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Abstract

We study the price of anarchy of coordination mechanisms for a scheduling problem where each job
j has a weight wj , processing time pij , assignment cost hij , and communication delay (or release date)
rij on machine i. Each machine is free to declare its own scheduling policy. Each job is a selfish agent
and selects a machine that minimizes its own disutility, which is equal to its weighted completion time
plus its assignment cost. The goal is to minimize the total disutility incurred by all the jobs. Our model
is general enough to capture scheduling jobs in a distributed environment with heterogeneous machines
(or data centers) that are situated across different locations.

Our main result is a characterization of scheduling policies that give a small (robust) Price of Anar-
chy. More precisely, we show that whenever each machine independently declares any scheduling policy
that satisfies a certain bounded stretch condition introduced in this paper, the game induced between the
jobs has a small Price of Anarchy. Our characterization is powerful enough to test almost all popu-
lar scheduling policies. On the technical side, to derive our results, we use a potential function whose
derivative leads to an instantaneous smoothness condition, and linear programming and dual fitting. To
the best of our knowledge, this is a novel application of these techniques in the context of coordination
mechanisms, and we believe these tools will find more applications in analyzing PoA of games. We also
extend our results to the `k-norms objectives.
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1 Introduction

Explosive growth of data has driven distributed computing to evolve at an unprecedented pace. In modern
distributed systems, there are a large number of machines which are clustered and connected in a variety of
topologies, and situated across different geographical locations. Hence routing jobs can incur considerable
costs and communication delays. Machines are also inherently heterogeneous, having very different archi-
tectures and accesses to energy resources – some machines can process some jobs more efficiently and at
cheaper costs. Due to the large scale of such systems, centralized algorithms for scheduling jobs is not very
practical. Moreover, in many scenarios each job is a selfish agent that strategically selects a machine for
getting processed. Can such a decentralized system perform well in spite of the strategic behaviors of the
jobs? We explore this question under a mechanism design paradigm called coordination mechanisms [8].

1.1 Model

There is a set J of n jobs, and a setM of m unrelated machines. A job j has a weight wj , and it needs pij
units of processing time if scheduled on machine i.1 The job j has a communication delay (or release date)
rij on machine i, i.e, the machine can start processing the job only after time rij . Further, the job j incurs
an assignment cost hij if it is assigned to the machine i. This, for example, captures the energy costs.

In a sharp contrast with the centralized view of classical scheduling models, here each job is a self-
interested and autonomous agent free to select its own machine. Every machine declares its scheduling
policy in advance, and this induces a simultaneous-move game between the jobs. The strategy of a job
consists of choosing the machine where it will get processed. Each job wants to minimize its own disutility,
which is its weighted completion time plus its assignment cost. A Nash equilibrium of this game is a stable
outcome where no job can reduce its disutility by switching to another machine. The strategic interactions
among the jobs may lead to overall degradation in system performance. The standard benchmark to measure
this deterioration is the Price of Anarchy (PoA), first introduced in [18]. This is the worst case (maximum
possible) ratio of total disutility of the jobs in a Nash Equilibrium to that in an optimal solution (which
assumes centralized assignment and no strategic behavior).

We let different machines declare different scheduling policies. Each of these policies, however, must
be strongly local 2 since a machine i only knows the wj , pij , rij , and hij values of the jobs j that were
assigned to it. In the absence of a global view of the input, a reasonable option for a machine is to declare a
scheduling policy that (approximately) minimizes its own share of the objective, namely, the total weighted
completion time of all the jobs assigned to it.3 This raises a compelling question:

• Do all scheduling policies that are O(1)-approximate on a single machine result in coordination
mechanisms with O(1) price of anarchy? If the answer is no, is there a characterization of single-
machine scheduling policies that induce O(1) price of anarchy?

1.2 Our Results

In this paper, we present a general recipe for designing coordination mechanisms for minimizing the total
weighted completion time of the jobs plus their assignment costs. The machines need not agree upon a spe-
cific scheduling policy. Nevertheless, the system will have small constant price of anarchy as long as every
machine selects a scheduling policy that satisfies a certain bounded stretch condition introduced in this paper
(see Sections 1.2.1,1.2.2). We further show that almost all scheduling policies used in practice satisfy this

1Our analysis can be easily extended to unrelated weights wij .
2If a job j is assigned to a machine i, then the machine i is not aware of the characteristics of the job j (processing lengths,

release dates etc.) on other machines i′ 6= i.
3The machine can ignore the assignment costs as their contribution to the objective is fixed once each job selects its strategy.
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condition. We complement this positive result by showing that there exists a widely used O(1)-approximate
single-machine scheduling policy that does not satisfy the bounded stretch condition, and induces a game
with large price of anarchy. Finally, we extend our results to all norms of completion times of the jobs
(see Section 1.2.3), and present a general black box reduction to non-preemptive scheduling policies (see
Section 1.2.4).

All the previous works on coordination mechanisms for completion time scheduling [10, 9] focused on
the case without communication delays (release dates) and assignment costs, i.e., rij = hij = 0. We note
that release dates introduce a significant complexity in scheduling, and algorithms for problems without
release dates typically do not generalize to those with release dates. For example, the underlying optimiza-
tion problem on a single machine is polynomial time solvable via a greedy algorithm without release dates,
but is NP-HARD with release dates [22]. Furthermore, the previous works [10, 9] analyze very specific
scheduling policies, and restrict all machines to announce the same scheduling policy. In contrast, we give a
new dimension to the problem by allowing different machines to declare different scheduling policies. This
generalization models the real world applications more accurately, since the machines (or data centers) are
typically owned and operated by different entities.

Our results rely upon two novel techniques. (a) A potential function that leads to an instantaneous
smoothness condition; and (b) Linear programming and dual fitting.

1.2.1 Characterization of Good Single-machine Scheduling Policies

We introduce the notion of a scheduling policy with bounded stretch in the definition given below.4

Definition 1.1. Suppose that a machine is processing a given set of jobs. The scheduling policy followed by
the machine has a stretch α iff the completion time Cj of each job j (with weight wj , release date rj , and
processing time pj) satisfies the inequality:

Cj ≤ rj + pj +
∑

j′ 6=j:Cj′≥rj

α ·min
(
pj′ , (wj′/wj) · pj

)
To understand the above definition, assume for a while that all the jobs have unit weight, and note that

the total delay encountered by a job j is equal to Cj − (rj + pj). What should be a reasonable upper bound
on the contribution (say ηj′) of some specific job j′ 6= j towards this delay Cj − (rj + pj)? Without any
loss of generality, we can assume that the job j′ completes after the release date of the job j, i.e. Cj′ ≥ rj ;
otherwise ηj′ is zero. The α-stretch condition says that ηj′ can be at most α times min(pj , pj′). Note that the
job j′ can delay the job j when it gets processed with a higher priority, and this can happen for an amount
of time equal to the job j′’s size, which is pj′ . Further, the α-stretch condition requires that the policy is fair
to both the jobs and hence the bound α ·min(pj , pj′). Finally, the weights of the jobs are also factored in.

This seemingly simple characterization turns out to be quite powerful. In Appendix B, we describe
many scheduling policies that are used in practice, and most of these policies have bounded stretch.

Theorem 1.1. The scheduling policies – Highest Density First, Highest Residual Density First, Weighted
Round Robin, and Weighted Shortest Elapsed Time First – all have stretch α = 1.

The reader may find it helpful to compare Definition 1.1 with the definition of the Weighted Round
Robin (WRR) scheduling policy (see Appendix B). An important distinction between the two definitions is
that the stretch condition does not specify a scheduling policy but is only concerned with the final completion
times of the jobs. On the other hand, the scheduling policies with bounded stretch behave similar to WRR,
in the sense that each job delays another job by at most α times it own processing length. This provides an
intuitive explanation as to why such policies should lead to equilibria with small PoA.

4Our notion of stretch is different from the standard definition of stretch used in scheduling literature.
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1.2.2 Price of Anarchy Bounds for Coordination Mechanisms

With the above definition of bounded stretch, we prove the following general result.

Theorem 1.2. Suppose that each machine declares a (possibly different) scheduling policy with stretch α.
Then the resulting game has a robust (smooth) price of anarchy of at most

1 + α(
√
α2 + 1 + α)

1− α(
√
α2 + 1− α)

≤ 4α2 + 2α = O(α2)

Particularly when α = 1, the bound is at most 5.8284, and this holds for many popular scheduling policies.

The interesting aspect of the above result is the analysis. We present two analysis techniques which
yield somewhat different bounds - potential functions and dual fitting. Conceptually, our techniques are
inspired by the elegant work on online scheduling [7, 1, 15] – the connection being that in both cases, we
need to compare the decisions made by the optimal solution (that is non-strategic and omniscient) with the
solution that arises due to the execution of the implemented policy. However, the similarity ends there -
unlike online algorithms, in a coordination game, a job is selfish and cannot be forced to go to a specific
machine and hence equilibrium state cannot be controlled by an algorithm. Moreover, a game can have
multiple equilibria, and the analysis should hold for all them simultaneously.

Potential Functions. Our first technique uses a smoothness argument (see Section 2) via a carefully con-
structed potential function (see Section 3). The difficulty in a direct smoothness argument is that we have
to compare the execution of two policies that make decisions over time, and these decisions could be very
divergent. Note that unlike the case without release dates [10], we cannot write closed form expressions for
the completion time induced by specific policies. Instead, we show that the derivative of the potential func-
tion (w.r.t. time) gives an instantaneous smoothness inequality that is easy to compute. We then integrate
this inequality over time to derive the final smoothness bound. To our knowledge, this type of approach
inspired by online algorithms has not been used before in the context of price of anarchy.

Dual Fitting. (See Section 4.) Consider the optimization problem underlying our game-theoretic frame-
work, where the goal is to minimize the total weighted completion time of the jobs plus their assignment
costs. We write a time-indexed LP-relaxation of the problem, similar to the one in [1]. Using the dual of
this LP, we bound the price of anarchy of the game induced between the jobs, when every machine declares
a scheduling policy satisfying certain natural conditions (see Section 4). The idea is to take any Nash equi-
librium of the game, and appropriately charge the disutility of each job to the dual variables in a way such
that (a) all the dual constraints are satisfied, and (b) the dual objective is at least η times the total disutility
incurred by all the jobs in the Nash equilibrium, for some η ∈ (0, 1]. This shows that the price of anarchy is
at most 1/η due to weak duality.

