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We introduce and study a general scheduling problem that we term the Polytope Scheduling problem (PSP).
In this problem, jobs can have different arrival times and sizes; and the rates assigned by the scheduler
to the jobs are subject to arbitrary packing constraints. The PSP framework captures a variety of schedul-
ing problems, including the classical problems of unrelated machines scheduling, broadcast scheduling, and
scheduling jobs of different parallelizability. It also captures scheduling constraints arising in diverse mod-
ern environments ranging from individual computer architectures to data centers. More concretely, PSP
models multidimensional resource requirements and parallelizability, as well as network bandwidth re-
quirements found in data center scheduling.

We show a surprising result – there is a single algorithm that is O(1) competitive for all PSP instances
when the objective is total completion time, and O(1) competitive for a large sub-class of PSP instances
when the objective is total flow time. This algorithm simply uses the well-known Proportional Fairness
algorithm (PF) to perform allocations each time instant. Though PF has been extensively studied in the
context of maximizing fairness in resource allocation, we present the first analysis in adversarial and general
settings for optimizing job latency. Further, PF is non-clairvoyant, meaning that the algorithm doesn’t need
to know jobs sizes until their completion. We establish our positive results by making novel connections with
Economics, in particular the notions of market clearing, Gross Substitutes, and Eisenberg Gale markets.

We complement these positive results with a negative result: We show that for the total flow time ob-
jective, any non-clairvoyant algorithm for general PSP has a strong lower bound on the competitive ratios
unless given a poly-logarithmic speed augmentation. This motivates the need to consider sub-classes of PSP
when studying flow time. The sub-class for which we obtain positive results not only captures several well-
studied models such as scheduling with speedup curves and related machine scheduling, but also captures
as special cases hitherto unstudied scheduling problems such as single source flow routing, routing multicast
(video-on-demand) trees, and resource allocation with substitute resources.

Additional Key Words and Phrases: Online scheduling, polytope constraints, total completion time, total
flow time, non-clairvoyant, market equilibrium, proportional fairness, adversarial input

1. INTRODUCTION
In a typical non-clairvoyant scheduling problem, jobs arrive online in an adversarial
fashion, with the scheduler knowing job characteristics, but not its size. Algorithms
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with good performance guarantees (that is, constant competitive in scheduling par-
lance) in terms of total flow time (latency) or total completion time are known for
disparate problems, such as scheduling jobs on identical parallel machines [Chekuri
et al. 2004], scheduling pages to broadcast [Bansal et al. 2010], or scheduling on par-
allel machines when a job’s rate of execution depends on how many machines it is
allocated [Robert and Schabanel 2008]. However, the techniques for solving these prob-
lems seem quite specialized, and we hit a roadblock when we try to extend these tech-
niques to more general problems, such as scheduling unrelated parallel machines, or
scheduling parallel machines when a job’s rate of execution depends on the total CPU
and memory it is allocated, and so on.

In this paper, we present a unified model for several widely studied scheduling prob-
lems, both classical and modern. We term this general model Polytope Scheduling Prob-
lem (PSP). This model takes a instantaneous resource allocation view of scheduling –
after all, any scheduling algorithm allocates limited resources (broadcast slot, ma-
chine, CPU, etc.) among competing jobs every time instant. The advantage of this view
is that it naturally connects to work in Economics, where there is a significant body
of work on designing resource allocation algorithms with several desirable properties,
such as efficiency or fairness. We focus on one such scheme, termed Proportional Fair-
ness or Nash Product. We show that if the scheduler simply executes this resource allo-
cation scheme every time instant, then the resulting scheduling algorithm is constant
competitive for total completion time on all PSP instances, and is constant competi-
tive for total job latency on a large sub-class of PSP instances. The very existence of
one unifying algorithm that has good guarantees for so many scheduling problems is
indeed quite surprising in itself!

1.1. The Polytope Scheduling Problem (PSP)
In the PSP problem, a scheduling instance consists of n jobs, and each job j has weight
wj , size pj , and arrives at time rj . At any time instant t, the scheduler must assign
rates {yj(t)} to the current jobs in the system. Let yAj (t) denote the rate at which job
j is processed at time t by a scheduler/algorithm A. Job j’s completion time CAj under

the schedule ofA is defined to be the first time t′ such that
∫ t′
t=rj

yAj (t)dt ≥ pj . Similarly,
we define job j’s flow time as FAj = CAj − rj , which is the length of time job j waits to
be completed since its arrival. When the algorithm A and time t are clear from the
context, we may drop them from the notation.

We assume the vector of rates y is constrained by a packing polytope P given by:

P = {By ≤ 1; y ≥ 0} , (1)

where B has non-negative entries.

Problems Modeled by PSP. As mentioned before, the PSP problem captures and gen-
eralizes several widely studied scheduling problems. We discuss these problems in de-
tail in Sections 1.2 and 2. Without going into details, PSP captures the following.

Multi-dimensional scheduling. Here a job’s rate is an arbitrary concave function of
the amount of resources it obtains in each dimension;
Unrelated machine scheduling. Here a job can execute at different speeds on differ-
ent machines, and can be pre-empted and migrated across machines;
Generalized broadcast scheduling. Here jobs receive different speedups from differ-
ent pages that are broadcast;
Routing flows. Here each job needs to route flow of given volume (size) between an
arbitrary source and destination in a capacitated network; and
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Multicast scheduling. Here each job must multicast a given amount of content to
the entire network.

Online, Non-clairvoyant Scheduling Objectives. The class of scheduling algorithms
we consider are constrained by several properties, all of which are naturally motivated
by scheduling applications, both new and old.

— It is online and learns about job j only when it arrives. Before this point, yj = 0.
— It is non-clairvoyant, i.e., does not know a job’s size pj until completing the job.
— It is allowed to re-compute y(t) at any real time t arbitrarily often. This allows for pre-

emption as well as migration across physical machines contributing to resources at
no cost. Though we technically allow infinitely many re-computations, our algorithms
will perform this computation only when jobs either arrive or complete.

Without loss of generality, we will assume the matrix B is known in advance to the
scheduler and are independent of time, so that P itself is time-invariant. One way of
enforcing this is to assume that jobs arrive online from a subset of a (possibly countably
infinite) universe U of possible jobs, and the matrix B are defined over this universe.
This is purely done to simplify our description and notation – in our applications, the
polytope P will indeed be defined only over the subset of jobs currently in the system,
and the algorithms we design will make no assumptions over future jobs.

Under the above assumptions, we will investigate non-clairvoyant online algorithms
that minimize the overall job latency, i.e., the total weighted completion time

∑
j wjCj

and the total weighted flow time
∑
j wjFj . We will compare our algorithm against the

optimal offline scheduler that knows the scheduling instance (wj , pj , rj for all jobs j)
in advance, using the standard notion of competitive ratio. We will use the standard
notion of competitive ratio for analyzing our algorithms. An online algorithm is said to
be α-competitive if for every finite input instance that can be even adversarial, the cost
incurred by the algorithm is at most α times the cost of an optimal offline solution to
the instance.

As mentioned above, our main result in this paper is the analysis of a simple, non-
clairvoyant algorithm termed Proportional Fairness, which we show is constant com-
petitive for total completion time on all PSP instances, and is constant competitive for
total job latency on a large sub-class of PSP instances.

Technical Note.. For the purpose of modeling problems as special cases of PSP, it will
be more convenient to present P using auxiliary variables x as:

P =
{
y | y = Ax; Hx ≤ 1; x ≥ 0

}
where A and H have non-negative entries. It is easy to check that both representations
capture general packing polytopes, and are hence equivalent. In fact, our results do
not depend on the dimension of these polytopes, and hold for general concave rates, so
that yj = fj(x) for non-decreasing concave functions fj , subject to Hx ≤ 1 and x ≥ 0.
It is easy to check that under reasonable smoothness assumptions, such rates can be
encoded by a packing polytope on y to arbitrary precision.

1.2. Running Example: Multidimensional Scheduling
Before proceeding further, we will present a concrete instantiation of PSP motivated
by modern computing systems, which will serve as a running example in this section.
Consider a typical data center setting, where there is a cluster of machines with a
distributed file system implementation (such as HDFS [Shvachko et al. 2010]) layered
on top of the cluster. Users submit executables (or jobs) to this cluster. In a typical
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MAPREDUCE implementation such as Hadoop, each job is a collection of parallel map
and reduce tasks requiring certain CPU, disk space, and memory to execute. The job
therefore comes with a request for resources in each dimension; these can either be
explicitly specified, or can be estimated by the task scheduler from a high-level de-
scription of the job.

This general scheduling scenario termed Multidimensional scheduling has gained a
lot of attention recently (see [Ghodsi et al. 2011] and followup work [Cole et al. 2013;
Zaharia et al. 2008; Ahmad et al. 2012; Popa et al. 2012; Lee et al. 2011]). There are D
different types of resources. In the context of a data center, these could be CPU, disk,
memory, network bandwidth, and so on. The resources are assumed to be infinitely
divisible due to the abundance of resources, and there is Rd amount of resource d. At
each time instant, the resources must be feasibly allocated among the jobs. If job j
is allocated resource vector xj = (xj1, xj2, . . . , xjD), then these must satisfy

∑
j xjd ≤

Rd for all d. The rate yj at which job j executes is determined by a non-decreasing
concave function yj = uj(xj) with uj(0) = 0. Borrowing from Economics, we term these
functions as utility functions. Multidimensional scheduling can therefore be modeled
by

P =

yj = uj(xj) ∀j;
∑
j

xjd ≤ Rd ∀d ∈ [D]; x ≥ 0

 (2)

We discuss several utility functions as we go along. In the special case of Leon-
tief utilities, job j is associated with resource demand vector fj = (fj1, fj2, ..., fjD)
so that it requires fjd amount of the dth resource. When allocated resources xj , it is
processed at a rate that is determined by its bottleneck resource, so that its rate is
yj = mind(xjd/fjd).

The multi-dimensional scheduling problem is not specific to data centers – the same
formulation has been widely studied in network optimization, where resources corre-
spond to bandwidth on edges and jobs correspond to paths, each having its own source
and destination. The bandwidth on any edge must be feasibly allocated to the flows,
and the rate of a flow is determined by its bottleneck allocation. For instance, see [Kelly
et al. 1998] and copious followup work in the networking community.

The focus of multidimensional resource allocation has typically been instantaneous
throughput [Ghodsi et al. 2011], fairness [Ghodsi et al. 2011; Popa et al. 2012; Lee
et al. 2011], and truthfulness [Ghodsi et al. 2011; Cole et al. 2013] – at each time in-
stant, the total rate must be as large as possible, the vector y of rates must be “fair” to
the jobs, and the jobs should not have incentive to misreport their requirements. The
scheduling (or temporal) aspect of the problem has largely been ignored. Only recently,
in the context of data center scheduling, has response time been considered as an im-
portant metric – this corresponds to the total completion time or total flow time of the
jobs. Note that the schedulers in a data center context typically have access to instan-
taneous resource requirements (the vectors fj), but are not typically able to estimate
how large the jobs are in advance, i.e., they are non-clairvoyant. They further are only
aware of jobs when they arrive, so that they are online schedulers. This motivates our
scheduling model.

