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Abstract

In this paper the online pull-based broadcast model is

considered. In this model, there are n pages of data stored

at a server and requests arrive for pages online. When the

server broadcasts page p, all outstanding requests for the

same page p are simultaneously satisfied. We consider the

problem of minimizing average (total) flow time online where

all pages are unit-sized. For this problem, there has been a

decade-long search for an online algorithm which is scalable,

i.e. (1 + ε)-speed O(1)-competitive for any fixed ε > 0. In

this paper, we give the first analysis of an online scalable

algorithm.

1 Introduction

We consider the pull-based broadcast scheduling model.
In this model, there are n pages available at a server
and requests arrive for pages over time. The server
must satisfy all requests. When the server broadcasts
a page p, all outstanding requests for the same page p
are satisfied simultaneously. This is the main difference
from standard scheduling settings where the server must
process each request separately. The broadcast model
is motivated by several applications such as multicast
systems and wireless and LAN networks [31, 1, 2, 25].
Besides the practical interest in the model, broadcast
scheduling has seen growing interest in algorithmic
scheduling literature both in the offline and online
settings [5, 2, 1, 6, 25]. Work has also been done
in stochastic and queueing theory literature on related
models [16, 15, 29, 30].

In this paper we concentrate on the online model
with the goal of minimizing the total (or equivalently
average) flow time 1. This is one of the most popular
quality of service metrics. The ith request for page p
will be denoted Jp,i. The request Jp,i arrives at time
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1 Flow time is often referred to response time or wait time

ap,i and, in the online model, this is when the server is
first aware of the request. Time is slotted and a single
page can be broadcasted in a time-slot. Notice that
this implies that all pages can be broadcast in the same
amount of time. Unit (or similar) processing time pages
is popular in practice. This model also captures the
algorithmic difficulty of the problem and this is almost
exclusively the model addressed in previous literature.
The total flow time of a given schedule can be written
as

∑
p

∑
i(fp,i − ap,i), where fp,i is the time when Jp,i

is satisfied.
It was shown that without resource augmentation

any online deterministic algorithm is Ω(n)-competitive
[27]. Further, any randomized online algorithm has
a lower bound of Ω(

√
n) [3]. Due to these strong

lowerbounds we focus on the resource augmentation
model [26] where an algorithm A is given s ≥ 1 speed
and is compared to an optimal offline solution that has
1 speed. We will let As be the flowtime accumulated
for an algorithm A when given s speed; sometimes
we will allow As to denote the algorithm itself with s
speed if there is no confusion in the context. In the
resource augmentation model, we say that A is s-speed
r-competitive if As ≤ rOPT for all request sequences,
where OPT is an optimal offline solution given 1 speed.

The algorithmic difficulty in broadcast scheduling is
that two algorithms may have to do different number of
broadcasts to satisfy the same set of requests. For exam-
ple, consider the algorithm most-requests-first (MRF)
which broadcasts the page that has the largest number
of unsatisfied requests. This algorithm may seem like
the most natural candidate for the problem. However,
it was shown that MRF is not O(1)-competitive even
when given any fixed extra speed [27]. A simple ex-
ample shows that MRF may repeatedly broadcast the
same page, while ignoring requests which eventually ac-
cumulate a large amount of flowtime. The optimal so-
lution can take advantage of the broadcast setting and
satisfy the requests MRF was busy working on by a sin-
gle broadcast. This leaves the optimal solution free to
work on other requests that are unsatisfied under MRF’s
schedule.

Further adding to the difficulty of algorithmic devel-



opment, previous work has shown that the existence of
a O(1)-speed O(1)-competitive online algorithm cannot
be proved using standard techniques. An algorithm A is
said to be locally competitive if the number of requests
in A’s queue is comparable to the number of requests
in the adversary’s queue at each time. In [27] it was
shown that no online algorithm can be locally competi-
tive with an adversary. Local competitiveness has been
one of the most popular methods of analysis in standard
scheduling [26, 7, 27].

Even though broadcast scheduling has been studied
extensively over the last decade, the complexity of the
problem is yet to be well understood. In the offline set-
ting, minimizing average flowtime was first studied us-
ing non-trivial linear programming techniques coupled
with resource augmentation [27, 22, 23, 24]. It was not
until later that a complex reduction showed that this
problem was in fact NP-Hard [21]. Recently, a simpler
proof of this fact was found [9]. Following this line of
work, a (1+ε)-speed O(1)-approximation algorithm was
eventually given in [3]. Here, resource augmentation was
used even though it is still open if the problem admits an
O(1)-approximation. The problem is substantially more
difficult without resource augmentation. No non-trivial
analysis was shown without resource augmentation un-
til Bansal et al. gave a O(

√
n)-approximation in [3].

More recently, a O(log2 n/ log log(n))-approximation
was shown in [4]. We note that this result relies on
highly non-trivial algorithmic techniques.

In the online setting, the strong lowerbound without
resource augmentation has led previous work to focus on
finding O(1)-speed O(1)-competitive algorithms. The
ultimate goal of this line of work is to find a (1 + ε)-
speed O(1)-competitive algorithms (for any fixed ε > 0).
That is, to show an algorithm that achieves O(1)-
competitiveness with the minimum amount of extra
resources. For this reason, an online algorithm, which
is (1 + ε)-speed O(1)-competitive, is said to be scalable.
For problems which have strong lowerbounds without
resource augmentation, finding a scalable algorithm is
the best positive result that can be achieved using worst-
case analysis.

Previously, there have been two main approaches
used to avoid a local argument, however both lines of
work do not seem to suggest a way to obtain a scal-
able algorithm. The first was given by Edmonds and
Pruhs in [18]. They showed a non-trivial reduction from
the problem of minimizing average flowtime in broad-
cast scheduling to a non-clairvoyant scheduling prob-
lem. Their reduction takes an algorithm A that is
s-speed c-competitive for the non-clairvoyant schedul-
ing problem and creates an algorithm B that is 2s-
speed c-competitive for the broadcast scheduling prob-

lem. Using this reduction, they were able to show an
algorithm which is (4 + ε)-speed O(1)-competitive for
minimizing the average flowtime in broadcast schedul-
ing [17, 18]. More recently, the same authors used this
reduction to show another algorithm is (2 + ε)-speed
O(1)-competitive [20]. Both of these algorithms can be
extended to the case where pages have varying sizes.
Notice that a factor of 2 in the speed is lost in the re-
duction and, therefore, the reduction cannot be used to
show a scalable algorithm.

The algorithm longest-wait-first (LWF) was first
introduced in [27]. LWF uses a natural scheduling
policy which always schedules the page with the highest
flowtime. Edmonds and Pruhs showed that LWF is
6-speed O(1)-competitive using a direct analysis that
avoided the use of the reduction [19]. In this work,
new novel techniques were introduced to avoid a local
argument. The techniques presented in the paper were
quite complex. In joint work with Chekuri, we were able
to simplify these techniques to make the key ideas more
transparent. Using this, we were able to show LWF
is (3.4 + ε)-speed O(1)-competitive [11]. In this paper,
a generalization of these techniques will be presented
which was made possible by our previous simplification.
However, LWF was shown to be nΩ(1)-competitive when
given speed less than 1.618 [19].

Results: For the problem of minimizing total flowtime
in broadcast scheduling, we give the first online scalable
algorithm LA-W. We prove that LA-W is (1 + ε)-
speed O(1/ε11)-competitive for any 0 < ε ≤ 1, giving a
positive answer to a central open problem in the area.
Our algorithm LA-W is similar to LWF in that it
prioritizes pages with large flowtime, however LA-W
also gives preference to requests which have arrived
recently. Favoring requests which have arrived recently
has been shown to be useful in [20]. The algorithm
LA-W focuses on pages which have requests that
arrived recently. This is fundamentally different from
the algorithm given in [20], which focuses on requests
that arrived recently without considering the page they
are requesting. Unfortunately, in the broadcast setting
it is difficult to categorize which pages have requests
that arrived recently, since the arrival of requests can
be scattered over time. To counter this, we develop a
novel and robust way to compare the arrival time of
requests between two different pages.

Overview of the Algorithm: Let Fp(t) be the total
waiting time of unsatisfied requests for page p at time t
and let Fmax(t) = maxp Fp(t). LWF schedules a page p
such that Fp(t) = Fmax(t). Notice that LWF schedules
the page without considering the number of outstanding



requests for the page. Due to this, LWF may broadcast
a page with a relatively small number of unsatisfied re-
quests which have been waiting to be scheduled for a
long period of time. However, a page with a small num-
ber of requests does not accumulate flowtime quickly. In
some cases, pages which have a large number of unsatis-
fied requests should be broadcasted since these requests
will rapidly accumulate flowtime. Using this insight,
[19] was able to show a lower bound of 1.618 on the
speed LWF required to be O(1)-competitive.

