
New Approximations for Broadcast Scheduling
via Variants of α-point Rounding

Sungjin Im∗ Maxim Sviridenko†

Abstract
We revisit the pull-based broadcast scheduling model. In
this model, there are n unit-sized pages of information
available at the server. Clients send their requests to the
server over time asking for specific pages. The server can
transmit only one page at each time. When the server
transmits a page, all outstanding requests for the page
are simultaneously satisfied, and this is what distinguishes
broadcast scheduling from the standard scheduling setting
where each job must be processed separately by the
server. Broadcast scheduling has received a considerable
amount of attention due to the algorithmic challenges that
it gives in addition to its applications in multicast systems
and wireless and LAN networks. In this paper, we give
the following new approximation results for two popular
objectives:
• For the objective of minimizing the maximum flow

time, we give the first PTAS. Previously, it was
known that the algorithm First-In-First-Out (FIFO)
is a 2-approximation, and it is tight [14, 16]. It has
been suggested as an open problem to obtain a better
approximation [14, 4, 25, 31].
• For the objective of maximizing the throughput, we

give a 0.7759-approximation which improves upon
the previous best known 0.75-approximation [23].

Our key techniques for these improvements are novel vari-
ants of α-point rounding that can effectively reduce con-
gestion in schedule which is often the main hurdle in de-
signing scheduling algorithms based on linear program-
ming. We believe that our new rounding schemes could
be of potential use for other scheduling problems.

1 Introduction
We consider the pull-based broadcast scheduling model.
In this model, there is a single server which contains n
pages of useful information. Each client sends a request ρ

∗Electrical Engineering and Computer Science, University of Cali-
fornia at Merced, Merced, CA 95344. sim3@ucmerced.edu. This
work was partially done while the author was visiting University of War-
wick, and was at Duke University. Partially supported by NSF grants
CCF-1008065 and 1409130.
†Yahoo! Labs, New York, NY 10018.

sviri@yahoo-inc.com. This work was partially done while the
author was at University of Warwick.

asking for a specific page p. When the server broadcasts a
page p, all outstanding/unsatisfied requests for the same
page p are satisfied simultaneously. This is the main
difference from the standard scheduling setting where
each request needs to be processed separately by the
server. This model is called “pull-based” since clients
initiate the requests, while in the push-based model the
server transmits pages according to the given frequency
of pages requested.

Broadcast scheduling has applications in multicast
systems, LAN and wireless systems [36, 5, 6]. We note
that data broadcast scheduling is used in commercial sys-
tems [3, 2, 1], and it helps increase the system’s band-
width by serving multiple requests simultaneously. Also
it can be viewed as a special case of batch scheduling
which has been extensively studied in the stochastic and
queueing theory literature [20, 19, 34, 35]. Broadcast
scheduling has received a substantial amount of atten-
tion from the algorithms community, and has been stud-
ied both for the pull-based and push-based models, also
both in the online and offline settings [11, 6, 5, 12]. This
is because in addition to the aforementioned applications
it gives algorithmic challenges concerning how to group
requests for the same page over time to satisfy more re-
quests with less transmissions while optimizing/satisfying
certain scheduling objectives.

In this paper, we consider two objectives of mini-
mizing the maximum flow time and maximizing the to-
tal throughput (profit). We first discuss the first objective.
Each request ρ is released at time rρ asking for a specific
page pρ. We assume that all pages are unit-sized, and re-
quests arrive only at integer times. This unit-sized page
assumption has been adopted in most previous literature.
This assumption is justified when all pages have similar
sizes, and still keeps the main difficulty of the problem.
Consider any feasible schedule σ where at most one page
is transmitted at each integer time. The completion time
Cσρ of request ρ is defined as the first time greater than
rρ when page pρ is transmitted. If no such transmission
exists, Cσρ = ∞. Note that all requests have a flow time
of at least one. The goal is to find a schedule σ that mini-
mizes maxρ(C

σ
ρ − rρ). If the schedule σ is clear from the

context, it may be omitted.
This problem was first suggested in [12], which was

the paper with [28] that initiated the study of pull-based
broadcast scheduling in the worst case analysis model. In
fact, [12] claimed that the online algorithm First-In-First-
Out (FIFO) is 2-competitive for this problem. However, it
was fairly later that the formal proof was found [14, 16].
This problem was shown to be NP-hard [14]. Although
the simple algorithm FIFO achieves 2-competitiveness, it
has been the best known approximation guarantee even
for the offline setting. Hence a natural open question was
if one can obtain a better approximation in the offline
setting [14, 25, 31]. Furthermore, this problem was
mentioned in the Dagstuhl seminar on scheduling in 2010
as an open problem with an interesting connection to the
so-called IRS Tax Scheduling problem [4].

In the other problem of maximizing the total through-
put (profit), each request ρ is also associated with dead-
line dρ and profit wρ. If page p is transmitted during
[rρ + 1, dρ], the request yields profit wρ. This objective is
also NP-hard to optimize [14]. There are several constant
factor approximations known. The simple greedy (online)
algorithm that transmits page p that satisfies the requests
of the maximum total profit is known to be 2-competitive
[29]. Other approaches are based on linear programming
and rounding. As a high-level overview, the LP gives a
fractional schedule {xp,t} over all pages p and time steps
t such that

∑
p xp,t = 1 for all time steps t. Here xp,t

is the (possibly fractional) amount of page p that is trans-
mitted at time t. The independent rounding of picking one
page at each time t according to xp,t gives a (1 − 1/e)-
approximation [23, 15]. The best approximation currently
known uses the elegant dependent rounding in [23] which
gives a rounding scheme for a bipartite graph while sat-
isfying some hard constraints (here the relation between
pages and times is described as a bipartite graph). The
current best approximation factor is 0.75 [23].
Our Contributions and Techniques. One of our main
results is the first polynomial time approximation scheme
(PTAS) for the maximum flow time objective.

THEOREM 1.1. There exists a PTAS for minimizing the
maximum flow time in broadcast scheduling. More pre-
cisely, for any 0 < ε ≤ 1, there exists a (1 + ε)-
approximation algorithm with running time mO(1/ε4)

where m is the number of requests.

One of the key algorithmic ideas in obtaining this result
lies in our novel group-based α-point rounding. The α-
point rounding has been useful in rounding fractional so-
lutions for scheduling problems. For examples and point-
ers, see [9, 24, 33]. As mentioned before, the LP relax-
ation will give the amount xp,t by which page p needs to
be transmitted at time t. In the standard α-point round-
ing, for each page p, one random value αp is picked uni-
formly at random from [0, 1], and page p is transmitted
at times t such that

∑t
t′=1 xp,t′ ≥ αp + k >

∑t−1
t′=1 xp,t′

for an integer k. The resulting (possibly infeasible) sched-
ule has nice properties such as preserving the flow time of
each request in expectation. However, it could result in a
large congestion during some time interval I . Namely, too
many transmissions may be made during I compared to
|I|, the length of I , or equivalently the maximum number
of transmissions that can be made during I . This over-
flow could be as large as the standard deviation Θ(

√
n)

for some interval; recall that n is the number of pages.
To make this schedule feasible, transmissions are delayed
by the amount of the overflow. In fact, this is why [9]
solved a sequence of relaxed linear programs iteratively
to avoid this large delay for the average flow objective.
However, the upper bound on the overflow shown in [9] is
O(log2 n/ log log n). Recently, the approximation guar-
antee was improved in [7] to Õ(log1.5 n) by combining
the iterative rounding framework in [9] and a novel round-
ing scheme based on discrepancy theory. However, this
approximation guarantee is still too large for our goal of
obtaining a PTAS. Furthermore, in general, the overflow
during any interval could have a more serious effect on our
objective of minimizing the maximum flow time, while
for other objectives such as the total flow time, the in-
crease of flow time of some requests may be charged to
other requests.

Our key idea is to partition pages into a small num-
ber of groups and to let all pages in the same group g to
share a single random value α′g ∈ [0, 1]. Roughly speak-
ing, the requests for any two different pages in the same
group have substantially different release times. If the dif-
ference is more than L∗, the maximum flow time of an op-
timal solution, it can be assumed that two different pages
in the same group are never transmitted at the same time,
and this is precisely why the pages in the same group can
share the same random variable. Although αp for pages p
in the same group g are completely determined by a sin-
gle random value α′g , the quantities αp are not necessarily
the same. To make the number of transmission made for
pages in the same group g as close to the total (fractional)
amount of transmission made for the pages as possible, we
transmit a page for each group g at times twhen the cumu-
lative quantity

∑
p∈g
∑t
t′=1 xp,t′ first exceeds α′g + k for

some integer k. To our best knowledge, this seemingly
simple idea has never been used before, and we believe
that it is worth further investigation for the potential use
for other problems. By applying concentration inequali-
ties with this small number of random variables (at most
O(L∗)), we are able to show that the overflow is only
O(εL∗) for any interval if L∗ is considerably big. We
derandomize this process using the method of pessimistic
estimators [32]. When L∗ is small, we design a dynamic
programming which completes our PTAS.

REMARK 1.1. The reader may wonder if the algorithm

FIFO can be strengthened by an LP. We however show
that a natural LP-guided FIFO achieves only a 2-
approximation. See Section 2.5.

The other main result of this paper is an improved
approximation for the maximum throughput objective.

THEOREM 1.2. For some α0 >
1
2 + 3

4e and any ε > 0,
there exists a (α0 − ε)-approximation for maximizing the
throughput (total profit) in broadcast scheduling (1

2 +
3
4e > 0.7759). Furthermore the running time of the
algorithm is in polynomial in (1/ε)O(1/ε) and m.

REMARK 1.2. We note that the 5/6-approximation
claimed in [8] without proof was unfortunately wrong and
excluded from the journal version [9].

Our rounding algorithm for the throughput objective is
very different from the current best approximation in [23]
and other known approximations [29, 15]. Let us call
the interval [rρ + 1, dρ] request ρ’s window. We classify
requests into two groups, depending on their window
sizes. Our algorithm has two main components. If
small-window requests give a relatively large profit, we
use a configuration LP to collect most profits from small
window requests. Here by a configuration, we mean all
possible transmissions that can be made during a small
interval. The time horizon is partitioned into short disjoint
intervals and configurations are defined for each of such
intervals. The rounding is simply picking a configuration
for each disjoint interval. Since configurations capture
enough details for small-window requests, we will be able
to collect most profits from those, while we achieve an
(1− 1/e)-approximation for large-window requests.

