
Noname manuscript No.
(will be inserted by the editor)

Preemptive and Non-Preemptive Generalized Min
Sum Set Cover

Sungjin Im · Maxim Sviridenko · Ruben
van der Zwaan

Received: date / Accepted: date

Abstract In the (non-preemptive) Generalized Min Sum Set Cover Problem,
we are given n ground elements and a collection of sets S = {S1, S2, ..., Sm}
where each set Si ∈ 2[n] has a positive requirement κ(Si) that has to be
fulfilled. We would like to order all elements to minimize the total (weighted)
cover time of all sets. The cover time of a set Si is defined as the first index
j in the ordering such that the first j elements in the ordering contain κ(Si)
elements in Si. This problem was introduced in [1] with interesting motivations
in web page ranking and broadcast scheduling. For this problem, constant
approximations are known [2,16].

We study the version where preemption is allowed. The difference is that
elements can be fractionally scheduled and a set S is covered in the moment
when κ(S) amount of elements in S are scheduled. We give a 2-approximation
for this preemptive problem. Our linear programming relaxation and analysis
are completely different from [2,16]. We also show that any preemptive solution
can be transformed into a non-preemptive one by losing a factor of 6.2 in the
objective function. As a byproduct, we obtain an improved 12.4-approximation
for the non-preemptive problem.

This work was partially supported by NSF grant CCF-1016684.

Sungjin Im
Department of Computer Science, University of Illinois, 201 N. Goodwin Ave., Urbana, IL
61801, USA.
Tel.: +1-217-2446433 Fax: +1-217-2654035
E-mail: im3@illinois.edu

Maxim Sviridenko
Department of Computer Science, University of Warwick, Coventry CV4 7AL,UK.
Tel.:+44-24-76573792
E-mail: sviri@dcs.warwick.ac.uk

Ruben van der Zwaan
Department of Quantitative Economics, Maastricht University, The Netherlands.
E-mail: r.vanderzwaan@maastrichtuniversity.nl

2 Sungjin Im et al.

Keywords Set cover · Latency · Preemption · Average cover time ·
Approximation

1 Introduction

The Min Sum Set Cover problem is a minimum latency version of the hitting
set problem. We are given as input n elements, {1, 2, . . . , n} = [n] and a
collection of sets S = {S1, S2, ..., Sm} where each set Si ∈ 2[n]. The goal is to
find a permutation of the elements such that the total sum of (or equivalently
average) cover/hitting times of all sets is minimized. For simplicity, we will say
that an element e is covered at time slot t or it has cover time cov(e) = t if
it is placed in the t-th position in the permutation. Equivalently, we may say
that the element e is scheduled at time t. The cover time cov(Si) of a set Si
is defined as mine∈Si cov(e) and the goal is to minimize

∑
Si∈S cov(Si). For

this problem, a simple greedy algorithm is known to achieve an approximation
factor 4 [4,8]. The greedy algorithm iteratively picks the element that hits the
most sets that are not yet hit. Also it is known that the problem cannot be
approximated within a factor of 4 − ε for any ε > 0 unless P = NP [8]. A
closely related problem known as Min Sum Coloring was studied before in [4,
5] with applications in scheduling. Also the special case of the Min Sum Vertex
Cover was used in [6] as a heuristic for speeding up a solver for semidefinite
programs.

The Min Latency Set Cover problem is a variant where the cover time is
defined as the time where all elements in the set are covered e.g. cov(Si) =
maxe∈Si cov(e). This problem is in fact equivalent to the precedence-constrained
scheduling on a single machine [17], for which various 2-approximation algo-
rithms are known [10,7,11]. It was shown that, assuming a variant of the
Unique Games Conjecture, unless P=NP there is no 2 − ε approximation for
any ε > 0 [3].

A generalization of the aforementioned problems was introduced by Azar,
Gamzu and Yin [1] to provide a better framework for ranking web pages
in response to queries that could have multiple intentions. This generalized
problem was later named Generalized Min Sum Set Cover [2], and can be
stated as follows. Every set Si has a requirement κ(Si) ∈ {1, 2, . . . , |Si|} =
[|Si|]. For a permutation of the ground set we define cov(e) as before and Si
is covered at time t if t is the earliest time such that |{e ∈ Si : cov(e) ≤ t}| ≥
κ(Si). Again, the goal is to find a permutation of the elements in [n] minimizing∑
Si∈S cov(Si). Azar et al. [1] give a modified greedy algorithm that has a

performance guarantee of O(ln(maxSi∈S κ(Si))). The question whether there
exists an O(1)-approximation was answered affirmatively by Bansal, Gupta
and Krishnaswamy [2]. In order to obtain an O(1)-approximation, they used
a time indexed linear program together with knapsack cover inequalities and
gave a clever randomized rounding scheme. Very recently, their approximation
ratio of 485 was improved by Skutella and Williamson to 28 via the same LP
but a different rounding scheme [16].

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 3

In this paper we study the Preemptive Generalized Min Sum Set Cover.
Like the Generalized Min Sum Set Cover problem, when κ(S) = |S| for all
S ∈ S it is a special case of (and in fact is a equivalent to) the single
machine scheduling problem with precedence constraints and preemptions:
1|prec, pmtn|∑wjCj . It is known that preemption does not improve the so-
lution quality for this problem (shown by a simple exchange argument), i.e.
the optimal preemptive and non-preemptive schedules have the same optimal
value. Hence it follows that there is no 2 − ε approximation for any ε > 0
assuming a variant of the Unique Games Conjecture and P 6= NP [3].

Preemptive Generalized Min Sum Set Cover is formally defined as follows.
Given the ground set of elements [n], sets S = {S1, S2, ..., Sm} and requirement
κ(S) ∈ [|S|] for each set S ∈ S, we should fractionally assign elements of the
ground set to the interval [0, n]. Formally, we define functions xe(t) : [0, n]→
{0, 1} where xe(t) is the indicator function that denotes whether element e is
scheduled at time t such that

∫ n
t=0

xe(t) dt = 1 for all e ∈ [n] and
∑
e∈[n] xe(t) =

1 for any time t ∈ [0, n]. Then, the cover (or completion) time cov(S) of the

set S is defined as the earliest time t such that
∫ t
τ=0

∑
e∈S xe(τ) dτ ≥ κ(S)

and the goal is to minimize the sum of cover times over all sets. Note that the
cover time cov(S) is not necessarily an integer unlike in the non-preemptive
problem.

Our main motivation to study Preemptive Generalized Min Sum Set Cover
is the fact that it provides a lower bound for the optimal value of the General-
ized Min Sum Set Cover. We decouple finding an approximate solution to the
relaxed problem (see Section 2) and the question of the lower bound quality
(see Section 3 and Conjecture 1).

1.1 Our Results

Our main result is a polynomial time approximation algorithm with perfor-
mance guarantee of 2 for the Preemptive Generalized Min Sum Set Cover. As
we noticed before this result is tight modulo some complexity assumptions [3].
We note that one can easily show that the linear program used in [2,16] is
a valid relaxation for the preemptive problem (see Proposition 4), thus the
best known approximation for the non-preemptive problem also carries for the
preemptive problem as well.

We introduce a configuration linear program which completely differs from
the linear programming relaxation used in [2,16]. Interestingly, it is not obvious
that our new linear program is a valid relaxation for the preemptive problem,
unlike the previous linear program in [2,16] which can be easily shown to be
a valid relaxation for the preemptive (and non-preemptive) problem. Our new
LP is provably stronger than the previous LP, for both the preemptive and
non-preemptive problems.

Further, we study the “gap” between the preemptive and non-preemptive
solutions of the Generalized Min Sum Set Cover Problem, which is of inde-
pendent interest. With some modifications of the rounding scheme in [16],

4 Sungjin Im et al.

we show that one can transform any α-approximate preemptive schedule into
6.2α-approximate non-preemptive one. With this transformation, we obtain an
12.4-approximation for the non-preemptive Generalized Min Sum Set Cover
Problem, improving upon the previous best 28-approximation by Skutella and
Williamson[16]. We conjecture that the gap between optimal preemptive and
non-preemptive solutions is precisely two.