Our algorithm LA-W keeps the main spirit of LWF
by always broadcasting pages with flowtime comparable
to Fmax(t) at each time t. However, amongst the pages
with flowtime comparable to Fmax(t), LA-W prioritizes
pages with requests which have arrived recently. By
prioritizing recent requests, we avoid the potentially
negative behavior of LWF. This is because a page
with requests that arrived recently must have a large
number of outstanding requests to have flowtime similar
to Fmax. As mentioned, we develop a new way to
compare the arrive time of requests for two different
pages. Using this technique, we will be able to break
up time into intervals and show when requests arrive
on these intervals. Thus allowing us to determine how
LA-W and the optimal solution must behave on these
intervals.

The algorithm LA-W broadcasts pages with unsat-
isfied requests that arrived recently to potentially find
pages which have a large number of outstanding re-
quests. The reader may wonder why we chose pages
in this manner when we could simply broadcast the
page with many outstanding requests. In fact, we have
considered an algorithm which schedules the page with
the largest number of outstanding requests amongst the
pages with flowtime comparable to Fmax(t). For this al-
gorithm, we have established that it is scalable for the
problem of minimizing the maximum weighted flowtime
in broadcast scheduling [12]. Further, we have prelim-
inary evidence that this algorithm is O(1) competitive
for average flowtime when given more than 2 speed. We
however were unable to determine its performance for
average flowtime when given less than 2 speed.

Other Related Work: Charikar and Khuller consid-
ered a generalization of average flowtime where the goal
is to minimize the average flowtime for a fraction of the
requests [10]. Besides work on minimizing the total flow-
time, other objective functions have been considered in
the broadcast model. In [6, 9, 12] a 2-competitive al-
gorithm was given for the problem of minimizing the
maximum response time. When each request has a
deadline, constant competitive algorithms were given by
[28, 8, 32, 14] with the the objective of maximizing the

number of requests satisfied by their deadlines. For the
problem of minimizing maximum weighted flowtime, a
(1+ε)-speed O(1)-competitive algorithm was been given
by [12]. The delay factor is a metric closely related to
weighted flowtime. For the problem of minimizing the
maximum delay factor a (2 + ε)-speed O(1)-comeptitive
algorithm was given by [13] and this was improved to
a (1 + ε)-speed O(1)-competitive algorihtm in [12]. For
the problem of minimizing the Lk-norms of flowtime and
the delay factor [11] gave O(k)-speed O(k)-competitive
algorithms.

2 Time Model and Algorithm

We assume that all requests have unit processing time
and without loss of generality this is 1. In our time
model we assume that requests arrive only at non-
negative integer times. Any scheduling algorithm A
with speed s ≥ 1 schedules a page every 1/s time-steps
starting from time 0. When A broadcasts a page p at
time t, all alive (unsatisfied) requests for page p which
arrived strictly earlier than t are immediately satisfied
by the broadcast. If Jp,i is a request satisfied by a
broadcast, it has flow time t − ap,i. Note that under
the schedule produced by the optimal solution with 1-
speed, every request has flow time at least 1. On the
other hand, A with speed s > 1 may finish some requests
within a delay less than one. Though it would seem fair
to force A to schedule requests after at least one time
step, we do not assume this because our analysis will
hold in either case and this assumption improves the
readability of the analysis.

Before introducing our algorithm, we state notation
that will be used throughout the paper. For any time
interval starting at b and ending at e, we let |I| = e− b.
For a set of requests R, we will let F (R) be the flowtime
accumulated for the requests in R by our algorithm.
For a page p we will let Fp(t) be the total flowtime
accumulated at time t for unsatisfied requests for page
p. We will let F (R, t) be the total flowtime accumulated
by our algorithm for requests in the setR at time t. Note
that if some requests in R arrive after time t then these
requests do not contribute to the value of F (R, t). We
let F ∗(R) denote the total flow time OPT accumulates
for a set of requests R.

We now introduce our algorithm, denoted by
LA-W for Latest Arrival time with Waiting. We as-
sume that LA-W is given s = 1 + ε speed where
0 < ε ≤ 1 is a fixed constant. Our algorithm is pa-
rameterized by constants c > 1 and β < 1 depending
on ε, which will be defined later. For each page p and
time t, let Rp(t) denote the set of alive requests for
page p at time t. Let L(p, t) be the last time before
time t that our algorithm broadcasted page p. If there
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OPT accumulates for a set of requests R.

p p

tL(p, t) τβ
p (t)

Rp(τβ
p (t))

Rp(t)

no broadcast of page p

Figure 1: Rp(t) denotes the alive requests of page p at time

t, i.e. the requests of page p which arrived during [L(p, t), t].

Likewise, Rp(τβ
p (t)) denotes the requests which arrived during

[L(p, t), τβ
p (t)].

We now introduce our algorithm, denoted by
LA-W for Latest Arrival time with Waiting. We as-
sume that LA-W is given s = 1 + ε speed where 0 <
ε ≤ 1 is a fixed constant. Our algorithm is parameter-
ized by constants c > 1 and β < 1 depending on ε,
which will be defined later. For each page p and time
t, let Rp(t) denote the set of alive requests for page p
at time t. Let L(p, t) be the last time before time t that
our algorithm broadcasted page p. If there is no such
time then L(p, t) = 0. Note that Rp(t) is equivalent
to the set of the requests for page p which arrived dur-
ing [L(p, t), t]. For a page p and time t let τβ

p (t) = argminL(p,t)≤t′≤t(F (Rp(t′), t) ≥ (1 − β)Fp(t)). In
other words, τβ

p (t) denotes the earliest time t′ no later than time t and no earlier than time L(p, t) such that
the requests in Rp(t′) have total flowtime at least (1− β)Fp(t) at time t. By this definition, if R

[L(p,t),τβ
p (t)]

is the set of requests for page p that arrive on the interval [L(p, t), τβ
p (t)] and R

[L(p,t),τβ
p (t))

is the set of

requests for page p that arrive on the interval [L(p, t), τβ
p (t)) then F (R

[L(p,t),τβ
p (t)]

, t) ≥ (1 − β)Fp(t) and
F (R

[L(p,t),τβ
p (t))

, t) < (1− β)Fp(t). See Figure 1.

Algorithm: LA-W
• Let t be a time where our algorithm is not broadcasting a page.

• Let Fmax(t) = maxp Fp(t).

• Broadcast one page according to Rule 2 every $10
ε % broadcasts, and broadcast one page

according to Rule 1 otherwise.

– Rule 1: broadcast the page p = argmaxp′∈Q(t)τ
β
p′(t),

where Q(t) = {q | Fq(t) ≥ 1
cFmax(t)} breaking ties arbitrarily.

– Rule 2: broadcast a page p where Fp(t) = Fmax(t) breaking ties arbitrarily.

Our algorithm LA-W broadcasts pages mainly according to Rule 1 while occasionally broadcasting a
page according to Rule 2. The second rule uses LWF’s scheduling policy which broadcasts a page with the
highest flowtime. The first rule chooses a page p with the latest time τβ

p (t) among the pages with flowtime
close to Fmax(t). The value of τβ

p (t) can be interpreted as the latest arrival time of any unsatisfied request
for page p after discounting requests that arrived recently that have small flowtime. Since the arrival of
requests for the same page p can be scattered over time, we will use τβ

p (t) as the representative arrival time
of those requests. Notice that if all requests for page p arrive at time t′ then τβ

p (t) = t′ for any 0 < β ≤ 1.
We remark that we do not know if Rule 2 is needed for LA-W to be (1 + ε)-speed O(1)-competitive.
Rule 2 will play a crucial role in our analysis, but we do not have a proof that Rule 1 alone performs
poorly.

3 Analysis

Figure 1: Rp(t) denotes the alive requests of page p at time

t, i.e. the requests of page p which arrived during [L(p, t), t].

Likewise, Rp(τ
β
p (t)) denotes the requests which arrived during

[L(p, t), τβp (t)].

is no such time then L(p, t) = 0. Note that Rp(t) is
equivalent to the set of the requests for page p which
arrived during [L(p, t), t]. For a page p and time t let
τβp (t) = argminL(p,t)≤t′≤t(F (Rp(t′), t) ≥ (1 − β)Fp(t)).
In other words, τβp (t) denotes the earliest time t′ no
later than time t and no earlier than time L(p, t)
such that the requests in Rp(t′) have total flowtime
at least (1 − β)Fp(t) at time t. By this definition, if
R[L(p,t),τβp (t)] is the set of requests for page p that ar-
rive on the interval [L(p, t), τβp (t)] and R[L(p,t),τβp (t)) is
the set of requests for page p that arrive on the interval
[L(p, t), τβp (t)) then F (R[L(p,t),τβp (t)], t) ≥ (1 − β)Fp(t)
and F (R[L(p,t),τβp (t)), t) < (1− β)Fp(t). See Figure 1.