Though there has been extensive empirical work measuring response times of vari-
ous natural resource allocation policies for data center scheduling [Ghodsi et al. 2011;
Zaharia et al. 2008; Ahmad et al. 2012; Popa et al. 2012; Lee et al. 2011], there has been
very little theoretical analysis of this aspect; see [Bonald et al. 2006; Kelly et al. 2009]
for recent queueing-theoretic analysis of network routing policies. This is the starting
point of our paper – we formalize non-clairvoyant, online scheduling under packing
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constraints on rates as the general PSP problem, and present competitive algorithms
for problems in this framework.

1.3. The Proportional Fairness Algorithm
We show positive results for both the completion time and flow time metrics using a
simple algorithm that has been widely studied in the context of fairness in resource
allocation, dating back to Nash [Nash 1950]. This is the Proportional Fairness (PF)
algorithm [Nash 1950; Kelly et al. 1998; Ghodsi et al. 2011], which has also been called
the Nash Product. Though the algorithm is ancient, our work is the first analysis of
such an algorithm motivated by Economics in the context of adversarial scheduling
theory.

Let At denote the set of jobs alive at time t. At time t, the rates are set using the
solution to the following convex program, called the Eisenberg-Gale convex program.
We term it the PF program. (See Section 3.1 for more details.)

y∗(t) = argmax
{ ∑
j∈At

wj log yj | By ≤ 1; y ≥ 0
}

At any time instant, the online scheduling algorithm simply solves the PF program
and performs rate allocation according to its output. We note that the PF program does
not require knowledge of job size pj , and is hence a non-clairvoyant algorithm.

Though the PF algorithm is well-defined for any PSP instance, for multi-dimensional
scheduling, the program has an intuitive explanation in terms of market clearing.
Consider multidimensional scheduling (Eq (2)) with Leontief utility function uj(xj) =

mind

{
xjd
fjd

}
. This utility function is a special case of homogeneous, concave utility func-

tions of degree 1, meaning that uj(αxj) = αuj(xj) for all α ≥ 0. For such utilities, the
PF algorithm implements a competitive equilibrium on the jobs [Jain and Vazirani
2010]. The KKT conditions on the convex program imply resource d has price λd per
unit quantity. Job j has budget wj , and sets its rate yj by purchasing the best possible
resources subject to these prices, i.e.,

yj = max

{
uj(xj) |

∑
d

λdxjd ≤ wj

}
The convex program optimum guarantees that there exists a set of prices {λd} so that
the market clears – all resources with non-zero price are completely allocated, i.e.,

λd > 0⇒
∑
j

xjd = Rd ∀d

and x is feasible for P. It is known from Economics [Varian 1976] that the result-
ing competitive equilibrium is Pareto-efficient (meaning all jobs cannot increase their
rates simultaneously) and envy-free (meaning that no job prefers the allocation of re-
sources that another job gets to its own allocation). In that sense, such an allocation is
fair every time instant. We don’t elaborate on this since it is not our main focus.

In order to show our positive results, we will crucially use the dual interpretation of
the PF program via KKT conditions, and its connections to market clearing literature
from Economics.

Monotone PSP. An important sub-class of the PSP problem is one where the rates
found by the above convex program are monotone in the set of jobs present currently
in the system. This class termed MONOTONE PSP is formally defined as follows. When
the current set of jobs is S, let yj(S) denote the rate allocated by PF to job j ∈ S.
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Definition 1.1 (Monotonicity of PF). The PF algorithm is said to be monotone if for
any S and ` /∈ S, we have the following condition. For all j ∈ S, yj(S) ≥ yj(S ∪{`}). The
class MONOTONE PSP is the sub-class of PSP for which the PF algorithm is monotone.

Roughly speaking, in the subclass we define, each job’s rate (or utility) can only de-
crease when more jobs are introduced into the system, thus into competition for limited
resources. MONOTONE PSP captures several application scenarios, which we outline
in Section 2.2, and has a natural connection to the notions of Gross Substitutes [Gul
and Stacchetti 1999] and Eisenberg Gale markets [Jain and Vazirani 2010] in Eco-
nomics. An important sub-class of MONOTONE PSP is polymatroidal utilities. This
not only captures related machine scheduling [Gupta et al. 2012a; Im et al. 2014; Im
et al. 2014], but also captures as special cases hitherto unstudied problems such as
single-sink flow routing and routing multicast trees (video-on-demand). We defer the
details to Section 2.2.1. It further includes multidimensional scheduling with substi-
tutes utility functions; we highlight this special case since it continues our discussion
of multidimensional scheduling with homogeneous utilities of degree 1. Such utilities
are closely related to Constant Elasticity of Scale (CES) utilities, defined as:

uj(xj) =

(
D∑
d=1

cjdx
ρj
jd

)1/ρj

(3)

A parameter range of special interest is when ρ ∈ (0, 1] – these utility functions are
widely studied in Economics, and capture resources that are imperfect substitutes of
each other, where the parameter ρ captures the extent of substitutability. Intuitively,
this type of utilities capture substitute resources where deficit in one resource can
be compensated by other resources. A special case as ρ → 0 is termed Cobb-Douglas
utilities: uj(xj) =

∏D
d=1 x

αjd
jd , where

∑
d αjd ≤ 1 and αjd ≥ 0 for all j, d. These utilities

can be used to model task rates in heterogeneous microprocessor architectures [Zahedi
and Lee 2014]. When ρ = 1, CES utilities reduce to linear utilities.

These utilities have a natural connection to the concept of Gross Substitutes in Eco-
nomics, and we use this connection to show in Theorem 1.7 that CES utility functions
when ρ ∈ [0, 1], along with some generalizations, belong to MONOTONE PSP. The gen-
eralization that we term Resource Allocation with Substitutes (RA-S) is presented in
Section 2.2.2 and the result that such functions belong to MONOTONE PSP is pre-
sented in Appendix A1.

1.4. Our Results
Completion Time Metric. For the weighted completion time metric, our main result

is the first constant competitive non-clairvoyant algorithm for PSP. It also yields the
first analysis of the Proportional Fairness algorithm in a general scheduling context.

THEOREM 1.2 (SECTION 3). For the total weighted completion time objective for
PSP, the PF algorithm is O(1)-competitive.

This implies the first such result for a variety of applications that are special cases of
the general PSP framework; these special cases have each been well-studied in their
own right, and are found in Section 2. We summarize our new results in the following
corollary.

COROLLARY 1.3. The PF algorithm is an O(1) competitive non-clairvoyant schedul-
ing policy for the total weighted completion time metric for all the following problems:

1We note that Leontief utilities correspond to CES utilities when ρ→ −∞, and are therefore not monotone.
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— Unrelated machine scheduling;
— Multidimensional scheduling where the rate of a job is an arbitrary concave function

of the resources it obtains;
— Multicommodity flow scheduling, where each job needs to route flow of given volume

between a given source and sink; and
— Broadcast scheduling, where the speedup of jobs can be different for different pages

that are broadcast.

We now present some intuition for why our result is quite surprising. Consider multi-
dimensional scheduling with Leontief utilities (Eq (2)) and recall that D is the number
of resources (or the dimension). When there is only D = 1 dimension, the PF solution
reduces to Max-Min Fairness – the resource is allocated to all jobs at the same rate (so
that the increase in fjxj is the same). Such a solution makes the smallest allocation
to any job as large as possible, and is fair in that sense. Viewed this way, our result
seems intuitive – a competitive non-clairvoyant algorithm needs to behave similarly
to round-robin (since it needs to hedge against unknown job sizes), and the max-min
fair algorithm implements this idea in a continuous sense. Therefore, fairness seems
to be a requirement for competitiveness. However this intuition can be misleading –
in a multi-dimensional setting, not all generalizations of max-min fairness are com-
petitive – in particular, the popular Dominant Resource Fair (DRF) allocation and its
variants [Ghodsi et al. 2011] are ω(1) competitive. Therefore, though fairness is a re-
quirement, not all fair algorithms are competitive.

Multidimensional scheduling is not the only application where the “right” notion
of fairness is not clear. It is not obvious how to generalize the most intuitively fair
algorithm Round Robin (or Max-Min Fairness) to unrelated machine scheduling (see
Section 2 for a definition) – in [Gupta et al. 2012a], a couple of natural extensions of
Round Robin are considered, and are shown to be ω(1)-competitive for total weighted
completion time. In hindsight, fairness was also a key for development of online algo-
rithms in broadcast scheduling (Section 2) [Bansal et al. 2010]. Hence, we find the very
existence of a unified, competitive, and fair algorithm for PSP quite surprising!

Flow Time Metric. We next consider the weighted flow time objective for PSP. We
note that even for classical single machine scheduling, any deterministic algorithm is
ω(1)-competitive [Bansal and Chan 2009]. Further, in the unrelated machine setting,
there is no online algorithm with a bounded competitive ratio [Garg and Kumar 2007].
Hence to obtain positive results, we appeal to speed augmentation which is a popu-
lar relaxation of the worst case analysis framework for online scheduling [Kalyana-
sundaram and Pruhs 2000]. Here, the online algorithm is given speed s ≥ 1, and is
compared to an optimal scheduler which is given a unit speed. More precisely, we com-
pare our algorithm against an optimal omniscient solution which is constrained by the
tighter constraint Hx ≤ 1

s . Note that speed augmentation is done purely for the sake
of analysis and the algorithm is oblivious to it.

THEOREM 1.4 (SECTION 5). For the total weighted flow time objective, there exists
an instance of PSP for which no deterministic non-clairvoyant algorithm is O(n1−ε)-
competitive for any constant 0 < ε < 1 with o(

√
log n)-speed.

Given the generality of the PSP problem leads to strong lower bounds, we seek to
find a subclass of problems that admit positive results. This is where we bring in the
class MONOTONE PSP. Our main result is the following theorem.

THEOREM 1.5 (SECTION 4). For the MONOTONE PSP problem, for any constant
ε ∈ (0, 1/2), PF is (e+ ε)-speed, O

(
1/ε2

)
competitive for minimizing total weighted flow

time.
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This yields the first constant competitive algorithms for several problems presented
in Section 2.2. We summarize the new results in the following corollary.

COROLLARY 1.6. For any constant ε ∈ (0, 1/2), PF is (e+ ε)-speed, O
(
1/ε2

)
compet-

itive for minimizing weighted flow time for the following problems:

— Multidimensional scheduling when the utility functions are CES with ρj ∈ [0, 1], and
its generalization that we term RA-S (defined in Section 2.2.2);

— The setting where jobs need to route flow of given magnitude to the same sink in a
capacitated network; and

— Scheduling multicast trees, where each job requires to multicast content to the entire
network.