In contrast to a potential function based argument, one apparent drawback of the dual-fitting framework
is that for technical reasons we need to impose two restrictions on the allowable class of scheduling policies
in addition to the bounded stretch condition. These restrictions, however, are fairly intuitive. We are not
aware of any simple, combinatorial scheduling policy with bounded stretch that violates the additional as-
sumptions required in the dual-fitting proof. Further, unlike the potential function analysis, the dual-fitting
proof only bounds the price of anarchy of pure, mixed Nash and correlated equilibria, and at present we do
not see any way to extend the proof to get a robust (smooth) price of anarchy bound which, in addition to
these three solution concepts, also applies to no regret sequences [19].

Nevertheless, we feel the dual-fitting framework is interesting in its own right, as it establishes a con-
nection between the price of anarchy of a coordination mechanism and the LP relaxation of the underlying
optimization problem. Further, it yields the following improved theorem:
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Theorem 1.3. The price of anarchy (of pure, mixed, and correlated equilibria) of the Highest Density First
scheduling policy (see Appendix B for definition) is at most 4.

This matches the lower bound [10] known for non-preemptive scheduling policies when there are no
release dates and assignment costs.5 The dual-fitting approach also helps us compare against an optimal
migratory solution where a job is processed over multiple machines. To our knowledge, this type of approach
to bound the price of anarchy of games has not been considered previously in the literature.

Scheduling Policies with Large Stretch. As our α-stretch condition is fairly general and most of the pop-
ular scheduling policies have bounded stretch, the reader may be tempted to conjecture that all scheduling
policies that are O(1)-approximation on a single machine lead to coordination mechanisms with O(1) price
of anarchy. However, we show in Appendix E that this is not the case. The scheduling policy Weighted Lat-
est Arrival Processor Sharing (WLAPS) gives O(1)-approximation to the total weighted completion time
on a single machine. But it does not induce a game with constant price of anarchy. The scheduling policy
WLAPS generalizes Round Robin to favor more recent jobs, and has been extensively studied in scheduling
theory – particularly in broadcast scheduling problems [12, 3]. Not surprisingly, WLAPS fails our bounded
stretch condition (α is Ω(n)). Thus, our characterization seems to separate scheduling policies which are
good in non-strategic settings from those which lead to small price of anarchy .

1.2.3 Extension to `k-norms

Next, we extend our result to the more general objective of minimizing `k-norms of completion time where
1 ≤ k < ∞. Note that the total completion time is the `1-norm and the maximum completion time
(makespan) is the `∞-norm. The `1-norm objective may starve some jobs for an unacceptably long time
while focusing too much on average performance. In contrast, the `∞-norm tries to be as fair as possible
at the expense of average performance. The `k-norms, k ≥ 2 make a natural balance between average
performance and fairness [4, 14, 1]. We prove the following theorem in Appendix H.

Theorem 1.4. Suppose that each machine declares a (possibly different) scheduling policy with stretch
α. Then the resulting game has a robust price of anarchy of O(kαk+1) for minimizing the `k-norm of
completion time of jobs, for any k ≥ 1.

We present our result only for the unweighted jobs case, and will extend our result to the `k-norm of
weighted completion time in the full version of the paper. We note that previous work [9] considered only
SHORTEST JOB FIRST (SJF) and ROUND ROBIN (RR) policies without release dates, and showed that
they have robust price of anarchy of O(k) and O(2k), respectively.6 Theorem 1.4 implies an exponential
improvement for ROUND ROBIN (which has stretch α = 1), and this holds even with release dates. As
observed in [9], due to a well-known relationship between `k-norms and the `∞-norm we have the following
theorem as a corollary.

Theorem 1.5. Suppose that each machine declares a (possibly different) strongly local scheduling policy
with stretch α = 1. Then the resulting game has a robust price of anarchy of O(log n) w.r.t. the objective of
minimizing the makespan, where n is the number of jobs.

The above theorem compliments the lower bound of Ω(m) known for the price of anarchy of strongly
local scheduling policies [2], where m is the number of machines (see Section 1.3).

5Note that Highest Density First is a nonpreemptive policy in the absence of release dates.
6In [9], the authors present the analysis for unweighted `k-norms of completion time, and claim that their analysis extends to

weighted `k norms. We remind the reader that SJF is the unweighted version of HDF.
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1.2.4 Non-preemptive Scheduling Policies

In some applications, preempting a job can be costly, and non-preemptive scheduling policies are highly
desirable. When the jobs arrive online, however, no natural non-preemptive scheduling policy gives O(1)
approximation to the weighted completion time, even on a single machine. This is particularly relevant
since both our potential function and dual-fitting proofs are inspired by the frameworks developed for online
scheduling problems [7, 1]. Nevertheless, in Appendix F we present a general black box reduction from
preemptive scheduling policies to non-preemptive scheduling policies that preserve the stretch within a
factor of two. This reduction is an adaptation of the idea used in [13].

Theorem 1.6. There exists a reduction that takes any preemptive scheduling policy with stretch α and
outputs a non-preemptive scheduling policy with stretch at most 2α.

The above theorem, along with Theorem 1.1 and Theorem 1.2, shows how to construct non-preemptive
(offline) scheduling policies that lead to small constant price of anarchy.

1.2.5 Pure Nash Equilibrium

Although a correlated equilibrium (which can be computed in polynomial time) and a mixed Nash equi-
librium is guaranteed to exist in every finite game, not all games have pure Nash equilibrium (PNE). For
example, when there are no communication delays (release dates) and assignment costs, it is known that
the game induced by the Highest Density First policy might not have a PNE [10]. In contrast, a PNE is
guaranteed to exist in the game induced by the Weighted Round Robin (WRR) policy (see Appendix B for
definitions). It is not clear if this property of WRR continues to hold in the presence of release dates and
assignment costs. We address this concern by transforming the WRR policy. The idea is to run the WRR
schedule but withhold the completion time of a job, forcing it to satisfy the following condition.

wjCj =
∑
j′

min(wjpj′ , wj′pj)

One way to achieve this is to process the last ε portion of job j at time t = (1/wj)·
∑

j′ min(wjpj′ , wj′pj).
It is easy to verify that the stretch of the resulting schedule is at most 2. The proof for WRR in [10] can be
easily extended to show that this induces a potential game. Hence, a PNE is guaranteed to exist, and the
Nash dynamics converges to a PNE in pseudo-polynomial time.

1.3 Related Work

There has been a lot of work on approximation algorithms for minimizing the weighted sum of completion
times [13, 20, 21]. Our potential function and dual-fitting techniques are inspired by the elegant framework
developed for online scheduling in [7, 1]. We note that their framework can be adapted to yield combi-
natorial scheduling policies for weighted completion time that are also O(1)-approximations. Here, each
machine simply schedules the set of jobs assigned to it using, for example, the Highest Residual Density
First policy (see Appendix B for definition). The algorithm considers the jobs in increasing order of their
release dates and applies a greedy dispatch rule, assigning a job j to that machine i which increases the
overall objective function (for the currently dispatched jobs) by the least amount. Although our potential
function and dual-fitting proofs are inspired by this framework, as mentioned above, the settings are actually
very different. For instance, there is a scheduling policy (see Section E) that gives O(1)-approximation to
the online optimization problem when used in conjunction with the greedy dispatch rule, but induces a game
with very large price of anarchy.
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Coordination mechanisms were first introduced in [8]. See the survey [16] for various selfish scheduling
models. The study of coordination mechanisms for completion time objective was initiated in [10, 11]. In
the absence of release dates and assignment costs, they show tight constant factor price of anarchy bounds
for three specific policies - WEIGHTED ROUND ROBIN (WRR), HIGHEST DENSITY FIRST (HDF), and
RANDOM (RAND). They also show that, both WRR and RAND induce pure Nash Equilibrium while
HDF does not. The lk-norms of the completion time were considered [9]. They prove a price of anarchy of
O(k) for SHORTEST JOB FIRST (when there are no weights, release dates, and assignment costs), and show
that no strongly local deterministic policy can achieve a price of anarchy better than O(k/ log log k).

Azar et al [2] design coordination mechanisms for the makespan objective. They show a lower bound
of Ω(m) for any strongly local scheduling policy (see Section 1.1 for deifinition), where m is the number
of machines. In contrast, they present a weakly local scheduling policy (where a machine knows everything
about the jobs assigned to it, including their processing lengths on other machines) that achieves a price of
anarchy of O(logm), and a policy that induces a pure Nash Equilibrium with PoA of O(log2m). These
results were later extended by Caragiannis [6]. Similar to our work, he showed a strong connection between
coordination mechanisms and online algorithms [5]. It will be interesting to study whether this is purely
coincidental, or if there is a deeper connection between price of anarchy and competitive ratios.

2 Preliminaries

Recall the concepts and notations introduced in Section 1.1. We index a machine by i ∈ M, and a
job by j ∈ J . Each machine i ∈ M declares a strongly local scheduling policy Ai. Let the symbol
A = (A1, . . . Ai, . . . A|M|) denote the profile of scheduling policies. Let GAME(A) denote the resulting
game induced between the jobs. An outcome of this game is a strategy-profile θ = (θ1, . . . θj , . . . θ|J |),
where θj ∈ M is the machine selected by the job j ∈ J . For notational convenience, we also define
an assignment-vector Q that summarizes the outcome from the perspective of the machines. The vector
Q = (Q1, . . . Qi, . . . Q|M|) has |M| components, and the ith component of this vector refers to the set of
jobs assigned to machine i ∈ M. Thus, we have Qi = {j ∈ J : θj = i}. The completion time of a job j
under this outcome is given by CAj (θ). The disutility of the job equals its assignment cost plus its weighted
completion time, and this is denoted by COSTAj (θ) = hθj ,j+wj ·CAj (θ). The outcome is a pure Nash equilib-
rium iff no job can reduce its disutility by switching to another machine, i.e., COSTAj (θ) ≤ COSTAj (i, θ−j)
for all j ∈ J , i ∈M, where θ−j is the strategy-profile of all the jobs except the job j.

We reserve the term scenario for a triple S = (A,Q, θ). This specifies the scheduling policy followed by
every machine, and an outcome of the resulting game. The symbol pij(t) denotes the remaining processing
length of a job j ∈ Qi on machine i at time t. We say that the job is unfinished at time t iff pij(t) > 0. The
symbol Wi(t) denotes the total weight of the unfinished jobs on machine i at time t.

Fix any profile of scheduling policies A, and let NE(A) be the set of all pure Nash equilibria of
GAME(A). The objective is to minimize the total disutility of the jobs. The price of anarchy of this game is:

PoA(A) =
maxθ∈NE(A)

∑
j COST

A
j (θ)

minA′,θ′
∑

j COST
A′
j (θ′)

Note that the above expression compares the worst Nash equilibrium of GAME(A) with the optimal solution
to the underlying optimization problem, which may use an entirely different profile of scheduling policies.

