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ABSTRACT
In this paper we consider the power of migration in het-
erogeneous machines settings and general profit schedul-
ing. We begin by showing that on related machines
or on related machines with restricted assignment that
any migratory algorithm can be simulated by a non-
migratory algorithm given 1+ε speed augmentation and
O( 1

ε
) and O( 1

ε2
) machine augmentation, respectively,

for any 0 < ε ≤ 1. Similar results were only known
in the case of identical machines and our results effec-
tively show that migration does not give too much ad-
ditional power to an algorithm, even in heterogeneous
environments. Our results are constructive and can be
computed efficiently in the offline setting. We comple-
ment our result by showing that there exists migratory
schedules on related machines which require Ω( 1

ε
) ma-

chine augmentation with (1 + ε)-speed to be simulated
by any non-migratory scheduler for any 0 < ε ≤ 1/2,
showing that machine augmentation without speed aug-
mentation is insufficient for a non-migratory scheduler
to simulate a migratory scheduler.

We then use these results to study general profit
scheduling where a set of n jobs arrive over time online
and every job i has a function gi(t) specifying the profit
of completing job i at time t. The goal of the schedule is
to maximize the total profit obtained. We give a (1+ε)-
speed O( 1

ε2
)-competitive algorithm in the unrelated ma-

chines setting for any ε > 0 when compared against
a non-migratory adversary. Previous results were only
known in the identical machines setting. As an example
of the usefulness of the previous results on migration,
they with the results on genial profit scheduling give a
(1 + ε)-speed O( 1

ε4
)-competitive algorithm for general

profit scheduling when comparing against a migratory
algorithm on related machines with restricted assign-
ment for any ε > 0.
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1. INTRODUCTION
In online scheduling theory a fundamental area of re-

search focuses on designing algorithms for completing a
set of jobs to maximize the amount of profit obtained.
In one of the most basic formulations of this problem,
there are n jobs that arrive over time and each job i
arrives at some time ri. Each of these jobs i is asso-
ciated with a profit wi and a deadline di. If the job i
is completed by its deadline then a profit of wi is ob-
tained and no profit is obtained for the job otherwise.
This problem is known as maximizing throughput (or
throughput maximization).

Throughput maximization has been extensively stud-
ied in the case where the jobs are to be scheduled on
a single machine and preemption is allowed. In this
case, every job has some processing time pi. This line
of work has resolved the complexity of the problem and
it is known that the optimal deterministic competitive
ratio is Θ(δ) where δ is ratio of the maximum to min-
imum density of a job [3, 4, 11, 13]. The density of
a job is wi

pi
, which intuitively is the profit obtained for

each unit of the job processed. The optimal randomized
competitive ratio is Θ(min{log δ, log ∆}) where ∆ is the
ratio of the maximum to minimum job size [6, 10].

Unfortunately, these results can be viewed as unsat-
isfying since they depend on δ and ∆, which could be
super polynomial in the size of the problem instance.
In this face of these strong lower bound, previous work
has resorted to a resource augmentation analysis where
the algorithm is given extra speed over the adversary
[7]. An algorithm is said to be s-speed c-competitive if
it can process jobs an s factor faster than the adversary
and achieves a profit within 1/c factor of the optimal
solution. Using resource augmentation, a (1 + ε)-speed
O(f(ε))-competitive algorithm is known for any fixed
ε > 0 where f is a function of only ε [7].

Work has also considered this problem in more general
machine environments [10, 6, 12, 8]. One such environ-
ment is the identical machines setting. In this case, the
jobs can be scheduled on a set of m machines and every
job has the same processing time no matter which ma-
chine the job is processed on. In this setting, a (1 + ε)-
speed O(1) competitive algorithms are known for any
fixed constant ε > 0 [12, 8]. Interestingly, as far as the
authors are aware, competitive online algorithms have
not been discovered in more general environments, such
as related machine, restricted assignment or unrelated
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machines. In the related machines setting each machine
i runs at a speed si and the processing time of a job on
a machine is pi

si
. In restricted assignment setting, a job

i can only be processed on some subset of the machines
and has processing time pi on each machine it can be
processed on. Finally, the unrelated machines setting
is the most general model where the processing time of
job i on machine j is pi,j and the processing times of
jobs on machines are arbitrary.

Relatively recently, the throughput problem was gen-
eralized to the following problem, which we refer to as
general profit scheduling. In this problem, instead of
each job i having a weight, it is associated with its own
individual function gi(t). The value gi(t) specifies the
profit of completing job i at time t and the goal is to
maximize

∑
i∈[n] gi(Ci) where Ci is the completion time

of job i under some schedule. In past work, the only as-
sumption made of the functions gi(t) is that they are
non-increasing or, in other words, there should be no
incentive to complete a job later. For this very general
problem, (1 + ε)-speed O( 1

ε
)-competitive algorithm is

known on a single machine [2] as well as on identical
machines [12].

A question that is intimately tied with the problems of
maximizing throughput, general profit scheduling, and
many other problems is what power does an algorithm
gain by using migration? That is, when scheduling on
more than one machine, a preemptive algorithm could
be allowed to migrate a job between the machines. The
question is can an algorithm leverage this power to ob-
tain significantly better schedules than an algorithm
which must process each job on exactly one machine?

In general, a migratory algorithm can feasibly com-
plete more jobs than a non-migratory scheduler in the
throughput setting. Interestingly, it has been shown
that this power is fairly limited. In particular, an al-
gorithm was shown in [8] which can convert any fea-
sible migratory schedule on m identical machines to a
a scheduler that is non-migratory using 6m machines.
The schedule ensures that every job is completed only
earlier than in the migratory schedule. This immedi-
ately implies that there exists a non-migratory scheduler
that can achieve profit within 1/6 of any non-migratory
scheduler for throughput and general profit scheduling
without any additional machine or speed augmentation.
To see this, consider doing the conversion and then only
choosing to schedule jobs on the m machine that achieve
the largest profit. In general this fundamental result
shows that for effectively any reasonable objective, one
can convert a migratory scheduler to a non-migratory
scheduler with a small amount of machine augmenta-
tion. Other results that study the power of migration
can be found in [5, 9].