The PF algorithm also yields an entirely different (and perhaps more intuitive) con-
stant competitive algorithm for related machine scheduling, for which the first such
result was only obtained recently [Im et al. 2014].

The multicast tree, single-sink flow, and related machine scheduling problems are
special cases where the utility functions form a polymatroid. We present the definition
and details in Section 2.2.1. Jain and Vazirani [Jain and Vazirani 2010] generalize the
notion of market clearing to polymatroidal utilities and term the resulting markets
Submodular Utility Allocation (SUA) markets. For these markets, the PF algorithm
computes the market clearing solution. They define the notion of competition mono-
tonicity: A new agent entering the market leads to greater competition, and hence to
lower utilities for existing agents. They show that SUA markets are competition mono-
tone, which directly implies that polymatroidal utilities fall within MONOTONE PSP.
This implies Theorem 1.5 holds for these problems.

As a final contribution, in Appendix A, we show that the class of CES utility func-
tions and its generalization that we term RA-S (defined in Section 2.2.2) do indeed fall
within MONOTONE PSP, so that Theorem 1.5 holds for these problems.

THEOREM 1.7 (APPENDIX A). The PF algorithm is monotone for CES utility func-
tions defined in Eq (3), and more generally for the RA-S utility functions defined in Eq
(5) in Section 2.2.2.

1.5. Our Techniques
The analysis of Theorem 1.2 is based on dual fitting. Dual fitting is popular for design
and analysis of approximation and online algorithms, but two elegant works in [Anand
et al. 2012; Gupta et al. 2012b] initiated dual fitting approach for online scheduling. As
the name suggests, the key step in dual fitting based analysis is setting dual variables.
In the simplest single machine setting, there is one type of dual variable to be set for
each time, and the sum of those dual variables becomes the completion time when set
to the total weight of unsatisfied jobs at the moment. This idea was successfully used
and adapted even in the multiple machines setting [Anand et al. 2012].

However, in PSP, our task is more complicated – we are required to distribute the
total weight of unsatisfied jobs to the dual variables corresponding to constraints in P.
We therefore connect the dual values found by the KKT condition to the dual variables
of the completion time LP for PSP. This is a challenging task since the duals set by
KKT are obtained by instantaneous (resource allocation) view of PF while the duals in
the LP should be globally set considering each job’s completion time. For the comple-
tion time objective we manage to obtain O(1)-competitiveness by reconciling these two
views using the fact that the contribution of the unsatisfied jobs to the objective only
decreases over time.

We next discuss how we prove Theorem 1.5. Our algorithm involves solving a con-
vex optimization problem each time instant on the set of jobs in the system, in order
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to perform rate allocation. In contrast with single-machine scheduling settings, there
is no closed form for the rates obtained by the PF algorithm. We start with the pri-
mal optimality condition (Proposition 4.1) and the monotonicity of PF algorithm in
order to connect the rates found by PF against any other rate vector. We then use
the framework of amortized local competitiveness [Im et al. 2011], where we define a
potential function on the difference between the algorithm’s job set and the optimal so-
lution’s job set. Our potential naturally generalizes potentials used for single resource
scheduling [Fox et al. 2013]; however, our analysis becomes different in that it uses the
optimality conditions, sometimes iteratively, to show competitive ratio. In hindsight,
we believe primal optimality conditions naturally unify, simplify, and generalize many
such analyses for single resource/machine scheduling.

This approach is different from the dual fitting we use to prove Theorem 1.2. Cur-
rently, we do not know how to extend dual fitting for analyzing the flow time objective,
since this requires highly structured dual variables for the PF convex program, which
may not exist. In contrast, the potential function approach directly works with the
primal optimality conditions of the PF convex program, which yields a new analysis
framework to the best of our knowledge.

1.6. Related Work
We present related work for special cases of PSP in Section 2. At a higher level, we
note that PSP is NP-hard even when all jobs arriving are known a priori – this follows
from the well-known NP-hardness of the problem of minimizing the total weighted
completion time on a single machine. In the offline setting, it is easy to obtain a O(1)-
approximation for PSP in the metric

∑
j wjCj . It can be achieved by LP rounding, for

example, see [Im et al. 2011]; similar ideas can be found in other literature [Schulz and
Skutella 1997; Queyranne and Sviridenko 2002]. Tight upper bounds have been devel-
oped for individual scheduling problems in the completion time metric; see [Williamson
and Shmoys 2011] for a nice overview. In the online setting, several works [Chadha
et al. 2009; Anand et al. 2012] give competitive clairvoyant algorithms for the weighted
flow time objective on unrelated machines. Linear (or convex) programs and dual fit-
ting approaches have been popular for online scheduling [Anand et al. 2012; Gupta
et al. 2012b; Devanur and Huang 2014; Im et al. 2014; Angelopoulos et al. 2015]; for
an overview of online scheduling see [Pruhs et al. 2004]. Though [Azar et al. 2013]
study a general online packing and covering framework, it does not capture temporal
aspects of scheduling and is very different from our framework. Therefore, both the
model and techniques are very different.

We note that multidimensional scheduling has indeed been studied in the special
case of one-dimension. In cluster computing, jobs may have different parallelizability
depending on how efficiently it can be decomposed into tasks [Wolf et al. 2010]. To
capture varying degree of parallelizability, a theoretical model a.k.a. arbitrary speed-
up curves was introduced by Edmonds et al. [Edmonds et al. 2003]. In this model, there
is only one type of resources, namely homogeneous machines, and a job j is processed
at a rate of Γj(mj) when assigned mj machines. The parallelizability function Γj can
be different for individual jobs j, and is assumed to be non-decreasing, and sub-linear
(Γj(mj)/mj is non-increasing). Due to the simplicity and generality, this model has
received considerable amount of attention [Robert and Schabanel 2008; Chan et al.
2011; Edmonds et al. 2011; Edmonds and Pruhs 2012; Fox et al. 2013]. However, no
previous work addresses parallelizability in multiple dimensions, and this is exactly
the multidimensional scheduling model.
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2. APPLICATIONS OF THE PSP FRAMEWORK
In this section, we present several concrete problems that fall in the PSP framework.
For several applications, we present a mapping to the constraints in P to showcase
the flexibility of our PSP framework. We note that our framework can handle various
combinations of these problems as well, and achieves O(1) competitive ratio for the
weighted completion time objective for all of them!

2.1. Applications of the General PSP Framework
We first discuss applications that are captured by the general PSP, for which we obtain
positive results for the weighted completion time objective, and subsequently discuss
applications that belong to MONOTONE PSP, for which we obtain positive results for
the weighted flow time objective. We have already described multidimensional schedul-
ing in detail; we therefore focus on the other applications below.

All-or-nothing Resource Allocation. In the case of multidimensional scheduling with
Leontief utilities in Eq (2), we assumed that a job needs all resources to execute, and
given a fraction of all these resources, it executes at a fraction of the rate. However, in
practice, a job may need to receive its entire requirement in order to be processed [Za-
haria et al. 2008] – this can be necessitated by the presence of indivisible virtual ma-
chines that need to be allocated completely to jobs. Therefore, a job j is processed at
a rate of 1 when it receives the requirement fj , otherwise not processed at all. This
all-or-nothing setting was studied recently in [Fox and Korupolu 2013] when there is
only one dimension. To see how this problem is still captured by PSP, define variables
that encode feasible schedules. Let S denote the collection of subsets of jobs that can
be scheduled simultaneously. Let xS denote the indicator variable which becomes 1 if
and only if S is exactly the set of jobs currently processed. We observe this setting is
captured by the following polytope.

P =
{
yj =

∑
S:j∈S

xS ∀j;
∑
S∈S

xS ≤ 1; x ≥ 0
}

(4)

The solution to P is a set of preemptive schedules that process jobs in S for xS fraction
of time.

Multicommodity Flow Scheduling. In this problem, we are given a capacitated graph
G(V,E), where the capacity of edge e ∈ E is c(e). Each job j requires routing pj amount
of flow from sj to tj in the graph. The flows have to satisfy the capacity constraints. Let
Pj denote the set of paths between sj and tj . We can express this problem as a special
case of PSP as follows:

P =
{
yj =

∑
P∈Pj

xP ∀j;
∑
P |e∈P

xP ≤ c(e) ∀e ∈ E; x ≥ 0
}

A classical result of Kelly et al. [Kelly et al. 1998] shows that the TCP congestion
control algorithm can be viewed as an implementation of proportional fairness in a
distributed fashion. We note that the above problem does not specify the paths taken
by the flow, so that job j could use different paths at different time steps. If the path
that j needs to use is fixed, then it is easy to check that this problem becomes a special
case of multi-dimensional scheduling with Leontief utilities (by treating each edge as
a separate resource).

Non-clairvoyant Scheduling for Unrelated Machines. In this problem there are M
unrelated machines. Job j is processed at rate sij ∈ [0,∞) on each machine i. (Un-
related machines generalize related machines where machines have different speeds
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independent of jobs). The online algorithm is allowed to preempt and migrate jobs at
any time with no penalty – without migration, any online algorithm has an arbitrarily
large competitive ratio for the total completion time [Gupta et al. 2012a]. The impor-
tant constraint is that at any instantaneous time, each machine can schedule only one
job, and a job can be processed only on a single machine.

We can express this problem as a special case of PSP as follows. Let xij denote the
fraction of job j that is scheduled on machine i. Then:

P =
{
yj =

∑
i

sijxij ∀j;
∑
j

xij ≤ 1 ∀i;
∑
i

xij ≤ 1 ∀j; x ≥ 0
}

Note that any feasible x can be decomposed into a convex combination of injective
mappings from jobs to machines preserving the rates of all jobs. Therefore, any solution
to P can be feasibly scheduled with preemption and reassignment. As before, the rates
sj are only revealed when job j arrives. Our result gives the first O(1)-competitive
algorithm for this problem for the total weighted completion time objective. Prior to
our work, a variant of Round Robin was considered for the setting where machines are
related and jobs are unweighted [Gupta et al. 2012a]; however, as pointed out there,
it is not clear how to extend these techniques to take job weights and heterogeneity
of machines into account, and this needs fundamentally new ideas. After our work,
another O(1)-competitive algorithm was found for unrelated machines [Im et al. 2014],
but our result is still interesting since our algorithm is very different and much more
general.