The other component of our algorithm is used when
large-window requests give a large profit. We modify the
α-point rounding in an interesting way. After the α-point
rounding, if multiple transmissions are made at a time,
we keep only one transmission at random using the fair
contention resolution scheme in [22] (interestingly, this
already achieves an (1 − 1/e) approximation), and let
other transmissions walk either to the right or to the left at
random for a certain constant number of time steps to find
an available empty time slot. More precisely, consider a
transmission of page p at time t that is about to move to
the left or to the right. Consider a large-window request
ρ such that t ∈ [rρ + 1, dρ] and pρ = p. Suppose
that t is fairly far from dρ. Then if the transmission
moves to the right and can find an empty time slot soon,
specifically by dρ, then the transmission will still satisfy
the request ρ, and this is how we get more profits from
large-window requests. It now remains to guarantee that
there are enough empty time slots available so that the
random walk of transmissions can find new places with a
probability arbitrarily close to 1. To this end, after the α-
point rounding, we initially free away an ε-fraction of time

slots, whose effect will be negligible to the approximation
factor.

Although we use configurations that encode all possi-
ble transmission for an interval of length depending on ε,
note that the running time is in polynomial in (1/ε)O(1/ε)

and the number of requests. This is achieved by solving
the dual of the LP using an efficient separation oracle.

The flow time and throughput objectives are perhaps
the most popular ones in the scheduling literature. To
optimize flow times, it is crucial to minimize congestion
during any interval since we are required to satisfy all re-
quests, and congestion can accumulate over time, thereby
increasing overall flow time considerably. On the other
hand in the throughput objective the time constraints are
hard but we are allowed to discard some requests. We
believe that our variants of α-point rounding that reduce
congestion and resolve conflicts could be of potential use
for other scheduling problems as well.
Related Work. A submodular generalization of the max-
imum throughput objective was studied in [15]. In this
extension, each request ρ is associated with a submod-
ular profit function that is defined over the times when
page pρ is transmitted. For this problem, [15] gave a
0.5-competitive algorithm and a (1− 1/e)-approximation
algorithm. Other variants of this problem were con-
sidered and constant competitive algorithms were given
[37, 13, 18]. [23] gives a 0.75-approximation for the max-
imum throughput objective in a slightly more general set-
ting.

As mentioned before, the maximum flow time ob-
jective was first considered in [12]. Chang et al. gave
the first proof for the claim that FIFO is 2-competitive
for the objective [14]. Later, Chekuri et al. extended
the result to varying-sized pages using a different proof
[16]. The performance guarantee of FIFO is tight [14],
and it remains the case even if randomization is used
to break ties between pages [15]. In the 2010 Dagstuhl
seminar on scheduling, a special case for the through-
put objective was introduced under the name of the IRS
Tax Scheduling problem [4]. The problem, explained in
broadcast scheduling terminology, asks if there is a feasi-
ble schedule that satisfies all requests ρ during their win-
dow [rρ + 1, dρ] when there are at most two requests
for each page. It was shown that an exact polynomial
time algorithm for the Tax Scheduling problem can be
used to obtain a randomized algorithm that achieves a 2-
approximation for the maximum flow time while guaran-
teeing each request’s expected flow time is at most 1.75
times the maximum flow time of the optimal solution [17].
It remains open if the Tax Scheduling problem is NP-hard
or not.

Other interesting objectives were studied in broadcast
scheduling. For the average flow time objective, [9]
gave an O(log2 n/ log log n)-approximation. We note

that the algorithm and analysis in [9] can be used to
give the same approximation guarantee for minimizing
the maximum weighted flow time. As mentioned before,
this approximation guarantee was recently improved in
[7] to Õ(log1.5 n). In the online setting, there exists a
Ω(n) lower bound on the competitive ratio for the average
flow time objective, hence to overcome this lower bound,
a relaxation called speed augmentation was used [27]. In
this relaxation, the online algorithm runs on a machine
that is (1 + ε) times faster than the machine the optimal
offline scheduler runs on. An online algorithm is said to
be scalable if it is f(ε)-competitive for any ε > 0. For
average flow time and its variants, scalable algorithms
were given [26, 10, 21]. There is a scalable algorithm
known for the maximum weighted flow time objective
[16].

Formal Problem Definition and Notation. There are n
pages of information, and all pages are unit-sized. We will
denote page mostly as p, q, and denote the set of pages as
P . Times are slotted. Requests can arrive only at a non-
negative integer time. The server can transmit at most one
page at each positive integer time. A request ρ is released
at time rρ asking for a specific page pρ. We let R denote
the entire set of requests. We may add some condition as
a subscript to denote a subset of requests that satisfy the
condition. For example, Rr≥t will refer to the requests
that arrive no earlier than time t. Let m := |R| denote
the number of requests. Without loss of generality, we
assume that m ≥ n. Also the set of times when page
p is requested is denoted as Tp. We say that a schedule
σ is feasible if at most one page is transmitted at each
time. In a schedule σ, request ρ is completed at the first
time t′ > rρ when the page pρ is transmitted. The flow
time Fσρ := Cσρ − rρ of a request is the length of time
that ρ waits since its arrival until its completion. In the
problem of minimizing the maximum flow time, the goal
is to find a feasible schedule that minimizes maxρ∈R F

σ
ρ .

As mentioned before, if the schedule σ is clear from the
context, it may be omitted. In the problem of maximizing
the throughput (profit), each request ρ has weight wρ and
deadline dρ. If page pρ is transmitted during its window
Wρ := [rρ + 1, dρ], then we get a profit of wρ. The
objective is to obtain a feasible schedule that gives the
maximum total profit.

We let T denote the maximum time we need to con-
sider, which is at most maxρ∈R rρ + n. This is because
transmitting all n pages after the release of the last request
completes all requests, and there is no incentive of trans-
mitting the same page more than once when there are no
more requests to arrive. We assume that all requests are
given explicitly, and hence it follows that the input size
is as large as m, the number of requests. We suggest the
reader to read Section 2 and 3 assuming that T is O(m).
Intuitively, if requests rarely arrive, at a rate of less than

one request per time on average, the problem becomes
easier. Later we will show how to remove this assump-
tion.
2 A PTAS for the Maximum Flow Time
In this section, we give a PTAS for the problem of mini-
mizing the maximum flow time in broadcast scheduling.
Consider any instance J of requests. Let L∗ denote the
maximum flow time of an optimal schedule on the in-
stance. Note that 1 ≤ L∗ ≤ n, since we can satisfy all
requests within n time steps by repeatedly transmitting all
n pages. We can without loss of generality assume that
the quantity L∗ is known to the algorithm; this can be
easily done by performing a binary search on the value
of L∗ in the range of [1, n]. To make our algorithm and
analysis more transparent, we will throughout assume that
T = O(m). In Section 2.3, this simplifying assumption
will be removed. We will proceed with our analysis by
considering two cases depending on the value of L∗, and
show the following in Section 2.1 and 2.2, respectively.

LEMMA 2.1. Suppose that L∗ ≥ 1
ε3 log T . Then there

exists a randomized algorithm that yields a feasible sched-
ule with the maximum flow time of at most (1+6ε)L∗ with
a probability of at least 1− 1/T .

THEOREM 2.1. For any 0 < ε ≤ 1, there exists a
(1 + 6ε)-approximation for the maximum flow time in
broadcast scheduling with run time O

(
T
εL∗ · (L

∗)2
)
·(

3
ε

)18L∗ · (6eε)εL∗ .
Lemma 2.1 and Theorem 2.1 would easily yield a ran-
domized version of one of our main results.

THEOREM 2.2. There exists a randomized PTAS for min-
imizing the maximum flow time in broadcast schedul-
ing. More precisely, there exists a randomized (1 + ε)-
approximation with run time m2 · TO(1/ε4) that succeeds
with a high probability.

Proof. The run time is upper-bounded by the quantity
O
(
T · (L∗)2

)
·
(
3
ε

)18L∗ ·(6eε)εL∗ withL∗ = (1/ε3) log T ,
which simplifies to

O(T ·m2) · (3/ε)(18/ε
3) log T · (6e/ε)(1/ε

2) log T

≤ O(T ·m2) · (3/ε)(18/ε
3) log T · (3/ε3)(3/ε

2) log T

≤ O(T ·m2) · (3/ε)(21/ε
3) log T

= O(T ·m2) · T
21
ε3

log 3
ε

= m2 · TO(1
ε4

)

2

As mentioned before, we will remove the dependency
of run time on T in Section 2.3. Also in Section 2.4, using
the method of pessimistic estimators, we will derandom-
ize the rounding scheme described in Section 2.1. This

will make the result stated in Theorem 2.2 deterministic,
thereby completing the proof of Theorem 1.1. We note
that one can improve the run time of our randomized al-
gorithm to m2 · TO(1/ε3) by considering two cases that
L∗ ≥ (1/ε2) log T or not. However, the corresponding
derandomization process seems more tricky and involved,
hence we present the analysis of the result with a slightly
worse run time.

We begin with the case when L∗ is large.

2.1 Case: L∗ ≥ (1/ε3) log T . This section is devoted
to proving Lemma 2.1. For notational convenience, we
begin with simplifying the given instance of requests.
We say that two requests ρ and ρ′ for the same page p
are adjacent if there are no requests for page p released
between time rρ and rρ′ . We claim that we can without
loss of generality assume that any two adjacent requests
for the same page arrive within less than L∗ time steps.
To see this, suppose that there are two adjacent requests
ρ and ρ′ for page p that arrive apart by at least L∗ time
steps. Then in the optimal schedule, no transmission of
page p can be used to satisfy ρ and ρ′ simultaneously.
Hence we can assume that the requests in Tp,r≤rρ and
those in Tp,r≥rρ′ are for different pages, where Tp,r≤rρ
and Tp,r≥rρ′ denote the set of requests for page p that
arrive no later than ρ and no earlier than ρ′, respectively.