This line of work on profit scheduling problems and
on the power of migration has left open many intrigu-
ing questions. Do there exist competitive algorithms for
throughput maximization in heterogeneous machine set-
tings such as related machine, restricted assignment or
unrelated machines? Could these be extended to find al-
gorithms for general profit scheduling in these settings?
Finally, what is the power of migration on heterogeneous

machines? In this paper, we work towards answering
these questions.

Results: Our work begins by addressing the question of
converting migratory schedules to non-migratory sched-
ules on heterogeneous machines. We say that a non-
migratory schedule simulates a migratory schedule if
the following three properties hold (1) every job is pro-
cessed only after its arrival; (2) every job is completed
only possibly earlier in the non-migratory schedule; and
(3) each job is processed on at most one machine. Our
main result for the conversion is for the related machines
with restricted assignment setting where machines have
different speeds and each job can only be processed on
some subset of the machines.

Theorem 1.1. For any migratory schedule on m re-
lated machines with restricted assignment there exists
a non-migratory schedule that simulates this schedule
when every machine i is given a (1 + ε) factor addi-
tional speed and there are O( 1

ε2
) copies of each machine

for any 0 < ε ≤ 1.

While a similar result for the related machines setting
(with no restricted assignment) (see Theorem 2.4) eas-
ily follows with a small observation from the previous
work [1] on minimizing maximum weighted flowtime on
related machines, we use different techniques to obtain
a more general result. Succinctly, the result in [1] can
be viewed as a clever generalization of the ‘slow-fit’ al-
gorithm on minimizing makespan on related machines
where each job is scheduled on the slowest machine it
can be – to handle jobs arriving over time, a laminar
family of intervals is defined, and a careful volume ar-
gument is performed. On the other hand, we cannot use
a greedy rule to assign jobs to machines since jobs can
be placed on different subsets of machines. Due to this,
we create a network flow for jobs of similar sizes, and
obtain an integral flow which readily translates into an
actual assignment. Here we carefully use the constraints
imposed on intervals that form a laminar family, and
show no machines get too large volume on any interval
in the laminar family. The main challenge is to en-
sure the volume does not accrue too much over multiple
assignments coming from different network flows. The
conversion is constructive and offline.

To complement our positive results, we further show
that machine augmentation is insufficient without speed
augmentation on related machines (even without re-
stricted assignment) unlike the identical machine result
of [8]. This shows that our conversion results are essen-
tially tight for any fixed ε.

Theorem 1.2. There exists a migratory schedule on
related machines such that any non-migratory schedule
with (1 + ε)-speed requires Ω( 1

ε
)-machine augmentation

for any 0 ≤ ε ≤ 1/2.

We leave the case for unrelated machines as an inter-
esting open question, but note that it appears to require
new techniques beyond those used in our work.

With these results in place, we work towards discover-
ing competitive non-migratory schedulers for through-



put and general profit scheduling on heterogeneous ma-
chines. We show that the novel results of [2] on a single
machine, can be generalized to the full extent of unre-
lated machines.

Theorem 1.3. There exists a non-migratory sched-
ule on unrelated machines with (1 + ε)-speed that
achieves a O( 1

ε2
)-competitive for general profit schedul-

ing when compared against a non-migratory adversary.

With these results, we can compare against a non-
migratory adversary on related machines with restricted
assignment using only (1+ε) speed augmentation and no
machine augmentation. Indeed, for any migratory opti-
mal solution one can use Theorem 1.2 to convert it to a
migratory schedule with (1+ε) speed augmentation and
O( 1

ε2
) machine augmentation. Then, for each machine

of the original schedule, choose the copy which achieves
the highest profit in the non-migratory schedule to get
a (1 + ε)-speed O( 1

ε2
)-competitive non-migratory sched-

uler. One can then compare against migratory schedule
to derive the following corollary.

Corollary 1.4. There exists a non-migratory
schedule on related machines with restricted assignment
with (1 + ε)-speed that achieves a O( 1

ε4
)-competitive

for general profit scheduling when compared against a
migratory adversary.

Organization: We begin by studying how to covert
migratory schedules to non-migratory schedules in Sec-
tion 2 and in Section 2.2 we show a lower bound on the
machine augmentation needed for converting a migra-
tory schedule to a non-migratory schedule in the related
machines setting. In Section 3 we study the general
profit scheduling problem on unrelated machines when
comparing against a non-migratory adversary.

2. RELATIONSHIP BETWEEN MI-
GRATORY AND NON-MIGRATORY
SCHEDULES

In this section we begin by showing how to covert a
migratory schedule to a non-migratory schedule in the
related machines setting. Later in the section, we will
discuss the related machines with restricted assignment
setting. Throughout this section, we assume that we are
given a migratory schedule on either related machines
or related machines with restricted assignment. Given
this migratory we define di to be the time the schedule
completes job i. We will refer to this as job i’s deadline
and the time interval [ri, di] as job i’s window. The
window for a job, is the feasible times our scheduler
can execute the job. Note that this time is completely
dependent on the given migratory schedule. Our goal
is to show a scheduler which completes all jobs by their
deadlines, while ensuring every job is executed on only
one machine.

We begin by defining formally the definition of the
type of speed and machine augmentation we will use in
the conversion.