Generalized Broadcast Scheduling. There are M pages of information (resources)
that is stored at the server. The server broadcasts a unit of pages at each time step.
When a page i is broadcast, each job j (of total size pj) is processed at rate sij . The
vector sj of rates is only revealed when job j arrives. Therefore:

P =
{
yj =

∑
i∈[M ]

sijxi ∀j;
∑
i∈[M ]

xi ≤ 1; x ≥ 0
}

This setting strictly generalizes classical fractional broadcast scheduling where it is
assumed that for each job j, the rate sij = 0 for all pages except one page i, and for the
page i, sij = 1. In general, sij can be thought of as measuring how much service imakes
happy client j – for motivations, see [Azar and Gamzu 2011; Im et al. 2012] where
more general submodular functions were considered for clairvoyant schedulers in a
different setting. We note that fractional classical broadcast scheduling is essentially
equivalent to the integral case since there is an online rounding procedure [Bansal
et al. 2010] that makes the fractional solution integral while increasing each job’s flow
time by at most a constant factor (omitting technicalities). The unique feature of broad-
cast scheduling is that there is no limit on the number of jobs that can be processed
simultaneously as long as they ask for the same resource. It has received considerable
attention in theory [Gandhi et al. 2006; Bansal et al. 2008; Bansal et al. 2010; Ed-
monds et al. 2011; Im and Moseley 2012; Bansal et al. 2014] and has applications in
multicast systems, LAN and wireless systems [Wong 1988; Acharya et al. 1995; Aksoy
and Franklin 1999].

2.2. Applications of MONOTONE PSP
We now shift our discussion to applications of monotone PSP for which we show that
PF is O(1)-speed O(1)-competitive for the weighted flow time metric (Theorem 1.5).
As discussed in Section 1, we identify two subclasses of utility functions that induce
monotone PSP– polymatroids and RA-S. These are described below.
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2.2.1. Polymatroidal Utilities. This sub-class of PSP is given by the following polyhedron:

P =

∑
j∈S

yj ≤ v(S) ∀ subsets of jobs S


where the function v(S) is a non-decreasing submodular function with v(φ) = 0. The
feasible region P is therefore a polymatroid [Schrijver 2003].

As mentioned before, Jain and Vazirani [Jain and Vazirani 2010] generalize the
notion of market clearing to polymatroidal utilities and term the resulting markets
Submodular Utility Allocation (SUA) markets. For these markets, the PF algorithm
computes the market clearing solution. They define the notion of competition mono-
tonicity: A new agent entering the market leads to greater competition, and hence to
lower utilities for existing agents. They show that SUA markets are competition mono-
tone, which directly implies that polymatroidal utilities fall within MONOTONE PSP.
This implies Theorem 1.5 holds for these problems.

Many natural resource allocation problems define polymatroids:

Single-sink Flow Scheduling. We are given a directed capacitated graph G(V,E),
with capacities c(e) on edge e ∈ E. Each job j is characterized by a pair of source-sink
vertices, (sj , tj), as well as a total flow value pj and weight wj . If we allocate flow value
yjt for job j at time t, then yjt should be a feasible flow from sj to tj . The {yjt} values
should satisfy the capacity constraints on the edges. In the case where all jobs need
to route to the same sink node t, the rate region P is a polymatroid: For a subset of
jobs S, let v(S) denote the maximum total rate that can be allocated to jobs in S, then
v(S) is a submodular function [Megiddo 1974]. In conjunction with the classical result
of Kelly et al. [Kelly et al. 1998] connecting the TCP congestion control algorithm to
proportional fairness, our result shows that such an implementation is competitive on
delays of the flows, assuming they are routed to a single sink.

Video-on-Demand (Multicast). Consider a video-on-demand setting [Bikhchandani
et al. 2011], where different sources of video streams on a network need to stream
content to all network vertices via spanning trees. Formally, there is a capacitated
undirected graph G(V,E). Job (video stream) j arrives at node vj . If job j is assigned
xT units of spanning tree T , the rate it gets is xT ; this rate is additive across trees.
Any feasible allocation is therefore a fractional assignment of spanning trees to jobs,
so that along any edge, the total amount of trees that use that edge is at most the
capacity of the edge. This rate polytope P is a polymatroid [Bikhchandani et al. 2011].

Related Machine Scheduling. There are M machines, where machine m has speed
sm. The machines are fractionally allocated to jobs; let job j be assigned xjm units of
machine m. The feasibility constraints P require that each machine can be fractionally
allocated by at most one unit, so that

∑
j xjm ≤ 1 for all m; and each job is allocated

at most one unit of machines, so that
∑
m xjm ≤ 1 for all j. The rate of job j is uj(x) =∑

m smxjm. It is shown in [Feldman et al. 2008] that the space P of feasible rates
define a polymatroid2. The aforementioned recent work [Im et al. 2014] gives a O(1)-
speed O(1)-competitive algorithm for this problem, but our result is still interesting
since our algorithm is very different and more natural.

2.2.2. Multidimensional Resource Allocation with Substitutes (RA-S). Recall the Multidimen-
sional Scheduling setting from Eq (2). There are D divisible resources. We assume

2This is not stated as such in their paper, but follows as a simple corollary.

Journal of ACM, Vol. 0, No. 0, Article 0, Publication date: 0000.



Non-clairvoyant Scheduling under Polyhedral Constraints 0:13

by scaling that each of which is available in unit supply, so that Rd = 1. Recall the
Constant Elasticity of Scale (CES) utilities (Eq. 3) we discussed before. In this paper,
we generalize CES functions to a broader class that we term resource allocation with
substitutes or RA-S. These are given by:

uj(xj) =

(
D∑
d=1

(fjd(xjd))
ρj

)1/ρ′j

where ρj ∈ (0, 1] and ρ′j ≥ ρj (5)

Here, the {fjd} are increasing, smooth, strictly concave functions, with fjd(0) = 0.
As before, the constraints P simply capture that each resource can be allocated to
unit amount, so that

∑
j xjd ≤ 1 for all d ∈ {1, 2, . . . , D}. The special case as ρ → 0

corresponds to uj(xj) =
∏D
d=1 (fjd(xjd))

αjd , where
∑
d αjd ≤ 1 and αjd ≥ 0 for all j, d,

which can be viewed as Generalized Cobb-Douglas utilities. The single-dimensional
case (D = 1) corresponds to scheduling with concave speedup curves, which has been
extensively studied in literature [Edmonds et al. 2011; Edmonds and Pruhs 2012; Fox
et al. 2013]. Though we do not present details in this paper, our algorithmic results also
extend to a slightly different class of utilities of the form: uj(xj) = gj

(∑D
d=1 fjd(xjd)

)
,

where gj is increasing, smooth, and strictly concave, with gj(0) = 0.

We show in Appendix A that the RA-S problem belongs to MONOTONE PSP. We
highlight the challenge in this proof. At a high level, the challenge is that the market
equilibrium PF computes may not be equivalent to the more standard Fisher market.
Suppose we view each job j as an agent who will use her budget wj to maximize her
utility in response to resource prices. In a Fisher market, each resource d is set to a
price pd that clears market: No resource is over allocated; for each resource with non-
zero price, supply equals demand; and each agent spends its entire budget. The CES
utilities for ρ ∈ [0, 1] satisfy a property termed Gross Substitutability (GS) [Gul and
Stacchetti 1999]. The GS property means that when the price of a resource increases,
the demand for resources whose prices did not increase only goes up. For utilities sat-
isfying GS, it is easy to show that a market clearing solution will be monotone. Since
the PF algorithm computes this solution, it satisfies monotonicity (Definition 1.1).

For the RA-S utilities (Eq. (5)), the PF algorithm no longer coincides with a Fisher
equilibrium. We therefore prove monotonicity of the PF algorithm from first principles.
Our proof proceeds by considering log uj(x) as a utility function, and viewing the PF
algorithm as computing a Walrasian equilibrium [Gul and Stacchetti 1999] of this
utility function. The GS property would imply that the equilibrium can be computed
by a monotone tatonnement process, and when a new agent arrives, the tatonnement
only increases prices, therefore lowering utility. The key technical hurdle in our case is
that the utility function log uj(x) is not zero when x = 0; in fact it can be unbounded.
We therefore need to show a stronger condition than the usual GS property in order to
establish monotonicity.

3. WEIGHTED COMPLETION TIME FOR PSP: PROOF OF THEOREM 1.2
3.1. The Proportional Fairness (PF) Algorithm and Dual Prices
Recall the definition of P in Eq (1). We first set up useful notation that will be used
throughout this paper. We will refer to our algorithm Proportional Fairness (PF) sim-
ply as A. We let At := {j | rj ≤ t < CAj } denote the set of outstanding/alive jobs at
time t in the algorithm’s schedule. Similarly, let Ut := {j | t < CAj } denote the set of
unsatisfied jobs. Note that At ⊆ Ut, and Ut can only decrease as time t elapses. We let
U0 denote the entire set of jobs that actually arrive. We denote the inner product of two
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vectors v1 and v2 by v1 · v2. For a matrix B, Bi· denotes the ith row (vector) of matrix
B. Likewise, B·i denotes the ith column vector of matrix B. The indicator variable 1()
becomes 1 iff the condition in the parentheses is satisfied, otherwise 0.

As mentioned before, CAj denotes job j’s completion time in A’s schedule. Let
FAj := CAj − rj denote job j’s flow time; recall that rj denotes job j’s release time.
For notational simplicity, we assume that times are slotted, and each time slot is suf-
ficiently small compared to job sizes. By scaling, we can assume that each time slot
has size 1, and we assume that jobs arrive and complete only at integer times. These
simplifying assumptions are w.l.o.g. and will make notation simpler.

At each time t (more precisely, either when a new job arrives or a job is completed),
PF solves the following convex program.

max
∑
j∈At

wj log yj (CPPF)

s.t. By ≤ 1

yj = 0 ∀j /∈ At
Then (PF) processes each job j at a rate of y∗jt where y∗jt is the optimal solution of
the convex program at the current time t. Here the time t is added to subscript since
the scheduling decision changes over time as the set of outstanding jobs, At does. For
compact notation, we use a vector changing over time by adding t to subscript – for
example, y∗t denotes the vector {y∗jt}j . Observe that the constraint y ≥ 0 is redundant
since y∗j > 0 for all j ∈ At.

