 1, hence we can

it
ignore it in lower bounding the slow down factor. Therefore, rest of
the analysis remains exactly the same as in the proof of Lemma.2]
This completes the proof.

O

4.3 Dual Fitting Analysis for Total Flow + En-
ergy

We write a convex programming relaxation for the average flow
plus energy objective. At a high level, this formulation is essen-
tially the same as the one presented in [2]] but is easier to work with
and interpret. Due to this, we modestly simplify the analysis and
make it exactly similar to analysis of the flow time objective. As
noted earlier, since each job chooses the machine which minimizes
its flow time upon its arrival, we no longer can afford to work with
the fractional flow time of jobs unlike the previous works.

Consider the convex program CPprimal described below. It has a
variable x;j; for each machine 7 € M, each job j € J and each unit
time-slot ¢ > ;. If the machine ¢ processes the job j during the
whole time slot ¢, then this variable is set to 1. It has a variable s;¢
for each machine 7 and each time slot ¢. The variable s;; indicates
the speed used by machine ¢ at time ¢.

Min SN wy - a (t;_frj +%> +Y > sk
j Y it

i t>ry
(CPprimaI)
PID Dheli N N
iot>r DPij
Z -'L'ijt S Sit Vi,t
jitzrg
Tijt 2 0 Vz,],t : tZ Tj

The first constraint says that every job has to be completely pro-
cessed. The second constraint says that a machine cannot process
more than s;+ units of the jobs during any time slot. Note that the
convex program allows a job to be processed simultaneously across
different machines. The first term in the objective is a lower bound
on the total cost of any feasible schedule was shown in [2]. We
would like to point out that the first term in the objective does not
lower bound the total flow time of jobs. The second term is obvi-
ously the total power consumed. Hence this convex program is at
most O(1) times the cost of optimal solution.

We derive the dual of the above convex program by following
the template outlined in [18]]. In the dual objective, the second part
is the conjugate function of 3. >~ 5.

1 1 =2
Max Y g —(1——)-aTs)y > ui" (CPaar)

i it

Yj t— rj 1 .

2 — 2z < w; + = Yi,j,t :t>r

Dij i Pij > ’
zit < Uit
yy =2 0 vj
Zit 2 O Vi,t

Setting the dual variables: Our analysis will be based on dual
fitting. Again, we first study unweighted jobs and extend it to
weighted jobs. Say job j chose to go to machine i. We set y;
to be 1/8 times the flow time of job j at the time of its arrival as-
suming that no more jobs arrive, i.e. y; = Fj;(r;)/40. We set zj;

and u;; to be 1/8(k + 3) fraction of the number of jobs alive at the
a—1)/a

% where n;; denotes

the total number of jobs that are alive at time ¢ on machine .

Bounding the dual objective: We first show that from our defini-

tion of dual variables the dual objective is 2(1/a?) times the total

flow time of our algorithm, denoted by 4.

time ¢ on machine %, i.e. z;z = Uyt =

OPT
1 1 ="

> Yy —(1-)are D> uh

J it
> 1F~~ . 1 1 e 1)
> ijg ij(rj) = (1= =) 'WZ;Z;M
1 A 1 A
> Skt skim [Bylemmafl @
= QU/KF* =Q(1/a)F* ®)

This establishes that the dual objective is at least (1/a?) times
the total flow time. Moreover, the energy cost of our schedule is
at most s“ times the total flow time, which we noted is at most
O(1) times the cost of flow time. Therefore, if we prove that dual
constraints are satisfied, it follows from the weak duality theorem
for convex programs and € = 1/[«/] that the competitive ratio of
our algorithm is at most O(a?).

It now remains to show that this definition of dual variables sat-
isfies the dual constraints. Note that we need to satisfy the dual
constraints for any pair of job j and machine . We consider two
cases.

Case 1: Job j chooses machine i. We first observe that given the
following lemma, it suffices to show that the constraint is satisfied
assuming that job j is the last arriving job. This is because, our
definition of y; does not change upon arrival of new jobs and as
a consequence of the following lemma, for any fixed time, z;; can
only increase when more jobs arrive.