The notion of price of anarchy as defined above is not applicable in games that do not admit any pure
Nash equilibrium. To address this issue, Roughgarden [19] introduced a smoothness framework which
gives robust price of anarchy bounds for generalized solution concepts such as mixed Nash and correlated
equilibria and no regret sequences. Adapting the smoothness framework to our context, we say that the
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GAME(A) is (λ, µ)-smooth iff the following inequality holds for any two scenarios S = (A,Q, θ) and
S′ = (A′, Q′, θ′). ∑

j∈J
COSTAj (θ′j , θ−j) ≤ λ ·

∑
j∈J

COSTA
′

j (θ′) + µ ·
∑
j∈J

COSTAj (θ) (1)

The reader may find it helpful to think of the scenario S as a pure Nash equilibrium of GAME(A), and
the scenario S′ as an optimal solution to the underlying optimization problem. It can be shown that the
robust price of anarchy of any (λ, µ)-smooth game is at most λ/(1− µ).

3 Robust Price of Anarchy Bound via Potential Function

We devote this entire section to proving Theorem 1.2 by a potential function based argument. Throughout
this section, we fix two scenarios S = (A,Q, θ) and S′ = (A′, Q′, θ′). Further, we assume that all the
scheduling polices Ai (specified by A) under the scenario S has stretch α (see Definition 1.1). We will
prove Equation 1. The quantities λ and µ will be decided later depending on α.

Zero Assignment Costs. For ease of analysis, we ignore the jobs’ assignment costs throughout this section,
i.e. hij = 0. It is straightforward to extend our analysis to incorporate nonnegative assignment costs.7

Note that the left hand side of Equation 1 results from mixing two completely different scenarios S and
S′. Hence, it is not easy to relate this quantity with the right hand side, which consists of the weighted
completion times under the two individual scenarios. This is the case particularly when the jobs are released
over time, as it becomes extremely difficult to derive mathematical expressions for the terms in Equation 1.

To circumvent this difficulty, we upper bound the left hand side by a carefully chosen potential function,
and consider its derivative with respect to time. The advantage of this approach is that we have a good un-
derstanding of how an algorithm makes instantaneous scheduling decision. For example, the instantaneous
increase in the total weighted completion time is simply the total weight of the unfinished jobs. In other
words, each unfinished job j incurs a penalty of wj at each time step.

For a technical reason that will become clear as we proceed with the proof, we slow down the schedule
under S′ by a (suitably chosen) constant factor δ ∈ (0, 1). Let A′(δ) denote the new profile of scheduling
policies, and let S′(δ) = (A′(δ), Q′, θ′) denote the new resulting scenario. More precisely, a job is processed
on machine i at time t in S′ iff it is processed on the same machine i at time t/δ in S′(δ). Note that the
assignment vector and the strategy-profile remain the same across the two scenarios S′ and S′(δ).

We emphasize that S′(δ) is not the schedule that results from the machines executing the policies A′

with speed δ. Rather, S′(δ) is obtained by stretching out the schedule S by a factor of 1/δ over the time
horizon. It is easy to see that this transformation increases the completion time of a job by a factor of 1/δ.

Fact 3.1. The completion time of every job j′ under S′(δ) is exactly 1/δ times its completion time under S′.

Overview of our approach. Recall the notations introduced in Section 2. We will always index the jobs
by j under the scenario S, and by j′ under the scenario S′(δ). The remaining processing lengths will be
denoted by pij(t) under the scenario S, and by p∗ij′(t) under the scenario S′(δ). Similarly, the total weight
of the unfinished jobs on a machine will be denoted by Wi(t) under the scenario S, and by W ∗i (t) under the
scenario S′(δ). With these notations in place, we are now ready to define our potential function.

Φ(t) =
∑
i∈M

∑
j′∈Q′i

∑
j∈Qi

min
(
wj′ · pij(t), wj · p∗ij′(t)

)
(2)

7The dual fitting proof in Section 4 is presented in its full generality, and does not require this simplifying assumption.
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Let COSTS =
∑

j COST
A
j (θ) denote the total disutility of all the jobs under the scenario S = (A,Q, θ),

which is the same as their total weighted completion time (assuming zero assignment costs). Hence, we
can write this quantity as COSTS =

∫∞
0

d
dtCOST

S(t), where the derivative d
dtCOST

S(t) equals the total
weight of the unfinished jobs at time t under the scenario S. Similarly, let COSTS

′
(resp. COSTS

′(δ)) denote
the total disutility of all the jobs under the scenario S′ (resp. S′(δ)). Fact 3.1 implies that COSTS

′(δ) =
(1/δ) · COSTS′ . We will show that Φ(t) is a good estimate of the left hand side of Equation 1. In particular,
we will prove that Φ(t) satisfies the following conditions.

Φ(∞) = 0 (3)∑
i∈M

∑
j′∈Q′i

COSTAj′(i, θ−j′) ≤ COSTS
′
+ α · Φ(0) (4)

− d

dt
Φ(t) ≤ d

dt
COSTS

′(δ)(t) + δ · d
dt
COSTS(t) at every time t (5)

In Equation 4, the symbol α denotes the stretch of the scheduling policies declared by the machines (see
Definition 1.1) under the scenario S. The proof of the next theorem appears in Appendix C.

Theorem 3.1. The potential function as defined in Equation 2 satisfies Equations 3, 4, 5.

We now use Theorem 3.1 to derive:

Left hand side of Equation 1 =
∑
i∈M

∑
j′∈Q′i

COSTAj′(i, θ−j′)

≤ COSTS
′
+ α · Φ(0)

= COSTS
′ − α ·

∫ ∞
t=0

d

dt
Φ(t)dt

≤ COSTS
′
+ α ·

∫ ∞
t=0

[ d
dt
COSTS

′(δ)(t) + δ · d
dt
COSTS(t)

]
dt

≤ COSTS
′
+ α · COSTS′(δ) + (αδ) · COSTS

= (1 + α/δ) · COSTS′ + (αδ) · COSTS

The last equality follows from Fact 3.1.

Thus, setting λ = (1+α/δ) and µ = αδ, we get a robust price of anarchy bound of (1+α/δ)/(1−αδ).
This leads to Theorem 1.2. More specifically, by setting δ = 1/(2α), we obtain a robust PoA bound of

2(1 + 2α2). The best bound we can obtain here is 1+α(
√
α2+1+α)

1−α(
√
α2+1−α) when δ =

√
α2 + 1 − α. This bound

becomes (
√

2 + 1)/(
√

2− 1) ' 5.8284 when α = 1.

Remark. When all the release dates are zero, the robust price of anarchy bound improves to 4α2. This
improvement follows from a better bound for Equation 4, namely, we can show that its left hand side is at
most α · Φ(0). Note that this bound is tight [10] when α = 1 (see Theorem 1.1).

4 Price of Anarchy using Dual Fitting

In this section, we improve the bound on the PoA of α-stretch scheduling policies to 4α using dual fitting.
For simplicity of exposition, we only derive the PoA of pure Nash equilibria, and defer the extension to
mixed Nash and correlated equilibria to Appendix G. We require that the scheduling policies satisfy two
properties in addition to the bounded stretch condition.
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Definition 4.1 (Myopic Policy). A scheduling policy is myopic iff its scheduling decision depends only on
the status of the jobs available for processing at the present time instant. In particular, the decision is
independent of the jobs that will be released in future.

Assume for a while that all the jobs have unit weights, and consider a machine which follows the SRPT
scheduling policy. At time t, this machine looks at the set of jobs available in its queue, and works on the
job j with shortest remaining processing time pj(t). At time t+1, it repeats the same process. This policy is
myopic, since its scheduling decision depends only on the jobs currently available in the machine’s queue.
The reader may find it helpful to keep this example in mind while going through the rest of this section.

Definition 4.2 (Monotone Policy). A scheduling policy is monotone iff it satisfies three properties. (1)
Everything else remaining the same, the completion time of a job can never increase if it is released at an
earlier date. (2) Everything else remaining the same, the completion time of a job j can never decrease if
the machine is asked to process an extra job j′. (3) For any two jobs j and j′ with wj = wj′ , rj ≤ rj′ , and
pj ≤ pj′ , the completion time of job j is at most the completion time of job j′, i.e, Cj ≤ Cj′ .

All scheduling policies that give O(1)-approximations on a single machine (see Appendix B), with the
exception of WLAPS, are myopic and monotone, and have stretch α = 1. We prove the following theorem.

Theorem 4.1. Suppose that each machine declares a (possibly different) scheduling policy which is myopic,
monotone and has stretch α ≥ 1. Then the price of anarchy of the induced game is at most 4α.

First we derive a bound on the completion time of a job. The next lemma (whose proof appears in
Appendix D) justifies our use of the term “bounded stretch”, for traditionally the “stretch” of a job is defined
as its completion time minus its release date divided by its processing length.

Lemma 4.2. If a machine runs a scheduling policy with stretch α ≥ 1, then a job j (with weight wj , release
date rj , processing length pj , and completion time Cj) on the machine satisfies the following condition.

Cj ≤ rj + α · (W (rj)/wj) · pj .

Here, the symbol W (rj) denotes the total weight of the unfinished jobs at time t.

LP-relaxation. Consider the LP PRIMAL described below [1]. It has a variable xijt for each machine
i ∈ M, each job j ∈ J and each unit time-slot t ≥ rij . If the machine i processes the job j during the
whole time-slot t, then this variable is set to 1. The first constraint says that every job has to be completely
processed. The second constraint says that a machine cannot process more than one unit of the jobs during
any time-slot. Note that the LP allows a job to be processed simultaneously across different machines.

In the objective function, the term
∑

i

∑
t≥rij hij · (xijt/pij) gives the assignment cost incurred by the

job j. The term
∑

i

∑
t≥rij wj · xijt · (t/pij) is known as the fractional weighted completion time of the

job j. In a feasible schedule this quantity is no more than its integral weighted completion time, minus half
of its weighted processing time. Finally, the remaining term

∑
i

∑
t≥rij wj · xijt · (1/2) equals half of the

weighted processing time of the job. Thus, adding up these three terms, we see that the disutility of a job
j is at least

∑
i

∑
t≥rij hij · (xijt/pij) +

∑
i

∑
t≥rij wj · xijt · (t/pij + 1/2). Hence, the linear program

PRIMAL is a valid relaxation of our problem.