Definition 2.1. We say that a schedule is feasible
with s-speed µ-machine augmentation if all jobs are
completed during their respective windows (and at any
point in time no job is scheduled on more than one ma-
chine) when each machines has µ identical copies and
all machines run s times faster than their original speed.

In the following lemma, we consider the following sit-
uation. Say one has a schedule which ensures that all
jobs are scheduled without using migration. The sched-
ule can be infeasible by allowing a job to be executed
before its arrival and after its deadline, but the interval
the job is executed during can be bounded by (di − ri).
Then we can use such a schedule to construct a feasible
non-migratory schedule.

Lemma 2.2. For any constant δ < 1, consider a
schedule on a single machine with speed s where each
job j is scheduled during time the interval [rj − 1

δ
(dj −

rj), dj+
1
δ
(dj−rj)], which we call j’s (1/δ)-extended win-

dow. Further, assume that in this schedule dj−rj ≥ cpj
for all jobs j for some constant c > 0. Then, for any
γ > 1

c
− 1, there exists a non-migratory schedule on

b(2/δ+3)s/(1+γ− 1
c
)+1c = O( s

(1+γ− 1
c
)δ

) identical par-

allel machines running with speed 1+γ where each job is
scheduled on a single machine (i.e., in a non-migratory
way) during the time interval [rj , dj ]. Further, such a
schedule can be found in polynomial time.

Proof. For notational simplicity, let `j := dj − rj
and m := b(2/δ+3)s/(1+γ− 1

c
)c+1. We construct a de-

sired non-migratory schedule as follows. Consider jobs
in increasing order of their window sizes, and schedule
each job j on an arbitrary machine that has enough idle
times to preemptively process the job before its dead-
line and after its arrival. Observe that job j can not be
assigned to machine i only if the machine processes at
least (1 + γ − 1

c
)`j volume of work for jobs of smaller

windows during [rj , dj ] since machines run with speed
(1 + γ) and dj − rj ≤ cpj . We show that we can always
find a machine to process each job j.

For the sake of contradiction, say j is the first job we
couldn’t schedule. Then, every machine must process
at least (1 + γ − 1

c
)`j volume of work during [rj , dj ] for

jobs of smaller window than job j. Such jobs arrive no
earlier than rj − `j and no later than dj , meaning that
they must be completed by time dj + `j(1 + 1/δ) under
the given schedule on a single machine. Hence we found
a set of jobs of total volume at least (1+γ− 1

c
)`jm that

must be completed during [rj − (1 + 1/δ)`j , dj + `j(1 +
1/δ)] on a single machine of speed s. Since the given
schedule can process at most (2/δ+3)s`j volume of work
during the interval, we obtain m ≤ (2/δ+3)s/(1+γ− 1

c
),

which is a contradiction.

We note that the relationship between migratory
and non-migratory schedules on related machines eas-
ily follows from the following theorem from [1] and
Lemma 2.2.

Theorem 2.3. [1] There is a O(1/ε4)-competitive
non-migratory algorithm to minimize maximum
weighted flow time on related machines with 1 + ε speed



augmentation for any 0 < ε ≤ 1. The competitive
ratio holds even against a migratory optimal schedule.
Furthermore, every job i is scheduled on a machine j
such that pi

sj
≤ 1

wi
, where wi is the weight of job i and

assuming that the optimal solution objective is at most
1.

Theorem 2.4. For any migratory schedule on m re-
lated machines there exists a non-migratory schedule
that simulates this schedule when every machine i is
given O(1+ε) factor additional speed and there are O( 1

ε
)

copies of each machine for any 0 < ε ≤ 1.

Proof. For each job j, define its weight wj to be
1/(dj − rj). Note that the given migratory schedule has
the maximum weighted flow time of (dj − ri)wj = 1.
Theorem 2.3 implies the existence of a non-migratory
schedule with 2-speed that has the maximum weighted
flow time of at most O(1). Note that in this non-
migratory schedule each job must complete by time
rj+O(1)/wj = rj+O(1)·(dj−rj). Applying Lemma 2.2
with δ = O(1), c = 1 and s = 2 on each machine
together with jobs on it, we can find a non-migratory
schedule with 1+γ speed and O(1/γ)-machine augmen-
tation.

2.1 Related Machines with Restricted As-
signment

We now consider the more challenging case where ma-
chines have different speeds and each job only can be
assigned to a subset of machines. We call this setting
as related machines setting with restricted assignment.
The remainder of this section is devoted to proving The-
orem 1.1. As before, we consider an arbitrary migratory
schedule and set di to be the time job i is completed in
the migratory schedule. Our goal will be to construct a
non-migratory schedule that completes each job i during
[ri, di].

For simplicity, we will use slowness factor instead of
speeds – a machine with slowness factor s requires sp
time steps to complete a job of size p. To begin with, we
change the original migratory schedule in the following
manner. Let 0 ≤ ε < 1 be some constant. We want to
convert the schedule to another schedule that ensures a
job i is only scheduled on machines j where di − ri ≥
sjpi
1+ε

. This is so that later we can apply Lemma 2.2.
Note that sjpi is the processing time of job i on machine
j. To do this, notice that the total aggregate amount
any job i can be processed on all machines j where di−
ri <

sjpi
1+ε

is 1
1+ε

pi because a job can only be processed
on one machine at any point in time and the job is
completed during [ri, di]. Using this, we can remove any
portion of a job that is processed on any machine where
di − ri < sjpi

1+ε
. Then we use 1+ε

ε
speed augmentation

on each machine to ensure every job i is fully processed
on machines j where di − ri ≥ sjpi

1+ε
. Then the total

amount a job is processed on these faster machines is at
least pi(1− 1

1+ε
) 1+ε
ε

= pi.
To clarify notation for remainder of the proof, we scale

the slowness of machines such that machine j has slow-
ness s′j := sj · ε

1+ε
and work with these new speeds.