Henceforth, we assume that any two adjacent re-
quests ρ, ρ′ (for the same page) arrive within less than L∗

time steps, i.e. |rρ − rρ′ | ≤ L∗ − 1. We consider the fol-
lowing integer programming that determines if there is a
feasible schedule with the maximum flow time of at most
L∗.

(LPMaxFlow)

t+L∗∑
t′=t+1

xp,t′ ≥ 1 ∀p ∈ P, t ∈ Tp

(2.1)

∑
p∈P

xp,t ≤ 1 ∀t ∈ [T]

(2.2)

xp,t = 0 ∀p ∈ P, t /∈ [min Tp + 1,max Tp + L∗](2.3)
xp,t ∈ {0, 1} ∀p ∈ P, t ∈ [T]

The first constraints say that all requests must be
completed within L∗ time steps. The second constraints
state that at most one page can be transmitted at each time.
The third constraints ensure that no transmission is made
if it cannot be used to satisfy a request within L∗ time
steps. We relax the integer programing by replacing the
last constraints with xp,t ≥ 0. We solve LPMaxFlow and let
x∗p,t denote the optimal fractional solution. Our rounding

scheme will be based on the groups we define as follows.
For each page p, defineWp := [min Tp+1,max Tp+L∗],
which we call page p’s window. Note that there exists an
optimal schedule where page p is broadcast only during
Wp. We now partition pages into groups G such that all
pages in the same group g ∈ G have disjoint windows.
We show that 2L∗ groups suffice for this partition. The
proof easily follows by observing that if there are too
many different pages with similar release dates, then the
optimal schedule must have a large value of the maximum
flow time.

LEMMA 2.2. We can in polynomial time partition pages
P into at most 2L∗ groups in G such that for any p 6= q in
the same group g, Wp and Wq are disjoint.

Proof. We create an interval graph G with one interval
corresponding to each windowWp. The partition of pages
into groups corresponds to a feasible vertex coloring ofG.
It is well known that the chromatic number of an interval
graph is equal to its clique number. Moreover, such a
coloring can be easily found by a greedy algorithm.

We claim that a clique number ofG is upper bounded
by 2L∗. To show this we prove that at any time t, there
are at most 2L∗ windows Wp that contain t. To this
end, it suffices to show that if t ∈ Wp, then p must be
transmitted at least once during [t− L∗ + 1, t+ L∗]. We
consider two cases. If t ≥ max Tp, then this claim holds
since to satisfy the last request, page pmust be transmitted
during [max Tp + 1,max Tp + L∗], which is contained in
[t−L∗+ 1, t+L∗]. Otherwise, there must exist a request
for p that arrives at some time t′ ∈ [t − L∗ + 1, t], and
to satisfy the request, page p must be transmitted at least
once during [t− L∗ + 2, t+ L∗]. 2

We now describe our rounding scheme. For each
group g ∈ G, we define a cumulative amount of trans-
mission made by the fractional solution. Formally, define
y∗g,t :=

∑
p∈g
∑
t′≤t x

∗
p,t′ . Now for each group g, pick αg

from [0, 1] uniformly at random, and this is the only ran-
dom value for group g. We first obtain a tentative schedule
σtemp and then the final schedule σfinal. In the tentative
schedule σtemp, all requests are satisfied within L∗ time
steps, but it is allowed to transmit more than one page at
a time. In σtemp, for each group g, we transmit a page p
in g at times t such that y∗g,t−1 < k + αg ≤ y∗g,t for some
integer k. Here the page p ∈ g transmitted at time t for
group g is such that x∗p,t > 0. Note that for any time t,
there is at most one page p ∈ g with x∗p,t > 0. This is
due to the definition of groups and the constraints (2.3).
We now transform σtemp into the final feasible schedule
σfinal in the First-In-First-Out fashion: Think of a trans-
mission of page p at time τ as a job j(p, τ) that arrives
at time τ , and add the job to the queue. At each time t,
we dequeue the job j(p, τ) with the earliest arrival time τ

and transmit page p. Clearly, in the final schedule σfinal,
at most one transmission is made at each time. We will
show that in σfinal, all requests have flow time at most
(1 + 6ε)L∗ with high probability.

We begin our analysis with the following easy propo-
sition concerning the tentative schedule σtemp.

PROPOSITION 2.1. In σtemp, all requests have flow time
at most L∗.

Proof. Consider any request ρ for page p, and let g ∈ G
be the group that contains page p. Then due to constraints
(2.1), we have y∗g,rρ+L∗ − y∗g,rρ =

∑rρ+L
∗

τ=rρ+1 x
∗
p,t ≥ 1.

Hence for any random value αg , a page is transmitted
from g during [rρ+1, rρ+L∗]. Further, since [rρ+1, rρ+
L∗] ∈ Wp and all pages in g have disjoint windows, page
p is transmitted during [rρ + 1, rρ + L∗]. 2

We complete the analysis by showing that w.h.p. each
request’s flow time does not increase too much in the
transformation from σtemp into σfinal. To this end, we
need to measure the number of transmissions made in
σtemp during an interval I . Let Qtemp(I) denote this
quantity. We need the following simple lemma, which
was shown in [9]. The lemma shows how the quantity
Qtemp(I) is related to the increase of each request’s flow
time from σtemp to σfinal.

LEMMA 2.3. For all requests ρ, Fσfinalρ ≤ F
σtemp
ρ +

max1≤t1≤t2≤T max{Qtemp([t1, t2])− (t2 − t1 + 1), 0}.

Proof. Consider any request ρ. Let t0 denote the latest
time t < rρ such that there is only one transmission
made at time t in σtemp and the transmission is scheduled
exactly at time t also in σfinal without any delay, or no
transmission is made at time t in σfinal. If no such time
t exists, then t0 = 0. Note that Fσfinalρ − F

σtemp
ρ ≤

(Qtemp([t0 + 1, rρ]) − (rρ − (t0 + 1) + 1). Hence the
lemma follows. 2

Motivated by the above lemma, we define the over-
flow during [t1, t2],

OF ([t1, t2]) := max{Qtemp([t1, t2])− (t2− t1 + 1), 0}.
Formally, we will upper-bound the overflow during an
interval as follows. The proof uses the fact that there are
O(L∗) random variables that contribute to the overflow,
and each random variable can contribute at most 1. This
is where the page grouping idea plays a crucial role.
The proof follows by using these facts and applying
the Bernstein’s concentration inequality. By a simple
union bound over all possible intervals (at most T 2), the
following lemma will imply Lemma 2.1.

LEMMA 2.4. Suppose that L∗ ≥ (1/ε3) log T . Then for
any interval I , Pr[OF (I) ≥ 6εL∗] ≤ 1/T 3.

Proof. Consider any fixed interval I = [t1, t2]. For each
group g ∈ G, let Ng denote the number of transmissions
that are made for pages in g during I in σtemp, which is
of course a random variable. Let vg :=

∑
p∈g
∑
t∈I x

∗
p,t

denote the volume that LPMaxFlow transmits for the pages
in g during I . Note that E[Ng] = vg . Also observe that
Xg := Ng−bvgc is a 0-1 random variable. This is because
a page in g is transmitted in σtemp at every time step
LPMaxFlow makes one additional volume of transmission
for pages in g (except the first one which is done when
αg volume of transmission is done by LPMaxFlow). Note
that Xg are independent with Pr[Xg = 1] = vg − bvgc.
To see this, let v′g :=

∑
p∈g
∑
t<t1

x∗p,t. If v′g − bv′gc +
vg − bvgc ≤ 1, then Xg = 1 if v′g − bv′gc ≤ αg ≤
v′g −bv′gc+ vg −bvgc, otherwise Xg = 0. If v′g −bv′gc+
vg − bvgc > 1, then Xg = 1 if v′g − bv′gc ≤ αg ≤ 1
or 0 ≤ αg ≤ v′g − bv′gc + vg − bvgc − 1, otherwise
Xg = 0. By Lemma 2.2, we know that there are at most
2L∗ random variablesXg . For notational convenience, let
µg := E[Xg] and µ :=

∑
g∈G µg .

We can relate the probability in the claim to the
following probability of an event in terms of Xg .

Pr
[
OF (I) ≥ 6εL∗

]
≤ Pr

[∑
g∈G

Ng −
∑
g∈G

vg ≥ 6εL∗
]

= Pr
[∑
g∈G

(Ng − bvgc) ≥
∑
g∈G

(vg − bvgc) + 6εL∗
]

= Pr
[∑
g∈G

Xg ≥ µ+ 6εL∗
]

The first inequality follows from the facts
that Qtemp(I) =

∑
g∈G Ng and

∑
g∈G vg =∑

g∈G
∑
p∈g
∑
t∈I x

∗
p,t ≤ t2 − t1 + 1. The last

equality comes from the definition of Xg . Knowing
that Var[

∑
g∈G Xg] ≤ 2L∗, by applying Theorem A.1

(Bernstein Concentration Inequality) with ∆ = 6εL∗,
V ≤ 2L∗ and b ≤ 1, we derive

Pr
[∑
g∈G

Xg ≥ µ+ 6εL∗
]

≤ exp
(
− ∆2

2V + (2/3)b∆

)
≤ exp

(
− (6εL∗)2

4L∗ + 4εL∗

)
< exp(−3ε2L∗) ≤ 1

T 3

2

2.2 Case: L∗ ≤ (1/ε3) log T . We first observe that if
L∗ is a constant, the problem can be solved in polynomial
time using dynamic programming. We first give the key
idea of our dynamic programming and then describe it
in detail. Suppose we need to decide which page to
transmit at time t knowing the last L∗ transmissions made

during [t − L∗, t − 1] in the optimal schedule. Then in
the remaining scheduling decision, we only need to care
about Rr≥t−L∗ , the requests that arrive no earlier than
t − L∗. This is because all the other requests, Rr<t−L∗
must be satisfied by time t − 1 in the optimal schedule.
Since we do not know the “correct” last L∗ transmissions,
we simply enumerate all possible cases, whose number
is at most nL

∗
. Further, for each case, we keep track

of if there exists a feasible schedule where all requests
in Rr<t−L∗ are finished within L∗ time steps. Based
on this observation, we propose the following dynamic
programming.