Min
∑
j

∑
i

∑
t≥rij

hij · (xijt/pij) +
∑
j

∑
i

∑
t≥rij

wj · xijt · (t/pij + 1/2) (PRIMAL)

∑
i

∑
t≥rij xijt/pij ≥ 1 ∀j∑
j : t≥rij xijt ≤ 1 ∀i, t

xijt ≥ 0 ∀i, j, t : t ≥ rij

9



Now, suppose that we constrain each machine to run at a reduced speed of 1/2α. In other words, each
machine can process at most 1/2α units of the jobs during one unit of time. It is easy to see that the
modified LP described below is a valid relaxation under this new constraint. This transformation increases
the objective by at most a factor of 2α.

Min
∑
j

∑
i

∑
t≥rij

hij · (xijt/pij) +
∑
j

∑
i

∑
t≥rij

wj · xijt · (t/pij + α) PRIMAL(α)

∑
i

∑
t≥rij xijt/pij ≥ 1 ∀j∑
j : t≥rij xijt ≤ 1/(2α) ∀i, t

xijt ≥ 0 ∀i, j, t : t ≥ rij
Lemma 4.3. The optimal objective of the linear program PRIMAL(α) is at most 2α times the total disutility
of the jobs in any feasible integral schedule.

Finally, we write down the dual of the above linear program.

Max
∑
j

yj −
∑
i

∑
t

zit DUAL(α)

yj ≤ hij + wj · (t+ α · pij + (2α) · (zit/wj) · pij) ∀i, j, t : t ≥ rij
yj ≥ 0 ∀j
zit ≥ 0 ∀i, t

Analysis. Fix a profile of scheduling policies A = (A1, . . . , A|M|), where Ai gives the scheduling policy
declared by the machine i. For all i ∈ M, the scheduling policy Ai is myopic, monotone and has a stretch
α. Recall the notations introduced in Section 2. For the rest of this section, we focus on any scenario
S = (A,Q, θ) where the strategy-profile θ is a pure Nash equilibrium of GAME(A).

We will set the variables of the linear program DUAL(α) so as to get a feasible dual solution, with an
objective that is at least 1/2 times the total disutility of the jobs under the scenario S. This, combined with
Lemma 4.3 and weak duality, will imply that the price of anarchy of GAME(A) is at most 4α.

Setting the dual variables: The variable yj is set to be the disutility of the job j under the scenario S.
Further, the variable zit is set to be half of the total weight of the unfinished jobs on machine i at time t,
under the scenario S.

yj = COSTAj (θ) = hθj ,j + wj · CAj (θ) (6)

zit = (1/2) ·Wi(t) (7)

Lemma 4.4. If the dual variables are set as in the equations 6, 7, then the objective of the linear program
DUAL(α) is at least (1/2) ·

∑
j COST

A
j (θ).

Proof. We use the well-known fact that the total weighted completion time of all the jobs assigned to any
specific machine i is equal to

∑
tWi(t). Thus, we infer that:∑

i,t

zit = (1/2) ·
∑
j

wj · CAj (θ) ≤ (1/2) ·
∑
j

COSTAj (θ).

The lemma follows from the above inequality and the fact that
∑

j yj =
∑

j COST
A
j (θ).

The proof of the next lemma appears in Appendix D.

Lemma 4.5. If the dual variables are set as in the equations 6, 7, then all the constraints of the linear
program DUAL(α) are satisfied.

Theorem 4.1 now follows from Lemma 4.3, Lemma 4.4, and Lemma 4.5.
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A List of Symbols

α : Stretch of a scheduling policy.

J : Set of jobs.

M : Set of machines.

pij : Processing length of job j ∈ J on machine i ∈M.

rij : Communication delay (or release date) of job j ∈ J on machine i ∈M.

hij : Assignment cost of job j ∈ J on machine i ∈ I.

wj : Weight of job j ∈ J .

A : This symbol denotes the profile of scheduling policies followed by the machines. This is a vector
(A1, . . . , A|M|), where Ai denotes the scheduling policy of machine i ∈M.

GAME(A) : The game induced between the jobs by the profile of scheduling policies A.

θ : This denotes a strategy-profile (θ1, . . . , θ|J |), where θj ∈M is the machine selected by the job j ∈ J .

Q : This is an assignment-vector (Q1, . . . , Q|M|), where Qi = {j ∈ J : θj = i} is the subset of jobs
assigned to the machine i ∈M.

S : A scenario S is characterized by a triple S = (A,Q, θ). This specifies the profile of scheduling
policies and an outcome of the induced game.

pij(t) : The remaining processing length of job j ∈ Qi at time t.
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Wi(t) : At time t, the total weight of the unfinished jobs on machine i, i.e., Wi(t) =
∑

j:pij(t)>0wj .

CAj (θ) : Completion time of job j ∈ J under scenario S = (A,Q, θ).

COSTAj (θ) : Disutility of job j ∈ J under scenario S = (A,Q, θ), i.e., COSTAj (θ) = hθj ,j + wj · CAj (θ).

Qi(t) : At time t, the set of unfinished jobs on machine i, i.e., Qi(t) = {j ∈ Qi : pij(t) > 0}.

Ji(t) : At time t, the set of unfinished jobs on machine i that are available for processing. Thus, we have:

Ji(t) = {j ∈ Qi : pij(t) > 0 and rij ≤ t}

B Some Specific Scheduling Policies

Here, we describe some well known scheduling policies. Fix a machine i which has to process a set of jobs
Qi. The symbol Ji(t) denotes the set of unfinished jobs that are available for processing at time t. All the
policies described below are simple, in the sense that they can be implemented in an “online” environment.
Thus, at any time t, the processing decision depends only on the jobs in Ji(t), their weights, and remain-
ing processing lengths. In particular, the decision is independent of the jobs that are going to arrive in future.

First we give a brief description of scheduling policies which has bounded stretch (see Definition 1.1).

HIGHEST DENSITY FIRST (HDF). At any time t, the machine works on the job j ∈ Ji(t) which has the
highest density wj/pij . When the jobs are unweighted, this policy is known as “Shortest Processing Time
First” (SPT).

HIGHEST RESIDUAL DENSITY FIRST (HRDF). At any time t, the machine works on the job j ∈ Ji(t)
which has the highest residual density wj/pij(t). When the jobs are unweighted, this policy is known as
“Shortest Remaining Processing Time First” (SRPT).

WEIGHTED ROUND ROBIN (WRR). At any time t, the machine works on the jobs in Ji(t) in proportion to
their weights. Specifically, for all jobs j ∈ Ji(t), we have:

d

dt
(pij(t)) = − wj∑

j′∈Ji(t)wj′
.

We note that WRR is an example of a non-clairvoyant scheduling policy. This refers to the property that a
scheduling policy like WRR can be used even when the machine does not known the processing lengths in
advance, and a job’s processing length is revealed only when the machine finishes the job.

WEIGHTED SHORTEST ELAPSED TIME FIRST (WSETF). At any time t, the machine works on the job
j ∈ Ji(t) which maximizes the ratio wj/(pij − pij(t)). Unweighted version of this scheduling policy
is known as “Shortest Elapsed Time First”, and here the machine works on the job which has been least
processed so far. WSETF is a non-clairvoyant scheduling policy which has been extensively studied in
scheduling literature [17, 4].

It is easy to verify that all the scheduling policies mentioned above satisfy the stretch condition with α = 1,
and are myopic and monotone. We skip the proof.
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Next, we look at scheduling policies which do not satisfy our bounded stretch conditon. First we consider
WLAPS, which gives O(1) approximation on a single machine and has been extensively studied in schedul-
ing theory [12, 3]. We show in Section E that WLAPS has α = Ω(n), and it also has PoA = Ω(n).

WEIGHTED LATEST ARRIVAL PROCESSOR SHARING (WLAPS(ε)). This scheduling policy takes a param-
eter ε ∈ [0, 1] as input. Let J εi (t) denote ε|J(t)| jobs in J(t) with the highest release dates. At any time t,
the machine works on the jobs j ∈ J εi (t) in proportion to their weights, so that for all j ∈ J εi (t) we have:

d

dt
(pij(t)) = − wj∑

j′∈Jεi (t)
wj′

.

This scheduling policy gives preference to the recently released jobs, and is non-clairvoyant. Note that if
ε = 1, then this policy reduces to WEIGHTED ROUND ROBIN. When the jobs are unweighted, this policy is
known as LATEST ARRIVAL PROCESSOR SHARING (LAPS).

The following scheduling policies also fail to satisfy our bounded stretch condition.

• First in First Out (FIFO) – this schedules the jobs in the increasing order of their release dates.

• Longest Job First (LJF) – this schedules the longest job available for processing.

• Biggest Weight First (BWF) – this schedules the job with the highest weight.

• The policy which schedules a job uniformly at random.

However, unlike WLAPS, these polices are not O(1) approximation to the weighted completion objective
and hence have bad PoA.

Remark: The scheduling policy RAND considered in [10] does indeed satisfy our condition with α = 1 in
expectation. However, we do not analyze RAND, since it is not clear how to extend RAND in the presence
of release dates.

C Proof of Theorem 3.1

Let Φi(t) denote the contribution towards Φ(t) by machine i ∈ M, and let Φij′(t) denote the contribution
towards Φi(t) by job j′ ∈ Q′i. Thus, we have:

Φij′(t) =
∑
j∈Qi

min
(
wj′ · pij(t), wj · p∗ij′(t)

)
(8)

Φi(t) =
∑
j′∈Q′i

Φij′(t) (9)

Φ(t) =
∑
i∈M

Φi(t) (10)

The next two lemmas show that Φ(t) satisfies the boundary conditions at t = 0 and t =∞.

Lemma C.1. The potential function Φ(t) satisfies Equation 3.

Proof. Follows from the observation that each job has zero remaining processing length at time t =∞.
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Lemma C.2. The potential function Φ(t) satisfies Equation 4.

Proof. Fix any machine i ∈M. For every job j′ ∈ Q′i, we have:

wj′ · CAj′ (i, θ−j′) ≤ wj′ · rij′ + wj′ · pij′ + α ·
∑
j∈Qi

min
(
wj′ · pij , wj · pij′

)
= wj′ · (rij′ + pij′) + α ·

∑
j∈Qi

min
(
wj′ · pij(0), wj · p∗ij′(0)

)
= wj′ · (rij′ + pij′) + α · Φij′(0)

≤ wj′ · CA
′

j′ (θ′) + α · Φij′(0) (11)

The first inequality holds since the scheduling policyAi has stretch α (see Definition 1.1). The last inequality
holds since rij′ + pij′ is at most the completion time of the job j′ under any feasible schedule. Finally, note
that wj′ ·CAj′ (i, θ−j′) = COSTAj′(i, θ−j′) in the absence of assignment costs. So the lemma follows when we
sum both sides of Equation 11 over all machines i ∈M and jobs j′ ∈ Q′i.