The dual of CPPF has variables γdt, d ∈ [D] corresponding to the primal constraints
Bd· · y ≤ 1. Let γt := (γ1t, γ2t, ..., γDt). By the KKT conditions [Boyd and Vandenberghe
2004], any optimal solution y∗ for CPPF must satisfy the following conditions for some
γ∗:

γ∗dt · (Bd· · y∗t − 1) = 0 ∀t, d ∈ [D] (6)
wj
y∗jt

= B·j · γ∗t ∀t, j ∈ At (7)

γ∗t ≥ 0 ∀t (8)

3.2. Main Analysis
The analysis will be based on linear programming and dual fitting. Consider the fol-
lowing LP formulation, which is now standard for the weighted completion time objec-
tive [Hall et al. 1997].

min
∑
t,j

wj ·
t

pj
· yjt (PRIMAL)

s.t.
∑
t≥rj

yjt
pj
≥ 1 ∀j ∈ U0

B · yt ≤ 1 ∀t ≥ 0

yjt ≥ 0 ∀t, j

The variable yjt denotes the rate at which job j is processed at time t. The first con-
straint ensures that each job must be completed. The second is the polytope constraint.
It is easy to see that the objective lower bounds the actual total weighted flow time of
any feasible schedule.
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For a technical reason which will be clear soon, we will compare our algorithm to
the optimal schedule with speed 1/s, where s will be set to 32 later – this is only for
the sake of analysis, and the final result, as stated in Theorem 1.2, will not need speed
augmentation. The optimal solution with speed 1/s must satisfy the following LP.

min
∑
t,j

wj ·
t

pj
· yjt (PRIMALs)

s.t.
∑
t≥rj

yjt
pj
≥ 1 ∀j ∈ U0

B · (syt) ≤ 1 ∀t ≥ 0

yjt ≥ 0 ∀j, t ≥ 0

Note that the only change made in PRIMALs is that y is replaced with sy in the
second constraint. We take the dual of this LP; here βt := (β1t, β2t, ..., βDt).

max
∑
j

αj −
∑
d,t

βdt (DUALs)

s.t.
αj
pj
− sB·j · βt ≤ wj ·

t

pj
∀j, t ≥ rj (9)

αj ≥ 0 ∀j (10)
βdt ≥ 0 ∀d, t (11)

We will set the dual variables αj and βdt using the optimal solution of CPPF, y∗jt, and
the corresponding dual variables γ∗dt. The following proposition shows the outcome we
will derive by dual fitting.

PROPOSITION 3.1. Suppose there exist {αj}j and {βdt}d,t that satisfy all constraints
in DUALs such that the objective of DUALs is at least c times the total weighted comple-
tion time of algorithm A. Then A is (s/c)-competitive for minimizing the total weighted
completion time.

PROOF. Observe that the optimal objective of PRIMALs is at most s times that
of PRIMAL. This is because any feasible solution yt for PRIMAL is also feasible for
PRIMALs when the yt is stretched out horizontally by a factor of s – the new schedule
y′t is defined as y′(st) = (1/s)yt for all t ≥ 0. The claim easily follows from the fact that
PRIMAL is a valid LP relaxation of the problem, weak duality, and the condition stated
in the proposition.

We will first show that the dual objective is a constant times the total weighted
completion time of our algorithm, and then show that all dual constraints are satisfied.
Recall that Ut := {j | j < CAj } denote the set of unsatisfied jobs at time t – it is
important to note that Ut also includes jobs that have not arrived by time t, hence
could be different from the set At := {j | rj ≤ j < CAj } of alive jobs at time t. Let
Wt :=

∑
j∈Ut wj denote the total weight of unsatisfied jobs at time t.

We now show how to set dual variables using the optimal solution y∗t of CPPF, and
its dual variables γ∗t . We will define αjt, and set αj :=

∑
t αjt for all j.

Let qjt denote the size of job j processed at time t. Define ζt to be the ‘weighted’
median of qjt

pj
amongst all jobs j in Ut – that is, the median is taken assuming that
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each job j in Ut has wj copies.

αjt :=

{
wj ∀j, t s.t. j ∈ Ut, qjtpj ≤ ζt
0 otherwise

We continue to define βdt as βdt :=
∑
t′≥t

1
sζt′γ

∗
dt′ . We now show that this definition

of αjt and βdt makes DUALs’s objective to be at least Ω(1) times the objective of our
algorithm.

LEMMA 3.2.
∑
j αj ≥ (1/2)

∑
j wjC

A
j .

PROOF. At each time t, jobs in Ut contribute to
∑
j αjt by at least half of the total

weight of jobs in Ut.

LEMMA 3.3. For any time t,
∑
d γ
∗
dt =

∑
j∈At wj ≤Wt.

PROOF.∑
d

γ∗dt =
∑
d

γ∗dt(Bd· · y∗t ) =
∑
d

γ∗dt
∑
j∈At

Bdj y
∗
jt =

∑
j∈At

y∗jt(B·j · γ∗t ) =
∑
j∈At

y∗jt
wj
y∗jt
≤Wt

The first and last equalities are due to the KKT conditions (6) and (7), respectively.

LEMMA 3.4. At all times t,
∑
d βdt ≤

8
sWt.

PROOF. Consider any fixed time t. We partition the time interval [t,∞) into subin-
tervals {Mk}k≥1 such that the total weight of unsatisfied jobs at all times during in Mk

lies in the range
(

( 1
2 )kWt, (

1
2 )k−1Wt

]
. Now consider any fixed k ≥ 1. We upper bound

the contribution of Mk to
∑
d βdt, that is 1

s

∑
t′∈Mk

∑
d ζt′γ

∗
dt′ . Towards this end, we first

upper bound
∑
t′∈Mk

ζt′ ≤ 4. The key idea is to focus on the total weighted throughput
processed during Mk. Job j’s fractional weighted throughput at time t′ is defined as
wj

qjt′

pj
, which is job j’s weight times the fraction of job j that is processed at time t′;

recall that qjt′ denotes the size of job j processed at time t′.

∑
t′∈Mk

ζt′ ≤
∑
t′∈Mk

2
∑
j∈At′

wj
Wt′
· 1
(qjt′
pj
≥ ζt′

)
· qjt

′

pj
≤ 2

1

(1/2)kWt

∑
t′∈Mk

∑
j∈Ut′

wj
qjt′

pj

≤ 2
1

(1/2)kWt
(1/2)k−1Wt = 4

The first inequality follows from the definition of ζt′ : the total weight of jobs in Ut′
with qjt′

pj
≥ ζt′ is at least half the total weight of jobs in Ut′ . The second inequality

is due to the fact that Wt′ ≥ ( 1
2 )kWt for all times t′ ∈ Mk. The last inequality follows

since the total weighted throughput that can be processed during Mk is upper bounded
by the weight of unsatisfied jobs at the beginning of Mk′ , which is at most ( 1

2 )k−1Wt.
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Therefore,∑
d

βdt =
1

s

∑
t′≥t

∑
d

ζt′γ
∗
dt′ =

1

s

∑
k≥1

∑
t′∈Mk

ζt′
∑
d

γ∗dt′

≤ 1

s

∑
k≥1

∑
t′∈Mk

ζt′Wt′ [By Lemma 3.3]

=
1

s

∑
k≥1

4(1/2)k−1Wt [By definition of Mk and the fact
∑
t′∈Mk

ζt′ ≤ 4]

≤ 8

s
Wt

COROLLARY 3.5.
∑
d,t βdt ≤

8
s

∑
j wjC

A
j .

From Lemma 3.2 and Corollary 3.5, we derive that the objective of DUALs is at least
half of PF’ total weighted completion time when s = 32. By Lemma 3.1, it follows
that the algorithm PF is 64-competitive for the objective of minimizing total weighted
completion time.

It now remains to show all the dual constraints are satisfied. Observe that the dual
constraint (10) is trivially satisfied. Also the constraint (11) is satisfied due to the KKT
condition (8).

We now focus on the more interesting dual constraint (9) to complete the analysis of
Theorem 1.2.

LEMMA 3.6. The dual constraint (9) is satisfied.

PROOF.
αj
pj
− wj

t

pj
≤
∑
t′≥t

αjt′

pj
[Since αjt′ ≤ wj for all t′]

=
∑
t′≥t

wj
pj
· 1
(qjt′
pj
≤ ζt′

)
=
∑
t′≥t

wj
qjt′
· qjt

′

pj
· 1
(qjt′
pj
≤ ζt′

)
=
∑
t′≥t

wj
y∗jt′
· qjt

′

pj
· 1
(qjt′
pj
≤ ζt′

)
[Since qjt′ = y∗jt′ ]

≤
∑
t′≥t

B·j · (ζt′γ∗t′) [By the KKT condition (7)]

= sB·j · βt [By definition of βt]

4. WEIGHTED FLOW TIME FOR MONOTONE PSP: PROOF OF THEOREM 1.5
As before, let At denote the set of jobs that are alive at time t; we will often drop t
when the time t in consideration is clear from the context. These include jobs j for
which t ∈ [rj , Cj ]. Recall that Proportional Fairness algorithm computes a rate vector
yt that maximizes

∑
j∈At wj log yj subject to y ∈ P.

Let y∗j (S) denote the optimal rate the PF algorithm allocates to job j ∈ S when
working on a set of jobs, S. We will use the following well-known proposition repeatedly
in our analysis.
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PROPOSITION 4.1 (OPTIMALITY CONDITION). Let y ∈ P denote any feasible rate
vector for the jobs in S. If the space of feasible rates P is convex, then∑

j∈S
wj

yj
y∗j (S)

≤
∑
j∈S

wj

PROOF. For notational simplicity, let y∗j := y∗j (S). Let f(y) =
∑
j∈S wj log yj . We

have ∂f(y∗)
∂yj

=
wj
y∗j

. The optimality of y∗ implies ∇f(y∗) · (y − y∗) ≤ 0 for all y ∈ P. The
proposition now follows by elementary algebra.

Recall that we analyze the PF algorithm under a natural restriction on the utility
functions. Recall from Definition 1.1 that the PF algorithm is said to be monotone if for
any S and ` /∈ S, we have the following condition: for all j ∈ S, y∗j (S) ≥ y∗j (S ∪ {`}). We
term this class of PSP problems as MONOTONE PSP.

We use amortized local competitiveness to show Theorem 1.5. The potential function
we use is the same as that for one-dimensional concave speedup curves [Fox et al.
2013]; however, our analysis is different and repeatedly uses Proposition 4.1 to bound
how the potential function changes when the algorithm processes jobs.

Focus on some time instant t, and define the following quantities. LetOt denote those
alive in OPT’s schedule. For job j, let pjt denote the remaining size of the job in the PF’s
schedule, and let pOjt denote the remaining size of the job in OPT’s schedule. Define a
job j’s lag as p̃jt = max(0, pjt−pOjt). The quantity p̃jt indicates how much our algorithm
is behind the optimal schedule in terms of job j’s processing. Let Lt = {j ∈ At | p̃jt > 0}.
Note that At \ Lt ⊆ Ot.

Consider the jobs in increasing order of arrival times, and number them 1, 2, . . . in
this order. Let A≤jt = At ∩ {1, 2, . . . , j}. Recall that y∗j (S) denote the optimal rate the
PF algorithm allocates to job j ∈ S when working on a set of jobs, S. We define the
following potential function:

Φ(t) =
1

ε

∑
j∈At

wj
p̃jt

y∗j (A≤jt )

We first show the following simple claim, similar to the one in [Fox et al. 2013]. This
crucially needs the monotonicity of the PF algorithm, and we present the proof for
completeness.

CLAIM 4.2. If Φ(t) changes discontinuously, this change is negative.