Lemma 4.3 Consider two schedules o and o' such that:

e [n both schedules, the same set of jobs arrive before the job
j arrives.

e In o, the job j is the last arriving job while in o’ some jobs
arrive after job j arrives.

Then at all times t > r;, every job with arrival time at most r; has
been processed more in o than in o’

PROOF. By the proportional invariance property, we observe
that all jobs arriving before r; are processed at the same relative
rate in both schedules. Reindex the jobs such that any job [has the
rank [. Let total number of alive jobs be n. If a new job is added,
the speed of job I will change from, I¥ - n1/® /(1% 4+ 2% + ... 4+ nF)
tol* - (n+1)Y/% +2F + .+ (n+1)F).

We will show that,

nl/a - (n+1)1/a
P42k 4nk = 1F428+ L+ (n+ 1)k

This will prove that any ‘old’ job’s (jobs with release time at
most ;) speed can only decrease when new jobs arrive. Hence
the lemma will follows. Toward this end, we use the following:
given positive a;, b; such that ‘;—11 > ‘;—z > > Z—ll, it follows that

Xien—1] % > Zirep @i
Yrren—1bi = Xyepbi’

(n+4 1)V —pl/e
(n+1)*

is decreasing. This can be easily verified by differentiating the
function. [

and observe that it suffices to show that

Hence we focus on the case when j is the last arriving job and
show that all the dual constraints are satisfied.
oy . 1 /a k+1 . . .
Proposition 4.4 The function n g RgT S non-decreasing in
the interval [1,k + 1/a — 1) and it is non-increasing everywhere
else for all positive n.

PROOF. We omit the details as this can be easily verified by
looking at the derivate of the function. [

Consider the speed at which job j is processed at time ¢. Using
Prooposition [2.T] we have,
nic t 1/

k + 1 1/
h1t>5 - N —_— N
]()— leqfllk it = nzt+k+1 it
Let h = s - min(n:fklﬂ : nit/a, Z—E) From Proposition
we conclude that, h < h;;(¢) for all times ¢ > r;. For any time
t € [rj,r; + Fij(ry)], Fij(r;) — (t — r;) measures the remaining
flow time of job 5. We observe that,

Fij(rj) = (¢ —7j) < p”h(t)

This follows from a) The right hand side of the inequality
measures the projected flow time of the job jif it continues to get
the speed h. b) However, the speed job j gets is lower bounded
by h by Proposition Now we consider two cases to show that
dual constraints are satisfied.

Case a): o > 4. In this case, note that we can assume without
: _ k+1 1/
loss of generality that h = s - prypr w1
to Proposition the function increases in only the range [1,2)
and then starts decreasing. However, if there is only one job it gets
the entire speed, it is easy to see that dual constraints are trivially

satisfied. Consider,

. This is because due

8yj —(t—rj) _ Fi(ry) —(t—-m)) . 1 _ 1
Pij Dij T hii(t) T h
1 Nt “1/a 1 k+3
< —--(1 -, =-(14+4 —-82z;) <1 i
s g (+k+1) Ty 8(+k+1 8zit) < 1+ 8z

Note that we used the fact that s > % Arranging terms shows
the dual constraint is satisfied.
Case b): a < 4. Suppose h = s - :—1‘; since we already showed
the other case. Then we have,

8yj —(t—rj) _ Fi(ry) —(t—m)) . 1 _1

Dij Dij ~ hij(t) — h
1 k42 110 _1 k+2
- <. —— . 8(k+ czie < 14 8z;
s k+1 " - s k+1 8 8) - zu < 8zt

Again we used the fact that, s > % and k = a < 4.
This concludes the first case (1).

Case 2: Job j chooses a machine other than i. Say that job j chose
to go to machine i # 4. As in the previous case, we can without
loss of generality assume that no more jobs arrive. Throughout the
analysis we will be concerned with two schedules o and ¢’.The

first schedule o is the real schedule which describes how jobs are
processed on machine ¢ since time r;. The second schedule is a
fictitious schedule on machine ¢ obtained if job j were assigned to
machine 1, rather 7’.