It remains to show that Φ(t) satisfies Equation 5. We will first make some simple observations.

Fact C.1. The functions pij(t), p∗ij′(t), and Φij′(t) are all continuous and non-increasing in t.

The following facts hold since the machines operate at speed δ (resp. 1) under scenario S′(δ) (resp. S).

Fact C.2. Fix any machine i ∈M, and any two jobs j′ ∈ Q′i and j ∈ Qi. At any time t, we have:

0 ≥ d

dt

(
p∗ij′(t)

)
≥ −δ, and 0 ≥ d

dt

(
pij(t)

)
≥ −1.

Fact C.3. At any time t, on any machine i ∈M, we have:

0 ≥ d

dt

( ∑
j′∈Q′i

p∗ij′(t)
)
≥ −δ, and 0 ≥ d

dt

( ∑
j∈Qi

pij(t)
)
≥ −1.

We now bound the rate of change in Φi(t) due to any unfinished job under the scenario S′(δ).

Claim C.1. For every job j′ ∈ Q′i that completes after time t under the scenario S′(δ), we have:

d

dt

(
Φij′(t)

)
≥ −wj′ +Wi(t) ·

d

dt

(
p∗ij′(t)

)
.

Proof. Recall that Φij′(t) is a summation over a set of terms, each corresponding to a job j ∈ Qi assigned
to the same machine i, but under a different scenario S (see Equation 8). Each such term is the minimum
of two functions: wj′ · pij(t) and wj · p∗ij′(t). We partition all the jobs in Qi into two subsets Y and Z,
depending on which of the two functions attain the minimum value:

Y = {j ∈ Qi : wj′ · pij(t) ≤ wj · p∗ij′(t)}, and Z = {j ∈ Qi : wj′ · pij(t) > wj · p∗ij′(t)}.

The functions fY (t), fZ(t) capture the respective contributions of the subsets Y and Z towards Φij′(t).

fY (t) = wj′ ·
∑
j∈Y

pij(t), and fZ(t) =
(∑
j∈Z

wj

)
· p∗ij′(t).
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Note that Φij′(t) = fY (t) + fZ(t). Further, since the job j′ completes after time t under the scenario
S′(δ), we have p∗ij′(t) > 0. It follows that every job j ∈ Z has pij(t) > 0. In other words, every job in Z
completes after time t under the scenario S, which implies that

∑
j∈Z wj ≤Wi(t). Hence, we conclude:

d

dt

(
Φij′(t)

)
=

d

dt
fY (t) +

d

dt
fZ(t)

= wj′ ·
d

dt

∑
j∈Y

pij(t) +
(∑
j∈Z

wj

)
· d
dt

(
p∗ij′(t)

)
≥ −wj′ +

(∑
j∈Z

wj

)
· d
dt

(
p∗ij′(t)

)
(12)

≥ −wj′ +Wi(t) ·
d

dt

(
p∗ij′(t)

)
(13)

Equation 12 follows from Fact C.3. Equation 13 holds since
∑

j∈Z wj ≤Wi(t) and d
dt(p

∗
ij′(t)) ≤ 0.

The next claim shows that we can ignore the jobs that finishes before time t under the scenario S′(δ).

Claim C.2. For every job j′ ∈ Q′i that completes before time t under the scenario S′(δ), we have:

d

dt

(
Φij′(t)

)
= 0.

Proof. Follows from the observation that such a job j′ has p∗ij′(t
′) = 0 for all t′ ≥ t.

The next claim bounds the overall rate of change of Φi(t).

Claim C.3. For any machine i ∈M and any time t, we have:

d

dt
(Φi(t)) ≥ −W ∗i (t)− δ ·Wi(t).

Proof. We infer that:

d

dt
Φi(t) =

∑
j′∈Q′i

d

dt
Φij′(t)

≥ −W ∗i (t) +Wi(t) ·
∑
j′∈Q′i

d

dt

(
p∗ij′(t)

)
(14)

≥ −W ∗i (t)− δ ·Wi(t) (15)

Equation 14 follows from Claim C.1 and Claim C.2. Equation 15 follows from Fact C.3.

Now we are ready to bound the overall rate of change of Φ(t).

Lemma C.3. The potential function Φ(t) satisfies Equation 5.

Proof. Follows from summing both sides of the inequality in Claim C.3 over all machines i ∈ M, and
recalling that d

dtCOST
S′(δ)(t) =

∑
iW

∗
i (t), and d

dtCOST
S(t) =

∑
iWi(t).

Theorem 3.1 follows from Lemma C.1, Lemma C.2, and Lemma C.3.
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D Missing Proofs from Section 4

D.1 Proof of Lemma 4.2

Since the scheduling policy has stretch α ≥ 1, Definition 1.1 implies that:

Cj ≤ rj + pj +
∑

j′ 6=j:Cj′≥rj

α ·min(pj′ , (wj′/wj) · pj)

≤ rj +
∑

j′:Cj′≥rj

α · (wj′/wj) · pj

= rj + α · (W (rj)/wj) · pj

D.2 Proof of Lemma 4.5

Clearly, the dual variables are set to nonnegative values. For the rest of the proof, we fix a job j, a machine
i, and a time t ≥ rij , and show that the corresponding dual constraint is satisfied.

A Thought Experiment. We create a job j′ with pij′ = pij , wj′ = wj , and rij′ = t. The machine i is now
asked to process the set of jobs Qi∪{j′} using the scheduling policy Ai. Under this thought experiment, let
C∗j′ denote the completion time of the job j′. Recall that Ai is a myopic scheduling policy (Definition 4.1).
Hence, under this thought experiment, the total weight of the unfinished jobs on machine i at time t is
exactly Wi(t) + wj′ . Since the policy Ai also has stretch α, Lemma 4.2 gives:

C∗j′ ≤ t+ α ·
(
Wi(t) + wj′

wj′

)
· pij′ = t+ α · pij′ + α ·

(
Wi(t)/wj′

)
· pij′

Plugging in the equalities Wi(t) = 2zit, wj′ = wj , and pij′ = pij , we get:

C∗j′ ≤ t+ α · pij + (2α) · (zit/wj) · pij (16)

We now consider two possible cases.

Case 1: Job j selects machine i under the outcome S, so that θj = i.

Let C∗j denote the completion time of the job j under the thought experiment. Recall that the machine
follows a monotone scheduling policy. Hence, part 3 of Definition 4.2 implies that C∗j ≤ C∗j′ . Further,
part 2 of Definition 4.2 implies that CAj (θ) ≤ C∗j . Accordingly, we have CAj (θ) ≤ C∗j′ . Since yj =

hij + wj · CAj (θ), we infer that:

yj ≤ hij + wj · C∗j′ (17)

Equation 16 and Equation 17 imply that the dual constraint is satisfied.

Case 2: Job j does not select machine i under the scenario S, so that θj 6= i.

Consider the scenario S. We want to bound the completion time of the job j when it switches to the machine
i, and everything else remains the same. This is denoted by CAj (i, θ−j). This also corresponds to a thought
experiment, where the machine i is asked to schedule the jobs in Qi ∪ {j} using the scheduling policy Ai.
The only difference between this thought experiment and the previous one is that here the job being inserted
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has an earlier release date (rij ≤ rij′ = t, wj = wj′ , pij = pij′). Accordingly, part 1 of Definition 4.2
implies that CAj (i, θ−j) ≤ C∗j′ . Since COSTAj (i, θ−j) = hij + wj · CAj (i, θ−j), we get:

COSTAj (i, θ−j) ≤ hij + wj · C∗j′ (18)

Finally, recall that the strategy-profile θ is a pure Nash equilibrium of GAME(A). Hence, we have:

yj = COSTAj (θ) ≤ COSTAj (i, θ−j) (19)

Equation 16, Equation 18, and Equation 19 imply that the dual constraint is satisfied.

E Price of Anarchy of a Scheduling Policy with Large Stretch

In this section, we consider a policy called Weighted Latest Arrival Processor Sharing (WLAPS) which
has been extensively studied in scheduling theory [12, 3]. Although this policy gives O(1)-approximation
to weighted completion time on a single machine, we show that its induced game has large PoA (see
Lemma E.1). Further, we show that WLAPS fails our α-stretch condition (see Lemma E.2), hence mak-
ing a case for bounded stretch policies.

Fix a machine i which has to process a set of jobs, and let Ji(t) denote the set of unfinished jobs that are
available for processing at time t. The scheduling policy WLAPS takes a parameter ε ∈ [0, 1] as input. Let
J εi (t) denote the ε|Ji(t)| jobs in Ji(t) with the highest release dates. At any time t, the machine works on
the jobs j ∈ J εi (t) in proportion to their weights, so that for all j ∈ J εi (t) we have:

d

dt
(pij(t)) = − wj∑

j′∈Jεi (t)
wj′

.

WLAPS is an example of a non-clairvoyant scheduling policy, and reduces to Weighted Round Robin
(see Appendix B) when ε = 1. For simplicity, we fix ε = 1/2 in the following proof; however, the proof can
be easily extended to any value of ε.

Lemma E.1. If every machine follows the scheduling policy WLAPS(ε) with ε = 1/2, then the PoA of the
resulting game is Ω(n), where n denotes the total number of jobs.

Proof. Consider the following instance. There are n jobs and nmachines. Each job has unit weight. Among
the n jobs, there is one big job j∗ which has processing length pij∗ = n and release date rij∗ = κ on all the
machines. Here, κ is an arbitrarily small positive value. The remaining n − 1 small jobs have processing
lengths p1j = κ+ β (which is an arbitrarily small positive value) on machine i = 1, and processing length
pij = n on the other machines i 6= 1. Further, these small jobs have release dates rij = 0 on all the
machines.

In an optimal solution, all the small jobs are assigned to machine 1, and the big job is assigned to any
other machine. Hence, the sum of the completion times of the jobs is at most O(n). In contrast, there
exists a bad equilibrium - the big job on machine 1, and each small job on a distinct machine. Here, the
total completion time of all the jobs is at least Ω(n2). It is easy to see that this is a Nash Equilibrium. In
particular, no small job wants to deviate to machine 1, since that machine would make the small job wait till
it finishes the big job.