All our proofs easily extend to the case where every set Si has a non-
negative weight wi ≥ 0 and the objective is to minimize

∑
Si∈S wi · cov(Si).

1.2 Organization

The remainder of this paper is organized as follows. In Section 2 we introduce
the configuration linear program LPprimal. First, we prove that our configuration
linear program is a valid relaxation for Preemptive Generalized Min Sum Set
Cover and that this linear program can be solved in polynomial time. Finally,
we design a rounding procedure that results in a randomized 2-approximation
(Section 2.4) that can be derandomized. In Section 3 we obtain a transfor-
mation from a preemptive schedule to a non-preemptive schedule with a loss
of factor 6.2, which immediately implies a 12.4-approximation in expectation
to Generalized Min Sum Set Cover. In Section 4 we compare the time in-
dexed linear programming relaxation used in [2,16] to our configuration linear
programming relaxation and show our relaxation is stronger.

2 2-Approximation for Preemptive Generalized Min Sum Set Cover

This section is devoted to proving the following theorem.

Theorem 1 There is a randomized polynomial time 2-approximation algo-
rithm for Preemptive Generalized Min Sum Set Cover.

Throughout this section, for any integer t ∈ [n], the t-th time slot will be
equivalent to the time interval (t− 1, t].

2.1 Configuration LP

We write a configuration linear program. For a set S ∈ S, a valid configura-
tion is an (integral) assignment of elements in S to time slots. More formally,
such a map can be described as an injective function fS : S → [n]. For nota-
tional simplicity, we may represent the mapping via a relation (configuration)
F =def {(e, fS(e)) | e ∈ S}. Let F(S) denote the collection of all possible
configurations for set S. Let CFS denote the completion time t of set S under
the configuration F , i.e. the first time t′ such that |f−1S ([t′])| ≥ κ(S). Let xe,t
denote the fraction of element e we schedule in the t-th time slot. The vari-
able yFS is used to indicate which configurations S adheres to. For example, if

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 5

yFS = 1, it means all elements in S are scheduled following the configuration
F .

Our integer program is formulated as follows.

min
∑
S∈S

∑
F∈F(S)

CFS y
F
S (ILP)

s.t.
∑
e

xe,t = 1 ∀ t ∈ [n] (1)∑
t

xe,t = 1 ∀ e ∈ [n] (2)∑
F∈F(S)

yFS = 1 ∀S ∈ S (3)

∑
F∈F(S),(e,t)∈F

yFS = xe,t ∀ e, t ∈ [n], S : e ∈ S (4)

xe,t ∈ {0, 1} ∀ e, t ∈ [n]

yFS ∈ {0, 1} ∀S ∈ S, F ∈ F(S)

The constraints (1) and (2) enforce that exactly one element is scheduled
at any time slot and that an element can be scheduled only once over all times.
The constraint (3) states that each set S has a unique configuration. Finally,
(4) says that if an element e is scheduled at time t, then it must align with
the configuration of S.

The relaxation LPprimal of ILP is then defined as follows.

min
∑
S∈S

∑
F∈F(S)

CFS y
F
S (LPprimal)

s.t. Constraints (1),(2),(3) and (4) hold

xe,t ≥0 ∀ e, t ∈ [n]

yFS ≥0 ∀S ∈ S, F ∈ F(S)

2.2 Validity of the LP

It is easy to verify that LPprimal is a valid linear programming relaxation for
Generalized Min Sum Set Cover. However, it is not obvious that the LPprimal

is indeed a valid relaxation for the preemptive problem. Since we will use two
different types of fractional schedules throughout the analysis, we first clearly
define/remind those schedules. The first one is a continuous schedule that is
defined by indicator functions xe(t) : [0, n] → {0, 1}, e ∈ [n] such that (1) for
any t ∈ [0, n],

∑
e∈[n] xe(t) = 1 and (2) for any e ∈ [n],

∫ n
τ=0

xe(τ) dτ = 1. We

say that xe(t), e ∈ [n] is a feasible schedule if all these conditions are satisfied.
Recall that the completion (or cover) time CS of each set S is defined by

a continuous schedule as the earliest time t such that
∫ t
τ=0

∑
e∈S xe(τ) dτ ≥

6 Sungjin Im et al.

κ(S). The other version of schedule, which is somewhat discretized, is defined
by xe,t, e, t ∈ [n] that satisfy (1)

∑
e∈[n] xe,t = 1, (2)

∑
t∈[n] xe,t = 1 and (3)

0 ≤ xe,t ≤ 1 for any e, t ∈ [n]. When these conditions are satisfied, we will say
xe,t, e, t ∈ [n] is feasible. Note that this discretized version of schedule does not
immediately define the completion time of sets since it does not specify how
the fractions of various elements are ordered within one time step. Rather, it is
used in LPprimal as a relaxation of continuous schedules. We show the following
theorem.

Theorem 2 Consider any feasible continuous schedule xe(t), e ∈ [n]. Let CS
denote the completion time of set S in this schedule. For any e, t ∈ [n], let

xe,t =def

∫ t
τ=t−1 xe(τ) dτ . Then xe,t satisfy constraints (1) and (2). Also there

exists y-values that satisfy the other constraints (3) and (4) as well and further
satisfy ∑

S∈S

∑
F∈F(S)

CFS y
F
S ≤

∑
S∈S

CS . (5)

The first claim in Theorem 2 that xe,t satisfy constraints (1) and (2) easily
follows from the properties of continuous schedules and from how xe,t are
defined:

∑
e∈[n]

xe,t =
∑
e∈[n]

∫ t

τ=t−1
xe(τ) dτ =

∫ t

τ=t−1

∑
e∈[n]

xe(τ) dτ =

∫ t

τ=t−1
1 dτ = 1,

and ∑
t∈[n]

xe,t =
∑
t∈[n]

∫ t

τ=t−1
xe(τ) dτ =

∫ n

τ=0

xe(τ) dτ = 1.

In fact, it is not difficult to see that there exist y-values that satisfy all
constraints (1)-(4). The following proposition however shows that not all such
y-values serve our purpose.

Proposition 1 There exist yFS -values that satisfy (1)-(4), but not (5) within
any constant factor.

Proof Consider the following simple example. The inputs are S = {S1 =
{e1, e2, e3}, S2 = {e4, e5, e6}, S3 = {e7, e8, e9}} withK(S1) = K(S2) = K(S3) =
1. The given schedule is as follows.

– xe1t = xe2t+1 = xe3t+2 = 1/3 for all t = 1, 4, 7.
– xe4t = xe5t+1 = xe6t+2 = 1/3 for all t = 1, 4, 7.
– xe7t = xe8t+1 = xe9t+2 = 1/3 for all t = 1, 4, 7.

Note that all sets S1, S2 and S3 are completed at time 3 in the above
schedule, i.e. CS1

= CS2
= CS3

= 3. Consider the following configurations and
y-values that satisfy all constraints (1)-(4). See Figure 2.2.

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 7

F1,1, F2,2, F3,3

F3,1, F1,2, F2,3

F2,1, F3,2, F1,3

time

Schedule x

e1 e2 e3

e1 e2 e3

e1 e2 e3

e7

e7

e9e8e7

e8 e9

e9e8

e8 e7 e8 e9e1e4e7 e2e5 e3e6e9 e1e4e7 e2e5e8 e3e6e9 e1e4 e2 e3e5 e6

e4 e5 e6

e4 e5 e6

e4 e5 e6

Fig. 1 Elements from the sets S1, S2, S3 are striped, gray and black. The top row depicts the
fractional schedule, and the three lower rows depict the decomposition into configurations.

– F1,1 = {(e1, 1), (e2, 2), (e3, 3)}, F1,2 = {(e1, 4), (e2, 5), (e3, 6)},
F1,3 = {(e1, 7), (e2, 8), (e3, 9)}; yF1,1

S1
= y

F1,2

S1
= y

F1,3

S1
= 1/3.

– F2,1 = {(e4, 1), (e5, 2), (e6, 3)}, F2,2 = {(e4, 4), (e5, 5), (e6, 6)},
F2,3 = {(e4, 7), (e5, 8), (e6, 9)}; yF2,1

S2
= y

F2,2

S2
= y

F2,3

S2
= 1/3.