We define an one-to-one mapping from time steps in o to time
steps o’ so that in both schedules all jobs except j have exactly the
same remaining processing times at two corresponding times. We
will use g(t) to denote the unique time step in o corresponding to
tin o’. We can obtain the same relation as we did in the second
case in showing dual constraints are satisfied in Section [3] The
only difference is to take into account dynamic speed scaling, but
it turns out that the quantity g(¢) — ¢ measuring the delay due to
job 7 can only decrease with dynamic speed scaling. Intuitively, in
o' the machine will run faster in the dynamic speed scaling setting
compared to the static speed scaling setting.

gt) —t < (t—15) + 2pij)

We are now ready to complete our analysis.

8y; — (t—13)
Pij
_ Firj(ry) =t —ry)
Pij
< Fig(rg) = (= r5) [Since job j chose i’ over 7]
Pij
_ Fy(ry) = (g(t) —r5) + (9(t) — 1)
Pij
< 148z 14 WOZY (10)
Pij
< Smt iy (11
Pbij

The inequality (T0) follows from the same argument in the pre-
vious case since ¢’ is constructed by assigning job j to i. Here
note that the ‘1’ is added to n;; to count job j. The inequality
follows from (9). By rearranging terms, we complete the analysis.

Acknowledgements

Part of this works was done while the authors were at Duke, where
S. Im was supported in part by NSF grant CCF-1008065, and J.
Kulkarni by NSF grants CCF-1408784, IIS- 1447554, and CCF-
1348696. Later, S. Im continued this work at UC Merced supported
in part by NSF grant CCF-1409130.

S. REFERENCES

[1] Susanne Albers and Hiroshi Fujiwara. Energy-efficient
algorithms for flow time minimization. ACM Transactions on
Algorithms, 3(4), 2007.

[2] S. Anand, Naveen Garg, and Amit Kumar. Resource

augmentation for weighted flow-time explained by dual

fitting. In SODA, pages 1228-1241, 2012.

Nir Avrahami and Yossi Azar. Minimizing total flow time

and total completion time with immediate dispatching. In

SPAA ’03: Proceedings of the fifteenth annual ACM

symposium on Parallel algorithms and architectures, pages

11-18, 2003.

Yossi Azar, Kamal Jain, and Vahab Mirrokni. (almost)

optimal coordination mechanisms for unrelated machine

scheduling. In Proceedings of the nineteenth annual

3

—

[4

—_

(5]

(6]

(7]

(8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]

[20]

ACM-SIAM symposium on Discrete algorithms, SODA *08,
pages 323-332, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed
scaling with an arbitrary power function. In Proceedings of
the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA °09, pages 693—701, Philadelphia, PA,
USA, 2009. Society for Industrial and Applied Mathematics.
Nikhil Bansal and Mor Harchol-Balter. Analysis of srpt
scheduling: investigating unfairness. In
SIGMETRICS/Performance, pages 279-290, 2001.

Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath
Nagarajan. Better scalable algorithms for broadcast
scheduling. In ICALP (1), pages 324-335, 2010.

Nikhil Bansal and Janardhan Kulkarni. Minimizing
flow-time on unrelated machines. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 851-860, 2015.

Michael A. Bender, Soumen Chakrabarti, and

S. Muthukrishnan. Flow and stretch metrics for scheduling
continuous job streams. In SODA, pages 270-279, 1998.
Ioannis Caragiannis. Better bounds for online load balancing
on unrelated machines. In SODA, pages 972-981, 2008.
Ioannis Caragiannis. Efficient coordination mechanisms for
unrelated machine scheduling. In SODA, pages 815-824,
2009.

Valeria Cardellini, Michele Colajanni, and Philip S. Yu.
Request redirection algorithms for distributed web systems.
IEEE Trans. Parallel Distrib. Syst., 14(4):355-368, April
2003.

Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N.
Muralidhara. A competitive algorithm for minimizing
weighted flow time on unrelatedmachines with speed
augmentation. In Symposium on Theory of Computing, pages
679-684, 2009.

Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed
scaling of processes with arbitrary speedup curves on a
multiprocessor. Theory Comput. Syst., 49(4):817-833, 2011.
Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit
Kumar. Multi-processor scheduling to minimize flow time
with epsilon resource augmentation. In STOC, pages
363-372, 2004.

G. Christodoulou, E. Koutsoupias, and A. Nanavati.
Coordination mechanisms. Theor. Comput. Sci.,
410(36):3327-3336, August 20009.

Richard Cole, José R. Correa, Vasilis Gkatzelis, Vahab
Mirrokni, and Neil Olver. Inner product spaces for minsum
coordination mechanisms. In Proceedings of the 43rd annual
ACM symposium on Theory of computing, STOC °11, pages
539-548, New York, NY, USA, 2011. ACM.

Nikhil R. Devanur. Fisher markets and convex programs.
Nikhil R. Devanur and Zhiyi Huang. Primal dual gives
almost optimal energy efficient online algorithms. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 1123-1140, 2014.
Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online
scalable scheduling for the /;-norms of flow time without
conservation of work. In ACM-SIAM Symposium on Discrete
Algorithms, 2011.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(35]

Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes
with arbitrary speedup curves. In ACM-SIAM Symposium on
Discrete Algorithms, pages 685-692, 2009.

Kyle Fox, Sungjin Im, and Benjamin Moseley. Energy
efficient scheduling of parallelizable jobs. In SODA, pages
948-957, 2013.

N. Garg and A. Kumar. Better algorithms for minimizing
average flow-time on related machines. In ICALP (1), 2006.
Naveen Garg and Amit Kumar. Minimizing average
flow-time : Upper and lower bounds. In FOCS, pages
603-613, 2007.

Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy,
Benjamin Moseley, and Kirk Pruhs. Scheduling
heterogeneous processors isn’t as easy as you think. In
Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA *12, pages
1242-1253. SIAM, 2012.

Anupam Gupta, Ravishankar Krishnaswamy, and Kirk
Pruhs. Scalably scheduling power-heterogeneous processors.
In ICALP (1), pages 312-323, 2010.

Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala.
Competitive algorithms from competitive equilibria:
non-clairvoyant scheduling under polyhedral constraints. In
Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 313-322, 2014.
Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and
Kirk Pruhs. Selfishmigrate: A scalable algorithm for
non-clairvoyantly scheduling heterogeneous processors. In
55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 531-540, 2014.

Sungjin Im and Benjamin Moseley. An online scalable
algorithm for minimizing ¢;-norms of weighted flow time on
unrelated machines. In ACM-SIAM Symposium on Discrete
Algorithms, 2011.

Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial
on amortized local competitiveness in online scheduling.
SIGACT News, 42(2):83-97, 2011.

Nicole Immorlica, Li (Erran) Li, Vahab S. Mirrokni, and
Andreas S. Schulz. Coordination mechanisms for selfish
scheduling. Theor. Comput. Sci., 410(17):1589-1598, April
20009.

Bala Kalyanasundaram and Kirk Pruhs. Speed is as powertul
as clairvoyance. Journal of the ACM, 47(4):617-643, 2000.
Elias Koutsoupias and Christos H. Papadimitriou. Worst-case
equilibria. In STACS, pages 404-413, 1999.

Malte Schwarzkopf, Andy Konwinski, Michael
Abd-El-Malek, and John Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. In SIGOPS European
Conference on Computer Systems (EuroSys), pages 351-364,
Prague, Czech Republic, 2013.

Nguyen Kim Thang. Lagrangian duality in online scheduling
with resource augmentation and speed scaling. In Algorithms
- ESA 2013 - 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, pages
755-766, 2013.

	Introduction
	Our Results and Contributions
	Limitations of Previous Approaches
	Our technical contributions
	Other Related Work

	Algorithm Smooth Latest Arrival Processor Sharing (SLAPS) and Its Properties
	Properties of SLAPS
	Weighted Version of SLAPS

	Total (Average) Flow Time
	Dual Fitting

	Extension to Total Flow + Energy
	Algorithm
	Analysis of Total Flow + Energy
	Dual Fitting Analysis for Total Flow + Energy

	References