Lemma E.2. The scheduling policy WLAPS(ε) has stretch α = Ω(n) when ε = 1/2. Here, the symbol n
denotes the number of jobs processed by the machine.
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Proof. Consider the following instance. A machine is processing a set of n jobs X1∪X2 using the schedul-
ing policy WLAPS(1/2). Each job j ∈ X1 ∪X2 has weight wj = 1. The subset X1 consists of n/2 jobs.
Each job j ∈ X1 has a processing length pj = 1 and release date rj = 0. The subset X2 also consists of
n/2 jobs. Each job j ∈ X2 has a processing length pj = n and release date rj = κ, where κ is an arbitrarily
small positive value.

It is easy to see that the machine starves the jobs in X1 in favor of the jobs in X2 from time t = κ
onwards. Hence, all the jobs in X2 complete at time t = n2/2 + κ, and the completion time of any job
j ∈ X1 is at least Ω(n2). On the other hand, the bounded stretch condition (see Definition 1.1) requires the
completion time of such a job to be at most αn. Thus, WLAPS(ε) has stretch α = Ω(n) when ε = 1/2.

F Proof of Theorem 1.6

We show how to transform any preemptive policy into a non-preemptive policy in which the completion
time of a job increases at most by a factor 2. This ensures that if the preemptive policy had a stretch α
to begin with, then the resulting non-preemptive policy has a stretch 2α. This implies Theorem 1.6. Our
transformation is similar in spirit to the one used in [13].

Consider any α-stretch scheduling policy Ai declared by machine i. Recall that Qi denotes the set of
jobs assigned to machine i. Let Cj be completion time of job j in the schedule produced by policy Ai on
the set Qi. Renumber the jobs in Qi such that Cj−1 < Cj . We modify the preemptive schedule produced
by Ai into a non-preemptive schedule in the following manner.

• Consider the jobs in j ∈ Qi in increasing order of their completion time values Cj . Schedule the jobs
non-preemptively in this order.

Let Cj denote the completion time of job j in this new schedule. The following theorem shows that, the
completion time every job in the new schedule increases at most by a factor of 2.

Theorem F.1. Cj ≤ 2Cj

Proof. Fix a job j. The completion time of the job j in the non-preemptive schedule can be bounded by:

Cj ≤ max
k∈[j]
{rik}+

∑
k∈[j]

pik

Recall that we renumbered the jobs in the set Qi in the increasing order of Cj values. The above
inequality holds since there is no idle period after the job with highest release date in the set [1 . . . j] is
released.

The proof of the theorem follows from the observations that Cj ≥ maxk∈[j] rik and Cj ≥
∑

k∈[j] pik.

G PoA for mixed Nash Equilibrium and Correlated Equilibrium

In this section, we give the complete proof of PoA bound for mixed Nash equilibrium using dual fitting.
Reader can verify that, the same proof extends to Correlated Equilibrium. As a first step, we derive a
(slightly) different bound on the completion time of a job when a scheduling policy satisfies the α-stretch
(Def 1.1),is myopic (Def 4.1) and monotone (Def 4.2). Recall that for a scheduling policy A and an input
set Q of jobs, Cj denotes the completion time of job j ∈ Q; Q(t) denotes the set of unsatisfied jobs at time
rj and W (t) denotes the total weight of unsatisfied jobs at time t.
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Lemma G.1. If a scheduling policy A which is myopic,monotone and has a stretch α, then the following
inequalities hold for all input sets of jobs Q.

Cj ≤ rj + α ·
(
W (rj)

wj

)
· pj for all j ∈ Q.

Proof. Recall the definition of an α-stretch policy. We know from Definition 1.1,

CAj ≤ rj + α ·

 ∑
j′∈Q(rj)

min(pj′ , (wj′/wj) · pj)


≤ rj + α ·

 ∑
j′∈Q(rj)

(wj′/wj) · pj


≤ rj + α ·W (rj)/wj · pj

Consider the game induced by a profile of scheduling policies A = (A1, . . . , A|M|), where Ai is the
scheduling policy followed by the machine i. Furthermore, for all i ∈ M, the scheduling policy Ai is
myopic, monotone and has a stretch α. Fix any (mixed) Nash equilibrium of this game and let the corre-
sponding strategy-profile of jobs be denoted by θ = (θ1, . . . , θ|J |), where θj = (σ1, . . . σi, . . . σ|M |) and σi
is the probability with which machine i selected by the job j. Let (A, θ) be denoted by scenario S.

We will use E[COSTSj ] to denote the expected total cost incurred by job j under the scenario S which
includes the expected assignment cost + weighted expected completion time. For rest of the section, E[CSj ]

and E[HS
j ] will stand for the expected completion time of job j under the scenario S and E[WS

i (t)] denote
the expected total weight of unsatisfied jobs on the machine i at time t.

Setting the dual variables The variable yj is set to be the total penalty incurred by the job j, under the
scenario S. On the other hand, the variable zit is set to be half of the expected total weight of the unfinished
jobs on machine i at time t.

yj = E[COSTSj ] = E[HS
j ] + wj · E[CSj ] (20)

zit = (1/2) · E[WS
i (t)] (21)

Lemma G.2. If the dual variables are set as in the equations 20, 21, then the objective of the linear program
DUAL(α) is at least (1/2) · E[COSTS ].

Proof. We invoke a standard characterization of completion time, which says that the total weighted com-
pletion time of all the jobs assigned to any specific machine i is equal to

∑
tW

S
i (t). Thus, we infer that:∑

i,t

zit = (1/2) ·
∑
j∈J

wj · E[CSj ] ≤ (1/2) · E[COSTS ].

The lemma follows from the above inequality and the fact that
∑

j yj = E[COSTS ].

Lemma G.3. If the dual variables are set as in the equations 20, 21, then all the constraints of the linear
program DUAL(α) are feasible.
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Proof. Clearly, the dual variables are set to nonnegative values. To complete the proof, we need to show
that the dual constraint corresponding to any job j, any machine i, and any time t ≥ rij , is satisfied.
Let E[COSTSj (i, θ−j)] denote the expected cost incurred by job j if it unilaterally deviates to machine i,
everything else remaining the same. Similarly, let E[CSj (i, θ−j)] denotes the expected completion time of
job j if it deviates to machine i. Since, S = (A, θ) is in Nash equilibrium, we have

E[COSTSj ] ≤ hij + wj · E[CSj (i, θ−j)] (22)

To show that all the dual constraints are satisfied, fix a job j, machine i and some time instant t ≥ rij .

Consider the following thought experiment. We create a job j∗ with pij∗ = pij , wj∗ = wj , and rij∗ = t.
Machine i is asked to process this job j∗. In otherwords, we take the scenario S = (A, θ) which is in Nash
equilibrium and modify it into a new scenario S′ = (A, θ′) as follows. θ′ = θ ∪ θj∗ and θj∗ = (0, . . . , σi =
1, . . . 0). Let E[Cj∗ ] denote the expected completion time of the job j∗. Since Ai is a myopic scheduling
policy (Definition 4.1), under this thought experiment the expected total weight of the unfinished jobs on
machine i at time t is exactly E[WS

i (t)] + wj∗ .
Since the policy Ai also has stretch α, simple extension of Lemma G.1 gives:

E[Cj∗ ] ≤ t+ α ·
(
E[WS

i (t)] + wj∗

wj∗

)
· pij∗

Plugging in the equalities E[WS
i (t)] = 2zit, wj∗ = wj , and pij∗ = pij , we get:

E[Cj∗ ] ≤ t+ α · (1 + 2zit/wj) · pij (23)

To complete the proof, we note that since Ai is a myopic and monotone scheduling policy,

E[CSj (i, θ−j)] ≤ E[Cj∗ ] (24)

Therefore from Equations 22, 23 and 24 we have,

E[COSTSj ] ≤ hij + E[CSj (i, θ−j)] ≤ hij + wj (t+ α · (1 + 2zit/wj) · pij) (25)

Since yj = E[COSTSj ] we get,

yj ≤ hij + wj (t+ α · pij + (2α) · (zit/wj) · pij)

Therefore, dual constraints are feasible. This completes the proof.

From Theorem 4.3 and Lemma G.2, it follows that PoA of α-stretch scheduling policies which are
monotone and myopic is at most 4α.

H `k-norms of Completion Time

In this section, we extend our result for total completion time to the objective of `k-norms of complete time.
The `k-norms of complete time of all jobs is defined as (

∑
j(Cj − rθj ,j)k)1/k when job j is assigned to

machine θj and is completed at time Cj . The kth power of completion time is defined as
∑

j(Cj − rθj ,j)k.
For the sake of analysis, we will first bound the smoothness of the game for the kth power of completion
time, and will take the kth root at the end of analysis. The notation will remain the same unless specifically
stated. We will use COST to refer to kth power of completion time. For example, COSTS denotes the total
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kth power of completion time of all jobs under the schedule (scenario) S. We let COSTS,S
′

j denote the
kth power of completion time of job j when the job j is scheduled on machine θ′j with jobs Qθ′j by the

scheduling policy Aθ′j . More intuitively, COSTS,S
′

j is job j’s kth power of completion time when it moves
to the machine on which S′ scheduled the job. This section is devoted to proving the following theorem.

Theorem H.1. For any integer k ≥ 2, consider the objective of minimizing kth power of completion time.
Also consider any two scenarios S = (A,Q, θ) and S′ = (A′, Q′, θ′) where all scheduling policies Ai
(specified by A) have stretch α. Then it follows that∑

j∈J
COSTS,S

′

j ≤ λ · COSTS + µ · COSTS′ ,

where λ = O(αk
2+k · (36k)k

2+k) and µ = 1/2.

Hence we derive an upper bound of O(αk
2+k · (36k)k−1) on the robust PoA of the game for kth poet

of completion time. By taking the kth root on this bound8, we obtain an upper bound of O(αk+1k) for the
`k-norms of completion time, thereby proving Theorem 1.4 and 1.5. We note that there is almost a tight
lower bound of Ω(k/ log k) on the price of anarchy [9].

H.1 Overview of the Analysis

In this section we give an overview of the analysis. We define the following potential function. Consider
any two scenarios S = (A,Q, θ) and S′ = (A′, Q′, θ′).Suppose that in S, every machine is running at a
reduced speed of δ ∈ [0, 1]. This situation shall be denoted by S(δ). More precisely, a job j is processed in
S at time t if and only if the same job j is processed in S(δ) at time t/δ; both Q and θ are the same in S and
S(δ).

For all machines i ∈M, time t, and j ∈ QS(δ), define :

Φ
S(δ),S′

ij (t) :=
( ∑
j′∈Q′

min(p
S(δ)
ij (t), pS

′
ij′(t)

)k
For all machines i ∈M, define:

Φ
S(δ),S′

i (t) :=
∑
j∈Qi

Φ
S(δ),S′

i,j (t).