– F3,1 = {(e7, 1), (e8, 2), (e9, 3)}, F3,2 = {(e7, 4), (e8, 5), (e9, 6)},
F3,3 = {(e7, 7), (e8, 8), (e9, 9)}; yF3,1

S3
= y

F3,2

S3
= y

F3,3

S3
= 1/3.

The above configurations and y variables give a LHS for (5) of at least 1
+ 4 + 7 = 12. One can easily adapt this instance to make the LHS arbitrarily
greater than the RHS. ut

Henceforth, we focus on showing that there exist “good” y-values that also
satisfy (5). We will show how to construct a feasible solution y such that the
inequality ∑

F∈F(S)

CFS y
F
S ≤ CS (6)

holds for any set S ∈ S which will imply the inequality (5). Since setting
yS-values for a specific S does not affect other y-values, we can focus on each
S ∈ S separately. We will find “good” yFS -values that satisfy constraints (3)
and (4), and further (6).

To this end, we define two matroids M1 and M2 that enforce that any
independent set in the intersection of M1 and M2 which in addition is a base
in M1 corresponds to a feasible configuration F ∈ F(S). Then we show that
the vector xe,t, e ∈ S, t ∈ [n] lies in the intersection of the polytopes of the
two matroids. Using the fact that such an intersection polytope is integral, we
will be able to decompose x into a convex combination of integer points that
lie in the intersection of the polytopes of M1 and M2. As already mentioned,
due to the structure of the matroids, each integer point will correspond to a
configuration F ∈ F(S). By setting y-values as suggested by the decomposi-
tion, we will guarantee that y satisfy constraints (3) and (4). Finally, we will
complete the analysis by showing that such y-values satisfy (6) as well. This is
enabled by some additional constraints we impose on the matroids. We refer

8 Sungjin Im et al.

the reader to Chapters 39-41 in [14] for an extensive overview of algorithmic
matroid theory.

We begin with defining each of the two matroids M1 and M2 which have
the same common ground set, U = {(e, t) | e ∈ S, t ∈ [n]} (Recall that we are
focusing on each fixed S ∈ S separately). We will call (e, t) a pair in order to
distinguish it from elements, [n]. The first matroid M1 = (U, I(M1)) enforces
that each element in S can be scheduled in at most one time slot. Formally, the
collection I(M1) of independent sets of M1 is defined as follows: A ∈ I(M1)
if and only if for any e ∈ S, |A ∩ {(e, t) | t ∈ [n]}| ≤ 1. Observe that M1 is
a partition matroid since pairs in U are partitioned based on each common
element, and any independent set collects at most one pair from each group.
Hence the polytope P (M1) of M1 (polymatroid) is defined as follows.

∑
t∈[n]

xe,t ≤ 1 ∀e ∈ S (P (M1))

xe,t ≥ 0 ∀e ∈ S, t ∈ [n]

Proposition 2 The vector x = (xe,t), e ∈ S, t ∈ [n] is in the polytope P (M1).
Moreover,

∑
e∈S,t∈[n] xe,t = |S|, i.e. x belongs to the base polymatroid of M1.

Proof For any e ∈ S, from the definition of xe,t, we know that
∑
t∈[n] xe,t =∑n

t=1

∫ t
τ=t−1 xe(τ) dτ =

∫ n
τ=0

xe(τ) dτ = 1. ut

The second matroid M2 = (U, I(M2)) has a more involved structure. It
enforces that in each time slot, at most one element in S can be scheduled.
Additionally, it enforces that at most κ(S) elements can be scheduled during
the first C − 1 time slots and at most |S| − κ(S) elements can be scheduled
during the time slots, C + 1, C + 2, ..., n, where C is an integer such that
C − 1 < CS ≤ C. These additional constraints will be crucial in finding
“good” y-values. Formally, A ∈ I(M2) if and only if A satisfies

– For each integer time t ∈ [n], |A ∩ {(e, t) | e ∈ S}| ≤ 1.
– |A ∩ {(e, t) | e ∈ S, 1 ≤ t ≤ C − 1}| ≤ κ(S).
– |A ∩ {(e, t) | e ∈ S,C + 1 ≤ t ≤ n}| ≤ |S| − κ(S).

We observe that I(M2) is a laminar matroid: All pairs in U are partitioned
into groups with the same time t, and at most one pair can be chosen from each
group to be in an independent set. Further, the second and third constraints
put a limit on the number of pairs that can be chosen from the groups of time
slots t = 1, 2, ..., C−1 and from the groups of time slots t = C+1, C+2, ..., n,

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 9

respectively. We define the polymatroid P (M2) as follows.∑
e∈S

xe,t ≤ 1 ∀t ∈ [n] (P (M2))

C−1∑
t=1

∑
e∈S

xe,t ≤ κ(S)

n∑
t=C+1

∑
e∈S

xe,t ≤ |S| − κ(S)

xe,t ≥ 0 ∀e ∈ S, t ∈ [n]

Proposition 3 The vector x = (xe,t) lies in the polymatroid P (M2).

Proof We begin with proving that xe,t satisfies the first constraint. From the
definition of xe,t, we have that∑

e∈S
xe,t =

∑
e∈S

∫ t

τ=t−1
xe(τ) dτ =

∫ t

τ=t−1

∑
e∈S

xe(τ) dτ ≤
∫ t

τ=t−1
1 dτ = 1.

Now we consider the second constraint. Recall that C − 1 < CS ≤ C.

C−1∑
t=1

∑
e∈S

xe,t =

∫ C−1

τ=0

∑
e∈S

xe(τ) dτ ≤
∫ CS

τ=0

∑
e∈S

xe(τ) dτ = κ(S)

The last inequality is due to the definition of CS . Finally,

n∑
t=C+1

∑
e∈S

xe,t =

∫ n

τ=C

∑
e∈S

xe(τ) dτ ≤
∫ n

τ=CS

∑
e∈S

xe(τ) dτ

= |S| −
∫ CS

τ=0

∑
e∈S

xe(τ) dτ = |S| − κ(S).

ut

It is well known the intersection of two polymatroids is an integral polytope
(see e.g. [14]), i.e. any vertex point is integral. Hence since (xe,t) lies in the
intersection of two polytopes P (M1) and P (M2), it can be decomposed into a
linear combination of vertex (hence integer) points in P (M1) ∩ P (M2). Note
that each of such integer points corresponds to an independent set in I(M1)∩
I(M2), which is of size at most |S| due to the constraints of M1. In fact, the
size must be exactly |S|, since

∑
e∈S

∑
t∈[n] xe,t = |S|. By the constraints of

M1 and the first constraints of M2, we conclude that each of such integer
points corresponds to a configuration F ∈ F(S). Hence we have shown the
following lemma.

Lemma 1 There exist F ′(S) ⊆ F(S) and positive constants θFS , F ∈ F ′(S)
that satisfy

10 Sungjin Im et al.

–
∑
F∈F ′(S) θ

F
S = 1.

– For any e ∈ S, t ∈ [n], xe,t =
∑
F∈F ′(S) θ

F
S · 1[(e, t) ∈ F].

where an indicator variable 1[(e, t) ∈ F] = 1 if and only if (e, t) ∈ F .

We let yFS = θFS for all F ∈ F ′(S) and yFS = 0 for all F ∈ F(S) \ F ′(S).
Note that x and y satisfy constraints (3) and (4).

It remains to show that y satisfy (6). Now the second and third constraints
of M2 play a crucial role. We make the following observation.

Lemma 2 For any F ∈ F ′(S) exactly one of the following holds.

– |F ∩ {(e, t) | e ∈ S, 1 ≤ t ≤ C − 1}| = κ(S).
– |F ∩ {(e, t) | e ∈ S, 1 ≤ t ≤ C − 1}| = κ(S) − 1 and (e, C) ∈ F for some
e ∈ S.