PROOF. If no jobs arrive or is completed by PF or OPT, the p̃ values change contin-
uously, and the y∗j (A≤jt ) values do not change. Hence, the potential changes continu-
ously. Suppose a job j′ arrives; for notational convenience, we assume that the current
alive jobs are At plus the job j′ that just arrived, and j′ /∈ At. For this job, p̃j′t = 0. Fur-
thermore, this job does not affect y∗j (A≤jt ) for any j ∈ At, since j′ /∈ A≤jt . Therefore, the
potential does not change when a job arrives. Similarly, suppose a job j′ is completed
by OPT but At remains unchanged. Then, none of the terms in the potential change,
and hence Φ(t) does not change. Finally, consider the case where j′ departs from At.
We have p̃j′t = 0. This departure can change y∗j (A≤jt ) for j ∈ At s.t. j′ ≤ j. By the
monotonicity of the PF algorithm, these rates cannot decrease. Therefore, all terms in
the potential are weakly decreasing, completing the proof.

Assuming that PF uses a speed of (e+ε) compared to OPT, we will show the following
at each time instant t where no job arrives or is completed either by PF or OPT. Here,
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W (S) =
∑
j∈S wj .

W (At) +
d

dt
Φ(t) ≤ 2

ε2
W (Ot) (12)

Suppose all jobs are completed by PF and OPT by time T . Observe that∫ T
t=0

d
dtΦ(t)dt ≥ 0 from the facts that the discontinuous changes to Φ are all non-

positive, and Φ(0) = Φ(T ) = 0. Then integrating the above inequality over time, we
have: ∫ T

t=0

W (At)dt+

∫ T

t=0

d

dt
Φ(t)dt ≤ 2

ε2

∫ T

t=0

W (Ot)dt

Note that the first term above is the weighted flow time of PF, the second term is non-
negative, and the RHS is the weighted flow time of OPT. This will complete the proof
of Theorem 1.5.

4.1. Proving Inequality (12)
Consider a time instant t when no job arrives or completes. To simplify notation, we
omit the subscript t from the proof. Let d

dtΦ|O and d
dtΦ|A denote the potential changes

due to OPT ’s processing and PF ’s processing respectively. Note that d
dtΦ = d

dtΦ|A +
d
dtΦ|O.

LEMMA 4.3. d
dtΦ|O ≤

1
εW (A).

PROOF. For job j ∈ A, suppose OPT assigns rate yOj . Then, d
dt p̃j ≤ y

O
j for j ∈ A, due

to OPT’s processing. Therefore, the change in potential is upper bounded by:

d

dt
Φ|O ≤

1

ε

∑
j∈A

wj
yOj

y∗j (A≤jt )
≤ 1

ε

∑
j∈A

wj
yOj

y∗j (A)

The inequality above follows from the monotonicity of the PF algorithm, since A≤j ⊆
A. Using Proposition 4.1, the RHS is at most W (A). This completes the proof.

We now bound d
dtΦ|A, the change in potential due to PF. We first assume PF runs at

speed 1, and we will scale this up later. We consider two cases:

Case 1.. Suppose W (L) ≤ (1 − ε)W (A). Since A \ L ⊆ O, we have W (O) ≥ εW (A).
Since d

dtΦ|A ≤ 0, we have:

W (A) +
d

dt
Φ ≤W (A) +

d

dt
Φ|O ≤

2

ε
W (A) ≤ 2

ε2
W (O)

where the second inequality follows from Lemma 4.3.

Case 2.. The more interesting case is when W (L) ≥ (1− ε)W (A). For j ∈ L, we have
d
dt p̃j = y∗j (A) due to PF’s processing, by the definition of y∗j (A). Therefore,

ε · d
dt

Φ|A ≤ −
∑
j∈L

wj
y∗j (A)

y∗j (A≤j)

For notational convenience, let |S| = κ, and number the jobs in A in increasing order of

arrival time as 1, 2, . . . , κ. For k > j and k ≤ κ, let αjk =
y∗j (A

≤k−1)

y∗j (A≤k)
. By the monotonicity

of PF, we have αjk ≥ 1. Define δjk = αjk − 1. Note that δjk ≥ 0.

Journal of ACM, Vol. 0, No. 0, Article 0, Publication date: 0000.



0:20 S. Im, J. Kulkarni, and K. Munagala

We now apply Proposition 4.1 to the set {1, 2, . . . , k} as follows: For jobs j ∈
{1, 2, . . . , k}, the rate assigned by PF when executed on this set is y∗j (A≤k), and this
goes into the denominator in Proposition 4.1. We consider y∗j (A≤k−1) for j < k, and
y∗k(A≤k−1) = 0 as a different set of rates that go into the numerator in Proposition 4.1.
This yields:

k−1∑
j=1

wj
y∗j (A≤k−1)

y∗j (A≤k)
≤

k∑
j=1

wj

Observing that y∗j (A
≤k−1)

y∗j (A≤k)
= 1 + δjk, we obtain

∑k−1
j=1 wjδjk ≤ wk for k = 1, 2, . . . , κ.

Adding these inequalities for k = 1, 2, . . . , κ and changing the order of summations, we
obtain:

κ∑
k=1

k−1∑
j=1

wjδjk =

κ∑
j=1

wj

 κ∑
k=j+1

δjk

 ≤W (A) =⇒
∑
j∈L

wj

 κ∑
k=j+1

δjk

 ≤W (A)

Let ∆j =
∑κ
k=j+1 δjk, so that the above inequality becomes

∑
j∈L wj∆j ≤ W (A). Now

observe that

y∗j (A)

y∗j (A≤j)
=

κ∏
k=j+1

1

αjk
=

κ∏
k=j+1

1

1 + δjk
≥ exp

− κ∑
k=j+1

δjk

 = exp(−∆j)

We used the fact that δjk ≥ 0 for all j, k. Therefore,

ε · d
dt

Φ|A ≤ −
∑
j∈L

wj
y∗j (A)

y∗j (A≤j)
≤ −

∑
j∈L

wj exp(−∆j)

Since
∑
j∈L wj∆j ≤W (A), the RHS is maximized when ∆j = W (A)/W (L) ≤ 1/(1− ε).

This implies:

ε · d
dt

Φ|A ≤ −
∑
j∈L

wj exp(−W (A)/W (L)) ≤ −W (L) exp(−1/(1− ε)) ≤ −1− 2ε

e
W (A)

for 0 < ε < 1/2. Therefore, if we run PF at speed (e + 3ε), we have: d
dtΦ|A ≤

−
(
1 + 1

ε

)
W (A). Therefore,

W (A) +
d

dt
Φ|O +

d

dt
Φ|A ≤W (A) +

1

ε
W (A)−

(
1 +

1

ε

)
W (A) ≤ 0 ≤W (O)

This completes the proof of Inequality (12) and hence of Theorem 1.5.

5. FLOW TIME LOWER BOUND: PROOF OF THEOREM 1.4
In this section, we prove the lower bound claimed in Theorem 1.4. Towards this end,
we will first prove a lower bound for makespan.

THEOREM 5.1. Any deterministic non-clairvoyant algorithm is Ω(
√

log n)-
competitive for minimizing the makespan (the maximum completion time). Further,
this is the case even when all jobs arrive at time 0.

We prove that Theorem 5.1 implies the desired Theorem 1.4.
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Proof of [Theorem 1.4] Let I0 denote the lower bound instance consisting of N un-
weighted jobs with arrival times 0 that establishes the lower bound stated in Theo-
rem 5.1. By scaling, we can w.l.o.g. assume that the optimal (offline) makespan for I0
is 1. For any fixed ε > 0, we create N1/ε copies of instance I0, {Ie}e∈{0,1,2,...,N1/ε−1}
where all jobs in Ie arrive at time e. There is a global constraint across all instances
{Ie} that enforces the scheduler to pick only one instance to work on at any point in
time. More precisely, if each instance is constrained by polytope Bexet ≤ 1, then using
auxiliary variables set we connect the polytopes as follows:

Bexet ≤ se ∀t, e (13)∑
e

set ≤ 1 ∀t, e (14)

set ≥ 0 ∀t, e, (15)

Here, for simplicity we omitted the obvious constraints on xet we have due to jobs
arrival, and xet ≥ 0. It is easy to check that this forms a downward closed polytope
by observing that the feasible solution set is downward closed and convex. Due to Eq.
(14), the scheduler is forced to work on only one instance at any instantaneous time.
Or equivalently, if the scheduler chooses to work on Ie using se fractional of its total
capacity at an instantaneous moment, then it can process jobs in Ie at a rate of se
times that it could if it used its whole capacity on processing Ie. Note that we are not
imposing precedence constraints; the scheduler can work on instances {Ie} in arbitrary
order.

Then, any deterministic non-clairvoyant algorithm that is given speed less than half
the lower bound on makespan stated in Theorem 5.1 cannot complete all jobs in each
Ie within 2 time steps. It is easy to see that there are at least e/2 jobs alive during
[e, e + 1) for any e ∈ {0, 1, 2, ..., N1/ε − 1}. Hence any deterministic non-clairvoyant
algorithm has total flow time Ω(N2/ε). In contrast, the optimal offline scheduler can
finish all jobs within 1 time step, thus having total flow time O(N ·N1/ε). This implies
that the competitive ratio is Ω(n(1−ε)/(1+ε)) where n is the number of jobs in the entire
instance concatenating all Ie, completing the proof of Theorem 1.4. 2

Henceforth, we will focus on proving Theorem 5.1. Our lower bound instance comes
from single source routing in a tree network with “multiplicative speed propagation”.
This network is hypothetical: a packet is transferred from node va to vb at a rate equal
to the multiplication of speeds of all routers that the packet goes through. To give
a high-level idea of the lower bound, we fist discuss the one-level tree instance, and
then describe the full lower bound instance. Throughout this section, we refer to an
arbitrary non-clairvoyant algorithm as A.

One-level instance: I(1). The root ρ has ∆1 := 4 routers where only one router has 2-
speed and the other routers have 1-speed. There are ∆1 packets (or equivalently jobs)
to be routed to the root ρ. Only one job has size 22 − 1 = 3, and the other jobs have
size 21 − 1 = 1. Each job must be completely sent to the root, and it can be done only
using routers. At any time, each router can process only one job. This setting can be
equivalently viewed as the related machine setting, but we stick with this routing view
since we will build our lower bound instance by multilayering this one-level building
block. Obviously, the optimal solution will send the big job via the 2-speed router, thus
having makespan 3/2. Also intuitively, the best strategy for non-clairvoyant A is to
send all jobs at the same rate by equally assigning the 2-speed router to all jobs. Then
it is easy to see that the online algorithm can complete all 1-size jobs only at time
∆1/(∆1 + 1), and complete the size-3 job at time ∆1/(∆1 + 1) + 1 = 9/5. Observe
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that giving more 1-speed routers does not help the online algorithm since the main
challenge comes from finding the big job and processing it using a faster router.