Algorithm: LA-W
• Let t be a time where our algorithm is not

broadcasting a page.

• Let Fmax(t) = maxp Fp(t).

• Broadcast one page according to Rule 2 every
b 10
ε c broadcasts, and broadcast one page

according to Rule 1 otherwise.

– Rule 1: broadcast the page p =
argmaxp′∈Q(t)τ

β
p′(t),

where Q(t) = {q | Fq(t) ≥ 1
cFmax(t)}

breaking ties arbitrarily.

– Rule 2: broadcast a page p where
Fp(t) = Fmax(t) breaking ties arbitrar-
ily.

Our algorithm LA-W broadcasts pages mainly
according to Rule 1 while occasionally broadcasting a
page according to Rule 2. The second rule uses LWF’s
scheduling policy which broadcasts a page with the
highest flowtime. The first rule chooses a page p with
the latest time τβp (t) among the pages with flowtime
close to Fmax(t). The value of τβp (t) can be interpreted

as the latest arrival time of any unsatisfied request for
page p after discounting requests that arrived recently
that have small flowtime. Since the arrival of requests
for the same page p can be scattered over time, we
will use τβp (t) as the representative arrival time of those
requests. Notice that if all requests for page p arrive at
time t′ then τβp (t) = t′ for any 0 < β ≤ 1. We remark
that we do not know if Rule 2 is needed for LA-W to
be (1 + ε)-speed O(1)-competitive. Rule 2 will play a
crucial role in our analysis, but we do not have a proof
that Rule 1 alone performs poorly.

3 Analysis
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Time
bp,x(= ep,x−1) ep,x(= bp,x+1)

Ep,x−1 Ep,x Ep,x+1

LA-W’s xth broadcast of page p LA-W’s (x + 1)th broadcast of page p

Figure 2: Events for page p.

Let σ be a fixed sequence of requests.
OPT denotes a fixed offline optimal so-
lution. We assume LA-W1+ε is always
busy scheduling pages for the sequence
σ. Otherwise, our arguments can be
applied to each maximal time interval
where LA-W1+ε is busy. Following the lead of [19, 11], time is partitioned into events for each page p.
Events for page p are defined by LA-W1+ε’s broadcasts of page p. Each time LA-W1+ε broadcasts a page,
an event begins and an event ends. An event Ep,x = 〈bp,x, ep,x〉 begins at time bp,x and ends at time ep,x.
Here, LA-W1+ε broadcasts page p at time bp,x and at time ep,x. These are the xth and (x + 1)st broadcasts
of page p by LA-W1+ε. The (x + 1)st broadcast of page p starts a new event Ep,x+1 and ep,x = bp,x+1. On
the time interval (bp,x, ep,x) LA-W1+ε does not broadcast page p. The optimal solution can broadcast page
p zero or more times during an event Ep,x. See Figure 2.

For an event Ep,x, let Rp,x denote the set of requests satisfied by the (x + 1)st broadcast of page p.
Notice that all requests in Rp,x arrive during Ep,x, formally during [bp,x, ep,x). Let Fp,x = F (Rp,x) be the
total flowtime LA-W1+ε accumulates for requests in Rp,x. Likewise let F ∗

p,x = F ∗(Rp,x). We refer to Fp,x

as the flowtime of Ep,x. Similarly to requests, for a set E of events we let F (E) =
∑

Ep,x∈E Fp,x.
For any event Ep,x, the next lemma will be used to bound the flowtime accumulated for page p at

different times during Ep,x. This will help us to compare the flowtime of Ep,x to the flowtime of events
ending during Ep,x. The proof of this lemma follows easily by definition of flowtime.

Lemma 3.1. For any event Ep,x, let R′ ⊆ Rp,x. Let t be such that bp,x ≤ t < ep,x. Suppose that all
requests in R′ arrive no later than time t. Then for any η < 1, F (R′, t + η(ep,x − t)) ≥ ηF (R′). Further, if
F (R′) ≥ υFp,x where υ < 1, then F (R′, t + η(ep,x − t)) ≥ ηυFp,x.

Our goal is to show that
∑

p

∑
x Fp,x ≤ O(1)OPT. We start by partitioning events into two groups. An

event Ep,x is called self-chargeable if Fp,x ≤ γF ∗
p,x where γ ≥ 1 is a constant to be fixed later. Let S be the

set of all self-chargeable events. The other events are called non-self-chargeable and are in the set N . By
definition of self-chargeable events, we can easily bound F (S) by OPT.

Lemma 3.2. F (S) ≤ γOPT.

We now concentrate on non-self-chargeable events. Notice that for a non-self-chargeable event Ep,x, the
optimal solution must broadcast page p during Ep,x, formally during (bp,x, ep,x). Otherwise, F ∗

p,x ≥ Fp,x

and the event is self-chargeable. We further partition non-self-chargeable events into two classes. Consider
a non-self-chargeable event Ep,x. Let α and k be constants to be fixed later such that α < 1, k > 1 and
βk < 1. Ep,x is in the set N1 if for some β ≤ ρ ≤ βk it is the case that at least 'αs(ep,x − τρ

p (ep,x))( self-
chargeable events end on the interval [τρ

p (ep,x), ep,x). Notice that the time τρ
p (ep,x) exists because ρ < 1. A

non-self-chargeable event not in N1 is in N2.
The setsN1 andN2 are similar to how [11] partitions non-self-chargeable events. Bounding the flowtime

of events in N1 by OPT is not too difficult and follows easily by combining the analysis given in [11] and
the definition of τ . We will first bound F (N1) by the flowtime of the self chargeable events ending during
the events in N1. Knowing that F (S) ≤ γOPT we will be able bound F (N1) by OPT. A formal proof of
the following lemma can be found in Appendix B.

Lemma 3.3. F (N1) ≤ O( 1
ε11

)OPT.

The most interesting events are those which are inN2. Since each event Ep,x inN2 has a relatively small
number of self-chargeable events ending during Ep,x, we cannot directly bound F (N2) by OPT. Instead, we

Figure 2: Events for page p.

Let σ be a fixed sequence of requests. OPT
denotes a fixed offline optimal solution. We assume
LA-W1+ε is always busy scheduling pages for the
sequence σ. Otherwise, our arguments can be applied
to each maximal time interval where LA-W1+ε is busy.
Following the lead of [19, 11], time is partitioned into
events for each page p. Events for page p are defined by
LA-W1+ε’s broadcasts of page p. Each time LA-W1+ε

broadcasts a page, an event begins and an event ends.
An event Ep,x = 〈bp,x, ep,x〉 begins at time bp,x and
ends at time ep,x. Here, LA-W1+ε broadcasts page
p at time bp,x and at time ep,x. These are the xth
and (x + 1)st broadcasts of page p by LA-W1+ε. The
(x+ 1)st broadcast of page p starts a new event Ep,x+1

and ep,x = bp,x+1. On the time interval (bp,x, ep,x)
LA-W1+ε does not broadcast page p. The optimal
solution can broadcast page p zero or more times during
an event Ep,x. See Figure 2.

For an event Ep,x, let Rp,x denote the set of requests
satisfied by the (x+1)st broadcast of page p. Notice that
all requests in Rp,x arrive during Ep,x, formally during
[bp,x, ep,x). Let Fp,x = F (Rp,x) be the total flowtime
LA-W1+ε accumulates for requests in Rp,x. Likewise
let F ∗p,x = F ∗(Rp,x) be the flowtime OPT accumulates
for requests in Rp,x. We refer to Fp,x as the flowtime of
Ep,x. Similarly to requests, for a set E of events we let
F (E) =

∑
Ep,x∈E Fp,x.

For any event Ep,x, the next lemma will be used to
bound the flowtime accumulated for page p at different



times during Ep,x. This will help us to compare
the flowtime of Ep,x to the flowtime of events ending
during Ep,x. The proof of this lemma follows easily by
definition of flowtime.

Lemma 3.1. For any event Ep,x, let R′ ⊆ Rp,x. Let
t be such that bp,x ≤ t < ep,x. Suppose that all
requests in R′ arrive no later than time t. Then for
any 0 ≤ η < 1, F (R′, t+η(ep,x− t)) ≥ ηF (R′). Further,
if F (R′) ≥ υFp,x, then F (R′, t+ η(ep,x − t)) ≥ ηυFp,x.

Our goal is to show that
∑
p

∑
x Fp,x ≤ O(1)OPT.

We start by partitioning events into two groups. An
event Ep,x is called self-chargeable if Fp,x ≤ γF ∗p,x where
γ ≥ 1 is a constant to be fixed later. Let S be the set
of all self-chargeable events. The other events are called
non-self-chargeable and are in the set N . By definition
of self-chargeable events, we can easily bound F (S) by
OPT.

Lemma 3.2. F (S) ≤ γOPT.