Proof Recall that |F | = |S|. By the third constraints of M2, we know that
N≥C+1 =def |F ∩ {(e, t) | e ∈ S,C + 1 ≤ t ≤ n}| ≤ |S| − κ(S), hence that
N≥C =def |F ∩ {(e, t) | e ∈ S,C ≤ t ≤ n}| ≤ |S| − κ(S) + 1. Therefore,
we have N≤C−1 =def |F ∩ {(e, t) | e ∈ S, 1 ≤ t ≤ C − 1}| ≥ κ(S) − 1.
Further, we know N≤C−1 ≤ κ(S) from the second constraint of M2. Thus
unless N≤C−1 = κ(S), it must be the case that N≤C−1 = κ(S) − 1. In that
case, since N≥C+1 ≤ |S| − κ(S), we conclude that (e, C) ∈ F for some e ∈ S.

ut

Motivated by the above lemma, we can now prove that our linear program
is a valid relaxation for the preemptive version of the problem.

Proof (Proof of Theorem 2) Partition F ′(S) into F ′1(S) and F ′2(S) by letting
F ′1(S) to denote all F ∈ F ′(S) that fall in the first case in the Lemma 2
and letting F ′2(S) = F ′(S) \ F ′1(S). Let θ′ =

∑
F∈F ′

2(S)
θFS . Note that for any

F ∈ F ′1(S), CFS ≤ C − 1 and for any F ∈ F ′2(S), CFS = C. In words, the set S
is completed no later than time C − 1 for (1− θ′) fraction of configurations in
F ′(S) and exactly at time C for θ′ fraction of configurations in F ′(S). Hence
we have that∑

F∈F(S)

CFS y
F
S =

∑
F∈F ′(S)

CFS θ
F
S =

∑
F∈F ′

1(S)

CFS θ
F
S +

∑
F∈F ′

2(S)

CFS θ
F
S

≤ (1− θ′)(C − 1) + θ′C = C − 1 + θ′. (7)

Now we focus on upper-bounding θ′. From the definition of CS and the
fact that

∑
e∈S xe(τ) ≤ 1 for any τ , we know that∫ C−1

τ=0

∑
e∈S

xe(τ) dτ =

∫ CS

τ=0

∑
e∈S

xe(τ) dτ −
∫ CS

τ=C−1

∑
e∈S

xe(τ) dτ

≥ κ(S)− (CS − (C − 1)). (8)

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 11

On the other hand, it follows that∫ C−1

τ=0

∑
e∈S

xe(τ) dτ =

C−1∑
t=1

∑
e∈S

xe,t [By the definition of xe,t]

=

C−1∑
t=1

∑
e∈S

∑
F∈F ′(S):(e,t)∈F

yFS [From the decomposition of x into yFS]

=
∑

F∈F ′
1(S)

yFS
∑
e∈S

C−1∑
t=1

1[(e, t) ∈ F] +
∑

F∈F ′
2(S)

yFS
∑
e∈S

C−1∑
t=1

1[(e, t) ∈ F]

=
∑

F∈F ′
1(S)

θFS · κ(S) +
∑

F∈F ′
2(S)

θFS · (κ(S)− 1)

= (1− θ′) · κ(S) + θ′ · (κ(S)− 1) = κ(S)− θ′. (9)

From (8) and (9), we have θ′ ≤ CS − (C − 1). By combining this with (7),
we complete the proof of Theorem 2. ut

2.3 Solving the LP

The linear programming relaxation LPprimal has exponentially many variables.
Hence, we solve the dual LP and show there are only polynomially many non-
zero variables in the primal LP that achieve the optimal LP value. The dual
LP is as follows.

max
∑
t∈[n]

αt +
∑
e∈[n]

βe+
∑
S∈S

γS (LPdual)

s.t. αt + βe −
∑
S:e∈S

δetS ≤ 0 ∀e, t (10)

γS +
∑

(e,t)∈F

δetS ≤ CFS ∀S ∈ S, F ∈ F(S) (11)

To solve LPdual with the ellipsoid algorithm, we need a separation oracle
for finding a violated constraint (see [9]). Since constraints (10) are easy to
verify (there are only n2 of them), we focus on constraints (11). We need a
polynomial time algorithm that given γS and δetS-values, finds (if any) S ∈ S
and F ∈ F(S) that violate constraints (11).

We model this problem as a classical minimum cost s-t flow problem. In this
problem, we are given a digraph G = (V,A), a capacity function c : A→ Q+,
a cost function k : A → Q and the volume φ ∈ Q+. The goal is to send φ
amount of flow from the source s to the sink t, i.e. to find an s-t flow f of
volume φ, subject to capacity constraints 0 ≤ f(e) ≤ c(e) for all e ∈ A and the
standard flow conservation constraints, minimizing the costs

∑
e∈A f(e)k(e).

It is known that if the volume φ and capacities ce, e ∈ E are integral then
we can test in polynomial time if there is an s-t flow of volume φ. Moreover, if

12 Sungjin Im et al.

t1

t2

s

U
V
v1

vL
vL+1

vn

ue

t

k(ue, v1) = δe1S

c(t2, t) = |S| − κ(S)

c(t1, t) = κ(S)− 1

c(·, ·) = 1

vL−1

Fig. 2 An illustration of the construction of the graph G, in which we want to find a
maximum-value flow.

there is such a flow (i.e. there is a feasible solution to the problem) then there
is an integral minimum-cost s-t flow, and it can be found in polynomial time
(see Chapter 12 in [14]).

We now show how to reduce our separation problem for constraints (11)
to the minimum cost s-t flow problem. It will be convenient for us to consider
an equivalent maximum cost s-t flow problem where the goal is to maximize
the value of the objective function

∑
e∈A f(e)k(e).

Fix a set S and an integer L ∈ [n]. We will try to find a violated constraint
for the constraints (11) corresponding to the set S and configurations F ∈
F(S) with CFS = L. Create a directed complete bipartite graph GL = (U, V,A)
where part U has vertex ue for each e ∈ S, part V has vertex vi for each time
slot i ∈ [n]. Arc a = (ue, vi) ∈ A has cost k(e) = δeiS and capacity c(e) = 1.
We augment GL as follows. We add a source vertex s and connect it to all
vertices in U . There are two “intermediate” sinks t1 and t2, both connected to
the “final” sink t. The vertices v1, v2, ..., vL−1 in V are connected to t1 and the
vertices vL+1, vL+2, ..., vn in V are connected to the other intermediate sink t2.
The arcs a between the source s and part U have cost k(a) = 0 and capacity
c(a) = 1. Analogously, all arcs a between part V and intermediate sinks t1 and
t2 have cost k(a) = 0 and capacity c(a) = 1. Arcs a′ = (t1, t) and a′′ = (t2, t)
have capacities c(a′) = κ(S) − 1 and c(a′′) = |S| − κ(S) respectively, and all
of them have zero costs. The vertex vL is special and is directly connected to
t. The arc (vL, t) has a unit capacity and zero cost. The goal is to find the s-t
flow of volume φ = |S| of maximum cost. See Figure 2 for an illustration of
this construction.

Note that any integral s-t flow f of value |S| in digraph GL corresponds to
a valid configuration F for set S such that CFS = L, and vice versa. Hence, if
the maximum-cost s-t flow in GL has cost more than L − γS , the constraint
(11) is violated for S and F ∈ F(S) that corresponds to the flow. The converse
also holds: if the maximum-cost s-t flow has cost less than or equal to L− γS

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 13

time

(Stretch)

(Cut)

(Compress)

(Order)

(LP solution)

a b c d

Fig. 3 In this example the schedule is stretched by a factor of two e.g. λ = 1
2

.

there is no configuration F ∈ F(S) with CFS = L that violates (11). With the
help of this separation oracle and classical connection between separation and
optimization [9], we can solve LPdual in polynomial time.

Then we can optimally solve LPprimal by focusing only on yFS variables that
correspond to the constraints that were considered by the ellipsoid method in
solving LPdual. A more formal (and well-known) argument is that the LPdual

with the subset of constraints considered by the ellipsoid method is a relaxation
of the original problem but it has the same optimal solution. The dual of the
relaxed problem is LPprimal restricted to the subset of corresponding variables
which by the strong duality theorem has the same optimal value.