Multi-level instance: I(h), h ∈ [H = Θ(
√

log n)]. We create a tree Th with root ρwhere
all jobs are leaves and each job j can communicate with its parent node u(j) via one
of u(j)’s routers, and the parent u(j) can communicate with its parent node u(2)(j) via
one of u2(j)’s routers, and so on; node/job v’s parent is denoted as u(v). The tree Th has
height h. Every non-leaf node v has ∆h = 4h children, which are denoted as Cv. Also
each non-leaf node v has a set Rv of routers, whose number is exactly the same as that
of v’s children, i.e. |Rv| = |Cv| = ∆h. All routers in Rv have 1-speed except only one
which has 2-speed. We say that a node/job v has depth d′ if ud

′
(v) = ρ. Note that all

jobs have depth h.
At any time, a feasible scheduling decision is a matching between routers Rv and

nodes Cv for all non-leaf nodes v; when some jobs complete, this naturally extends to
an injective mapping from Cv toRv. To formally describe this, let g denote each feasible
scheduling decision. Note that each feasible schedule g connects each job to the root by
a sequence of routers. Let zg denote the indicator variable for g. Let ηj(g) denote the
number of 2-speed routers in the sequence of routers given to j in schedule g where
job j is processed at a rate of 2ηj(g). We can formally describe this setting using PSP as
follows:

P =
{
yj ≤

∑
g

2ηj(g)zg ∀j;
∑
g

zg ≤ 1; y ≥ 0; z ≥ 0
}

(16)

We now describe job sizes. Recall that A is non-clairvoyant, meaning that it faces the
challenge of finding big jobs. Each non-leaf node v of depth less than h − 1 has one
special “big” child amongst its ∆h = 4h children Cv – a big child will have bigger jobs in
its subtree, which will be formally stated shortly. For each node v of depth h− 1, define
ηv to be the number of “big” nodes on the unique path from v to the root including v
itself. Then v’s children (jobs), Cv have the following sizes: for any integer 0 ≤ k < ηv,
the number of jobs of size 2k+1 − 1 is exactly 4h−ηv (4ηv−k − 4ηv−k−1); for k = ηv, there
are 4h−ηv jobs of size 2ηv+1− 1. Note that there is only one job of size 2h+1− 1 in Th and
it is the biggest job in the instance I(h).

The final instance will be I(H). Since I(H) has 4H
2

jobs, we have H = Θ(
√

log n).
For a visualization of the instance, see Figure 1.

LEMMA 5.2. There is an offline schedule that completes all jobs by time 2.

PROOF. For each node v of depth less than H − 1, we assign its unique faster router
in Rv to its unique big node in Cv. At the bottom level, jobs can be mapped to any
routers. Consider any non-leaf node v of depth H − 1. The lemma follows since all jobs
in Cv have size at most 2ηv+1 − 1, and all of them are processed at a rate of at least
2ηv .

We now discuss how A performs for the instance I(H). We first give a high-level
overview of the adversary’s strategy which forces A to have a large makespan. Then,
we will formalize several notions to make the argument clear; the reader familiar with
online adversary may skip this part.

A high-level overview of the adversary’s strategy. As mentioned before, the main dif-
ficulty for the non-clairvoyant algorithm A comes from the fact that A does not know
which jobs/nodes are big, hence cannot assign big nodes to faster routers – for example,
all subtrees induced by the root’s children are indistinguishable toA. Such sub-optimal
decisions will accrue over layers and will yield a gap Ω(H). To simplify our argument,
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Fig. 1. Routers are represented by rectangles and jobs/nodes by circles; jobs are leaf nodes. The tree has
height H = Θ(

√
logn). Each non-leaf node has 4H children, and for each node of depth less than H − 1,

there is only one big child node, shown by dotted circle, which is hidden from the online algorithm. Each
node/job (except the root) has to be mapped to a router attached to its parent node. The sizes of jobs having
the same parent node depend on the number of big nodes on the path from the job to the root.

we allow the adversary to decrease job sizes. That is, at any point in time, the adver-
sary observes the non-clairvoyant algorithm A’s schedule, and can decrease the size of
any alive job, or can even remove it. This is a valid strategy for the adversary since the
algorithm A is non-clairvoyant, and can only be better off for smaller jobs. Also, this
does not increase the optimal solution’s makespan.

Consider any non-leaf node v 6= ρ. Let us say that the subtree Tv rooted at v is big
(resp. small) if the node v is big (resp. small). If the node v has used the unique 2-speed
router in Ru(v) for 1/2H+1 time steps, the adversary removes the subtree Tv rooted
at v (including all jobs in Tv). We now show that at time 1/2, the adversary still has
an instance that is essentially equivalent to I(H − 1). By repeating this, the online
algorithm will be forced to have a makespan of at least H/2. We show two crucial
properties.

(1) At time 1/2, each alive non-leaf node has at least 4H−1 children.
(2) Any alive job has been processed by strictly less than 1.

The first property easily follows since each non-leaf node has 4H children, and at
most 2H of its children can be removed by time 1/2. To see why the second property
holds, consider any job j. Observe that each of j’s ancestors (including j itself) used the
2-speed router only for 1/2H+1 time steps. Here the maximum processing for job j can
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be achieved when j’s all ancestors use the 2-speed routers simultaneously for 1/2H+1

time steps, which is most 1/2. Also note that the total length of times job j is processed
by the combination of 1-speed routers only is at most 1/2, and strictly less than 1/2 if
any 2-speed routers were used. Hence the second property holds.

Due to the second property, the online algorithm cannot find the big subtree incident
to the root. This is because all subtrees incident to the root are indistinguishable to the
algorithm by time 1/2, hence the adversary can pick any Tv∗ of those alive, and declare
it is big. The adversary keeps only the big subtree incident to the root. By the same
argument, for any non-leaf node v 6= ρ of depth less than H − 1, the adversary can
remove all nodes in Cv except exactly 4H−1 including the big node. The adversary can
assume w.l.o.g. that all the remaining jobs have been processed exactly by one unit by
decreasing job sizes appropriately. Then, of all jobs sharing the same parent node, the
adversary keeps exactly 4H−1 jobs with sizes greater than 1. This is well defined since
there are exactly 4H−4H−1 unit-sized jobs sharing the same parent node. Observe that
each alive job has remaining size 21 + 22 + ...+ 2k = 2(2k − 1) for some k ≥ 1.

Since Tv∗ is the only subtree incident to the root, we can assume w.l.o.g. that A
assigns the 2-speed router to v from now on. This has the effect of decreasing each
job’s remaining size by half. Hence, the subtree Tv∗ exactly coincides with the instance
I(H − 1). This will allow the adversary recurse on the instance I(H − 1), thereby mak-
ing A’s makespan no smaller than H/2 = Ω(

√
log n). This, together with Lemma 5.2,

establishes the claimed lower bound on makespan, thus proving Theorem 5.1 and The-
orem 1.4.

We formalize several notions (such as decreasing job sizes, indistinguishable in-
stances) we used above to make the argument more clear. To this end it will be useful
to define the collection S := S(0) of possible instances that the adversary can use. The
adversary will gradually decrease the instance space S(t) depending on the algorithm’s
choices till time t. The adversary can only reduce S(t) in time t. The deterministic algo-
rithmA cannot distinguish between instances in S(t) at time t, and hence must behave
exactly the same by time t for all the instances in S(t). In this sense, all instances in
S(t) are indistinguishable to A by time t.

All instances in S follow the same polytope constraints for I(H), but there are two
factors that make the pool of instances, S rich. The first factor is “hidden” job IDs:
Each non-leaf node v of depth less than H − 1 has only one big child, and it can be
any of its children, Cv. In other words, this is completely determined by a function ψ
that maps each of such non-leaf nodes, v to one of v’s children, Cv. Consider any fixed
ψ. Then for each non-leaf node v of depth H − 1, the sizes that v’s children can have
are fixed – however, the actual mapping between jobs and job sizes can be arbitrary.
So far, all instances can be viewed equivalent in the sense that they can be obtained
from the same instance by an appropriate mapping. By a job j’s ID, we mean the job in
the common instance that corresponds to job j. The second factor is “flexible” job sizes.
Note that in I(H), a job j’s ID determines its size completely. This is not the case in S,
and we can let each job have any size up to that determined by its ID.

The adversary will start with set S(0, H) – here we added H since the set is con-
structed from I(H). The adversary’s goal is to have S(1/2, H) that essentially includes
S(0, H−1) with jobs arrival times changed to 1/2. By recursively applying this strategy,
the adversary will be able to force A to have a makespan of at least H/2. As observed
in Lemma 5.2, for any instance in S(0), all jobs in the instance can be completed by
time 2 by the optimal solution, and this will complete the proof of Theorem 5.1.

We make use of the two crucial properties we observed above to show that S(1/2, H)
still is rich enough to fool the algorithm. For any non-leaf node v, the adversary re-
moves a subtree rooted at v as soon as the algorithm has assigned the 2-speed router
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to v for 1/2H+1 time steps; all jobs in the subtree disappear from each of the remaining
possible instances. Since all the possible instances are indistinguishable to the algo-
rithm, the adversary can choose any alive subtree Tv∗ incident to the root, and delete
other sibling subtrees. This will reduce the set of possible instances. From time 1/2, all
instances in S(1/2, H) must satisfy the restriction that v∗ is big.

Also, at time 1/2, the adversary deletes nodes/jobs in Tv∗ so that each non-leaf node
has 4H−1 children. All jobs of size 1 are removed, and no big node is removed in this
process. The adversary can still choose any mapping (the adversary can pick any node
from each set of the alive sibling nodes (not jobs) and set it to be big). Note that and
any remaining instance in the pool has the same “hidden Job ID” flexibility as S(0, H−
1). Hence, by decreasing job sizes or removing some jobs, the adversary can make
S(1/2, H) become essentially equivalent to S(0, H − 1). In other words, all instances
in S(1/2, H) have the big subtree Tv∗ incident to the root (v∗ is assigned the 2-speed
router), and the subtree encodes all instances in S(0, H − 1) – more precisely, the root
of all instances in S(0, H − 1) is replaced with v∗ and jobs arrival times with 1/2. While
the job sizes are also doubled, the effect is nullified by v∗ being assigned the 2-speed
router. This allows the adversary to apply his strategy recursively. Hence we derive
the following lemma which completes the proof of Theorems 5.1 and 1.4.

LEMMA 5.3. For any instance in S(H), there is a way to complete all jobs in the
instance by time 2. In contrast, for any deterministic non-clairvoyant algorithmA, there
is an instance in S(H) for which A has a makespan of at least H/2.

Finally, we discuss the lower bound in terms of the number of constraints that define
the polytope over jobs processing rates, {yj}j . We first rewrite the polytope in Eq. (16)
only in terms of {yj}j . Let G denote the set of all possible schedules, g. Note that
|G| < ((4H))n/H = 4n since for each non-leaf node v, one can map exactly one of its
4H children to the unique 2-speed router in Rv, and there are less than 1 + 4H +

42H + ... + 4H(H−1) < n/H non-leaf nodes; recall that n = 4H
2

. Hence, the polytope
over {g} subject to

∑
g zg ≤ 1 consists of at most 4n vertices, denoted as v1, v2, ..., vK .