Note that now di − ri ≥
s′jpi
ε

for any machine j job i is

processed on. Now, we assume that each job i is further
restricted so that it cannot be processed on a machine

j where di − ri <
s′jpi
ε

. We will work with the modified
instance. To show our main theorem, we will later re-
duce this O( 1

ε
) speed augmentation by using additional

machine augmentation.
Consider any machine j. For each machine j we cre-

ate a laminar family of intervals: Intervals of length 1,
(0, 1), (1, 2), (2, 3), ... are at the lowest level, and those
of length 2h, (0, 2h), (1 · 2h, 2 · 2h), (2 · 2h, 3 · 2h), ... are
at the hth lowest level – the top level interval should
be long enough to cover the whole schedule. The cre-
ated intervals for machine j are denoted as Ij . We let

I(j, k′, l) denote the interval [(l − 1) · 2k
′
, l · 2k

′
] in Ii.

We create a single-source-single-sink network flow
graph Gk for all jobs with size in [2k−1, 2k) as follows.
The source and sink nodes are denoted as qk,s and qk,t,
respectively. There is a unique node for each job i where
pi ∈ [2k−1, 2k); for notational simplicity, we also refer
to the node as job node i. The source node qk,s is con-
nected to each job node j with capacity 1. For each ma-
chine j we create a node for each interval in Ij . Again,
we abuse the notation I(j, k′, l) to denote the node cre-
ated for the interval I(j, k′, l) ∈ Ij . Each job node i
is connected to the interval node I(j, k′, l) if the follow-
ing conditions hold: (1) The interval I(j, k′, l) intersects
[ri, di]; (2) job i is allowed to be scheduled on machine
j (this is, j is not a restricted machine for job i); and

s′j2
k ∈ [2k

′−1, 2k
′
). The capacity of these edges are 1.

We note that the set of interval nodes a job is connected
to corresponds to the machines and time intervals where
the job can be feasibly processed in the modified migra-
tory schedule and the length of these intervals are within
a factor 4 of the processing time of i on j.

Before we move to explaining how interval nodes
are connected, we define x̃kjI to be the total frac-
tional number of jobs of size in [2k−1, 2k) processed
on machine j during time interval I. In other words,

x̃kjI =
∑
i : pi∈[2k−1,2k)

p′i,j
pi

where p′i,j is the amount

job i is processed on machine j in the migratory sched-
ule. Each interval node I(i, k′, l) is connected to its
unique parent interval node I(j, k′ + 1, dl/2e) with ca-
pacity dx̃kjIe where I = I(j, k′, l). The top level interval
node I ′ for machine j is connected to the sink node qk,t
with capacity equal to dx̃kjI′e. This completes the de-
scription of Gk.

We now explain how to find a non-migratory schedule
using the network flow graphs we constructed above.
We observe that there is a fractional flow respecting the
capacity constraints for each graph Gk such that one
unit of flow is pushed through each job node. Such a
flow is achieved by a natural flow where an edge from
each job node i with size in [2k−1, 2k) sends flow directly
to an interval node I = I(j, k′, l), for machine j, equal to
the fractional amount job i processed during I(j, k′, l) on
machine j. A total of unit flow is pushed from each job
node i. The flow on other edges are defined following
flow conservation. The total flow passing through an
interval node I will be exactly x̃kjI . For each Gk we
find an integral max flow respecting the capacities. This



integral flow can be interpreted as an assignment A of
jobs i with size in [2k−1, 2k) to intervals I(j, k′, l) where

s′j2
k ∈ [2k

′−1, 2k
′
). That is, a job i is matched to an

interval I such that node i is directly connected to the
interval node I. We say job i is matched to interval I
if the node for I is directly connected to the node for j
and a unit of flow passes from node i to node I. Our
goal is to use this assignment to construct a feasible
non-migratory schedule.

We observe that the discovered assignment A has the
following properties. Recall that x̃kjI is the fractional
number of jobs of size 2k assigned to interval I on ma-
chine j.

Claim 2.5. Let x̄kjI denote the integer number of
jobs of size in [2k−1, 2k) assigned to an interval I on
machine j under the assignment A. Then, A has the
following properties.

1. x̄kjI − x̃kjI ≤ 1.

2. A assigns each job i with size pi ∈ [2k−1, 2k) to
a unique machine j and interval I(j, k′, l) whose

length 2k
′

is such that s′j2
k ∈ [2k

′−1, 2k
′
) . Further

j is a feasible machine for i.

3. If A assigns job i to I, then the interval I is com-
pletely contained in [rj−4(dj−rj), dj+4(dj−rj)].

Proof. The first property is immediate from the
fact that A is derived from a flow respecting the ca-
pacity constraints. The second property follows from
the fact that job node i is only directly connected to
intervals nodes corresponding to machines that i can
be feasibly scheduled on and have the desired length.
To see why the third property holds, recall that in
the modified migratory schedule job i can only be pro-

cessed on machines j where di − ri ≥
s′jpi
ε

. Thus if
job i is matched to an interval I(j, k′, l) on machine

j then the length of I(j, k′, l), 2k
′
, must be less than

2s′j2
k ≤ 4s′jpi ≤ 4ε(di − ri) ≤ 4(di − ri). By definition

of the flow networks, a job node i is only connected to
interval nodes where I(j, k′, l) intersects [rj , dj ]. There-
fore, i’s 4-extended window must include I.

We now show that any interval I(j, k′, l) does not get
assigned a lot more volume of jobs than it can handle
over the assignment generated by combining the match-
ings from each graph Gk.