2.4 Rounding procedure

Let xe,t and yFS be a basic optimal solution of the linear programming relax-
ation LPprimal. In particular we know that there are at most 2n + m + n2m
non-zero variables (this is the number of constraints (1)-(4)). Let CLPS denote
the completion time of set S in the LP. That is, CLPS =

∑
F∈F(S) C

F
S y

F
S . We

create a schedule parameterized by λ ∈ (0, 1], where λ is randomly drawn from
(0, 1] according to the density function f(v) = 2v.

Create an arbitrary continuous schedule xe(t), e ∈ [n], t ∈ [0, n] from

xe,t, e, t ∈ [n] such that for any e, t ∈ [n],
∫ t
τ=t−1 xe(τ) dτ = xe,t. For example,

this can be done by processing each element e for the amount xe,t during
the time step t in an arbitrary order between the elements. For notational
convenience, let σ denote the continuous schedule xe(t). We will also use the
standard machine scheduling terminology. The new schedule σ(λ) is defined
as follows. Stretch out the schedule σ by a factor of 1

λ . In other words, map
every point τ in time onto τ/λ. For each element e define τe ∈ [1, n/λ] to
be the earliest point in time when the element has been processed for one
time unit (out of total 1/λ). Leave the machine idle whenever it processes

14 Sungjin Im et al.

λ
y
Fj
S

10
0

C̃S(λ)

Fj

Fig. 4 An illustration of C̃S(λ). The jth leftmost rectangle, which corresponds to Fj , has

width y
Fj

S and height C
Fj

S .

the element e after time τe. After repeating this procedure for all elements
e ∈ [n], we shift the whole schedule to the left to eliminate all idle times. The

final schedule σ(λ) has total length n. Let x
(λ)
e (t), e ∈ [n], t ∈ [0, n] be the

resulting continuous schedule σ(λ). Note that similar algorithms were used in
scheduling before to design approximation algorithms for various preemptive
scheduling problems with total completion time objective [15,13].

Example 1 See Figure 3 for an illustration. Consider an instance with 4 el-
ements {a, b, c, d}, with the LP solution xa,1 = 2/3, xb,1 = 1/3, xc,2 = 1,
xd,3 = 1/3, xb,3 = 1/3, xa,3 = 1/3, xd,4 = 2/3, xb,4 = 1/3. Construct a con-
tinuous schedule by randomly ordering the elements in each time step. For
example in time step 3, three elements, a, b, d are scheduled seamlessly, each
for 1/3 time steps. Then stretch the whole schedule by a factor two (λ = 1/2),
and cut out each element after being scheduled by a unit amount. Finally,
compress the schedule, by shifting everything to the left removing the idle
times.

Let CS(λ) denote the completion time of S in the new schedule σ(λ). Order
all configurations F ∈ F(S) for yFS > 0 in non-decreasing order of CFS . Let

F1, F2, ..., Fk be such an ordering. Define C̃S(λ) =def C
Fj

S where
∑j−1
i=1 y

Fi

S < λ

and
∑j
i=1 y

Fi

S ≥ λ. See Figure 4 for an illustration. Let 1[φ] be an indicator
function such that 1[φ] = 1 if and only if φ is true and zero otherwise.

Lemma 3 For any S ∈ S and 0 < λ ≤ 1, CS(λ) ≤ 1
λ · C̃S(λ).

Proof To simplify the proof we assume that there exists j such that
∑

1≤l≤j y
Fl

S =

λ. Otherwise, let j be the lowest index such that
∑

1≤l≤j y
Fl

S > λ, then we

define two copies F ′j and F ′′j of configuration Fj , with y
F ′

j

S = λ−∑1≤l≤j−1 y
Fl

S

and y
F ′′

j

S =
∑

1≤l≤j y
Fl

S − λ. Here F ′j and F ′′j are the same configurations as

Fj . Now,
∑

1≤l≤j−1(yFl

S) + y
F ′

j

S = λ.

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 15

We will show the following inequality:∫ C̃S(λ)/λ

τ=0

∑
e∈S

x(λ)e (τ) dτ ≥ κ(S) (12)

that would imply that the completion time CS(λ) of the set S in the sched-
ule σ(λ) must be no later than C̃S(λ)/λ. Since for every e ∈ S we have∫ C̃S(λ)/λ

τ=0
x
(λ)
e (τ) dτ ≥ min

{
1, 1

λ

∫ C̃S(λ)

τ=0
xe(τ) dτ

}
≥ min

{
1, 1

λ

∑
t≤bC̃S(λ)c xe,t

}
,

and C̃S(λ) is integral by definition for any λ ∈ (0, 1], it is sufficient to show
the inequality ∑

e∈S
min

{
λ,

∑
t≤C̃S(λ)

xe,t

}
≥ λκ(S) (13)

to derive (12). We now derive the inequality (13).∑
e∈S

min
{
λ,

∑
t≤C̃S(λ)

xe,t

}
≥
∑
e∈S

min
{
λ,

∑
t≤C̃(λ)

j∑
l=1

yFl

S · 1[(e, t) ∈ Fl]
}

=
∑
e∈S

min
{
λ,

j∑
l=1

yFl

S · 1[(e, t) ∈ Fl for some t ≤ C̃(λ)]
}

=
∑
e∈S

j∑
l=1

yFl

S · 1[(e, t) ∈ Fl for some t ≤ C̃(λ)]

=

j∑
l=1

yFl

S

∑
e∈S

1[(e, t) ∈ Fl for some t ≤ C̃(λ)]

≥
j∑
l=1

yFl

S κ(S) = λκ(S)

The first inequality follows from constraints (4). The second equality holds

because
∑j
l=1 y

Fl

S = λ. The last inequality holds because for any Fl, l ≤ j,

CFl

S ≤ C̃S(λ). ut
The following lemma can be easily shown from the definition of C̃S(λ) (see

also Figure 4).

Lemma 4 For any S ∈ S,
∫ 1

λ=0
C̃S(λ)dλ = CLPS .

Proof (Proof of Theorem 1) By Theorem 2, LPprimal is a valid relaxation, and
we now estimate the expected set cover time in the approximate solution.

E[CS(λ)] =

∫ 1

λ=0

CS(λ) · 2λ dλ [By definition]

≤
∫ 1

λ=0

1

λ
· C̃S(λ) · 2λ dλ [By Lemma 3]

= 2

∫ 1

λ=0

C̃S(λ) dλ = 2CLPS [By Lemma 4]

16 Sungjin Im et al.

ut

We shortly indicate how our approximation algorithm can be derandom-
ized. The function C̃S(λ) is a piecewise constant function, with at most a
polynomial number of pieces since there are at most polynomially many non-
zero variables yFS for each S. This implies that there are at most polynomially
many “interesting” λ-values that we need to consider, among which at least
one gives the desired approximation ratio.

3 Gap between Preemptive and Non-preemptive Schedules

In this section, we study the lower bound quality of the preemptive prob-
lem for the non-preemptive problem. Note that if we show a way to convert
any given preemptive schedule into a non-preemptive one losing a factor of
η, we would immediately obtain a 2η-approximation algorithm for the non-
preemptive Generalized Min Sum Set Cover.

Our scheme for transforming a preemptive schedule into a non-preemptive
one is similar to the one used by Skutella and Williamson [16]. We obtain a
better gap by utilizing several additional tricks and starting from a preemptive
schedule. Formally we will prove the following theorem.

Theorem 3 Given a preemptive schedule with cost C, there exists a non-
preemptive schedule with expected cost at most 6.2C. Furthermore, this non-
preemptive schedule can be found in polynomial time.

Combining Theorem 1 and Theorem 3 we derive

Theorem 4 There exists a polynomial time 12.4-approximation algorithm for
Generalized Min Sum Set Cover.

Theorem 3 implies an upper bound on the gap of 6.2, and any gap lower
than 2 would result in an approximation factor strictly less than 4 for the non-
preemptive problem, which is impossible unless P=NP [8]. We believe that our
gap is not tight. In fact, we make the following bold conjecture:

Conjecture 1 Given a preemptive schedule with cost C then there is a non-
preemptive schedule with cost at most 2C. Further, such a non-preemptive
schedule can be found in polynomial time.