We now concentrate on non-self-chargeable events.
Notice that for a non-self-chargeable event Ep,x, the
optimal solution must broadcast page p during Ep,x,
formally during (bp,x, ep,x). Otherwise, F ∗p,x ≥ Fp,x and
the event is self-chargeable. We further partition non-
self-chargeable events into two classes. Consider a non-
self-chargeable event Ep,x. Let α and k be constants to
be fixed later such that α < 1, k > 1 and βk < 1. Ep,x
is in the set N1 if for some β ≤ ρ ≤ βk it is the case
that at least dαs(ep,x− τρp (ep,x))e self-chargeable events
end on the interval [τρp (ep,x), ep,x). Notice that the time
τρp (ep,x) exists because ρ < 1. A non-self-chargeable
event not in N1 is in N2.

The sets N1 and N2 are similar to how [11] parti-
tions non-self-chargeable events. Bounding the flowtime
of events in N1 by OPT is not too difficult and follows
easily by combining the analysis given in [11] and the
definition of τ . We do this by bounding F (N1) by the
flowtime of the self chargeable events ending during the
events in N1. Knowing that F (S) ≤ γOPT we will be
able to bound F (N1) by OPT. A formal proof of the
following lemma can be found in Appendix B.

Lemma 3.3. F (N1) ≤ O( 1
ε11 )OPT.

The most interesting events are those which are in
N2. Since each event Ep,x in N2 has a relatively small
number of self-chargeable events ending during Ep,x,
we cannot directly bound F (N2) by OPT. Instead,
we will show that the total flowtime of events in
N2 accounts for only a fraction of LA-W1+ε’s total
flowtime, i.e. F (N2) ≤ δLA-W1+ε for some constant
δ < 1 which is independent of ε. In [12] and [19]

speed greater than 3.4 was needed to bound F (N2).
Our goal is to ensure δ < 1 with only (1 + ε) speed.
Showing this will complete our analysis as follows.
Using this, Lemma 3.2 and Lemma 3.3, we have that
LA-W1+ε = F (S) +F (N ) = F (S) +F (N1) +F (N2) ≤
γOPT + O( 1

ε11 )OPT + δLA-W1+ε, which simplifies

to LA-W1+ε ≤
γ+O( 1

ε11
)

1−δ OPT. This will imply the
following theorem.

Theorem 3.1. For 0 < ε ≤ 1, the algorithm LA-W is
(1 + ε)-speed O( 1

ε11 )-competitive for minimizing average
flow time in broadcast scheduling with unit sized pages.

Before continuing, we show some properties of
events in N2. Say that we set γ ≥ 1

β . Then it is
not hard to show that OPT must broadcast page p
during I = [τβp (ep,x), ep,x) for any non-self-chargeable
event Ep,x. Indeed, the requests for page p that arrive
during the interval I have total flowtime at least βFp,x
in LA-W1+ε’s schedule by definition of τβ . If OPT
does not broadcast page p during I this implies that
these requests also have total flowtime βFp,x in OPT’s
schedule. However, then F ∗p,x ≥ βFp,x ≥ 1

γFp,x,
contradicting the fact that Ep,x is non-sef-chargeable.
The proof of the lemma is deferred to Appendix B.

Lemma 3.4. Suppose that γ ≥ 1
β . Then, for any non-

self-chargeable event Ep,x, the optimal solution must
broadcast page p during the interval [τβp (ep,x), ep,x).

Now say that we set γ ≥ 10000
βε2 . Using similar

ideas as in Lemma 3.4, we will be able to show that
|[τβp (ep,x), ep,x)| ≥ 10000

ε2 . This will be used to ensure
that the intervals considered in our remaining argu-
ments are sufficiently long. The proof of the following
lemma can be found in Appendix B.

Lemma 3.5. Suppose γ ≥ 10000
ε2β . Then, for any non-

self-chargeable event Ep,x, |[τβp (ep,x), ep,x]| ≥ 10000
ε2 .

We start by giving intuition on why F (N2) ≤
δLA-W1+ε. As in [19, 11], we use a global charging
scheme built on Hall’s theorem. We generalize charging
techniques used in [19, 11] in the following lemma. This
lemma shows how to charge the flowtime of some events
to the total flowtime LA-W1+ε accumulates. The proof
of the lemma can be found in Appendix A.

Lemma 3.6. Let A be a set of events. Let µ, κ > 0 be
some constants. Let λ ≥ 1 be an integer. For each event
Ep,x ∈ A, suppose there exists an interval Ip,x and a set
of events Bp,x such that

• The optimal solution broadcasts page p at least λ
times during the interval Ip,x. Further, Ip,x is
disjoint with Ip,x′ for any Ep,x′ ∈ A s.t. x′ 6= x.



• |Bp,x| ≥ µ|Ip,x| and Eq,y ∈ Bp,x only if eq,y ∈
Ip,x and Fq,y ≥ κFp,x.

Let B =
⋃

(p,x):Ep,x∈A Bp,x and d = minEp,x∈A |Ip,x|.
Then, F (A) ≤ ( 2

λκµ )(d+1
d )F (B) ≤

( 2
λκµ )(d+1

d )LA-W1+ε.

This lemma can be interpreted as follows. For a set
of events A ⊆ N2, we charge the flowtime of each event
Ep,x ∈ A to some events ending during Ip,x. In our
analysis, Ip,x will always be a subinterval of Ep,x; thus
for any fixed page p, {Ip,x | Ep,x ∈ A} are disjoint. If
the following conditions hold for each event Ep,x ∈ A,
then F (A) � LA-W1+ε. (1) There are at least λ
broadcasts by OPT of page p during Ip,x. (2) We can
find a sufficiently large fraction of events ending during
Ip,x, denoted by µ, such that each of these events have
flowtime at least κFp,x. (3) Ip,x is sufficiently long for
all Ep,x ∈ A. The bound we get on F (A) improves
by either finding many broadcasts of page p by OPT
during Ip,x or by finding sufficiently many events with
very large flowtime ending during Ip,x.

To exploit Lemma 3.6, N2 is partitioned into three
disjoint sets T1, T2 and T3. To discuss the high level
interpretation of the sets T1, T2 and T3 we fix an event
Ep,x ∈ N2 and page p and drop the subscript p, x. For
the event E we will consider different subintervals of
E defined by τ . Let Ii = [τβ( 10

ε i+1)(e), e) for i ∈ N.
Notice that Ii is a subinterval of Ii+1 for all i. We will
concentrate on the intervals Ii for different values of i.
Concentrating on these intervals will allow us to break
up the event E so that we can better understand when
the requests for page p arrived during E and how the
optimal solution and LA-W1+ε behaved during E.

The event E will be in the set T1 if for some i
it is the case that page p is not in the queue Q for
a sufficiently large number of broadcasts by LA-W1+ε

during Ii. By definition of Q, if p is not in Q(t) then
there exists another page q such that Fq(t) > cFp(t).
Rule 2 of LA-W broadcasts a page with the highest
flowtime every b 10

ε c broadcasts. Using this, we will
be able to find sufficiently many events ending during
E with flowtime much larger than the flowtime of
event E. Then Lemma 3.6 can be used to show that
F (T1) � LA-W1+ε. Intuitively, the requests in T1

cannot account for most of LA-W1+ε’s flowtime since
there exists other events with flowtime much larger than
those in T1.

If the event E is not in the set T1 and if the length
of Ii+1 is sufficiently longer than the length of Ii for
many different values of i then the event E will be in
the set T2. For such an event E, the requests for page
p that arrive during E will be grouped according to
when they arrived. We will show that each of these

groups contributes to a substantial amount of event E’s
flowtime. Knowing that E is non-self-chargeable, we
will show that OPT must perform a unique broadcast
of page p for each of these groups during E. This allows
us to show that F (T2)� LA-W1+ε using Lemma 3.6.
Intuitively, since the optimal solution has to perform a
lot of broadcasts for each event in T2, there cannot be
many events in T2. Therefore the events in T2 do not
account for a large portion of LA-W1+ε’s flowtime.

Finally T3 will consist of all events in N2 that are
not in T1 or T2. Using the definitions of T1, T2 and τ
we will be able to show that no events can be in T3 and
this will complete our analysis. Showing that T3 = ∅ is
the most difficult part of the analysis and this is where
Rule 1 and resource augmentation plays a crucial role.
We now formally define the sets T1, T2 and T3. For
simplicity of notation, let τβ,ip,x = τ

β( 10
ε i+1)

p (ep,x). A N2

event Ep,x is in

• T1 if and only if for some 0 ≤ i ≤
d1000ce+2 the page p is not in Q for at least
d εs10 |[τβ,ip,x, ep,x)|e broadcasts by our algorithm
on the interval [τβ,ip,x, ep,x).