Lemma 2.6. Fix any machine j and consider an in-
terval I(j, k′, l). Let J(j, k′, l) be the set of all jobs
matched to an interval I(j, k, l) ⊆ I(j, k′, l), includ-
ing I(j, k′, l) itself over all matchings found. The total
processing time of the jobs in J(j, k′, l) on machine j,

s′j
∑
i∈J(j,k′,l) pi, is less than 4s′j2

k′ .

Proof. Fix any machine j and an interval I(j, k′, l).
Consider a flow graph Gk and let k′′ be such that

s′j2
k ∈ [2k

′′−1, 2k
′′

) and k′′ ≤ k′. Let I = I(j, k′, l). No-

tice that the total number of jobs with pi ∈ [2k−1, 2k)
matched in Gk to an interval I(j, k′′, l) ⊆ I(j, k′, l) is
at most dx̃kjIe. This is because node I = I(j, k′, l)

in Gk has one outgoing edge of capacity dx̃kjIe and
all flow through nodes I(j, k′′, l) where I(j, k′′, l) ⊆
I(j, k′, l) must pass through node I(j, k′, l). We see that,

s′j
∑
i∈J(j,k′,l),pi∈[2k−1,2k) pi ≤ 2k

′′
dx̃kjIe ≤ 2k

′′
(x̃kjI +

1).
Now our goal is to aggregate the processing time of all

jobs over all matchings found to bound the processing
time of jobs in J(j, k′, l). We see that,

s′j
∑

i∈J(j,k′,l)

pi

≤
∑

k : s′j2
k∈[2k′′−1,2k

′′
),k′′≤k′

2k
′′

(x̃kjI + 1)

≤ 2k
′+1 +

∑
k : s′j2

k∈[2k′′−1,2k
′′
),k′′≤k′

2k
′′
x̃kjI

≤ 2k
′+1 + 2k

′+1

The last inequality follows from the fact that the mi-
gratory schedule was able to processed a x̃kjI fraction

of jobs of size in [2k
′′−1, 2k

′′
) during I(j, k′, l) where

s′j2
k ∈ [2k

′′−1, 2k
′′

).

We now apply Lemma 2.2 for each machine j. Recall
that we scaled each machine’s slowness to be s′j = sj

ε
1+ε

at the beginning of the proof. We now want to con-
vert back to the original problem instance while en-
suring we have a feasible schedule. Notice that if
each machine j runs with slowness s′j/4 it can com-
plete all jobs i such that i is only processed during
[rj − 4(dj − rj), dj + 4(dj − rj)] by the previous lemma.
Further, we know by definition of the problem instance

di−ri ≥
s′jpi
ε

=
sjpi
1+ε

. We can then applying Lemma 2.2
for each machine j by assuming job i has processing

time sjpi on machine j, and setting δ = 1
4
, s = 4(1+ε)

ε
,

c = 1
1+ε

and γ = 1 + 2ε. This give a desired non-
migratory schedule where each machine j has speed-
(1 + 2ε)sj and there are O(1/ε2) copies of machine j,
which completes the proof of Theorem 1.1.

2.2 Lower Bound on Machine Augmenta-
tion

In this section, our goal is to show Theorem 1.2, show-
ing that at least Ω( 1

ε
) machine augmentation is needed

to covert a migratory schedule to a non-migratory sched-
ule in the related machines setting.

Proof of [Theorem 1.2] Fix any constant 0 < ε ≤ 1/2
and consider the following problem instance. There are
n jobs of size 1 that are all released at time 0. There
is a set M1 of n speed-1 machines and a set M2 of εn
speed-5 machines. This completes the description of the
instance.

First we show that there exists a migratory schedule
that completes all of the jobs by time 1 − 2ε. Parti-
tion the jobs into groups G1, G2, . . . Gεn such that each
group contains at most 1

ε
jobs. In the schedule, the

jobs in group Gi is associated with a unique machine in
M2. Additionally, every job is associated with a unique
machine in M1. Each job in Gi is processed on the as-



sociated machine in M2 for ε
2

time steps during [0, 1
2
].

This can be done by say round robining the jobs in Gi on
the machine. Every time step where a job is not being
processed on a machine in M2 the job is processed on
its unique machine in M1. Now we show that the jobs
are competed by time 1− 2ε. Indeed, each job receives
ε
2
· 5 amount of processing by a machine in M2 and in

the remaining 1 − ε
2
− 2ε time steps during [0, 1 − 2ε]

the jobs are processed on a machine in M1 of speed 1.
Thus, the amount of processing completed on a job is
ε
2
5 + 1− ε

2
− 2ε = 1.

Now consider any non-migratory schedule with speed
augmentation 1+ ε and at most 1

10ε
machine augmenta-

tion. Let M ′1 denote all of machines of speed 1+ε in this
schedule and M ′2 denote the machines of speed 5(1 + ε).
We will show that this schedule will not be able to com-
plete all of the jobs by time 1 − 2ε. First notice that
no job can be scheduled on a machine in M ′1 because
then the job will not complete until time 1

1+ε
> 1 − 2ε

for 0 < ε ≤ 1. Thus, all of the jobs are scheduled on
machines in M ′2. There are 1

10ε
· εn = n

10
such machines.

Thus there must be some machine that is assigned 10
jobs. However, these jobs then do not finish until time
10/(5(1 + ε)) > 1− 2ε. 2

We note that in the proof that one machines with two
different speeds are needed and the speeds are bounded
by a constant factor of each other. Notice that this
theorem implies the following corollary.

Corollary 2.7. Machine augmentation (and no
speed augmentation) is insufficient to convert a migra-
tory schedule to a non-migratory schedule.