It would be also interesting to show if the optimal gap between values of
preemptive and non-preemptive schedules depends on parameter ξ = minS{κ(S)/|S|}.
For example, we know if ξ = 1 then there is no advantage for preemptive sched-
ules, i.e. η = 1 in this case.

The remaining section is devoted to proving Theorem 3. We start with
defining several schedules that will be used throughout the analysis. Let xe(t), e ∈
[n], t ∈ [0, n] be a given preemptive solution where xe(t) ∈ {0, 1} is the indi-
cator function if an element e is scheduled at time t. It would be convenient
to extend the domain of xe(t) to [0,∞) by setting xe(t) = 0 for t > n. Let

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 17

CPS be the cover time of set S in the preemptive schedule corresponding to
the solution xe(t); the superscript P stands for the preemptive schedule. Our
goal is to randomly construct a non-preemptive schedule that completes set
S at time CRS such that E[CRS] = O(1)CPS . In the following we will use the
notion of a solution (feasible or infeasible) interchangeably with the notion of
a schedule.

We will define a new fractional solution (and a schedule) x̃ from x. Let
σ =def σ0 denote the schedule defined by x. For each integer i ≥ 1, stretch out
σ horizontally by a factor of ri and let σi be the resulting schedule. Here r ≥ 1

is a constant to be fixed later. More formally, x
(i)
e (rit) = 1

rixe(t) for all e ∈ [n],

defines the schedule σi. Note that now we allow x
(i)
e (τ) to be non-boolean: it

denotes the rate at which we process element e. Note that σi schedules element
e during [rit, ri(t+dt)] by the same amount as σ does during [t, t+dt]. For two
parameters Q ≥ 0 and ρ ≥ 0, which we will fix later, define x̃e(t) as follows:

x̃e(t) =def Q

(
xe(t) + ρ

∞∑
i=1

x(i)e (t)

)
.

Note that x̃e(t) may not yield a feasible preemptive schedule because it may
schedule elements at a rate of more than one at an instantaneous time. Let σ̃
denote the (infeasible) fractional schedule defined by x̃e(t). Via a randomized
rounding, we will first obtain an intermediate infeasible integral schedule σI

and then the final feasible integral schedule σR. Throughout the analysis, we
will be mostly concerned with the intermediate schedules σ̃ and σI . In these
schedules, we are allowed to schedule more than one elements at some times,
and will define the cover time of sets in a natural way; the formal definitions
will be given later when necessary.

Example 2 See Figure 5 for an illustration. We set Q = 2, ρ = 1 and r = 2.
Consider an instance with 4 elements {a, b, c, d}, with a preemptive schedule
(xe(t))e∈[n] =def

3
4a,

1
4b, 1c,

1
2b,

1
4a,

1
4d,

1
4b,

3
4d; for example, 3

4a implies that

element a is schedule for 3
4 unit times. Then we create schedules x(i) from x

by stretching out x horizontally by a factor ri. By adding Q copies of x(0) and
Qρ copies of each x(i), i ≥ 1, we obtain the “thick” schedule x̃.

Suppose αa = 1/2, αb = 1/4, αc = 1 and αd = 1/2. Then, ta,αa
= 1/8,

tb,αb
= 7/8, tc,αc

= 3/2 and td,αd
= 3.

The following lemma easily follows from the definition of x̃e(t).

Lemma 5 For any time t ∈ [0,∞),∫ t

τ=0

∑
e∈[n]

x̃e(τ) dτ ≤ Q
(

1 +
ρ

r − 1

)
t.

Proof The desired bound easily follows by the definition of x̃ and the fact that
σi, i ≥ 0 schedules elements by an amount of at most t/ri until time t. ut

18 Sungjin Im et al.

x

x(1)

x(2)

x̃

×Q

×Qρ

×Qρ

a b c d

ta,αa

tb,αb

tc,αc
td,αd

Fig. 5 An illustration of the construction of schedule x̃ from x, with parameters r = 2,
ρ = 1 and Q = 2 and alpha values αa = 1/2, αb = 1/4, αc = 1 and αd = 1/2.

We now give our rounding procedure. For each e ∈ [n], choose αe ∈ [0, 1]

uniformly at random. Let te,αe
be the first time t such that

∫ t
0
x̃e(τ)dτ ≥ αe.

Let σI denote the resulting (infeasible) schedule where e is scheduled at time
te,αe

. Here when we say that element e is scheduled at time te,αe
in σI , we

ignore that element e takes a unit amount of time to be completely scheduled;
this will be taken care of in the final schedule. Rather, we think of element
e as being tied to the instantaneous time te,αe

. In the same spirit, we define
the cover time CIS of S in σI as the first time t such that |{e ∈ S | te,αe

≤
t}| ≥ κ(S). We will schedule the elements in non-decreasing order of te,αe

as
our final schedule σR, breaking ties arbitrarily. The algorithm is based on a
popular scheduling concept of α-points and similar to the one in [16].

Let pS,i denote the probability that S is not satisfied until time ri · CPS in
σI , i.e.

pS,i =def Pr[|{e ∈ S | te,αe
≤ ri · CPS }| < κ(S)]

In the following lemma we upper bound pi =def maxS∈S pS,i.

Lemma 6 Consider any Q ≥ 1, r > 1 and ρ ≤ 1. Then we have maxS pS,i =
pi ≤ max{K1i,K2i,K3i} where

K1i = exp(−Q(1 + ρi)),

K2i = exp(−2Q(1 + ρi)) + 2Q(1 + ρi) exp(−2Q(1 + ρi) + 1),

K3i = exp

(
−1.5Q

((
1− 1

(1 + ρi)Q

)2

(1 + ρi)

))
.

Proof Consider any S and fixed i ≥ 0. LetA =def

{
e ∈ S :

∫ ri·CP
S

0
x̃e(τ)dτ ≥ 1

}
.

Observe that any element e ∈ A is scheduled no later than time ri ·CPS in the

schedule σI . Note by definition of CPS that
∑
e∈S

∫ CP
S

τ=0
xe(τ) dτ ≥ κ(S). Hence

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 19

it follows (for all A ⊆ S) that∑
e∈S\A

∫ CP
S

τ=0

xe(τ) dτ ≥ κ(S)− |A|.

Then from the definition of x̃ and by observing that for every i ≥ 0 each
σi schedules elements in S \A by an amount of at least κ(S)− |A| until time
ri · CPS , for any i ≥ 0,

∑
e∈S\A

∫ ri·CP
S

τ=0

x̃e(τ) dτ ≥ Q(κ(S)− |A|)(1 + ρi).

For any e ∈ S \ A, let Xe denote an indicator random variable such that
Xe = 1 if and only if te,αe

≤ ri ·CPS . Observe that Xe are independent of each
other, since the value of Xe is determined by αe, which is randomly chosen
independent of the other elements. Let X =def

∑
e∈S\AXe and µ =def E[X].

Then, by observing that Pr[Xe = 1] =
∫ ri·CP

S

τ=0
x̃e(τ) dτ , it follows that

µ = E[X] =
∑
e∈S\A

∫ ri·CP
S

τ=0

x̃e(τ) dτ ≥ Q · (κ(S)− |A|) · (1 + ρi).

Note that pS,i ≤ Pr[X < κ(S) − |A|]. We consider a few cases depending
on the value of κ(S)− |A|. Assume that κ(S) > |A|, since otherwise pS,i = 0.

Case (a): κ(S) − |A| = 1. Using the fact that Xe are independent of each
other, we have

Pr[X < κ(S)− |A|] = Pr[X = 0]

=
∏

e∈S\A

(1− Pr[Xe = 1])

≤ exp(−
∑
e∈S\A

Pr[Xe = 1]) = exp(−µ)

≤ exp(−Q(1 + ρi)).

Case (b): κ(S)− |A| = 2.