Let L denote our guess of L∗; we will simply con-
sider L in increasing order starting from 1. For t ≥
L − 1, let Q(t) := {{(t − L + 1, pt−L+1), (t − L +
2, pt−L+2), ..., (t, pt)} | pt−L+1, pt−L+2, ..., pt ∈ P} de-
note the collection of all possible transmissions that can be
made during [t−L+ 1, t]; here a pair (t′, p′t) implies that
page pt′ is transmitted at time t′. Let us call an element
Q ∈ Q(t) as a configuration with respect to time t. Note
that |Q(t)| = nL. We say that a configuration Q ∈ Q(t)
is feasible if there exists a schedule that is compatible with
Q where all requests in Rr≤t−L are completely satisfied
by t and have flow time at most L.

We are now ready to describe our algorithm. Let
Qf (t) denote all feasible configurations in Q(t). We
will compute Qf (t) in increasing order of t starting from
t = L − 1 to t = T . Note that Qf (L − 1) = Q(L − 1).
To computeQf (t) fromQf (t− 1), we consider each pair
of a configuration Q ∈ Qf (t − 1) and a page pt ∈ P .
Let Q = {(t − L, pt−L), (t − L + 1, pt−L+1), ..., (t −
1, pt−1)}. We add Q′ = {(t − L + 1, pt−L+1), (t −
L + 2, pt−L+2), ..., (t, pt)} as a feasible configuration to
Qf (t) if all requests with release time t − L are satisfied
by pt−L+1, pt−L+2, ..., pt−1 or pt. Finally, if Qf (T) =
∅, then declare that there is no feasible schedule with
the maximum flow time of at most L. Otherwise, it is
straightforward to find a desired feasible schedule using
the standard backtracking method, i.e. Qf (T),Qf (T −
1),Qf (T − 2), ...,Qf (L − 1). For completeness, we
present the pseudocode of this algorithm. See Algorithm 1
in Appendix B.

The correctness of the algorithm hinges on the cor-
rectness ofQf (t), and it can be shown by a simple induc-
tion on t. Since the algorithm considers at most T time
steps, and at each time t it considers all pairs of a con-
figuration in Qf (t − 1) and a page pt ∈ P , whose total
number is at most nL · n, we derive the following lemma
(recall that m ≥ n).
LEMMA 2.5. There exists an optimal algorithm with run
time O(T) · mO(L∗) for the problem of minimizing the
maximum flow time in broadcast scheduling.

Due to Lemma 2.5, we can assume that L∗ is a
sufficiently large constant. The dynamic programming

for general L∗ is very similar to that for constant L∗.
However, to obtain a slightly better running time which
is needed to complete our PTAS, we need one more idea.
The additional idea is that one can essentially assume
that requests arrive only at integer multiples of εL∗, and
transmissions can be made only at those time steps – now
at most εL∗ transmissions can be made at each of those
time steps.

Let J denote the given instance of requests. We sim-
plify J to make our analysis easier. After the modifi-
cation, we will distinguish time steps only to the extent
that is sufficient to allow a PTAS. The simplification is
described as follows: Shift each request ρ’s arrival time
to the right to the closest integral multiple of εL∗, i.e.
εL∗d rρεL∗ e. Let J ′ denote this modified instance. We
will assume that εL∗ is an integer. This is justified by
Lemma 2.5 which shows a polynomial time algorithm for
any constant L∗. Assuming that L∗ is a sufficiently large
constant, we can find an approximate value L that is a
multiple of 1/ε and multiplicatively close to L∗ in any
arbitrary precision. The effect of this assumption on ap-
proximation factor and run time will be factored in later.
Also we assume that 1/ε is an integer. For the modified
instance J ′, the scheduler is allowed to transmit only at
times that are integral multiples of εL∗, and at each of
such times, at most εL∗ pages. The following lemma
shows that this modification almost preserves the maxi-
mum flow time and that a good schedule for J ′ can be
transformed into a good schedule for J . Recall that Fσρ
denotes ρ’s flow time in schedule σ.

LEMMA 2.6. There exists a schedule σ′ for J ′ with the
maximum flow time of at most (1 + 2ε)L∗. Further,
any schedule σ′ for J ′ can be converted into a feasible
schedule σ for the original instance J such that the
flow time of each request increases by at most 2εL∗, i.e.
Fσρ − Fσ

′

ρ ≤ 2εL∗ for all requests ρ.

Proof. We first show the first claim. Observe that shifting
all transmissions in the optimal schedule to the right,
to the closest multiple of εL∗ with additional εL∗ time
steps, is a feasible schedule for J ′. Further this increases
any request’s flow time by at most 2εL∗. Thus the first
claim follows. We now turn our attention to the second
claim. Recall that in σ′, at times εL∗k for some integer
k, at most εL∗ transmissions are made. Now move
those transmissions to the times εL∗k, εL∗k + 1, εL∗k +
2, ..., εL∗k+ εL∗− 1. This may increase the flow time of
each request by at most εL∗. Since the arrival time of any
request differs by at most εL∗ between two instances, σ
and σ′, the second claim follows. 2

For notational simplicity, we will shrink the time
horizon of the modified instance J ′ by a factor of εL∗.
Note that now in J ′ requests can arrive at any positive

integer time, and at most εL∗ transmissions can be made
at each integer time. Hence the maximum flow time of the
optimal schedule for J ′ is at most (2+1/ε) by Lemma 2.6.
We slightly modify Algorithm 1 (for constant L∗) to give
a polynomial time algorithm for the modified instance J ′

(for any fixed ε). Throughout, let ` := 2 + 1/ε. We first
make a couple of useful observations. Let Pt denote the
pages requested at time t, andAt the pages transmitted by
our algorithm at time t.

PROPOSITION 2.2. There exists an optimal schedule At
for J ′ with the maximum flow time ` such that

• for any page p and time t, at most one transmission
is made for page p at time t.

• for any interval I of length ` and for any page p,
there are at most two transmissions made for page p
during I .

• for any time t, At ⊆
⋃`
i=1 Pt−i.

Proof. Obviously there is no incentive of broadcasting
a page more than once at the same time. Suppose
there is an interval of length ` during which page p is
transmitted more than twice. Then we can remove a
middle transmission while keeping the maximum flow
time no greater than `. The final claim follows since if
it were not true, any transmission of page p that was not
requested for the last ` time steps would be wasted. 2

PROPOSITION 2.3. For any t, the number of pages that
could be potentially transmitted at time t for any feasible
schedule of the modified instance with maximum flow time
` is at most |

⋃`
i=1 Pt−i| ≤ 6L∗. Further, the number of

pages that could be potentially transmitted during [t −
`, t− 1] for any feasible schedule of the modified instance
with maximum flow time ` is at most |

⋃2`
i=2 Pt−i| ≤ 9L∗.

Proof. All pages in
⋃`
i=1 Pt−i must be transmitted during

[t − ` + 1, t + ` − 1]. Hence the total number of such
pages is at most 2` ∗ εL∗ = 2εL∗(2 + 1/ε) ≤ 6L∗. The
last property in Proposition 2.2 completes the proof of the
first claim. The second claim can be proven similarly.
By the last property in Proposition 2.2, we have that⋃`
i=1At−i ⊆

⋃2`
i=2 Pt−i. Since all pages in

⋃2`
i=2 Pt−i

must be transmitted during [t − 2` + 1, t + ` − 1], we
conclude that |

⋃2`
i=2 Pt−i| ≤ 9L∗. 2

For any t ≥ ` − 1, we say that {(t − ` +
1,At−`+1), (t− `+ 2,At−`+2), ..., (t,At)} is a configu-
ration with respect to time t if for all 0 ≤ i < `,At−i ⊆
P and |At−i| ≤ εL∗. In other words, a configuration rep-
resents all transmissions made during [t− ` + 1, t]. Here
At can be any subset of at most εL∗ pages requested in
the last ` time steps. Let Q(t) denote the collection of all

configurations with respect to time t. Further we say that
Q ∈ Q(t) is feasible if there exists a schedule compatible
with Q where Rr≤t−`, all requests arriving no later than
t − ` are completed by time t and have flow time at most
`. Let Qf (t) denote the collection of all feasible configu-
rations in Q(t).

We are now ready to describe our algorithm. This al-
gorithm is very similar to Algorithm 1 for constant L∗.
We compute Qf (t) in increasing order of time t starting
from ` to T ′ := dmaxρ rρ

εL∗ e + `. Note that Qf (` − 1) =
Q(` − 1). To obtain Qf (t) from Qf (t − 1), we consider
each pair of Q ∈ Qf (t − 1) and a potential set of pages
At. Let Q = {(t− `,At−`), (t− `+ 1,At−`+1), ..., (t−
1,At−1)} ∈ Qf (t − 1). Here At satisfy (1) all re-
quests with release time t − ` are satisfied by pages in⋃`−1
i=0 At−i, and (2) no page appears more than twice in
At−`+1,At−`+2, ...,At (The second condition is justified
by the second property in Proposition 2.2). If it is the
case, then we add Q′ = {(t − ` + 1,At−`+1), (t − ` +
2,At−`+2), ..., (t,At)} to Qf (t). At the end of the al-
gorithm, if Qf (T ′) = ∅, we declare that any feasible
schedule has the maximum flow time larger than `. Other-
wise, using Qf (·), we construct a feasible schedule with
the maximum flow time of at most `. The pseudocode of
this algorithm can be found in Algorithm 2 in Section B.
The correctness of this algorithm can be easily shown by
a simple induction on t.

LEMMA 2.7. If there exists a schedule for J ′ with the
maximum flow time `, Algorithm 2 yields such a schedule.
Otherwise, it declares that the maximum flow time is
greater than `.

We now upper-bound the run time of this algorithm.

LEMMA 2.8. Algorithm 2 has a run time of at most
O
(

T
εL∗ · (L

∗)
2
)
·
(
3
ε

)18L∗ · (6eε)εL∗ .
Proof. We start by upper-bounding several quantities. We
first bound the size of Qf (t− 1).

|Qf (t− 1)| ≤ |Q(t− 1)| ≤ (`2)9L
∗
≤
(

3

ε

)18L∗

This follows since by Proposition 2.3, there are at most
9L∗ pages that can appear in a configuration in Qf (t −
1) and by Proposition 2.2, each of those pages can be
transmitted at most twice during [t− `, t− 1].