3. PROFIT SCHEDULING ON UNRE-
LATED MACHINES

In this section, we consider the following general profit
scheduling problem in the online setting. There is a set
of m unrelated machines. There are n jobs which arrive
over time where job i has release time is ri and each
job i is associated with a function gi(t). The function
gi(t) specifies the profit of completing job i at time t
and the only assumption made on gi is that it is non-
increasing. That is, there should be no additional profit
for making a job wait longer to be completed. Notice
the each job has its own individual profit function. Each
job i has a processing time pi,j on machine j. The goal
of scheduler, which completes each job i at a time Ci,
is to maximize

∑
i∈[n] gi(Ci).

We now define our algorithm which is inspired by [2,
12]. We assume the algorithm is given 1 + ε speed aug-
mentation for some ε > 0 and we compare against a non-
migratory adversary. The algorithm is non-migratory
and when a job arrives it commits to the machine that
will schedule the job. However, since we are in the profit
setting, the scheduler may later decide not to schedule
the job at all since there maybe higher profit jobs to
schedule. When a job arrives the scheduler will asso-
ciate it with a set of intervals Ii, which is intuitively are
the times the scheduler is allowed to schedule the job.
These intervals will be fixed the moment a job arrives as
well as the machine the job is to be scheduled on. Let

Aj(t) be the set of all jobs which have been assigned to
machine j by the algorithm by time t and let mi denote
the machine job i is assigned to. Note that the process-
ing time of job i in the algorithm’s schedule is then pi,mi .
The total aggregate length of the intervals in Ii will be

exactly 1+ε/2
1+ε

pi,mi . Implicit in the intervals Ii will be
a time ti where the algorithm hopes to complete job i
by. We call this the tentative completion time. Given
the tentative completion time of job i, let wi = gi(ti) be
the potential profit of job i if we complete it before this
completion time. Note that since gi is non-decreasing,
if we complete i before ti the algorithm obtains at least
wi profit for job i. Finally, we define the density of
job i to be wi

pi,mi
, the potential profit of the job in the

algorithm’s schedule divided by the processing time.
Now consider when job i arrives at time ri. The al-

gorithm considers each machine j and time t. When
considering i and t, the algorithm tests if on machine
j the time t is a good candidate tentative completion
time. Let wi = gi(t) be the potential profit of com-
pleting job i at time t. For a fixed constant α, to be
set later, let S(wi

α
) be the set of jobs assigned to ma-

chine j with density at least wi
α

. Let I be the set of
maximal time intervals during [rj , t] that do not over-
lap with any interval in Ii′ for a job i′ ∈ S(wi

α
). The

time t is feasible if the total length of intervals in I is at

least 1+ε/2
1+ε

pi,j . After testing this for all machines and
times, the algorithm assigns job i to the machine j with
the earliest feasible tentative completion time and sets
Ii to be the set of associated intervals for the machine
and time. Note that there is always such a feasible time
by allowing t to be sufficiently large.

So far, we have specified how to assign jobs to ma-
chine. As for which job to execute on each machine, at
time t on machine j the algorithm schedules the job i
which has the highest density and t is contained in some
interval in Ii.

3.1 Analysis
We begin by making a few observations about the

algorithm, similar to what was shown in [2].

Claim 3.1. Consider any job i and machine j (which
i may or may not have been assigned to). Let t be any
time where t ≥ ri+pi,j and the algorithm sets the tenta-
tive completion time of i to be strictly later than t. Let
L be the amount of time during [ri, t] which is contained
in time intervals in any Ii′ associated with a job i′ as-

signed to machine j which has density at least gi(t)
αpi,j

. It

must be the case that L ≥ ε/2
1+ε

(t− ri).

Proof. If L is less than ε/2
1+ε

(t − ri) than t is a fea-
sible time for job i. Since t is earlier than the tentative
completion time job i, this contradicts the definition of
the algorithm.

Claim 3.2. For any two jobs i and i′ assigned to the
same machine j where Ii and Ii′ contain intervals that
overlap then ui > α

wi′
pi′,j

or ui′ > α wi
pi,j

.

Proof. The proof of the previous claim follows by
definition of Ii and Ii′ .



Let C be the set of jobs completed by the algorithm.
We begin by showing that the profit of the job’s com-
pleted by the algorithm is close to the profit that algo-
rithm would have obtained if it completed all jobs by
their tentative completion times.

Lemma 3.3. The total profit obtained for jobs in C
is at least as much as (1 − 2+ε

4ε(α−1)
)
∑
i∈[n] wi, which is

(1− 2+ε
4ε(α−1)

) multiplied by the total profit the algorithm

would have obtained if it completed all jobs by the ten-
tative completion time.

Proof. We will utilize a charging scheme separately
for each machine j. For each job i in C we allocated wi
units of profit. This profit will be transferred to other
jobs ensuring that every job i′ receives (1− 2+ε

4ε(α−1)
)wi′

units of profit, proving the lemma. For any time t, let
Xt,j be the set of jobs i assigned to machine j that has
an interval in Ii which contains t. The job i with the
highest density in Xt,j transfers profit to the other jobs
in Xt,j an amount of ( 1+ε

2ε
) wi
pi,j

for t.

The proof will follow by showing that each job must
have wi units of profit assigned to it and by showing
that not too much profit is transferred out of the job.
For each job in C, it is assigned wi units of profit. For
any job i assigned to machine j which is not completed,
it must be the case that the algorithm was executing a
more dense job for ε

2(1+ε)
pi,j units of time contained in

Ii by definition of the algorithm. Knowing that any job
i′ is only executed at a time during an interval Ii′ , the
total credit transferred to i is at least 1+ε

2ε
pi,j(

1+ε
2ε

) wi
pi,j

=

wi. Thus, every job is assigned wi profit.
Now, we show that no job i has 2+ε

4ε(α−1)
wi profit trans-

ferred to other jobs. Consider any time t and ma-
chine j. By Claim 3.2 it is the case that the jobs i′

in Xt,j have geometrically decreasing densities on ma-
chine j. Let i be the job in Xt,j with the highest den-
sity. The total profit transferred from job i at time t is
( 1+ε

2ε
) wi
pi,j

∑∞
k=1

1
αk
≤ ( 1+ε

2ε(α−1)
) wi
pi,j

. Knowing that the

total amount of time in Ii is 1+ε/2
1+ε

pi,j the total amount

transferred out of job i is 1+ε/2
1+ε

pi,j(
1+ε

2ε(α−1)
) wi
pi,j

=
2+ε

4ε(α−1)
wi. Thus, every job i is finally assigned (1 −

2+ε
4ε(α−1)

)wi profit.