Pr[X < κ(S)− |A|]
= Pr[X = 0] + Pr[X = 1]

≤ exp(−µ) +
∑

e′∈S\A

Pr[Xe′ = 1]
∏

e∈S\(A\{e′})

(1− Pr[Xe = 1])

≤ exp(−2Q(1 + ρi)) +
∑

e′∈S\A

Pr[Xe′ = 1] exp(−
∑

e∈S\(A\{e′})

Pr[Xe = 1])

≤ exp(−2Q(1 + ρi)) + µ · exp(−µ+ 1)

≤ exp(−2Q(1 + ρi)) + 2Q(1 + ρi) exp(−2Q(1 + ρi) + 1)

20 Sungjin Im et al.

Case (c): κ(S)− |A| ≥ 3. This case can be done similarly as is done in [16].
The main difference is that here we are using the fact that K−|A| ≥ 3, which
helps to obtain a tighter bound.

Pr[X < κ(S)− |A|] ≤ Pr
[
X <

µ

Q(1 + ρi)

]
= Pr

[
X < µ

(
1−

(
1− 1

Q(1 + ρi)

))]
≤ exp

(
− 1

2

(
1− 1

Q(1 + ρi)

)2
· µ
)

≤ exp
(
− 1

2

(
1− 1

Q(1 + ρi)

)2
· 3Q(1 + ρi)

)
The second inequality comes from the Chernoff Bounds Pr[X < µ(1 − δ)] ≤
exp(− 1

2δ
2µ) [12]. Taking the maximum of the bounds in the above three cases

completes the proof. ut

In the following lemma, we bound the total expected cover time in the final
schedule σR. Before giving a formal proof, we give a high-level explanation on
how we obtain the upper bound in the lemma. First, the loss of factor Q(1 +
ρ
r−1) comes from flatenning out the “thick” schedule σ̃ which was obtained by
overlaying multiple schedules σi. The thickness is upper-bounded in Lemma 5.

The other term
(

1 + (r− 1)
∑∞
i=0 r

ipi

)
follows from the definition of pi: Set S

is covered no later than time ri ·CPS with a probability of at least 1− pi. The
final term comes from the following. In obtaining the final schedule σR, we
count the expected number of elements that are scheduled before CIS for each
S. For a technical reason, those elements in S are separately counted, which
results in the final term.

Lemma 7 For any ρ ≤ 1, r > 1 and Q ≥ 1, we have

E

[∑
S∈S

CRS

]
≤ Q

(
1 +

ρ

r − 1

)(
1 + (r − 1)

∞∑
i=0

ripi

) ∑
S∈S

CPS +
∑
S∈S

κ(S).

Proof Recall that CIS is the earliest time t such that |{e ∈ S : te,αe
≤

t}| ≥ κ(S). We first upper bound E[CIS]. By definition of pi, we have Pr[CIS >
ri−1 · CPS] ≤ pi−1 for any i ≥ 1. Thus it follows that

E[CIS] ≤
(

(1− p0) +

∞∑
i=1

ri(pi−1 − pi)
)
CPS

=
(

1 + (r − 1)

∞∑
i=0

ripi

)
CPS .

As mentioned before, CIS is not the completion time CRS of S in the final
schedule σR. This is because we might have scheduled more than CIS elements

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 21

until time CIS . By counting the number of elements appearing no later than
time CIS , we obtain the following relation between CRS and CIS . Such elements
are counted separately depending on whether they are in S or not. We obtain

CRS ≤ |{e ∈ [n] \ S | te,αe ≤ CIS}|+ κ(S)

Since for any fixed e /∈ S and time t ∈ R+, Pr[te,αe
≤ t] = min{1,

∫ t
τ=0

x̃e(τ)dτ},
by Lemma 5, we have

E[|{e ∈ [n] \ S : te,αe
≤ t}|] ≤

∑
e∈[n]

∫ t

τ=0

x̃e(τ)dτ ≤ Q
(

1 +
ρ

r − 1

)
t. (14)

Therefore we have

E[|{e ∈ [n] \ S | te,αe ≤ CIS}|]

=

∫ ∞
τ=0

(
E[|{e ∈ [n] \ S : te,αe

≤ τ}|] · Pr[CIS = τ]
)
dτ

≤
∫ ∞
τ=0

(
Q

(
1 +

ρ

r − 1

)
τ · Pr[CIS = τ]

)
dτ

≤ Q

(
1 +

ρ

r − 1

)∫ ∞
τ=0

(
τ · Pr[CIS = τ]

)
dτ

= Q

(
1 +

ρ

r − 1

)
E[CIS].

Hence it follows that

E[CRS] ≤ Q

(
1 +

ρ

r − 1

)
E[CIS] + κ(S)

≤ Q

(
1 +

ρ

r − 1

)(
1 + (r − 1)

∞∑
i=1

ripi

)
CPS + κ(S).

Summing over all sets S completes the proof. ut
We are now ready to complete the proof of Theorem 3.

Proof (Proof of Theorem 3) Observe that
∑
S∈S κ(S) is a lower bound on the

cost of any preemptive schedule. From Lemma 7, it suffices to show

Q

(
1 +

ρ

r − 1

)(
1 + (r − 1)

∞∑
i=0

ripi

)
≤ 5.2

We set Q = 2.65, r = 1.40 and ρ = 0.22. By applying the upper bound in

Lemma 6, we obtain Q(1+ ρ
r−1)

(
1+(r−1)

∑30
i=0 r

ipi

)
≤ 5.13 (the computation

was done numerically). For i > 30, we now prove that

ripi ≤ ri max(K1i,K2i,K3i)

≤ 2 exp(−Q(1 + ρi))ri

< 1.145 · (e−Qρr)i
< 1.145 · (0.782)i.

22 Sungjin Im et al.

From Lemma 6, we derive

1. K1i =≤ 2 exp(−Q(1 + ρi));
2. Using the fact that 2e z

exp(z) ≤ 1 for z ≥ 3 and Q(1 + ρi) ≥ 2.65(1 + 30 ·
0.22) > 10, it follows that

K2i = exp(−2Q(1 + ρi)) + 2Q(1 + ρi) exp(−2Q(1 + ρi) + 1)

= exp(−2Q(1 + ρi)) + 2e
Q(1 + ρi)

exp(Q(1 + ρi))
exp(−Q(1 + ρi))

≤ 2 exp(−Q(1 + ρi)).

3. Finally, from the fact that Q(1 + ρi) > 10, we know

K3i = exp

(
−1.5Q

((
1− 1

(1 + ρi)Q

)2

(1 + ρi)

))
≤ exp(−1.5Q(1 + ρi)(1− 1/10)2)

≤ exp(−1.2Q(1 + ρi))

≤ 2 exp(−Q(1 + ρi)).

Hence it follows that

Q(1 +
ρ

r − 1
)

(
(r − 1)

∞∑
i=31

ripi

)

< Q(1 +
ρ

r − 1
)
(

1.145(r − 1)

∞∑
i=31

(0.782)i
)

= Q(1 +
ρ

r − 1
)
(

1.145(r − 1)(0.782)31
∞∑
i=0

(0.782)i
)

< Q(1 +
ρ

r − 1
)
(

1.145(r − 1)(0.782)31 · 1

1− 0.782

)
< 0.02

We also need to add one due to the last term in the Lemma 7. This establishes
that the gap between between preemptive and non-preemptive schedules for
the min sum objective is at most 6.2. ut

4 Comparison of our LP and the previous one in [2,16]

In this section, we demonstrate that our configuration LP (LPPrimal) is stronger
for both the non-preemptive and preemptive problems than the LP (LPBGK)
considered in [2,16], which is based on the knapsack cover inequalities. For
completeness, we present LPBGK as follows.

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 23

min
∑
t∈[n]

∑
S∈S

(1− zS,t) (LPBGK)

s.t.
∑
e∈[n]

xe,t = 1 ∀t ∈ [n] (15)

∑
t∈[n]

xe,t = 1 ∀e ∈ [n] (16)

∑
e∈S\A

∑
t′<t

xe,t′ ≥ (κ(S)− |A|) · zS,t ∀S ∈ S,∀A ⊆ S, ∀t ∈ [n] (17)

xe,t ≥ 0 ∀e ∈ [n],∀t ∈ [n]

zS,t ∈ [0, 1] ∀S ∈ S,∀t ∈ [n]

Note that the constraints (1) and (2) in LPPrimal are exactly as the same as
(15) and (16) in LPBGK. In LPBGK, the objective is based on the variables zS,t,
the extent to which S is covered until time t − 1. Each set S contributes to
the objective by (1− zS,t) at each time t. The variables zS,t are defined by the
knapsack cover inequalities. We show that LPBGK is also a valid relaxation for
the preemptive problem as well as for the non-preemptive one, as is LPPrimal.