• T2 if and only if Ep,x /∈ T1 and for all 0 ≤
i ≤ d1000ce, τβ,ip,x − τβ,i+1

p,x ≥ ε
10 (ep,x − τβ,ip,x)

• T3 otherwise.

We note that if β and c are chosen such that
β( 10

ε (d1000ce + 2) + 1) < 1, then the time τβ,ip,x must
exist for all 0 ≤ i ≤ d1000ce + 2. The rest of the
paper is organized as follows. In Section 3.1 we will
show that F (T1) � LA-W1+ε. Then in Section 3.2
we will show that F (T2) � LA-W1+ε. Finally we will
show that T3 = ∅ in Section 3.3. Before continuing,
we fix our constants, so that our arguments can be
verified. Let β = ( ε

1000 )4, c = 10000
ε3 , γ = 10000

ε2β ,
α = ε

100 and k = 10
ε (d1000ce + 2) + 1. Note that

τ
β,d1000ce+2
p,x = τβkp (ep,x) for any page p by definition of
k and τβ,ip,x. Recall that our algorithm is parameterized
by β and c. Here we have chosen c and β so that
the analysis is readable and easy to verify and not to
optimize the analysis.

3.1 Bounding T1 events. In this section we bound
F (T1). By definition of T1, for each event Ep,x ∈ T1 the
page p is not in Q for at least d εs10 |[tp,x, ep,x)|e broadcasts
by LA-W1+ε on the interval [tp,x, ep,x) where tp,x =
τβ,ip,x for some fixed 0 ≤ i ≤ d1000ce + 2. Recall that
our goal is to show that there are many events ending
during Ep,x with flowtime much larger than Fp,x. After
finding these events, we will charge Fp,x to these events.
We begin by actually finding such events in the next



lemma.

Lemma 3.7. For an event Ep,x ∈ T1 there exist at least
( ε

2s
205 )|[tp,x, ep,x)| events ending on the interval [tp,x, ep,x)

with flowtime at least cε
20 (1− βk)Fp,x.

Proof. Let S[bp,x,tp,x] be the requests for page p which
arrive during [bp,x, tp,x]. By the definition of tp,x and
τ , we have F (S[bp,x,tp,x]) ≥ (1 − β( 10

ε i + 1))Fp,x ≥
(1 − βk)Fp,x. Let I = [tp,x + ε

20 (ep,x − tp,x), ep,x). For
any time t ∈ I, by Lemma 3.1,

F (S[bp,x,tp,x], t) ≥
ε

20
(1− βk)Fp,x.(3.1)

By definition of T1, there are at least d εs10 (ep,x −
tp,x)e broadcasts by our algorithm on the interval
[tp,x, ep,x) where page p is not in Q. At most d εs20 (ep,x−
tp,x)e of these broadcasts end on the interval [tp,x, tp,x+
ε

20 (ep,x− tp,x)). Therefore, there are at least d εs10 (ep,x−
tp,x)e − d εs20 (ep,x − tp,x)e ≥ b εs20 (ep,x − tp,x)c broadcasts
by our algorithm on the interval I where page p is not
in Q when these broadcasts were scheduled.

Now consider a time t ∈ I where page p is not in
Q(t). By definition of Q, at time t there must exist
some page q such that Fq(t) ≥ cFp(t). Our algorithm
schedules the page with the largest flow time every
b 10
ε c broadcasts according to Rule 2. Using this and

(3.1), there exists an event Eq,y with flowtime at least
Fq,y >

cε
20 (1 − βk)Fp,x such that eq,y ∈ [t, t + 1

sb 10
ε c).

Using Lemma 3.5 to ensure the interval [tp,x, ep,x) is
sufficiently long, we conclude that there exist at least
b(b εs20 (ep,x − tp,x)c/b 10

ε c)c ≥ ( ε
2s

205 )|[tp,x, ep,x)| events
ending during I with flowtime at least cε

20 (1− βk)Fp,x.

We can now easily bound F (T1) by LA-W1+ε using
lemmas 3.6, 3.7, 3.4 and 3.5.

Lemma 3.8. F (T1) < 83
100LA-W1+ε.

Proof. We apply Lemma 3.6 using the notation given
in the lemma. Consider any Ep,x ∈ T1. Let Ip,x =
[tp,x, ep,x). We know that the optimal solution must
broadcast page p at least once on the interval [tp,x, ep,x)
by Lemma 3.4, since [τβp (ep,x), ep,x) is a subinterval of
[tp,x, ep,x). So we can set λ = 1. By Lemma 3.7 we
have that for any event Ep,x ∈ T1 there exist at least
ε2s
205 |[tp,x, ep,x)| events ending on the interval [tp,x, ep,x)
of flowtime at least cε

20 (1 − βk)Fp,x. If we let the set
Bp,x consist of these events, we can set µ = ε2s

205 and
κ = cε

20 (1 − βk). Using Lemma 3.5 we know that
|Ip,x| ≥ 10000/ε2 and therefore d = minEp,x∈A |Ip,x| ≥
10000/ε2. Thus we have

F (T2) ≤ 2
κµλ

d+ 1
d

LA-W1+ε

= (
41

50(1 + ε)
)(

1
1− βk )

d+ 1
d

LA-W1+ε

<
83
100

LA-W1+ε.

3.2 Bounding T2 events. In this section, we bound
F (T2). Recall that our goal is to show that for any event
Ep,x ∈ T2, the optimal solution must broadcast page p
many times during Ep,x. To find these broadcasts by
the optimal solution, we break up each event Ep,x ∈ T2

into the time intervals [τβ,i+2
p,x , τβ,ip,x). By definition of

τ , we know that the requests for page p that arrive
during [τβ,i+2

p,x , τβ,i+1
p,x ] account for a substantial portion

of the flowtime of event Ep,x. Knowing this and that the
length of [τβ,i+1

p,x , τβ,ip,x) is sufficiently long by definition
of events in T2, we will be able to show that the optimal
solution must broadcast page p during [τβ,i+2

p,x , τβ,ip,x).
Otherwise, these requests wait for a sufficiently long
time to be scheduled by OPT and, therefore, OPT must
accumulate flowtime at least 1

γFp,x for these requests.
This contradicts the fact that events in T2 are non-self-
chargeable.
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Lemma 3.8. For an event Ep,x ∈ T1 there exist at least ( ε2s
205)|[tp,x, ep,x)| events ending on the interval

[tp,x, ep,x) with flowtime at least cε
20(1− βk)Fp,x.

Proof. Let S[bp,x,tp,x] be the requests for page p which arrive during [bp,x, tp,x]. By the definition of tp,x and
τ , we have F (S[bp,x,tp,x]) ≥ (1 − β(10

ε i + 1))Fp,x ≥ (1 − βk)Fp,x. Let I = [tp,x + ε
20(ep,x − tp,x), ep,x).

For any time t ∈ I , by Lemma 3.1,

F (S[bp,x,tp,x], t) ≥
ε

20
(1− βk)Fp,x. (1)

By definition of T1, there are at least $ εs
10(ep,x − tp,x)% broadcasts by our algorithm on the interval

[tp,x, ep,x) where page p is not in Q. At most $ εs
20(ep,x − tp,x)% of these broadcasts end on the interval

[tp,x, tp,x + ε
20(ep,x− tp,x)). Therefore, there are at least $ εs

10(ep,x− tp,x)%−$ εs
20(ep,x− tp,x)% ≥ & εs

20(ep,x−
tp,x)' broadcasts by our algorithm on the interval I where page p is not in Q when these broadcasts were
scheduled.

Now consider a time t ∈ I where page p is not in Q(t). By definition of Q, at time t there must exist
some page q such that Fq(t) ≥ cFp(t). Our algorithm schedules the page with the largest flow time every
&10

ε ' broadcasts according to Rule 2. Using this and (1), there exists an event Eq,y with flowtime at least
Fq,y > cε

20(1−βk)Fp,x such that eq,y ∈ [t, t+ 1
s&10

ε '). Using Lemma 3.6 to ensure the interval [tp,x, ep,x) is
sufficiently long, we conclude that there exist at least &(& εs

20(ep,x− tp,x)'/&10
ε ')' ≥ ( ε2s

205)|[tp,x, ep,x)| events
ending during I with flowtime at least cε

20(1− βk)Fp,x.

We can now easily bound F (T1) by LA-W1+ε using lemmas 3.7, 3.8, 3.5 and 3.6. The proof of the
following lemma can be found in Appendix B.

Lemma 3.9. F (T1) < 83
100LA-W1+ε.

3.2 Bounding T2 events.

bp,x t1 t2 t3 ep,x

ε
10 1

broadcast of p by OPT

Figure 3: For any event Ep,x in T2, OPT must broad-

cast page p during [t1, t3).