We have now shown that the total profit the algorithm
obtains is close to the total profit the algorithm would
have received if it completed jobs by their tentative com-
pletion times. Our final goal is to bound the total profit
the algorithm would have obtained if it completed jobs
by their tentative completion time by the profit the ad-
versary obtains, which will complete the analysis. Let
P ∗(X) be the profit he adversary obtains for a set of
jobs X and P (X) be the profit the algorithm obtains
for a set of jobs in X if it completed the jobs in X by
their tentative completion times. Let A1 be the set of
jobs i where the algorithm sets the tentative completion
time i to earlier than when the adversary completes i.
Let A2 be the remaining jobs. Clearly P (A1) ≥ P ∗(A1)
since the jobs’ profit functions are non-increasing. Thus,
our goal is to bound P ∗(A2) by the profit the algorithm
obtains.

Consider some machine j. Let A∗2,j (resp. A2,j) be
the set of jobs the adversary (resp. algorithm) processes
on machine j that are contained in A2 and similarly
let A∗1,j (resp. A1,j) be the jobs the adversary (resp.
algorithm) processes on machine j that are contained in
A1. Our goal will be to bound the profit the adversary
receives for these jobs by the total profit the algorithm
would have received if it completed all jobs assigned to
machine j by their tentative deadline. Let C∗i be the
completion time of job i in the adversary’s schedule and
let w∗i = gi(C

∗) be the profit the adversary obtains
for job i. Let L∗j (u) denote the total length of time
where the adversary is scheduling a job on machine j
whose density in the adversary schedule is at least u.

That is,
w∗i
pi,j
≥ u for a job i assigned to machine j in

the adversary’s schedule. Let Lj(
u
α

) be the total length
of times t such that there is at least one job i in the
algorithm’s schedule assigned to j where t is contained
in an interval in Ii and wi

pi,j
≥ u

α
.

Lemma 3.4. For all machines j and all u > 0,

L∗j (u) ≤ 4(1+ε)
ε

L( u
α

)

Proof. Fix a machine j. We define [ri, C
∗
i ] to be the

window of job i in the adversary’s schedule. Let W ∗j be

the set of windows for jobs in A∗2,j whose density
w∗j
pi,j

is at least u in the adversary’s schedule. Let M be a

minimum subset of jobs in A∗2,j where
w∗j
pi,j
≥ u whose

windows span every time contained in a window in W ∗j .
By minimality, it is the case that no three job in M
contain the same time in their window. Thus, we can
partition M into two sets M1 and M2 such that no two
jobs in M1 (respectively M2) have overlapping windows.
Without loss of generality, assume that the total length
of the windows for jobs in M1 is longer. Note that the
length of the windows in M1 is at least half of the total
amount of time contained in the union of the windows
in W ∗j .

Now consider any job i in M1. We know that the
adversary scheduled job i on machine j during [ri, C

∗
i ]

and therefore C∗i − ri ≥ pi,j . Further, we know that
since i ∈ A∗2,j the algorithm’s tentative completion time
of i is later than C∗i . Thus, by Claim 3.1 it must be
the case that the amount of time during [ri, C

∗
i ] which

is contained in some interval in Ii′ for a job i′ assigned
to machine j by the algorithm whose density is at least
w∗i
αpi,j

, is at least ε/2
1+ε

(C∗i − ri). Knowing that this holds

for all jobs in M1 and M1 is at least half of the total
amount of time content in the union of jobs in W ∗j , we
have the lemma.

Now we are ready to bound P ∗(A∗2,j), the total profit
the adversary obtains for jobs in A2 processed on ma-
chine j by P (A1,j ∪A2,j) the profit the algorithm would
obtain if it completed all jobs by their tentative com-
pletion time which were assigned to machine j.

Lemma 3.5. P ∗(A∗2,j) ≤ α4(1+ε)
ε

P (A1,j ∪A2,j)

Proof. Consider the set of jobs in A∗2,j . Let
k = |A∗2,j | and consider sorting the jobs in A∗2,j from



1, 2, . . . k by their densities in the adversary’s schedule
w∗i
pi,j

in decreasing order. For ease of notation let there

be a job k+1 where
w∗k+1

pk+1,j
= 0. By Lemma 3.4 we know

that for every u, L∗j (u) ≤ 4(1+ε)
ε

L( u
α

). In particular, for

u =
w∗i
pi,j

for a job i ∈ A∗2,j , it is the case that

∑
i′∈A∗2,j ,i

′≤i

pi′,j = L∗j (
w∗i
pi,j

) ≤ 4(1 + ε)

ε
L(

w∗i
pi,j

α
) (1)

=
4(1 + ε)

ε

∑
i′∈A1,j∪A2,j ,

w∗
i

pi,jα
≤
w
i′

p
i′,j

pi′,j . (2)

Using this, we have the following,

P ∗(A∗2,j) =
∑
i∈A∗2,j

w∗i

=
∑
i∈A∗2,j

pi,j
∑

i′∈A∗2,j ,i
′≥i

(
w∗i′

pi′,j
−

w∗i′+1

pi′+1,j

)