Proposition 4 LPBGK is a valid linear programming relaxation for Preemptive
Generalized Min Sum Set Cover.

Proof Consider any preemptive schedule xe(t), e ∈ [n], t ∈ [0, n]. Define the

value of xe,t :=
∫ t
τ=t−1 xe(τ) dτ from xe(t). Recall in Theorem 2 that we have

shown that xe,t satisfy constraints (15) and (16). For each set S ∈ S and

t ∈ [n], let zS,t = minA⊆S,|A|<κ(S)

∑
e∈S\A

∑
t′<t xe,t′

κ(S)−|A| . Then, constraints (17)

are clearly satisfied.
We now shift our attention to proving that for the xe,t, zS,t values we

defined above, LPBGK has an objective smaller than the total preemptive cover
time under the continuous schedule xe(t). To this end, it suffices to show that
for each set S ∈ S,

∑
t∈[n](1−zS,t) ≤ CPS , where CPS be the (preemptive) cover

time of S. Consider any set S ∈ S. First observe that for any time t ≥ bCPS c+2,
zS,t = 0, since at least κ(S) elements are completely scheduled from S by time
bCPS c + 1. Now we consider the time bCPS c + 1. Let S′ ⊆ S be a subset of
κ(S) elements that are completely scheduled by time CPS . Hence it must be

the case that for each element e ∈ S′,
∫ bCP

S c
τ=0

xe(τ) dτ ≥ 1 − (CPS − bCPS c).
As such, zS,bCP

S c ≥ 1 − (CPS − bCPS c). Finally, for each time t ≤ bCPS c, S
adds at most 1 to the LPPrimal objective. In sum, we obtain

∑
t∈[n](1− zS,t) ≤

bCPS c+ (1− zS,bCP
S c) ≤ C

P
S . ut

We now focus on showing that our relaxation LPPrimal gives a stronger
lower bound than LPBGK. We first provide an instance for which LPPrimal has
an objective value strictly larger than LPBGK.

24 Sungjin Im et al.

Proposition 5 For any ε > 0, there exists an instance for which LPPrimal has
an objective larger than the objective of LPBGK by a factor of more than 2− ε.

Proof Consider the instance where there exists a single set S = [n] with κ(S) =
n. We first consider the objective of LPPrimal. Since all configurations F ∈ F(S)
have CFS ≥ n, therefore LPPrimal gives a solution with cost no smaller than n.
Now we turn our attention to LPBGK. Consider the schedule where all elements
are equally scheduled in each time slot, i.e. xe,t = 1/n for all e, t ∈ [n]. Since
zS,t = t−1

n satisfies the constraints, LPBGK will have an objective value of∑n
t=1(1− t−1

n) = n+1
2 . The claim immediately follows. ut

We now show the following lemma. Since both linear programs, LPPrimal

and LPBGK are valid relaxations, it, together with the above proposition, will
establish that LPPrimal is stronger than LPBGK.

Lemma 8 For any instance, LPPrimal has an objective no smaller than the
objective of LPBGK.

Proof Consider an arbitrary instance and let x∗, y∗ be a fixed optimal solution
to LPPrimal. Define z as follows:

zS,t =def

∑
F∈F(S) and CF

S <t

y∗FS .

We first show that x∗, z satisfy all constraints in LPBGK. We focus on show-
ing constraints (17), since all the other constraints are trivially satisfied. Con-
sider any S and A ⊆ S. Then we have∑

e∈S\A

∑
t′<t

x∗e,t′ =
∑
e∈S\A

∑
t′<t

∑
F∈F(S),(e,t′)∈F

y∗FS [From constraints (4)]

=
∑

F∈F(F)

y∗FS
∑
e∈S\A

∑
t′<t

1[(e, t′) ∈ F]

≥
∑

F∈F(F) and CF
S <t

y∗FS
∑
e∈S\A

∑
t′<t

1[(e, t′) ∈ F]

≥
∑

F∈F(F) and CF
S <t

y∗FS (κ(S)− |A|)

= (κ(S)− |A|) · zS,t

The last inequality holds because for any t ∈ [n], S ∈ S, F ∈ F(S) with
CFS < t, at least κ(S) elements in S are scheduled before time t under the
configuration F .

Let LPPrimal(x
∗, y∗) denote the objective of LPPrimal by the solution x∗, y∗.

Likewise LPBGK(x∗, z) denotes the objective of LPBGK by the solution x∗, z.
We now show that

LPPrimal(x
∗, y∗) = LPBGK(x∗, z)

Preemptive and Non-Preemptive Generalized Min Sum Set Cover 25

Since x∗, y∗ are an optimal solution to LPPrimal, and x∗, z are a feasible
solution to LPBGK, the claim will follow. Consider any S and F ∈ F(S). By
viewing CFS as adding one to the cost of S at each time t ≤ CFS , we have

LPPrimal(x
∗, y∗) =

∑
S∈S

∑
F∈F(S)

CFS y
∗F
S

=
∑
S∈S

∑
1≤t≤n

∑
F∈F(S):t≤CF

S

y∗FS

=
∑

1≤t≤n

∑
S∈S

(1−
∑

F∈F(S),t>CF
S

y∗FS) [From constraints (3)]

=
∑

1≤t≤n

∑
S∈S

(1− zS,t)

= LPBGK(x∗, z)

ut

References

1. Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. Multiple intents re-ranking. In ACM
Symposium on Theory of Computing, pages 669–678, 2009.

2. Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant factor
approximation algorithm for generalized min-sum set cover. In ACM-SIAM symposium
on Discrete algorithms, pages 1539–1545, 2010.

3. Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In Sympo-
sium on Foundations of Computer Science, pages 453–462, 2009.

4. Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami
Tamir. On chromatic sums and distributed resource allocation. Inf. Comput.,
140(2):183–202, 1998.

5. Amotz Bar-Noy, Magnús M. Halldórsson, and Guy Kortsarz. A matched approximation
bound for the sum of a greedy coloring. Inf. Process. Lett., 71(3):135–140, 1999.

6. S. Burer and R. Monteiro. A projected gradient algorithm for solving the maxcut sdp
relaxation. Optimization Methods and Software, 15:175–200, 2001.

7. Chandra Chekuri and Rajeev Motwani. Precedence constrained scheduling to minimize
sum of weighted completion times on a single machine. Discrete Applied Mathematics,
98(1-2):29–38, 1999.

8. Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Al-
gorithmica, 40(4):219–234, 2004.

9. Martin Grotschel, László Laszlo Lovász, and Alexander Schrijver. Geometric algo-
rithms and combinatorial optimization. Second edition. Algorithms and Combinatorics,
2. Springer-Verlag, Berlin, 1993.

10. Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to min-
imize average completion time: Off-line and on-line approximation algorithms. Mathe-
matics of Operations Research, 22(3):513–544, 1997.

11. François Margot, Maurice Queyranne, and Yaoguang Wang. Decompositions, network
flows, and a precedence constrained single-machine scheduling problem. Operations
Research, 51(6):981–992, 2003.

12. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

13. Maurice Queyranne and Maxim Sviridenko. A (2 + ε)-approximation algorithm for
the generalized preemptive open shop problem with minsum objective. J. Algorithms,
45(2):202–212, 2002.

26 Sungjin Im et al.

14. Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer-
Verlag, Berlin, 2003.

15. Andreas Schulz and Martin Skutella. Random-based scheduling: new approximations
and lp lower bounds. In RANDOM, pages 119–133, 1997.

16. Martin Skutella and David P. Williamson. A note on the generalized min-sum set cover
problem. Operations Research Letters, to appear, 2011.

17. Gerhard J. Woeginger. On the approximability of average completion time scheduling
under precedence constraints. Discrete Applied Mathematics, 131(1):237–252, 2003.