Each job j’s processing rate, yj is expressed as a linear combination of zg, so we can
compactly express it as y ≤ Az where A is an appropriate matrix consisting of non-
negative entries. Then, the polytope over {yj}j is a downward closure of convex hull of
Av1, Av2, ..., AvK , so it has at most 24

n

constraints.
We now shift out discussion to how to express the polytope (13)-(15) in terms of {yj}.

Note that each Be (omitting t for notational simplicity) has L = 24
n

constraints from
the above discussion. To remove se variables, we choose one row from each Be and add
up the chosen rows – the right-hand-side is replaced with one. It is easy to see that this
expanded expression with D := LN

1/ε

= LN
2

constraints is equivalent to the original
polytope; here we set ε = 1/2 for simplicity.

Recall that we have shown that no non-clairvoyant algorithm has a competitive ratio
O(N) when given speed less thanH/8 whereN = n andH = Θ(

√
log n). This translates

into a lower bound of Ω(log logD) when given speed less than O(
√

log log logD).
To derive a lower bound when the algorithm is given a constant speed, for some

constant H, we use I(H) as Ie (with job sizes halved). Note that the number of jobs in
I(H) is O(1), hence L = O(1). If we concatenate E instances, I0, I1, ..., IE−1, then when
the algorithm is given less than H/8 speed, the algorithm will have total flow time at
least Ω(E2) while the optimal scheduler has total flow time at most O(E) resulting in a
lower bound of Ω(E). Since there are at least D = Θ(1)E constraints, we derive a lower
bound of Ω(logD).
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COROLLARY 5.4. Let D denote the number of constraints. For the total flow time
objective, any non-clairvoyant deterministic algorithm is Ω(log logD)-competitive when
given speed less than o(

√
log log logD), and is Ω(logD)-competitive when given any con-

stant speed.

6. CONCLUSIONS AND OPEN QUESTIONS
We conclude with some open questions. An immediate open question is to extend The-
orem 1.5 so that the speed is 1 + ε for any ε > 0. Though this can be done in the
single-machine setting [Fox et al. 2013], that analysis crucially required a closed form
for the allocations and rates. Our analysis is based on optimality conditions of PF, and
extending it seems to encounter fundamental roadblocks.

Next, our lower bound for flow time for general PSP requires speed ω(1) to show any
bounded competitive ratio. However, as stated in Corollary 5.4, the lower bound grows
very slowly in the number of dimensions/constraints. This brings up the open question
of designing a constant-speed algorithm for multidimensional scheduling with Leontief
utilities, whose competitive ratio for flow time is poly(D), where D is the number of
dimensions (or resources). We believe this will require fundamentally new ideas. A
related question is to show lower bounds for flow time of PSP even with clairvoyance –
the lower bound we presented holds only for non-clairvoyant algorithms. We note that
a clairvoyant O(1)-speed O(logD)D-competitive algorithm is known [Im et al. 2015].

A more open-ended question is to characterize the class MONOTONE PSP and study
its precise connection to market clearing for a suitably defined Fisher market, extend-
ing the work of [Jain and Vazirani 2010]. As we emphasized, we crucially require the
optimality condition of PF. In many cases, even if a market clearing solution exists,
the PF algorithm will not find this solution, and therefore we cannot use monotonicity
characterizations from market clearing literature. A related question will be to study
other algorithms whose optimality conditions have simple characterizations.
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A. MONOTONICITY OF RA-S: PROOF OF THEOREM 1.7
We will show the following theorem, which will immediately imply Theorem 1.7.

THEOREM A.1. The RA-S utility functions defined in Eq (5) are concave (which
implies the space P is convex). Furthermore, the PF algorithm is monotone for these
functions.

The first part follows by easy algebra. The CES utility function given by Eq (3), when
ρ ∈ (0, 1], is homogeneous of degree one and quasi-concave. This implies it is concave
[Bergstrom 2014]. The RA-S utilities are obtained by a monotone concave transforma-
tion of the variables and the entire function. This preserves concavity. This implies the
space P of feasible utilities is convex.

The remainder of this section is devoted to proving the second part of the theorem.
Recall that for RA-S, the space P is given by the following (where ρ ∈ [0, 1] and ρ′ ≥ ρ):

P =

yj = uj(yj) =

(
D∑
d=1

(fjd(xjd))
ρj

)1/ρ′j

,
∑
j

xjd ≤ 1 ∀d


Let hjd(xjd) = (fjd(xjd))

ρj . This function is increasing and strictly concave, assuming
the same is true for fjd. Further hjd(0) = 0. Define:

vj(yj) = wj log uj(yj) =
wj
ρ′j

log

(
D∑
d=1

hjd(xjd)

)
For price vector p = {p1, p2, . . . , pD} ≥ 0, define the demand function Xj(p) as follows:

Xj(p) = argmaxyj≥0 (vj(y)− p · yj) and Uj(p) = uj(Xj(p))

Note that Xj(p) is uniquely defined for given p due to the strict concavity of vj(y) (see
the first part of Theorem A.1), so Uj(p) is well-defined.

LEMMA A.2. Consider an arbitrary price vector p, and a different price vector p′

that only differs from p in the rth dimension. Assume p′r > pr. Let yj = Xj(p) and
y′j = Xj(p

′). Then:

(1) If xjr > 0, then Uj(p
′) < Uj(p). Furthermore, x′jr < xjr, and for all d 6= r, x′jd ≥ xjd.

(2) If xjr = 0, then Uj(p
′) = Uj(p). Furthermore, for all d, x′jd = xjd.

Further, we have a stronger property that if xjr > c, then Uj(p)−Uj(p′) ≥ c′(pr− p′r) for
a finite c′ > 0 when the following conditions are satisfied:

— For all j, d, hjd has a bounded curvature over the domain [c, C] for finite values
c, C > 0, i.e. there exist γ = γ(c, C) and δ = δ(c, C) such that γ(y2 − y1) ≤ h′jd(y1) −
h′jd(y2) ≤ δ(y2 − y1) for all c ≤ y1 ≤ y2 ≤ C.

— Both vectors p and p′ are upper bounded by a finite vector.

PROOF. Since we focus on a single job j, we omit the subscript j in the proof. Focus
on dimension r. Let q = wj/ρ

′
j . Let W (y) = (Uj(y))ρ

′
j ; since Uj(y) is strictly monotone

in y, the same holds for W (y). Note that W (·) also can be viewed as a function of p
since p uniquely determines x. Partially differentiating vj(x)−p · xj w.r.t. xd, we have
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the following (sufficient and necessary) optimality condition:

xd > 0 ⇒ q

W (y)
h′d(xd) = pd and xd = 0 ⇒ q

W (y)
h′d(xd) ≤ pd

Consider price vector p′ with p′r > pr and p′d = pd for all d 6= r. If xr = 0, this does not
change the optimality condition above for any dimension d, so that the second part of
the lemma follows.

If xr > 0, suppose W (p′) ≥ W (p). This implies h′(xr) < h′(x′r) since p′r > pr. To
satisfy the optimality condition, we must therefore have x′r < xr by the strict concavity
of hr. The same argument shows that for all dimensions d 6= r, x′d ≤ xd. But this implies
W (p′) < W (p), which is a contradiction. Therefore, we must have W (p′) < W (p).

Now consider any dimension d 6= r. Since p′d = pd and W (p′) < W (p), the optimality
condition implies that h′d(x

′
d) ≤ h′d(xd). This implies x′d ≥ xd. However, since the utility

strictly decreased, this must imply x′r < xr.
It now remains to show the stronger property under the extra conditions. Imagine

that we increase p to p′ continuously by slowly increasing pr to p′r. For simplicity,
we assume that for all d, pd remains either non-zero or zero throughout this process,
excluding the start and the end – the general case can be shown by starting a new
process when pd’s status, whether it is non-zero or zero, changes. Since if pd remains 0
in the process, d has no effect on W (x), let’s focus on d with non-zero pd.

Observe that boundedness of p implies boundedness of x since x minimizes vj(x)−p·
xj and vj(x) is strictly concave. Since the remaining proof follows from a tedious basic
algebra, we only give a sketch here. In the following we crucially use the boundedness
of p,p′,x,x′. For the sake of contradiction, suppose Wj(p) and Wj(p

′) are very close
such that the claim is not true for any fixed c′. Then, for all d 6= r with non-zero pd,
the bounded curvature of hd and the optimality condition imply that xd and x′d are
very close. Likewise, we can argue that xr and x′r are significantly different so that the
difference is lower bounded by c′′(p′r − pr) for a fixed c′′. This leads to the conclusion
that Wj(p

′) and Wj(p) are significantly different, which is a contradiction. An easy
algebra gives the desired claim.

Proof of Theorem A.1.. We now use Lemma A.2 to show the second part of the theo-
rem. The KKT conditions applied to the PF convex program imply the following:

(1) There exists a price vector p such that {Xj(p)} define the optimal solution to PF.
(2) For this price vector p, if pd > 0, then

∑
j xjd = 1.

Start with this optimal solution. Suppose a new job arrives. At the price vector p,
compute the quantities Xj(p). If some resource is over-demanded, we continuously
increase its price. We perform this tatonnement process until no resource is over-
demanded. By Lemma A.2, any job that demands a resource whose price is increasing,
sees its overall utility strictly decrease, while jobs that do not demand this resource see
their utility remain unchanged. Therefore, if we define the potential function to be the
total utility of the jobs, this potential strictly decreases. Further, by Lemma A.2, the
total demand for the resource whose price is increasing strictly decreases, while the
demands for all other resources weakly increase. Therefore, any resource with price
strictly positive must have total demand at least one at all points of time.

Now parameterize the tatonnement process by the total price of resources. When the
price of over-allocated resource r is raised, there must exist a job j such that xjr ≥ 1/n.
This, when combined with the optimal condition, implies that pr is bounded. Since we
only increae the price of over-demanded resources, the boundness of p follows. Hence
by the stronger property of Lemma A.2, the potential must decrease by at least c′
times the increase of the total price for some finite c′ > 0; the potential decreases at
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least as much as j’s utility does. This implies that the process must terminate since
the potential is lower bounded by zero. When it terminates, suppose the price vector
is p′, and let y′j = Xj(p

′). Any resource d with p′d > 0 must have
∑
j x
′
jd = 1. If

pd = 0, we must have
∑
j x
′
jd ≤ 1. This therefore is the new optimal solution to the

PF program. Since the utilities of all existing jobs either stay the same or decrease in
the tatonnement process, this shows the PF algorithm is monotone. This completes the
proof of Theorem A.1.

A similar proof to the above shows the following; we omit the details.

COROLLARY A.3. The PF algorithm is monotone for utility functions of the form
uj(yj) = gj

(∑D
d=1 fjd(xjd)

)
, where gj , fjd are increasing, smooth, and strictly concave

functions.
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