[Telescoping summation and
w∗k+1

pk+1,j
= 0]

=
∑
i∈A∗2,j

(
w∗i
pi,j
− w∗i+1

pi+1,j
)

∑
i′∈A∗2,j ,i

′≤i

pi′,j

≤ 4(1 + ε)

ε

∑
i∈A∗2,j

(
w∗i
pi,j
− w∗i+1

pi+1,j
)

·
∑

i′∈A1,j∪A2,j ,
w∗
i

pi,jα
≤
w
i′

p
i′,j

pi′,j [Equation (2)]

=
4(1 + ε)

ε

∑
i∈A1,j∪A2,j

pi,j

·
∑

i′∈A∗2,j ,
w∗
i′

αp
i′,j
≤ wi
pi,j

(
w∗i′

pi,j
−

w∗i′+1

pi′+1,j

)

≤ 4(1 + ε)

ε

∑
i∈A1,j∪A2,j

pi,jα
wi
pi,j

≤ α4(1 + ε)

ε

∑
i∈A1,j∪A2,j

wi

=
α4(1 + ε)

ε
P (A1,j ∪A2,j)

Theorem 3.6. There is a (1 + ε)-speed O( 1
ε2

)-
competitive algorithm for any 0 < ε ≤ 1 on related ma-
chine.

Proof. The total profit obtained by the adversary
is

∑m
j=1 P

∗(A∗1) +P ∗(A∗2). By definition, we know that∑m
j=1 P

∗(A∗1) is a most the profit the algorithm ob-

tains for jobs in A1,
∑m
j=1 P (A1,j). By Lemma 3.5 we

know that P ∗(A∗2,j) ≤ α4(1+ε)
ε

P (A1,j ∪ A2,j). Thus,∑m
j=1 P

∗(A∗1) + P ∗(A∗2) ≤ (1 + α4(1+ε)
ε

)
∑m
j=1 P (A1,j ∪

A2,j).

Now recall that P (A1,j ∪ A2,j) is the total profit
the algorithm would obtain for all jobs assigned to
machine j if they were completed by their tenta-
tive completion time and C is the set of jobs com-
pleted by the algortihm. By Lemma 3.3 we know

that
∑m
j=1 P (A1,j ∪ A2,j) ≤ ( 4ε(α−1)−(2+ε)

4ε(α−1)
)
∑
i∈C wi.

Thus, we have that
∑m
j=1 P

∗(A∗1) + P ∗(A∗2) ≤ (1 +
α4(1+ε)

ε
)( 4ε(α−1)−(2+ε)

4ε(α−1)
)
∑
i∈C wi. Setting α = 1 + 1

ε

completes the proof.

Acknowledgements
S. Im was supported in part by NSF grant CCF-
1409130. B. Moseley was supported in part by a Google
Research Award and a Yahoo Research Award.

4. REFERENCES
[1] S. Anand, Karl Bringmann, Tobias Friedrich,

Naveen Garg, and Amit Kumar. Minimizing
maximum (weighted) flow-time on related and
unrelated machines. In Automata, Languages, and
Programming - 40th International Colloquium,
ICALP 2013, pages 13–24, 2013.

[2] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs.
Competitive algorithms for due date scheduling.
Algorithmica, 59(4):569–582, 2011.

[3] Sanjoy K. Baruah, Gilad Koren, Decao Mao,
Bhubaneswar Mishra, Arvind Raghunathan,
Louis E. Rosier, Dennis Shasha, and Fuxing
Wang. On the competitiveness of on-line real-time
task scheduling. Real-Time Systems, 4(2):125–144,
1992.

[4] Sanjoy K. Baruah, Gilad Koren, Bhubaneswar
Mishra, Arvind Raghunathan, Louis E. Rosier,
and Dennis Shasha. On-line scheduling in the
presence of overload. In Symposium on
Foundations of Computer Science, pages 100–110,
1991.

[5] Ho-Leung Chan, Tak Wah Lam, and Kar-Keung
To. Non-migratory online deadline scheduling on
multiprocessors. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana,
USA, January 11-14, 2004, pages 970–979, 2004.

[6] Bala Kalyanasundaram and Kirk Pruhs.
Fault-tolerant real-time scheduling. Algorithmica,
28(1):125–144, 2000.

[7] Bala Kalyanasundaram and Kirk Pruhs. Speed is
as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

[8] Bala Kalyanasundaram and Kirk Pruhs.
Eliminating migration in multi-processor
scheduling. J. Algorithms, 38(1):2–24, 2001.

[9] Chiu-Yuen Koo, Tak Wah Lam, Tsuen-Wan
Ngan, and Kar-Keung To. Extra processors versus
future information in optimal deadline scheduling.
Theory Comput. Syst., 37(3):323–341, 2004.

[10] Gilad Koren and Dennis Shasha. MOCA: A
multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci.,
128(1&2):75–97, 1994.



[11] Gilad Koren and Dennis Shasha. Dover: An
optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM
J. Comput., 24(2):318–339, 1995.

[12] Kirk Pruhs and Clifford Stein. How to schedule
when you have to buy your energy. In
Approximation, Randomization, and
Combinatorial Optimization. Algorithms and
Techniques, 13th International Workshop,
APPROX 2010, and 14th International Workshop,
RANDOM 2010, Barcelona, Spain, September
1-3, 2010. Proceedings, pages 352–365, 2010.

[13] Gerhard J. Woeginger. On-line scheduling of jobs
with fixed start and end times. Theor. Comput.
Sci., 130(1):5–16, 1994.


	Introduction
	Relationship Between Migratory and Non-Migratory Schedules
	Related Machines with Restricted Assignment
	Lower Bound on Machine Augmentation

	Profit Scheduling on Unrelated Machines
	Analysis

	References