By Proposition 2.3 , the total number of different sets
At is upper-bounded by(

6L∗

εL∗

)
≤
(

6eL∗

εL∗

)εL∗
=

(
6e

ε

)εL∗
It is easy to see that the extra overhead for each pair
of Q and At is at most O((L∗)2) (we do not optimize

this, since this is negligible compared to the above two
quantities), hence the run time follows. 2

Now recall that we have assumed that εL∗ is an
integer. Suppose εL∗ is not an integer. If L∗ ≤ 1/ε2,
by Lemma 2.5, we can find an optimal schedule in time
O(m) · nO(1/ε2). If L∗ ≥ 1/ε2, then we can find L such
that L∗ < L < L∗ + 1/ε and L is an integral multiple of
1/ε. Since L approximates L∗ within a factor of 1 + ε,
by considering L rather than L∗, we will lose only a
multiplicative factor 1 + ε in the approximation ratio.

By Lemma 2.6, we derive Theorem 2.1.

2.3 Removing the Dependency of Run Time on
T In this section, we will make our algorithm run in
polynomial time in m for any fixed ε > 0. We consider
three cases depending on the value of L∗, and show how
the proposed algorithm for each case can be adapted so
that the run time does not depend on T . Recall that T is
the length of the planning horizon, i.e. an upper-bound
on the last time when the optimal schedule transmits.
Let rmax := maxρ rρ denote the latest arrival time of
any request. One can without loss of generality set
T := rmax + min{m,n}. This is because one can satisfy
all requests by T by transmitting all outstanding pages
after rmax and there is no incentive of transmitting the
same page twice when there are no more requests to
arrive. Hence if T = O(m), we have nothing to prove.
So we will assume that T > m. We will say that an
interval I is silent if no request arrives during I .

Case (a): L∗ = O(1). Recall that Algorithm 1 runs
in O(T) · mO(L). Suppose that there is a silent interval
I = [t1, t2] ⊆ [1, T] of length at least L∗. Suppose that
I is maximal. Then since all requests in Rr<t1 must be
satisfied by time t1+L∗−1(≤ t2), one can find an optimal
schedule on the requests in Rr<t1 and Rr>t2 separately.
Hence one can without loss of generality assume that
there is no silent interval of length L∗. This implies that
T = O(L∗ · m) = O(m2). Hence we obtain an exact
algorithm with run time mO(L∗).
Case (b): L∗ ≤ 1

ε3 logm. This case is similar to case (a).
In Theorem 2.1, we have shown a (1+6ε)-approximation
with run time O(T

εL∗ (L∗)2) · (3
ε)18L

∗ · (6e
ε)εL

∗
; here

O(T
εL∗) is due to the number of time steps considered in

the modified instance J ′. Recall that in J ′, the maximum
flow time ` was at most 2 + 1/ε. By a similar argument
as for case (a), we can assume that there is no silent
interval of length `. Hence it follows T

εL∗ = O(`m).
Hence we obtain a (1 + 6ε)-approximation with run time
O(mε) · (3

ε)18L
∗ · (6e

ε)εL
∗
.

Case (c): L∗ ≥ 1
ε3 logm. We will show that one can

modify LPMaxFlow so that the number of time steps (not
necessarily continuous) in consideration is at most m.

This will allow us to find an optimal LP solution where∑
p∈P x

∗
p,t 6= 0 for at most m time steps t. We will

show that one can decompose the requests instance into
a sub-instance where the number of time steps is as large
as the number of requests, and solve each sub-instance
separately. We assume without loss of generality that
Rr=0 6= ∅. Suppose that T > m, since otherwise there
is nothing to prove. Let t2 ≥ 0 be the earliest time t such
that |R0≤r≤t| ≤ t+1 (or equivalently, |R0≤r≤t| = t+1).

CLAIM 2.9. The optimal schedule (in fact any reason-
able schedule that tries to satisfy at least one outstanding
request) satisfies all requestsRr≤t2 by time t2 + 1.

Proof. Without loss of generality assume that the optimal
solution transmits a page only if it satisfies at least one
outstanding request. If the optimal schedule is never
idle by time t2 + 1 (except at time 0), then the claim
holds, since |R0≤r≤t2 | = t2 + 1. Also if the optimal
schedule is idle at time t2+1, then the claim again follows,
since there are no outstanding requests at time t2 + 1. If
not, we show a contradiction. Let t1 be the latest time
no greater than t2 when the optimal schedule gets idle.
Note that |Rt1≤r≤t2 | < t2 − (t1 − 1). Otherwise, we
will have |R0≤r≤t1−1| ≤ t1, which is a contradiction to
the definition of t2. Hence all requests in Rt1≤r≤t2 are
satisfied during [t1 + 1, t2 + 1]. Then it implies that the
optimal schedule makes (t2 − t1 + 1) transmissions to
satisfy t2 − t1 requests. A contradiction.

We have shown that all requests in R0≤r≤t2
(|R0≤r≤t2 | = t2 + 1) can be satisfied during [1, t2 + 1].
This will become one sub-instance. By repeating this pro-
cess on the remaining requests Rr>t2 , we can identify at
mostm time steps that we need to consider. Let T ′ denote
the set of such times. Then we restrict the LP variables
only to times in T ′. Recall that in Lemma 2.4 we showed
that Pr[OF (I) ≥ 6εL∗] ≤ 1

T 3 . The proof can be easily
modified to show that when L∗ ≥ 1

ε3 logm, Pr[OF (I) ≥
6εL∗] ≤ 1

m3 . We claim that we only need to focus on the
intervals I that start and end at times in T ′. To see this,
consider any interval [τ1, τ2]. Let [τ ′1, τ

′
2] be the maximal

interval such that τ ′1, τ
′
2 ∈ T ′, and [τ ′1, τ

′
2] ⊆ [τ1, τ2]; if no

such τ ′1, τ ′2 exist, then OF ([τ1, τ2]) = 0, since in σtemp,
transmissions can be made only at times in T ′. Note that
OF ([τ ′1, τ

′
2]) ≥ OF ([τ1, τ2]). Since there are at most m2

intervals to consider, by a simple union bound, we obtain
a randomized (1 + 6ε)-approximation that succeeds with
a probability of at least 1− 1/m.

From the above three cases, we can show that the run
time is O(mε) · (3

ε)18L
∗ · (6e

ε)εL
∗

with L∗ = (1/ε3) logm.
By a similar algebra as in the proof of Theorem 2.2, the
run time simplifies to mO(1/ε4), thereby removing the
dependency on T .

2.4 Derandomization We derandomize our algorithm
in Section 2.1 using the method of pessimistic estima-
tors [32]. This method is by now a standard tool for de-
randomizing an algorithm that relies on concentration in-
equalities. It is useful particularly when there is no con-
crete target value whose expectation is easy to measure,
and hence the standard conditional expectation method
can not be used. Recall from Section 2.1 that for each
interval I ∈ I, we created a set of 0-1 variables Xg,I

with Pr[Xg,I = 1] = vg,I − bvg,Ic, and showed that

Pr
[∑

g∈G Xg,I ≥ E[
∑
g∈G Xg,I] + ∆

]
≤ 1

m3 , where
∆ = 6εL∗. Let µg,I := vg,I − bvg,Ic and µI =∑
g∈G µg,I . (In Section 2.1, to simplify the notation, we

considered any fixed interval I and did not include I in
the subscript. Also, initially we showed the probability is
bounded by 1/T 3, and in Section 2.3 that we only need
to consider at most m2 intervals and the probability is
bounded by 1/m3). Recall that for any g ∈ G, all random
variables {Xg,I}I∈I are determined by the same random
value αg ∈ [0, 1]. For notational convenience, we index
groups by integers from 1 to k := |G| in an arbitrary but
fixed way and will refer to groups by their index. To apply
the method of pessimistic estimators, we define our “es-
timator” for each I ∈ I. We will distinguish intervals in
I into two groups: If µI ≥ εL∗ then I ∈ Ibig , otherwise
I ∈ Ismall. Throughout this section, let λ := 1 + 3ε.

For each I ∈ Ibig , define

fI(z1, z2, ..., zk) :=

∏
i∈[k] exp

(
(log λ)zi

)
exp

(
λ(log λ)µI

)
and for each I ∈ Ismall, define

fI(z1, z2, ..., zk) :=

∏
i∈[k] exp(zi)

exp(6εL∗)

We will consider groups in increasing order of their
index, and will find a “right” αi value conditioned on the
α1, α2, ..., αi−1 values that we have found and fixed. To
this end, we need to carefully define several quantities.
Let xi,I(α′i) denote Xi,I ’s value when αi = α′i. When α′i
is clear from the context, we may denote xi,I(α′i) simply
by x′i,I . When α1 = α′1, ..., αi = α′i are fixed, we define
the following quantity for each interval I ∈ I.

Ei,I := E[fI(X1, X2, ..., Xk) | α1 = α′1, ..., αi = α′i],

where the expectation is defined over Xi+1, Xi+2, ..., Xk

(which are determined by αi+1, αi+2, ..., αk). We note
that Ei,I can be easily computed in polynomial time since
Xi,I , i ∈ [k] are independent.

We will show the following two lemmas.

LEMMA 2.10. Consider any integer 0 ≤ h ≤ k, and any
xi,I ∈ {0, 1}, i ∈ [h] (more precisely for any αi,I ∈ [0, 1],

i ∈ [h] that determines xi,I , i ∈ [h]). Then for any
I ∈ Ibig ,

Pr
[∑
i∈[k]

Xi,I ≥ λµI
∣∣∣ Xi,I = xi,I , i ∈ [h]

]
≤ Eh,I .

Also for any I ∈ Ismall,

Pr
[∑
i∈[k]

Xi,I ≥ 6εL∗
∣∣∣ Xi,I = xi,I , i ∈ [h]

]
≤ Eh,I .

LEMMA 2.11.
∑
I∈I E0,I ≤ 1

m .