Our final potential function will be:

ΦS(δ),S′(t) :=
∑
i∈M

Φ
S(δ),S′

i (t).

Assuming that all algorithms in A′ have a stretch of at most α, we have,

COSTS,S
′ ≤

∑
i∈M

∑
j∈Qi

(
rij + pij + α ·

∑
j′∈Q′i

min
(
pij , pij′

) )k
≤ (k + 1)k

∑
i∈M

∑
j∈Qi

(
rij + pij

)k
+ 3αk

∑
i∈M

∑
j∈Qi

( ∑
j′∈Q′i

min
(
pij , pij′

) )k
≤ (k + 1)kCOSTS + 3αkΦS(δ),S′(0) (26)

8Note that this can be done since each job behaves in the same way for both objectives. For mixed and correlated Nash equilibria,
this is not the case, and it should be assumed that each job’s goal is to minimize its expected kth power of completion time, not its
expected completion time.
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The second inequality follows from a simple inequality that ∀x, y ≥ 0, (x+ y)k ≤ (k+ 1)kxk + (1 +
1/k)kyk ≤ (k + 1)kxk + 3yk. The last inequality follows from the fact that (rij + pij) is a lower bound on
the completion time of job j in any schedule where job j is assigned to machine i (which is the case in the
assignment Q).

Hence our analysis will be focused on bounding ΦS(δ),S′(0). We will study d
dtΦ

S(δ),S′(t), and to upper
bound it, we define a very useful quantity

COSTS(t) :=
∑

j:t≤CSj

(CSj − t)k,

which will help keep track of how the cost of S changes. Likewise we define COSTS(δ)(t) :=
∑

j:t≤CS(δ)j

(CSj −

t)k.
Note that COSTS(0) = COSTS and COSTS(∞) = 0. To this end, we show that for any δ ∈ (0, 1], and

ε ∈ (0, 1), we will show that at all times t,

d

dt
ΦS(δ),S′(t) ≤ −

(δk−1
εk−1

+
1

εk−1

) d
dt
COSTS(δ)(t)−

(
2εk−1 + 3δk

) d
dt
COSTS

′
(t)

By integrating this inequality and combining it with (26), we will have

COSTS,S
′ ≤ (k + 1)kCOSTS +

(3αk · δk−1

εk−1
+

3αk

εk−1

)
COSTS(δ) + 3αk ·

(
2εk−1 + δk2k+1

)
COSTS

′

≤
(

(k + 1)k +
3αk

εk−1
+

3αk

εk−1δk−1

)
COSTS + 3αk ·

(
2εk−1 + δk2k+1

)
COSTS

′

We set δ = 1
36kαk

and εk−1 = 1
24αk

, and derive:

COSTS,S
′ ≤ O

(
αk

2+k · (36k)k−1
)
COSTS +

1

2
COSTS

′

This will complete the proof of Theorem H.1.

As mentioned, our remaining task is to upper bound d
dtΦ

S(δ),S′(t). We will first introduce several useful
technical lemmas. Then we will proceed our analysis by considering the effect of the processing in S(δ) and
S′, separately. Throughout the analysis all ties are broken in an arbitrary but a consistent way. Particularly,
the reader may read the analysis assuming that no two different jobs have the same size, nor the same
remaining size.

H.2 Technical Lemmas

Lemma H.2. Consider any single machine and the set Q of jobs scheduled on the machine. Consider any
scenario (schedule) S. Then for any constant δ ∈ (0, 1] and for all times t, it holds that∑

j∈Q
k
( ∑
j′∈Q,pS(δ)

j′ (t)≤pS(δ)j (t)

p
S(δ)
j′ (t)

)k−1
≤ −δk−1 d

dt
COSTS(δ)(t).

Proof. Fix the schedule S and time t. For notational convenience, we will use qj to denote the remaining
size pS(δ)j (t) of an alive job j at time t. We reindex jobs such that 0 < q1 ≤ q2 ≤ ... ≤ q`; we can ignore
completed jobs. Since the quantity d

dtCOST
S(δ)(t) in the right-hand-side is defined only by completion times
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of jobs, we will need to relate this quantity to the remaining sizes of jobs, q`′ . We claim that processing jobs
in the order of shortest remaining sizes gives a lower bound to quantity. More formally,

(
1

δk−1
)
∑
`′∈[`]

kq̄k−1`′ ≤
∑
`′∈[`]

k(C
S(δ)
`′ − t)k−1 = − d

dt
COSTS(δ)(t).

where q̄`′ := q1 + q2 + ... + q`′ . To restate the claim in other words, we currently have ` unsatisfied jobs
at time t with remaining sizes q`′ , `′ ∈ [`]. Then we would like to show that in any valid schedule σ(δ)

(which does not have to coincide with S(δ) since time t),
∑

`′∈[`](C
σ(δ)
`′ − t)k−1 cannot be smaller than∑

`′∈[`](
1

δk−1 )q̄k−1`′ . Here we can assume without loss of generality that all jobs [`] are available for schedule

right now at time t since it can only help minimize
∑

`′∈[`](C
σ(δ)
`′ − t)k−1. We can prove the claim by a

simple ‘swap’ argument: Suppose a job j′ > j is processed before job j is completed. Then we modify the
schedule restricted to the two jobs j and j′. More precisely, we modify the schedule σ(δ) only at the times
when j or j′ are processed, and simply schedule job j earlier than j′ at those times. It is easy to see that this
swap operation can only decrease

∑
`′∈[`](C

σ(δ)
`′ − t)k−1. Since S(δ) processes a job at a rate of δ, job `′ is

completed in time 1
δ q̄
′
`.

Corollary H.3. Consider any single machine and the set Q of jobs scheduled on the machine. Consider any
scenario (schedule) S. Then for any constant δ ∈ (0, 1] and for all times t, it holds that∑

j∈Q
k
(
p
S(δ)
j (t)

∑
j′∈Q,pS(δ)

j′ (t)≥pS(δ)j (t)

1
)k−1

≤ −δk−1 d
dt
COSTS(δ)(t).

Proof. We borrow the same notation from the proof of Lemma H.2. By expressing the left-hand-side in this
Corollary in terms of q`′ , by Lemma H.2, it suffices to show that:∑

`′∈[`]

(q`′(`− `′ + 1))k−1 ≤
∑
`′∈[`]

q̄k−1`′

We fully expand the right-hand-side equation, and then have a sum of monomials of a unit coefficient.
We charge each monomial qk−1`′ to a unique monomial in the right-hand-side. We will say that a monomial is
in class `′ if it consists only of q`′ , q`′+1, ..., q`; class `′ is a superset of class `′ + 1. Note that any monomial
of degree k − 1 in class `′ is no smaller than qk−1`′ due to q`′ being non-decreasing. Note that all monomials
appearing in both sides are of degree k − 1. Observe that the right-hand-side has 1k−1 + 2k−1 + .... +
(` − `′ + 1)k−1 monomials in class `′. Knowing that there are (` − `′ + 1)k−1 monomials of qk−1`′ in the
left-hand-side, it is easy to see that we can charge each qk−1`′ in the left-hand-side to a unique monomial of
class `′ in the right-hand-side. Hence the first inequality follows.

Corollary H.4. Consider any single machine and the set Q of jobs scheduled on the machine. Consider any
scenario (schedule) S. Then for any constant δ ∈ (0, 1], any p′ ≥ 0 and for all times t, it holds that,( ∑

j′∈Q:p
S(δ)

j′ ≥p
′

1
)k
· (p′)k−1 ≤ −δk−1 d

dt
COSTS(δ)(t).

Proof. We use the same notation that was used in the proof of Lemma H.2. Let `′ be the smallest from [`]
such that q`

′ ≥ p′; if no such `′ exists, the corollary immediately follows. Then the left-hand-side can be
expressed as (`− `′ + 1)kqk−1`′ . By Lemma H.2, it suffices to show that,

(`− `′ + 1)kqk−1`′ ≤ k
∑
`′∈[`]

q̄k−1`′
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Similar to the proof of Corollary H.3, we will charge (` − `′ + 1)k copies of the monomial qk−1`′ to the
monomials in class `′. Observe that we can find 1k−1 + 2k−1 + ...+ (`− `′ + 1)k−1 monomials of class `′

in the right-hand-side, and it can be shown by at least
∫ `−`′+1
0 hk−1dh ≥ (`− `′ + 1)k.

H.3 Changes of ΦS(δ),S′(t)

We will study the changes of ΦS(δ),S′(t) over time t. Note that ΦS(δ),S′(t) can change due to the processing
in S(δ) and S′. We assume without loss of generality that there is a unique job ai(t) that is being processed
at time t in S(δ)’s schedule. Likewise we let a′i(t) denote the unique job being processed at time t in the
schedule of S′. Throughout the analysis we simply assume that such jobs ai(t) an a′i(t) exist since otherwise
it can only make our analysis easier. When time t is fixed, we may drop (t) and simply use ai and a′i. Recall
that the job ai and a′i can be processed at a rate of at most δ and 1, respectively. When i is clear from the
context we may omit i from ai and a′i.

For notational convenience, for any p′ ≥ 0, we let V S′,i
≤p′ (t) :=

∑
j′∈Q′i,pS

′
ij′ (t)≤p

′ p
S′
ij′(t) denote the total

remaining volume of jobs in Q′i whose remaining size in S′ are smaller than p′. Here the schedule and
machine in consideration are specified in the superscript and the extra condition that jobs have to satisfy for
consideration is specified in the subscript. In the same spirit, let NS′,i

≥p′ (t) := |{j′ ∈ QS′
i | pS

′
ij′(t) ≥ p′}|.

When time t is clear from the context, we amy simply use V S′,i
≤p′ and NS′,i

≥p′ .
We will without loss of generality assume that jobs in consideration at the current time have distinct re-

maining sizes by breaking ties in an arbitrary but consistent way. We upper bound the changes of ΦS(δ),S′(t)
due to the processing of S(δ)’s S′, separately.

H.3.1 Changes due to S(δ)’s processing

Fix time t. We will focus on each machine i and bound d
dtΦ

S(δ),S′

i (t). We observe that,

d

dt
Φ
S(δ),S′

i (t) ≤ δ · k(V S′,i

≤pS(δ)iai
(t)

+NS′,i

≥pS(δ)iai
(t)
· pS(δ)iai

(t))k−1 ·NS′,i

≥pS(δ)iai
(t)

This follows by observing that min(p
S(δ)
ij (t), pS

′
ij′(t)) changes only when j = a and pS

′
ij′(t) ≥ p

S(δ)
ia (t).