In this section, we bound F (T2). Recall that our goal is
to show that for any event Ep,x ∈ T2, the optimal solu-
tion must broadcast page p many times during Ep,x. To find
these broadcasts by the optimal solution, we break up each
event Ep,x ∈ T2 into the time intervals [τβ,i+2

p,x , τβ,i
p,x). By

definition of τ , we know that the requests for page p that arrive during [τβ,i+2
p,x , τβ,i+1

p,x ] account for a substan-
tial portion of the flowtime of event Ep,x. Knowing this and that the length of [τβ,i+1

p,x , τβ,i
p,x) is sufficiently

long by definition of events in T2, we will be able to show that the optimal solution must broadcast page p
during [τβ,i+2

p,x , τβ,i
p,x]. Otherwise, the these requests wait for a sufficiently long time to be scheduled by OPT

and, therefore, OPT must accumulate flowtime at least 1
γ Fp,x for these requests. This contradicts the fact

that events in T2 are non-self-chargeable.

Lemma 3.10. Let Ep,x be an event in T2. For any integer i s.t. 0 ≤ i ≤ $1000c%, the optimal solution must
broadcast page p during the interval [τβ,i+2

p,x , τβ,i
p,x).

Proof. For simple notation, for any fixed integer i s.t. 0 ≤ i ≤ $1000c%, let t1 = τβ,i+2
p,x , t2 = τβ,i+1

p,x ,
and t3 = τβ,i

p,x. Note that t3 − t2 ≥ ε
10(ep,x − t3) and t1 < t2 < t3, since Ep,x ∈ T2. Let S[t1,ep,x),

S(t2,ep,x) and S[t1,t2] be the set of requests for page p which arrive on the intervals [t1, ep,x), (t2, ep,x) and
[t1, t2], respectively. By definition of t1 and t2, we have that F (S[t1,ep,x)) > β(10

ε (i + 2) + 1)Fp,x and
F (S(t2,ep,x)) ≤ β(10

ε (i + 1) + 1)Fp,x. Thus we have,

F (S[t1,t2]) = F (S[t1,ep,x))− F (S(t2,ep,x)) >
10
ε

βFp,x. (2)

Figure 3: For any event Ep,x in T2, OPT must broadcast page

p during [t1, t3).

Lemma 3.9. Let Ep,x be an event in T2. For any
integer i s.t. 0 ≤ i ≤ d1000ce, the optimal solution
must broadcast page p during the interval [τβ,i+2

p,x , τβ,ip,x).

Proof. For any fixed integer i such that 0 ≤ i ≤ d1000ce,
let t1 = τβ,i+2

p,x , t2 = τβ,i+1
p,x , and t3 = τβ,ip,x. Note

that t3 − t2 ≥ ε
10 (ep,x − t3) and t1 < t2 < t3, since

Ep,x ∈ T2. See Figure 3. Let S[t1,ep,x), S(t2,ep,x)

and S[t1,t2] be the set of requests for page p which
arrive on the intervals [t1, ep,x), (t2, ep,x) and [t1, t2],
respectively. By definition of t1 and t2, we have that
F (S[t1,ep,x)) > β( 10

ε (i + 2) + 1)Fp,x and F (S(t2,ep,x)) ≤
β( 10

ε (i+ 1) + 1)Fp,x. Thus we have,

F (S[t1,t2]) = F (S[t1,ep,x))− F (S(t2,ep,x))(3.2)

>
10
ε
βFp,x.

With the fact t3 − t2 ≥ ε
10 (ep,x − t3), the fact that

the requests in S[t1,t2] arrive by time t2, and (3.2), by



applying Lemma 3.1 we have

F (S[t1,t2], t3) ≥ (
ε

10
)(

10
ε

)βFp,x = βFp,x.(3.3)

For the sake of contradiction, suppose that the
optimal solution does not broadcast page p on the
interval [t1, t3). Then

F ∗p,x ≥ F (S[t1,t2], t3) ≥ βFp,x ≥
1
γ
Fp,x.(3.4)

This is a contradiction to Ep,x being non-self-
chargeable.

Corollary 3.1. For each event Ep,x ∈ T2, the op-
timal solution broadcasts page p at least d500ce times
during the interval [τβkp,x, ep,x).

At this point, we have shown the most interesting
property of events in T2 and we are almost ready to
bound F (T2). Before bounding F (T2), we first find
events to charge to. For each event Ep,x ∈ T2, we
want to charge Fp,x to some events ending during
[τβkp,x, ep,x) because we know OPT broadcasts page p
many times during this interval. Knowing that LA-W
always broadcasts the page with flowtime close to the
highest flowtime, we can easily find events ending during
[τβkp,x, ep,x) with sufficiently large flowtime.

Lemma 3.10. Consider any event Ep,x ∈ T2. Let
Ip,x = [τβkp,x, ep,x). There exist at least 49

100 (1 + ε)|Ip,x|
events ending during Ip,x with flowtime at least 1

2c (1 −
βk)Fp,x.

Proof. Let I ′p,x = [τβkp,x + 1
2 (ep,x − τβkp,x), ep,x). Note that

there are at least b(1 + ε) 1
2 |Ip,x|c ≥ (1 + ε) 49

100 |Ip,x|
events ending during I ′p,x; the inequality is due to
Lemma 3.5 to ensure |Ip,x| is sufficiently long. Let Eq,y
be an event such that eq,y ∈ I ′p,x. We now show that
Fq,y ≥ 1

2c (1−βk)Fp,x. By Lemma 3.1 and the definition
of τβkp,x we have Fp(eq,y) ≥ 1

2 (1 − βk)Fp,x. Since our
algorithm chose page q over page p at time t, according
to either Rule 1 or Rule 2, Fq,y ≥ 1

cFp(eq,y). Hence
we conclude that Fq,y ≥ 1

2c (1− βk)Fp,x.

Finally we bound the flowtime of T2 events by
charging an event Ep,x ∈ T2 to the events we found
in Lemma 3.10. Notice that the events we are charging
to can have flowtime less that Fp,x, but we counter this
by finding many broadcasts of page p by OPT during
Ep,x.

Lemma 3.11. For 0 < ε ≤ 1, F (T2) < 2
100LA-W1+ε.

Proof. We apply Lemma 3.6. Let Ep,x ∈ T2 and
Ip,x = [τβkp,x, ep,x). By Corollary 3.1 we can set λ = 500c.
By letting Bp,x be the set of events found for Ep,x in
Lemma 3.10, we can set κ = 1

2c (1−βk) and µ = 49
100 (1+

ε). Using Lemma 3.5 we know that |Ip,x| ≥ 10000/ε2

and therefore d = minEp,x∈A |Ip,x| ≥ 10000/ε2. The
desired result follows by simple calculation.

3.3 There are no events in T3. In this section we
show T3 = ∅. For the sake of contradiction suppose
that T3 is non-empty. Fix an event Ep,x ∈ T3. For
some fixed 0 ≤ i ≤ d1000ce we have that τβ,ip,x− τβ,i+1

p,x <
ε

10 (ep,x − τβ,ip,x) because Ep,x /∈ T2. Let t1 = τβ,i+1
p,x and

t2 = τβ,ip,x. Let t3 = t2 + ε
9 (ep,x − t2). Let E be all the

non-self-chargeable events ending during [t3, ep,x) which
were scheduled by Rule 1 when page p was in Q. Our
goal is to show that OPT must make a unique broadcast
for each event in E on the interval [t1, ep,x). Then
it will be shown that |E| > |[t1, ep,x)| + 1 by showing
|E| ' (1 + ε)|[t3, ep,x)| > |[t1, ep,x)|+ 1. Since OPT has
1 speed, this will show that OPT cannot complete these
broadcasts on the interval [t1, ep,x). This contradiction
will imply that T3 = ∅. See Figure 4.
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With the assumption t3 − t2 ≥ ε
10(ep,x − t3), the fact that the requests in S[t1,t2] arrive by time t2, and

(2), by applying Lemma 3.1 we have

F (S[t1,t2], t3) ≥ (
ε

10
)(

10
ε

)βFp,x = βFp,x. (3)

For the sake of contradiction, suppose that the optimal solution does not broadcast page p on the interval
[t1, t3). Then

F ∗
p,x ≥ F (S[t1,t2], t3) ≥ βFp,x ≥

1
γ

Fp,x. (4)

This is a contradiction to Ep,x being non-self-chargeable.

Corollary 3.11. For each event Ep,x ∈ T2, the optimal solution broadcasts page p at least $500c% times
during the interval [τβk

p,x, ep,x).

At this point, we have shown the most interesting property of events in T2 and we are almost ready to
bound F (T2). Before bounding F (T2), we first find events to charge to.

Lemma 3.12. Consider any event Ep,x ∈ T2. Let Ip,x = [τβk
p,x, ep,x). There exist at least 49

100(1 + ε)|Ip,x|
events ending during Ip,x with flowtime at least 1

2c(1− βk)Fp,x.