Lemma 2.10 shows how the probability of the bad
event for I (an overflow more than 6εL∗) can be bounded
by the expectation of our estimator function. Furthermore,
this inequality holds for the bad event for I conditioned
on any fixed Xi,I , i ∈ [h] (or more precisely on fixed
αi, i ∈ [h]). This will allow us to use the conditional
expectation method to find a sequence of α1 = α′1,
α = α′2, ..., αk = α′k such that∑

I∈I
Ek,I ≤

∑
I∈I

Ek−1,I ≤ ... ≤
∑
I∈I

E0,I

By Lemma 2.11, we know that
∑
I∈I Ek,I ≤

1/m. Knowing that µI ≤ 2L∗, it is easy to see that
α′1, α

′
2, ..., α

′
k are the desired “good” α values such that

for all I ∈ I, ∑
i∈[k]

xi,I(α
′
i) ≤ µI + 6εL∗.

It now remains to prove Lemma 2.10 and 2.11. The
proofs are very similar to that of Chernoff inequalities.
Proof of [Lemma 2.10] We first consider any I ∈ Ibig .
Recall that εL∗ ≤ µI ≤ 2L∗. In the following equations,
for notational simplicity, we omit the condition Xi,I =
x′i,I , i ∈ [h]. Recall that λ = 1 + 3ε.

Pr
[∑
i∈[k]

Xi,I ≥ λµI
]

= Pr
[

exp
(

(log λ)
∑
i∈[k]

Xi,I

)
≥ exp

(
(λ log λ)µI

)]

≤
E
[

exp
(

(log λ)
∑
i∈[k]Xi,I

)]
exp

(
λ(log λ)µI

)
[By Markov’s inequality]

=

∏
i∈[k] E

[
exp

(
(log λ)Xi,I

)]
exp

(
λ(log λ)µI

)
[Since Xi,I are independent]

= Eh,I

We now consider any I ∈ Ismall.

Pr
[∑
i∈[k]

Xi,I ≥ 6εL∗
]

= Pr
[

exp
(∑
i∈[k]

Xi,I

)
≥ exp

(
6εL∗

)]

≤
E
[

exp
(∑

i∈[k]Xi,I

)]
exp(6εL∗)

=

∏
i∈[k] E

[
exp(Xi,I)

]
exp(6εL∗)

= Eh,I

The last inequality is due to Markov’s inequality.
2

Proof of [Lemma 2.10] For each interval I ∈ I, it suffices
to show that E0,I ≤ 1

m3 . We first consider any I ∈ Ibig .
Recall that λ = 1 + 3ε and L∗ ≥ (1/ε3) logm.

E0,I =

∏
i∈[k]

(
exp(log λ)µi,I + (1− µi,I)

)
λλµI

=

∏
i∈[k]((λ− 1)µi,I + 1)

λλµI

≤
exp(3ε

∑
i∈[k] µi,I)

(1 + 3ε)(1+3ε)µI

=
(e3ε

(1 + 3ε)1+3ε

)µI
≤ e−3ε

2µI

=
1

m3

The last inequality holds when 0 ≤ ε ≤ 1/3.
Now consider any I ∈ Ismall.

E0,I =

∏
i∈[k]

(
(e− 1)µi,I + 1

)
exp(6εL∗)

≤
exp((e− 1)

∑
i∈[k] µi,I)

exp(6εL∗)

< exp(−3εL∗) ≤ 1

m3

2

2.5 Lower Bound on LP-guided FIFO Since the al-
gorithm FIFO is 2-competitive even in the online setting,
one may hope that a natural modification of FIFO may
yield a better approximation. In this section, we show that
a natural “LP-guided” FIFO does not improve the approx-
imation ratio. The LP-guided FIFO is defined as follows.
Let x∗p,t be a fractional solution that satisfies all requests
within L∗ time steps. At each time t and for any page
p, let y∗p,t :=

∑t
t′=t1+1 x

∗
p,t′ where t1 is the last time we

transmitted page p; if no such time exists, then t1 = 0. In-
tuitively, y∗p,t suggests the amount or probability that page

p needs to be transmitted. Hence using yp,t to determine
the priority, we transmit the page p with the largest value
of y∗p,t breaking ties favoring the page that has the earliest
arriving unsatisfied request.

However, we can find a simple example that shows
that this achieves only a 2-approximation. Consider the
following instance. We will index pages by integers from
1 to n, and will assume that n is even. At each time
t ∈ [1, n/2], two requests, each for page 2t − 1, 2t,
are released. The same sequence of requests is repeated
during [n/2 + 1, n]. That is, at each time t+ n/2 for any
t ∈ [1, n/2], two requests, one for page 2t − 1 and one
for page 2t are released. This completes the description
of the requests instance.

Now consider the following fractional solution x∗p,t:
For any page p, page p is transmitted three times by
half. More precisely, xp,dp/2e+1 = xp,dp/2e+n/2+1 =
xp,dp/2e+n+1 = 1/2, and for all other times t, xp,t = 0. It
is easy to check that the maximum flow time is n/2 + 1 in
this fractional solution. In contrast, the LP-guided FIFO
transmits all pages from 1 to n during [2, n + 1], and
repeats this during [n + 2, 2n + 1]. In this schedule, the
maximum flow time is n.

3 Throughput (Profit) Maximization
In this section, we study the maximum throughput objec-
tive in broadcast scheduling. In this setting, each request ρ
is associated with its release time rρ, deadline dρ, weight
(profit) wρ, and the page pρ it asks for. We say request ρ
is satisfied within its window if page p is transmitted dur-
ing [rρ + 1, dρ]. If we satisfy request ρ within its window,
we obtain the profit wρ associated with the request ρ. The
goal is to find a schedule that maximizes the total profit.

Our main result is an improved 0.7759-
approximation for the maximum throughput objec-
tive. More precisely, we give a randomized algo-
rithm with approximation factor (α0 − ε) for some
α0 > 1/2 + 3/(4e) and any ε > 0. Furthermore, the
run time is (1/ε)O(1/ε) · poly(m). Note that for any
fixed input size, the run time required to achieve an
approximation factor arbitrarily close to (1/2 + 3/(4e))
increases by a multiplicative factor depending only on ε.

The analysis of the 0.7759-approximation is alge-
braically involved. Hence we first present a 0.754-
approximation to illustrate our main ideas behind the im-
provement. The 0.7759-approximation will be presented
in Section 3.3. Also we will first present an algorithm
with run time m(1/ε)O(1/ε)

, and reduce the run time to
(1/ε)O(1/ε) · poly(m) in Section 3.4.

Overview of 0.754-approximation. Our algorithm im-
proves upon the previous best known approximation
by handling requests of large/small windows separately.
Here we say that a request ρ has a large window if ρ’s
window length |Wρ| ≥ 2H , otherwise a small window;

later H will be set as 1/ε3. Let Rsmall and Rlarge de-
note the set of small-window and large-window requests,
respectively.

To introduce our integer/linear programming, we
need to define a fair amount of notation. To collect most
profits from small-window requests, we create config-
uration variables yI,Q for each sub-interval I which is
defined as follows. Let I0, I1, ..., Ih be the minimum
number of disjoint intervals that cover the time horizon
[0, T = maxρ dρ] seamlessly; the run time will depend
on T , but we will remove this dependency later. All in-
tervals have a length 2H/ε except the first interval. We
set the length of the first interval as a random number
drawn from [1, 2H/ε]. In fact, by trying all possible val-
ues in [1, 2H/ε], we can assume that we know the right
value; what “right” means will become clear soon. Note
that the first interval determines all other intervals. We
let I := {I0, I1, ..., Ih}. For each interval Ii, we define
configurations. We say that Q = {(t, qt) | t ∈ Ii} is
a configuration with respect to Ii, where for all t ∈ Ii,
qt ∈ P . Of course, the pair (t, qt) implies that page qt
is transmitted at time t. Let Q(Ii) denote the collection
of all configurations with respect to Ii. For each config-
uration Q ∈ Q(Ii) we create a variable yIi,Q, which is 1
if the schedule follows Q during Ii. Let wI,Q denote the
total profit of the small-window requests arriving in I that
are satisfied (within their window) by the transmissions
made by Q. Also for each request ρ in Rlarge, we create
a variable zρ that indicates if ρ is satisfied within its win-
dow or not. We note that the constant H will depend only
on ε, therefore the number of variables is at most a poly-
nomial in m and T for any fixed ε > 0 (In Section 3.4, we
will show how to remove the dependency on T and reduce
the run time to (1/ε)O(1/ε) · poly(m)).

We are now ready to set up our integer programming.
Let P (Q, I ′) denote the set of pages that are transmitted
during I ′ according to configuration Q.

max
∑
I∈I

∑
Q∈Q(I)

wI,QyI,Q +
∑

ρ∈Rlarge
wρzρ

(IPThroughput)

∑
Q∈Q(I)

yI,Q ≤ 1 ∀I ∈ I(3.4)

∑
I∈I

∑
Q∈Q(I),pρ∈P (Q,I∩Wρ)

yI,Q ≥ zρ ∀ρ ∈ Rlarge
(3.5)

yI,Q ≥ 0 ∀I ∈ I, Q ∈ Q(I);

zρ ∈ {0, 1} ∀ρ ∈ Rlarge

Note that we use different variables yI,Q and zρ
to count profits from requests in Rsmall and Rlarge,

respectively. Further, it should be noted that not all the
small-window requests contribute to the objective. More
precisely, for each interval I = [t1, t2] ∈ I, the small-
window requests arriving during [t2−2H+1, t2] may not
contribute to

∑
Q∈Q(I) wI,QyI,Q. This can happen if the

optimal solution satisfies some of those requests during
the next interval I ′ starting at t2 + 1. Because of this, we
may lose some profits for those requests. However, for
the “right” choice of the length of the first interval in I,
we will lose only ε fraction of profits from small-window
requests, since small-window requests are discarded from
only ε fraction of time steps.

Constraints (3.4) restrict that only one configuration
can be selected for each interval I ∈ I. Constraints (3.5)
follow from the definition of zρ. A large-window request
ρ is satisfied if pρ is transmitted during I ∩Wρ for some
interval I ∈ I. We can relax this integer program into a
linear program LPThroughput by replacing zρ ∈ {0, 1} with
0 ≤ zρ ≤ 1. We let xp,t =

∑
Q:(t,p)∈Q,Q∈Q(I) yI,Q for

all I ∈ I, t ∈ I, p ∈ P , which will relate configuration-
based variables y to time-indexed variables x.