Since we are focusing on machine i and considering only the jobs assigned to machine i (either in S(δ) or
S′), we may drop i from the notation when the machine is clear in the context. Particularly we may omit i
from V and N ’s superscript and from p’s subscript.

We will show,

d

dt
Φ
S(δ),S′

i (t) ≤
(
V S′

≤pS(δ)a (t)
+NS′

≥pS(δ)a (t)
pS(δ)a (t)

)k−1
NS′

≥pS(δ)a (t)

≤ 3k
∑
j∈QS′

( ∑
j′∈QS′ ,pS′

j′ (t)≤p
S′
j (t)

pS
′

j′ (t)
)k−1

(27)

This will imply by Lemma H.2 that,

d

dt
Φ
S(δ),S′

i (t) ≤ −3kδ
d

dt
COSTS

′
i (t) (28)

Here COSTS
′

i (t) denotes machine i’s contribution to the quantity COSTS
′
(t). We follow the same nota-

tion we used in the proof of Corollary H.3, let q`′ , `′ ∈ [`] denote the remaining sizes pS
′

i,`′ of unsatisfied jobs
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`′ in S′ at the current time t. Recall that q1 ≤ q2 ≤ ... ≤ q`. Also let q̄`′ = q1 + q2 + ...+ q`′ . To show the
desired inequality it suffices to show the following:∑

`′∈[`]

(q̄`′−1 + (`− `′ + 1)q`′)
k−1 ≤

∑
`∈[`′]

q̄k−1`′

To show this, for each h ∈ [d`/ke], we charge
∑

`−kh<`′≤`−k(h−1)(q̄`′−1 + (` − `′ + 1)q`′)
k−1 to q̄k−1`−h+1.

Here we can show that (q̄`′−1 + (` − `′ + 1)q`′) ≤ k
k−1 q̄`−h+1. This can by shown by observing that all

terms q terms in q̄`−h+1 − q̄`′−1 are no smaller than q`′ and there are at least k−1k (` − `′ + 1) such terms.
Then we derive∑

`′∈[`]

(q̄`′−1 + (`− `′ + 1)q`′)
k−1 ≤ k(

k − 1

k
)k−1

∑
`∈[`′]

q̄k−1`′ ≤ 3k
∑
`∈[`′]

q̄k−1`′ .

This completes the proof of (28). By summing over all machines i, we derive

d

dt
ΦS(δ),S′(t)

∣∣∣
S(δ)’ processing

≤ 3kδ · d
dt
COSTS

′
(t) (29)

H.3.2 Changes due to the processing of S′

This is more challenging than bounding the changes to due to S(δ)’s processing. As before we focus on
each machine i, and will drop the notation i or (t) if they are clear from the context. Let a′ denote the job
that is being processed at the current time t by S′. Recall that

Φ
S(δ),S′

i (t) :=
∑

j∈Qi(t)

( ∑
j′∈Q′i(t)

min(p
S(δ)
j (t), pS

′
j′ (t))

)k
.

For any job j ∈ Qi(t), observe that
∑

j′∈QS′
i (t)

min(p
S(δ)
j (t), pS

′
j′ (t)) decreases at a rate of at most 1 since

a′ can be processed at a rate of at most one. Hence d
dtΦi(t) due to S′’s processing can be seen to be at most

d

dt
Φ
S(δ),S′

i (t)
∣∣∣
S′’s processing

≤
∑

j∈QS(δ)
i

k
(
V S′

≤pS(δ)j (t)
+NS′

≥pS(δ)j (t)
· pS(δ)j (t)

)k−1
≤ 2k−1

∑
j∈QS(δ)

i

k
(
V S′

≤pS(δ)j (t)

)k−1
(30)

+2k−1
∑

j∈QS(δ)
i

k
(
NS′

≥pS(δ)j (t)
· pS(δ)j (t)

)k−1
(31)

We bound (30) and (31) separately.

Bounding (30): We partition jobs in Qi in two groups Q1 and Q2: We put all jobs j in Qi such that
V S′

≤pS(δ)j (t)
≤ (1/ε)V

S(δ)

≤pS(δ)j (t)
, into Q1. All other jobs are placed in Q2. We first bound Q1’s contribution to

(30). By Lemma H.2,

∑
j∈Q1

k
(
V S′

≤pSj (t)

)k−1
≤
∑
j∈Q1

k
(1

ε
V
S(δ)

≤pSj (t)

)k−1
≤ −δ

k−1

εk−1
d

dt
COST(S(δ), t) (32)
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Now we bound Q2’s contribution to (30) by only a small fraction of d
dtCOST

S′(t). To this end we will

associate each job j ∈ Q2 with a distinct job π′(j) in Q′i such that V S′

≤pS′≤pi′(j)(t)
≥ (1/ε)V

S(δ)

≤pS(δ)j (t)
. This is

possible due to the definition of Q2. We will then charge k(V S′

≤pS(δ)j (t)
)k−1 to k(V S′

≤pS′
π′(j)

)k−1. Observe that

the first quantity is at most εk−1 times the second quantity. By summing over all j ∈ Q2 and by Lemma H.2,
we will have ∑

j∈Q2

k(V S′

≤pS(δ)j (t)
)k−1 ≤ εk−1

∑
j∈Q2

k(V S′

≤pS′
π′(j)

)k−1

≤ εk−1
∑

j′∈QS′
i

k(V S′

≤pS′
j′

)k−1 ≤ −εk−1 d
dt
COSTS

′
(t) (33)

By combining this with (32), we will have

(30) ≤ −δ
k−1

εk−1
d

dt
COSTS(δ)(t)− εk−1 d

dt
COSTS

′
(t) (34)

It now remains to show the following lemma.

Lemma H.5. Suppose 0 < ε < 1. Then there exists a mapping from each j ∈ Q2 to a distinct job π′(j) ∈ Q′i
such that V S′

≤pS′≤pi′(j)(t)
≥ (1/ε)V

S(δ)

≤pS(δ)j (t)
.

Proof. To show the lemma, we partition jobs in Q′ into disjoint sets Q′j , j ∈ Q2. The job j′ in Q′j with the
largest remaining size pS

′
j′ (t) will be π′(j). For notational convenience, we relabel the unsatisfied jobs in Q2

as 1, 2, ..., ` such that pS(δ)l′ (t) is non-decreasing in l′. Let ql denote pS(δ)l (t). We consider jobs l in Q2 = [`]
in increasing order, i.e. 1, 2, ..., `. Our goal is to associate each job l with a disjoint set of jobs Q′l ⊆ Q′j .
Jobs in Q′ will be considered in increasing order of pS

′
j′ (t). We let Q′l be a minimal set of jobs from Q′ that

were not associated yet with other l such that V S′
≥ql ≥ (1/ε)

∑
h∈[l] V

Q′l . Here V Q′l denotes
∑

j′∈Q′l p
S(δ)
j′ .

it follows from definition of Q2. that for all jobs j′ ∈ Q′j , pS(δ)j (t) ≥ pS′j′ (t).
Now to complete the proof it suffices to show that for all l ∈ [`], Q′l 6= ∅. For the sake of contradiction

suppose that Q′l = ∅ for some l. Since all jobs j′ ∈ Q′l have remaining size pS
′

j′ (t) smaller than ql, it must
be the case that

(1/ε)(q1 + q2 + ...+ ql) ≤
∑
h∈[l]

V Q′l ≤ (1/ε)(q1 + q2 + ...+ ql) + ql,

due to the minimality of Q′l. Similarly, we have

(1/ε)(q1 + q2 + ...+ ql−1) ≤
∑

h∈[l−1]

V Q′l−1 ≤ (1/ε)(q1 + q2 + ...+ ql−1) + ql−1.

Since
∑

h∈[l] V
Q′l =

∑
h∈[l−1] V

Q′l−1
, it must be the case that

(1/ε)(q1 + q2 + ...+ ql) ≤ (1/ε)(q1 + q2 + ...+ ql−1) + ql−1

This simplifies to ql ≤ εql−1, which is a contradiction.
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Bounding (31): We partition jobs in QS(δ)(t) in two groups Q1 and Q2: We place all jobs j in QS(δ)(t)
such that NS′

≥pS(δ)j (t)
(t) ≤ (1/ε)N

S(δ)

≥pSj (t)
(t), into Q1. All other jobs are placed in Q2. We first bound Q1’s

contribution to (31).∑
j∈Q1(t)

k
(
NS′

≥pSj (t)
(t) · pSj (t)

)k−1
≤

∑
j∈Q1(t)

k
(
NS′

≥pSj (t)
(t) · pS(δ)j (t)

)k−1
≤ − 1

εk−1
d

dt
C(S(δ), t) (35)

The last inequality is due to Corollary H.4.

Now we bound Q2’s contribution to (31) by a small fraction of d
dtCOST

S′(t). Intuitively this is possible

since NS′

≥pS(δ)j (t)
(t) ≥ (1/ε)N

S(δ)

≥pSj (t)
(t) implies that there are more jobs in S′ than S(δ). To establish such

a relationship formally, we associate each job j in Q2 with a distinct job π′(j) such that NS′

≥pS(δ)
π′(j)(t)

≥

(1/ε)N
S(δ)

≥pSj (t)
and pS

′

pi′(j)(t) ≥ p
S(δ)
j (t). To obtain such a map π′, we let π′(j) be the job j′ ∈ Q′ that

minimizes NS′

≥pS(δ)
j′

, and such that NS′

≥pS(δ)
j′
≥ (1/ε)N

S(δ)

≥pSj (t)
. One can show that π′(j) are distinct when

0 < ε < 1.
For each job j ∈ Q2, we will charge the quantity k(NS′

≥pSj (t)
(t)·pSj (t))k−1 to k(NS′

≥pS′
π′(j)(t)

·pS′π′(j)(t))
k−1.

Note that the first quantity is no bigger than εk−1 times the latter quantity. Hence we have∑
j∈Q2

k(NS′

≥pS(δ)j (t)
(t) · pSj (t))k−1 ≤ −εk−1 d

dt
COSTS

′
(t) (36)

Combining this with (35), we obtain

(31) ≤ − 1

εk−1
d

dt
COSTS(δ)(t)− εk−1 d

dt
COSTS

′
(t) (37)

From (30), (31), (34), and (37), by summing over all machines i, we have

d

dt
ΦS(δ),S′(t)

∣∣∣
S′’s processing

≤ −(
δk−1

εk−1
+

1

εk−1
)
d

dt
COSTS(δ)(t)− 2εk−1

d

dt
COSTS

′
(t) (38)

28