Proof. Let I ′
p,x = [τβk

p,x + 1
2(ep,x−τβk

p,x), ep,x). Note that there are at least &(1+ε)1
2 |Ip,x|' ≥ (1+ε) 49

100 |Ip,x|
events ending during I ′

p,x; the inequality is due to Lemma 3.6 to ensure |Ip,x| is sufficiently long. Let Eq,y be
an event such that eq,y ∈ I ′

p,x. We now show that Fq,y ≥ 1
2c(1− βk)Fp,x. By Lemma 3.1 and the definition

of τβk
p,x we have Fp(eq,y) ≥ 1

2(1−βk)Fp,x. Since our algorithm chose page q over page p at time t, according
to either Rule 1 or Rule 2, Fq,y ≥ 1

cFp(eq,y). Hence we conclude that Fq,y ≥ 1
2c(1− βk)Fp,x.

Finally we bound the flowtime of T2 events by charging an event Ep,x ∈ T2 to the events we found
in Lemma 3.12. Notice that the events we are charging to can have flowtime much less that Fp,x, but we
counter this by finding many broadcasts of page p by OPT during Ep,x. The proof of the following lemma
can be found in Appendix B.

Lemma 3.13. For 0 < ε ≤ 1, F (T2) < 2
100LA-W1+ε.

3.3 There are no events in T3.
bp,x t1τβ

p (t) t2 t3 t ep,x

ε
9 1ε

10

Figure 4: For an event Ep,x in T3, during [t1, ep,x) OPT must make

a unique broadcast for most events which end during [t3, ep,x).

In this section we show T3 = ∅. For the
sake of contradiction suppose that T3 is non-
empty. Fix an event Ep,x ∈ T3. For some
fixed 0 ≤ i ≤ $1000c% we have that τβ,i

p,x −
τβ,i+1
p,x < ε

10(ep,x − τβ,i
p,x) because Ep,x /∈ T2.

Let t1 = τβ,i+1
p,x and t2 = τβ,i

p,x. Let t3 = t2 + ε
9(ep,x − t2). Let E be all the non-self-chargeable events

ending during [t3, ep,x) which were scheduled by Rule 1 when page p was in Q. Our goal is to show that
OPT must make a unique broadcast for each event in E on the interval [t1, ep,x). Then it will be shown that
|E| > |[t1, ep,x)|+1 by showing |E| * (1+ ε)|[t3, ep,x)| > |[t1, ep,x)|+1. Since OPT has 1 speed, this will
show that OPT cannot complete these broadcasts on the interval [t1, ep,x). This contradiction will imply
that T3 = ∅. See Figure 4.

Recall that by Lemma 3.5, for any Eq,y ∈ E , the optimal solution must broadcast page q on the interval
[τβ

q (eq,y), eq,y) because Eq,y is non-self-chargeable. Further, note that such broadcasts are unique to Eq,y,
i.e. not contained in Eq,y′ for any y′ += y because Eq,y′ and Eq,y are disjoint by definition. For any Eq,y ∈ E ,
if we show that τβ

q (eq,y) ∈ [t1, ep,x) then we will know that OPT preforms these broadcasts on [t1, ep,x).

Figure 4: For an event Ep,x in T3, during [t1, ep,x) OPT
must make a unique broadcast for most events which end during

[t3, ep,x).

Recall that by Lemma 3.4, for any Eq,y ∈ E , the
optimal solution must broadcast page q on the interval
[τβq (eq,y), eq,y) because Eq,y is non-self-chargeable. Fur-
ther, note that such broadcasts are unique to Eq,y, i.e.
not contained in Eq,y′ for any y′ 6= y because Eq,y′ and
Eq,y are disjoint by definition. For any Eq,y ∈ E , if we
show that τβq (eq,y) ∈ [t1, ep,x) then we will know that
OPT performs these broadcasts on [t1, ep,x). This is
where Rule 1 will play a crucial role in our analysis. We
will first show that τβp (t) ≥ t1 for all times t ∈ [t3, ep,x).
By definition, if page q was scheduled by Rule 1 and
page p was in Q(t) then τβp (t) ≤ τβq (t). Hence, for any
Eq,y ∈ E we will have that t1 ≤ τβp (eq,y) ≤ τβq (eq,y) and
OPT broadcasts page q on [t1, ep,x).

Lemma 3.12. For the event Ep,x ∈ T3, at any time
t ∈ [t3, ep,x), τβp (t) ≥ t1.

Proof. For the sake of contradiction assume that
τβp (t) < t1. Let t′ = τβp (t). Note that t′ < t1 ≤ t2 < t <



ep,x. Let S[t1,ep,x), S(t2,ep,x) and S[t1,t2] be the set of re-
quests which arrive for page p on the intervals [t1, ep,x),
(t2, ep,x), and [t1, t2], respectively. By definition of t1
and t2, we have F (S[t1,ep,x)) > β( 10

ε (i+ 1) + 1)Fp,x and
F (S(t2,ep,x)) ≤ β( 10

ε i+ 1)Fp,x. Hence,

F (S[t1,t2]) = F (S[t1,ep,x))− F (S(t2,ep,x))(3.5)

>
10
ε
βFp,x.

By the definition of t′ = τβp (t), we have F (S(t′,t2], t) ≤
F (S(t′,t], t) ≤ βFp(t) ≤ βFp,x. Since t ≥ t2+ ε

9 (ep,x−t2),
by Lemma 3.6, ε

9F (S(t′,t2], ep,x) ≤ F (S(t′,t2], t). Thus
we have,

F (S(t′,t2]) = F (S(t′,t2], ep,x) ≤ 9
ε
F (S(t′,t2], t)(3.6)

≤ 9
ε
βFp,x.

Knowing that F (S(t′,t2]) ≥ F (S[t1,t2]), this is a contra-
diction to (3.5).

Finally we are ready to show that T3 = ∅. This
lemma follows by using the previous lemma and count-
ing the number of broadcasts the optimal solution must
do on the interval [t1, ep,x). It is in the next lemma that
we rely strongly on resource augmentation.

Lemma 3.13. It must be the case that T3 = ∅.

Proof. Recall that E is the set of all the non-self-
chargeable events ending during [t3, ep,x) which were
scheduled by Rule 1 when page p was in Q. We
first show |E| > s(1 − 34

100ε)(ep,x − t2) by a simple
counting argument. We know that at least bs(1 −
ε
9 )(ep,x − t2)c events end during [t3, ep,x) by definition
of t3 and t2. Among these events we know that at most
αs(ep,x−t2) events are self-chargeable, since Ep,x ∈ N2;
at most ds(ep,x − t2)e/b 10

ε c + 1 ≤ εs 101
900 (ep,x − t2)

broadcasts are scheduled by Rule 2, since our algorithm
performs according to Rule 2 every b 10

ε c broadcasts
(the inequality is due to Lemma 3.5); and at most
εs
10 (ep,x − t2) events were scheduled when p is not in
the queue Q, since Ep,x /∈ T1. By subtracting these
numbers from the number of events ending during I ′p,x
and knowing that (ep,x− t2) ≥ 10000

ε2 by Lemma 3.5, we
have

(1− 34
100

ε)(1 + ε)(ep,x − t2) ≤ |E|.(3.7)

Knowing that t2 − t1 < ε
10 (ep,x − t2), we have

|[t1, ep,x]| < (1 +
ε

10
)(ep,x − t2).(3.8)

As discussed previously, Lemma 3.12 implies that
OPT must make a unique broadcast for each event in E
during [t1, ep,x). Since the optimal solution has 1 speed,
with Lemma 3.5, it must be the case that

|E| ≤ |[t1, ep,x)|+ 1 ≤ (1 +
ε

10000
)|[t1, ep,x)|.(3.9)

By combining (3.7), (3.8), and (3.9), we have that
(1− 34

100ε)(1+ε) < (1+ ε
10 )(1+ ε

10000 ). For any 0 < ε ≤ 1
this is not true, so we obtain a contradiction.

This competes our analysis. By lemmas 3.8, 3.11
and 3.13 we have that F (N2) ≤ 85

100LA-W1+ε. The
proof of Theorem 3.1 follows easily by combining this
and lemmas 3.2 and 3.3.

4 Conclusion

In this paper we have given the first (1 + ε)-speed
O(1)-competitive algorithm for the objective of min-
imizing the total flowtime in broadcast scheduling
with unit sized pages. It is still open if there exists
a O(1)-competitive algorithm with (1 + ε)-speed for
varying sized pages. It is also important to note that
the algorithm LA-W is parameterized by ε. It would
be interesting to show a (1 + ε)-speed O(1)-competitive
algorithm which scales with ε without knowledge of ε.
It would be worth exploring a simpler algorithm with
better competitive ratio.
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A Proof of Lemma 3.6

Here we prove Lemma 3.6. The proof of this lemma
relies on a generalization of Hall’s theorem. This
generalization of Hall’s theorem was implicitly used in
[19], and later formalized in [11].