We can obviously solve LPThroughput in polynomial
time for any fixed precision factor constant ε. Since for
each I ∈ I, there can be at most m2H/ε = mO(1/ε4)

variables, the run time will be also mO(1/ε4). As men-
tioned before, we will show how to reduce the run time
down to (1/ε)O(1/ε) · poly(m) in Section 3.4. We will let
OPT denote the optimal fractional solution of the above
LP. We will simply try all possible sizes of the first inter-
val in I, and will take the best size that maximizes the
objective in LPThroughput. It is easy to see that OPT is at
least (1 − ε) times as large as the integral optimum. Let
OPTsmall and OPTlarge denote the amount that small-
window and large-window requests contribute to OPT,
respectively (the first and second sum in the objective, re-
spectively).

We give a randomized rounding that achieves an
expected total profit of at least (1−ε)2 ·(1−2/3e)OPT for
any ε > 0. We develop two different rounding schemes
and combine them. We first give a high-level overview of
the algorithm and how we get an improved approximation
factor. When OPTsmall is relatively large, we use an
independent rounding that selects one configuration Q ∈
Q(I) with probability yI,Q for each I ∈ I. Intuitively,
since configurations consider enough details for satisfying
small-window requests, we will be able to collect most
profits from small-window requests. At the same time,
due to the nature of independent rounding, we will be able
to collect (1−1/e)OPTlarge from large-window requests.
In Appendix 3.1, we prove that we can achieve a total
expected profit of at least

(3.6) OPTsmall + (1− 1/e)OPTlarge

On the other hand, when OPTlarge is relatively large,

we use a different rounding scheme by modifying the α-
point rounding. Unlike the independent rounding, the
α-point rounding does not immediately yield a feasible
schedule since there could be some time slots where more
than one page is transmitted. Hence we need a certain
contention resolution scheme. Here the difficulty is that
if we move some transmissions to near time slots, they
may become completely useless. This is because in the
throughput objective, we can obtain a profitwρ only when
we can satisfy ρ within its window. This could be the
case particularly for small-window requests. Hence in
this setting, we do not collect as much profits from small-
window requests as when using the independent rounding
scheme. Nevertheless, we will keep only one page using
the fair contention resolution scheme in [22], and will
obtain a (1 − 1/e)-approximation, which is the same
approximation guarantee that the independent rounding
gives. For large-window requests, we will be able to
collect more profits than (1 − 1/e)OPTlarge since large-
window requests are less fragile to moving transmissions.
In Section 3.2, we show that we can collect a total
expected profit of at least
(3.7)
(1− ε)2((1− 1/e)OPTsmall + (1− 1/2e)OPTlarge)

Assuming that ε is arbitrarily small, the minimum
of the above two quantities (3.6) and (3.7) is achieved
when OPTlarge = 2OPTsmall. Hence by selecting the
better of these two solutions, we achieve a profit of at least
(1− ε)2(1− 2/3e) OPT.

Since the LP relaxation loses at most ε fraction of
total profit from small-window requests compared to the
optimal solution, we derive Theorem 1.2.

3.1 When Small-window Requests Give Large Prof-
its As mentioned previously, for each I ∈ I, we pick
one configuration Q ∈ Q(I) with probability yQ,I . By
(3.4) and from the objective, we know that the expected
profit we obtain from small-window requests is at least
OPTsmall. Now consider any large-window request ρ.
Let I ′1, ..., I

′
k ∈ I denote the time intervals that ρ’s win-

dow spans over, i.e. rρ + 1 ∈ I ′1 and dρ ∈ I ′k. Let
γi :=

∑
Q:Q∈Q(I′i):pρ∈P (Q,I′i∩Wρ)

yQ,I′i denote the frac-
tion of configurations with respect to I ′i that satisfy re-
quest ρ. Note that we have zρ = min{

∑
i∈[k] γi, 1} due

to constraints (3.4) and (3.5).
Hence the probability that request ρ is satisfied is at

least

1−
k∏
i=1

(1− γi) ≥ 1−
k∏
i=1

exp(−γi)

= 1− exp(−
k∑
i=1

γi) ≥ 1− exp(−zρ)

≥ (1− 1/e)zρ

This gives us (1 − 1/e)OPTlarge profit in expectation
from large-window requests. This proves the profit
claimed in (3.6).

3.2 When Large-window Requests Give Large Prof-
its This section is devoted to describing and analyzing an
algorithm that achieves a profit as large as (3.7). This will
be useful when large-window requests give a relatively
large total profit.

3.2.1 Algorithm Our algorithm uses only xp,t and con-
sists of several steps.

1. α-point Rounding: The first step using the standard α-
point rounding we obtain an infeasible tentative schedule.
Formally, for each page p, choose αp uniformly at random
from [0, 1]. Then transmit page p at all times t such that∑t−1
t′=1 xp,t′ < αp + k ≤

∑t
t′=1 xp,t′ for some integer

k ≥ 0. Let At denote the set of all pages transmitted
at time t, and let σtemp denote the resulting infeasible
schedule; |At| > 1 could occur for some time t.

2. Fair Contention Resolution: In this step, the goal
is to keep at most one page pt from At at each time t;
if At = ∅, pt may not exist. We will say that pt is the
first-round page transmitted at time t. We use the fair
contention resolution from [22], and choose a page p from
At with probability

1∑
q∈P xq,t

(∑
q∈At\{p}

xq,t
|At| − 1

+
∑

q∈P\At

xq,t
|At|

)
By Lemma 1.4 in [22], it follows that

Pr[pt = p] ≥
1−

∏
q∈P(1− xq,t)∑
q∈P xq,t

·xp,t ≥ (1−1/e)xp,t,

since
∑
q∈P xq,t ≤ 1.

To get more profits from large-window requests, we
will try to reschedule pages in At \ {pt} to near time slots
so that those pages can still satisfy some large-window
requests that they could before rescheduling; we abuse the
notation {pt} by letting it denote ∅ if pt does not exist. To
make sure those pages can find empty time slots nearby
(with a probability close to 1), we empty a small fraction
of time slots. These freed-up time slots, together with time
slots t such that |At| = 0, will be used as new places to
accommodate overflowed transmissions.

3. Freeing-up Times: Pick a random value h uniformly at
random from [1, εH]. Let B := {Bi, 0 ≤ i ≤ dT/He+1}
denote a set of disjoint intervals where B0 := [0, h), and
Bi := [h+(i−1)εH, h+ iεH) for all i ≥ 1. Note that all
intervals in B have the same length except the first interval
B0. To distinguish the intervals in B from the intervals in
I used in defining LPThroughput, we will call the intervals

in B blocks. Note that the blocks in B cover the interval
[0, T] seamlessly. We now empty the last ε2H time slots
from each block in B by discarding all pages inAt at those
times. We will say that those time slots are “freed-up.”

4. Relocating Overflowed Transmissions (pages): The
goal of this step is to with a good probability relocate all
pages inAt\{pt} at non-freed-up times t to nearby empty
time slots. By empty time slots, we mean the “freed-
up” times plus the empty times t from the beginning,
i.e. t such that |At| = 0 in σtemp. We first decide in
which direction to move overflowed transmissions. The
direction will be decided either as right or left, each with
a probability 1/2. Let Right and Left denote the
former and the latter event, respectively. All overflowed
transmissions follow the same direction. Formally, for
each block B = [t1, t2 + ε2H) ∈ B (if t2 < 0, do
nothing), we do the following: For each time t ∈ [t1, t2)
and p ∈ At,

• if p = pt, the page p stays at time t.

• if p 6= pt and the event Left occurs, the page p can
move to an empty time in [t1 − ε2H, t).

• if p 6= pt and the event Right occurs, the page p
can move to an empty time in [t+ 1, t2 + ε2H).

Since this is the final schedule, at most one page can be
transmitted at a time. Note that the perfect relocation
for a block B corresponds to a matching where all the
transmissions at non-freed-up times in B are covered by
time steps in the interval [t1 − ε2H, t2) or [t1, t2 + ε2H)
(which is determined by the event Left or Right). We
try to find such a matching. If unsuccessful, we keep only
the first-round pages, i.e. pt, t ∈ [t1, t2) and throw out all
other overflowed pages, i.e. At \ {pt}, t ∈ [t1, t2). This
will suffice to give our claimed approximation guarantee.

3.2.2 Analysis We say that page p originates from time
t if it is transmitted at time t (in σtemp) by the α-point
rounding. When a page originates from t, it may stay at
the time t (pt = p), or may be relocated to near time slots.
Also it may be discarded when it fails to find a new place.
Let Fst(ρ, t) denote the event that ρ is satisfied by the
page pρ that originates from time t, and stays at the time
t. Let Snd(ρ, t) denote the event that ρ is satisfied by
the page pρ that originates from time t but is successfully
relocated to other time slots.

Throughout this section, we will consider all large-
window requests Rlarge. Additionally we will also con-
sider all small-window requests whose window is com-
pletely contained in an interval in I. For notational sim-
plicity, by Rsmall, we will refer to only such small-
window requests. Recall that we lose only ε fraction of
small-window requests. For a request ρ ∈ Rsmall, zρ

is defined as min{
∑
t∈Wρ

xpρ,t, 1}. We note that for
any request ρ,

∑
t∈Wρ

xpρ,t ≥
∑
I∈I zρ,I ; recall that

zρ,I :=
∑
Q∈Q(I),pρ∈P (Q,I) yI,Q. Both sides may not

be equal when a configuration Q ∈ Q(I) transmits page
pρ several times in Wρ ∩ I . Then the configuration view
thinks of it as satisfying ρ once while the time indexed
view thinks of it as satisfying ρ multiples times. There
is no difference between these two views in the inte-
ger programming, but they can differ in linear program-
ing relaxation. Our achieved profit for small-window
requests will be compared against the time-indexed LP
profit, namely,

∑
ρ wρ · min{

∑
t∈Wρ

xpρ,t, 1}. This is

justified since it is always no smaller than OPTsmall =∑
I∈I

∑
Q∈Q(I) wI,QyI,Q.