Definition A.1. [11][g-covering] Let G = (X ∪ Y,E)
be a bipartite graph whose two parts are X and Y ,
respectively. Let ` : E → [0, 1]. We say {`u,v} is a
g-covering if

∑
v∈Y `u,v = 1 and

∑
u∈X `u,v ≤ g.

The following lemma follows easily from either
Hall’s Theorem or the Max-Flow Min-Cut Theorem.

Lemma A.2. [11][Fractional Hall’s theorem] Let G =
(V = X ∪ Y,E) be a bipartite graph whose two parts
are X and Y , respectively. For a subset S of X, let
NG(S) = {v ∈ Y | uv ∈ E, u ∈ S}, be the neighborhood
of S. For every S ⊆ X, if |NG(S)| ≥ 1

g |S|, then there
exists a g-covering for X.

Now we are ready to prove Lemma 3.6.
Proof of [Lemma 3.6] We start by creating a bipartite
graph G = (X ∪ Y,E). There is one vertex up,x ∈ X
for each event Ep,x ∈ A and there is a vertex vq,y ∈ Y
for each event in Eq,y ∈ B. Let up,x ∈ X and vq,y ∈ Y .
There is an edge connecting up,x and vq,y if and only
if Eq,y ∈ Bp,x. For any set Z ⊆ X, let I(Z) be
the set of intervals corresponding to events in Z, i.e.
I(Z) = { Ip,x | up,x ∈ Z}. We let

⋃ I(Z) denote the
union of intervals in I(Z). We denote the sum of length
of maximal subintervals in

⋃ I(Z) by |⋃ I(Z)|. We will
now show that G has a (( 2

λµ )(d+1
d ))-covering for X.

Consider any fixed set Z ⊆ X. Notice that

λ|Z| ≤ d+ 1
d
|
⋃
I(Z)|.(1.10)

This is because the optimal solution must perform λ
unique broadcasts for each event in Z during I(Z), the
optimal solution has 1 speed, and there are at most
d+1
d |

⋃ I(Z)| integral time steps during I(Z) where
OPT can broadcast.

From now on, for simplicity, we assume that
⋃ I(Z)

is one continuous interval; otherwise our argument can
be applied to each maximal subinterval in

⋃ I(Z). Let
I ′ ⊆ I(Z) be such that for any two intervals Ip,x, Iq,y ∈
I ′ it is the case that Ip,x is not completely contained in
Iq,y, and also

⋃ I ′ =
⋃ I(Z). By definition,

|
⋃
I ′| = |

⋃
I(Z)|.(1.11)

We order all intervals in I ′ in the increasing order
of starting points. We pick intervals from I ′ one by
one and label them by the order they are picked; the

ith selected interval is denoted by Ii. Starting with I1,
we pick Ii+1 so that Ii+1 the least overlaps with Ii;
here we will say Ii+1 overlaps with Ii even when Ii+1

starts exactly where Ii ends. Let I ′odd and I ′even be the
odd indexed and even indexed intervals, respectively.
WLOG, assume that |⋃ I ′odd| ≥ |⋃ I ′even|. Since
I ′odd and I ′even are a partition of I ′, we know that
|⋃ I ′odd|+ |

⋃ I ′even| ≥ |
⋃ I ′|. Thus we have

|
⋃
I ′odd| ≥

1
2
|
⋃
I ′|.(1.12)

Let NG(Z) be the neighborhood of Z. We now show
that |NG(Z)| ≥ µ|⋃ I ′odd|. Note that up,x, correspond-
ing to Ip,x in I ′odd, has at least µ|Ip,x| neighbors. Also
note that all intervals in I ′odd are disjoint by construc-
tion of I ′odd. Hence, by summing up all neighbors of
vertices corresponding to intervals in I ′odd, we have

|NG(Z)| ≥ µ|
⋃
I ′odd|.(1.13)

From (1.10), (1.11), (1.12) and (1.13), We have
|NG(Z)| ≥ (λµ2 )( d

d+1 )|Z| and G has a (( 2
λµ )(d+1

d ))-
covering using Lemma A.2. Let ` be such a covering.

F (A) =
∑

up,x∈X
Fp,x

=
∑

up,xvq,y∈E
`up,xvq,yFp,x

[By definition of the covering]

≤
∑

up,xvq,y∈E
`up,xvq,y

Fq,y
κ

[By Fq,y ≥ κFp,x]

≤ (
2
κλµ

)(
d+ 1
d

)
∑

vq,y∈Y
Fq,y

[Change order of the summation and
` is a (( 2

λµ )(d+1
d ))-covering]

= (
2
κλµ

)(
d+ 1
d

)F (B)

[Since Y is the set of vertices
corresponding to events in B]

≤ (
2
κλµ

)(
d+ 1
d

)LA-W1+ε

[Since B is a subset of all events]

2

B Omitted Proofs

Proof of [Lemma 3.3] We apply Lemma 3.6 using the
notation given in the lemma. Let A be the set of all



N1 events. Consider any event Ep,x ∈ A. Let Ip,x =
[τρp (ep,x), ep,x) for some fixed β ≤ ρ ≤ β( 10

ε (d1000ce +
2) + 1) such that at least dαs(ep,x − τρ(ep,x))e self-
chargeable events end on Ip,x. Note that ρ exists by
definition of N1 events. By Lemma 3.4, the optimal
solution must broadcast page p during Ip,x. Due to this
we set λ = 1. Since |Ip,x| ≥ 10000

ε2 by Lemma 3.5, we
have d = minEp,x∈A |Ip,x| ≥ 10000

ε2 .
Let Bp,x be the self-chargeable events ending dur-

ing I ′p,x = [τρp (ep,x) + α
2 (ep,x − τρp (ep,x)), ep,x). Note

that there are at most dαs2 |Ip,x|e events ending during
Ip,x \ I ′p,x. Therefore there exist at least dαs|Ip,x|e −
dαs2 |Ip,x|e ≥ bαs2 |Ip,x|c ≥ αs

4 |Ip,x| self-chargeable events
ending during I ′p,x. Hence, |Bp,x| ≥ αs

4 |Ip,x| and we can
set µ = αs

4 .
Let Eq,y ∈ Bp,x. By Lemma 3.1 and the definition

of τρp (ep,x) we know that at anytime t ∈ I ′p,x it is the
case that Fp,x(t) ≥ α

2 (1 − ρ)Fp,x. Since our algorithm
chose to broadcast page q at time ep,x ∈ I ′p,x over page
p, we have Fq,y ≥ α

2c (1 − ρ)Fp,x. Therefore we can set
κ = α

2c (1− ρ).
In sum, by Lemma 3.6,

F (N1) ≤ 2
λκµ

d+ 1
d

F (S)

= (
16c
α2s

)(
1

1− ρ )
d+ 1
d

(γOPT)

= O(
1
ε11

)OPT.

2

Proof of [Lemma 3.4] For the sake of contradiction
assume the lemma is false. The event Ep,x is non-self-
chargeable therefore the optimal solution must broad-
cast page p at some time during (bp,x, τβp (ep,x)). Let
t be the latest broadcasting time of page p by the op-
timal solution during (bp,x, τβp (ep,x)). Let S[bp,x,t] and
S(t,ep,x) be the set of requests for page p which arrive
during [bp,x, t] and (t, ep,x), respectively. We know that
F (S[bp,x,t]) < (1 − β)Fp,x by definition of τβp (ep,x) and
t < τβp (ep,x). Thus F (S(t,ep,x)) = F (Rp,x \ S[bp,x,t]) >
βFp,x. Since the optimal solution does not broad-
cast page p during (t, ep,x), it follows that F ∗p,x ≥
F ∗(S(t,ep,x)) > βFp,x ≥ 1

γFp,x, which is a contradiction
to Ep,x being a non-self-chargeable event. 2

Proof of [Lemma 3.5] For the sake of contradiction,
assume that there exists a non-self-chargeable event
Ep,x such that |[τβp (ep,x), ep,x]| < 10000

ε2 . Let S be the
set of requests for page p which arrive on the interval
[τβp (ep,x), ep,x). By definition of τβp (ep,x) it must be the
case that F (S) > βFp,x. We now want to bound the
number of requests in S. Since each request in S can
accumulate flow time at most |[τβp (ep,x), ep,x]| < 10000

ε2 ,

we have that F (S) < |S| 10000
ε2 , thus βFp,x < |S| 10000

ε2 .
Hence we have that |S| > ε2

10000βFp,x. The optimal
solution must accumulate at least |S| flowtime for the
requests in S, therefore F ∗p,x ≥ |S| > ε2

10000βFp,x ≥
1
γFp,x. This is a contradiction to Ep,x being non-self-
chargeable. 2
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