We will show the following two lemmas. As dis-
cussed in the algorithm’s description, the first lemma eas-
ily follows from the property of the Fair Contention Res-
olution scheme in step (2).

LEMMA 3.1. For all requests ρ and any time t,
Pr[Fst(ρ, t) | pρ ∈ At] ≥ (1− ε)(1− 1/e).

LEMMA 3.2. Suppose H ≥ 1/ε3 and 0 < ε ≤ 1/100.
Then for all large-window requests ρ ∈ Rlarge and
any time t, Pr[Snd(ρ, t) | ¬Fst(ρ, t) and pρ ∈ At] ≥
(1− ε)/2.

Throughout the analysis, we make a simplifying as-
sumption that

∑
t∈Wρ

xpρ,t ≤ 1. Otherwise, it will only
help our analysis. Since all the events that pρ ∈ At, t ∈
Wρ are disjoint, these two lemmas will imply that a large-
window request ρ is satisfied within its window with a
probability of at least∑

t∈Wρ

Pr[Fst(ρ, t) or Snd(ρ, t) | pρ ∈ At] · Pr[pρ ∈ At]

=
∑
t∈Wρ

(
Pr[Fst(ρ, t) | pρ ∈ At] +

Pr[Snd(ρ, t) and ¬Fst(ρ, t) | pρ ∈ At]
)
· Pr[pρ ∈ At]

=
∑
t∈Wρ

(
Pr[Fst(ρ, t) | pρ ∈ At] + Pr[Snd(ρ, t) |

¬Fst(ρ, t) and pρ ∈ At](1− Pr[Fst(ρ, t) | pρ ∈ At])
)

·Pr[pρ ∈ At]

≥
∑
t∈Wρ

(1− ε)2(1− 1/2e)xpρ,t

= (1− ε)2(1− 1/2e)zρ

(3.8)

Also we can easily show from Lemma 3.1 that
any request ρ is satisfied with a probability of at least∑
t∈Wρ

Pr[Fst(ρ, t)] ≥ (1 − ε)(1 − 1/e)zρ. Hence we
will be able to derive the profit claimed in (3.7).

It now remains to show Lemma 3.2.
Proof of [Lemma 3.2] Consider any large-window request
ρ and time t′. Throughout, we assume that the time t′ is
not freed-up, which is the case with probability (1 − ε).
Also assume that pρ ∈ At′ but pt′ 6= pρ. The proof will
be conditioned on these events.

We first consider the event Right. LetB = [t1, t2 +
ε2H) ∈ B be the block that includes time t′. We begin
with showing the following claim.

CLAIM 3.3. If for all times t ∈ [t1, t2),
∑
τ∈[t,t2) |Aτ | ≤

t2 − t+ ε2H , then we can relocate each overflowed page
p ∈ At \{pt}, t ∈ [t1, t2), to the right, to one of the empty
time slots in B (including pρ originating from t′).

Proof. We consider overflowed pages at time t from t2 to
t1, and move each of such pages to the right most empty
time slot in B. By an induction on time t, we can show
that all overflowed pages in Aτ \ {pτ}, t ≤ τ ≤ t2 − 1
are relocated to an empty time slot in (t, t2 + ε2H). This
is obviously true when t = t2 (t2 was freed-up, so no
overflow at time t2). To complete the induction, it suffices
to show that there are enough time slots in [t, t2 + ε2H)
to accommodate all transmissions made in σtemp during
[t, t2), and this is exactly what the condition of the claim
implies. 2

Let Badt denote the event that
∑
τ∈[t,t2) |Aτ | >

t2 + ε2H − t. We will show that Pr[Badt] ≤ ε/H .
Then by taking a union bound over all t ∈ [t1, t2), we
can show that the desired relocation can be done with a
probability of at least 1 − ε. Bounding the probability of
this bad event is very similar to the proof of Lemma 2.4.
Let Xp denote a 0-1 random variable that has value one
with probability µp :=

∑
t∈[t,t2) xp,t − b

∑
t∈[t,t2) xp,tc.

Let µ :=
∑
p∈P µp. Note that

Pr[Badt] ≤ Pr[
∑
p∈P

Xp ≥ µ+ ε2H]

Also note that Var[
∑
p∈P Xp] =

∑
p∈P Var[Xp] ≤∑

p∈P(µp − µ2
p) ≤

∑
p∈P

∑
t∈[t,t2) xp,t ≤ H . Hence

by applying Theorem A.1 with V ≤ H , b ≤ 1, and
∆ = ε2H , we have

Pr[Badt] ≤ exp(− ∆2

2V + 2b∆/3
) ≤ exp(−ε2H/3)

≤ ε/H,

when H ≥ 1/ε3 and ε ≤ 1/100. Hence we know that in
the event Right, all overflowed pages in B can be safely
relocated with a probability of at least (1 − ε). One can
easily show that this is the case also for the event Left.
The only exception is when B is the first block B0 in B,
since there are no empty slots before time 0.

Suppose B is not the first block. Since ρ is a large-
window request (of length at least 2H), its window Wρ

must cover at least one of t1−ε2H or t2+ε2H . Hence the
request ρ is satisfied by the page pρ originating from time
t′ for at least one of the two events Left and Right,
which move the page to [t1 − ε2H, t′) and (t′, t2 + ε2H),
respectively. This implies that the event Snd(ρ, t′) occurs
with a probability of at least (1 − ε)/2. Now suppose B
is the first block. In this case, any large-window request
ρ that starts during the first block covers the entire second
block. Hence in the event Right, if the relocation is
successful, the request will be satisfied. 2

3.3 Further Improvement: 0.7759-approximation
In this section we further improve our approximation
guarantee. The algorithm remains almost the same (ex-
cept small changes in preprocessing), but the improve-
ment comes from a more refined analysis. We will give
a 0.7759-approximation, more precisely a randomized
(1/2+3/(4e)−ε)-approximation for any ε > 0. The main
idea is to collect more profits from large-window requests.
In the previous analysis we counted profits from small-
window/large-window requests separately. Recall that by
using the α-point rounding together with the contention
resolution scheme, we were able to satisfy a large-window
request ρ in the second round with about a half probability
if it is not satisfied in the first round (see Lemma 3.2). The
reason for the half probability loss can be summarized as
follows: When the α-point rounding tries to transmit page
pρ near to ρ’s boundary, the transmission may be relocated
to a time step which is out of ρ’s window. Since we moved
the transmission either to the left or right, each with a half
probability, the half loss could occur. However, if ρ is
satisfied in the “middle” of its window, we will be able
to avoid such a loss. Hence our analysis will consider
two cases depending on whether ρ is satisfied near to its
boundary or not.

To this end, we preprocess large-window requests as
well. Recall that the time horizon was divided into inter-
vals I = {I0, I1, ..., Ih} where all intervals have length
2H/ε except the first. For each large-window request ρ,
we divide its window into three sub-windows, W l

ρ,W
m
ρ

and W r
ρ : Consider all intervals in I that intersect Wρ,

and W l
ρ and W r

ρ are the intersections with the first and
last of those intervals, respectively. The middle window
Wm
ρ := Wρ\(W l

ρ∪W r
ρ) is defined as the remaining inter-

val of Wρ other than W l
ρ and W r

ρ . (If Wρ intersects only
one interval in Iρ, then W l

ρ := wρ, and there are no Wm
ρ ,

W r
ρ . If Wρ intersects exactly two intervals, there is no

middle window for ρ). Recall that we discarded all small-
window requests that are not fully contained in an inter-
val in I. We also discard some large-window requests.
We discard a large-window request ρ if W l

ρ or W r
ρ has

a length less than 2εH; every large-window request has
a window of length at least 2H . Note that we lose only
4εH/(2H) ≤ 2ε. For simplicity we assume that ε ≤ 1/2,
and hence we lose only ε fraction of total profit from large-
window requests in expectation. We let W b

ρ := W l
ρ ∪W r

ρ

to denote possibly two “boundary” windows together.
For any I ∈ I, configuration Q ∈ Q(I), and

for any interval I ′, we let P (Q, I ′) denote the set of
pages transmitted during I ′ in the configuration Q. Let
zρ,I :=

∑
Q∈Q(I),pρ∈P (Q,Wρ∩I) yI,Q denote the total

fraction of configurations in the LP that satisfies ρ in
I . Let zmρ := min{

∑
I∈I,I∈Wm

ρ
zρ,I , 1}, and let zbρ :=

min{
∑
I∈I,I∈Wρ

zρ,I , 1}−zmρ . Notice that zmρ +zbρ = zρ.

We split OPTlarge into two quantities, OPTlargeboundary :=∑
ρ wρz

b
ρ and OPTlargemiddle :=

∑
ρ wρz

m
ρ . Note that

OPTlarge = OPTlargeboundary + OPTlargemiddle. By the inde-
pendent rounding we will show that we can get a total
expected profit of at least

(3.9) OPTsmall +
2

e
OPTlargeboundary +

3

2e
OPTlargemiddle

To have a feel how we get these constants 2/e and
3/(2e), suppose that a large-window request is satisfied
only in its boundary windows W l

ρ or W r
ρ , by at most

one unit in total. Let b1 and b2 denote the amount
of configurations that transmit page pρ in W l

ρ and W r
ρ ,

respectively. Then we know that b1 + b2 = zρ ≤ 1.
The probability that request ρ is satisfied is then 1− (1−
b1)(1− b2) = b1 + b2− b1b2 ≥ b1 + b2− (b1 + b2)2/4 ≥
(3/4)(b1 + b2) = (3/4)zρ. In another extreme case
when ρ is satisfied only during ρ’s middle window, we
know that ρ is satisfied with a probability of at least
(1− 1/e)zρ. Ideally, it would be great if we could obtain
(3/4)OPTlargeboundary + (1 − 1/e)OPTlargemiddle. However, it
is not the case when ρ is satisfied both in W b

ρ and Wm
ρ .

Nevertheless, by careful analysis we will be able to show
(3.9) in Section 3.3.1.

Also using the variant of α-point rounding with the
contention resolution scheme we will show that we can
achieve a total profit of at least
(3.10)

(1−ε)2
(
(1−1

e
)OPTsmall+(1− 1

2e
)OPTlargeboundary+OPTlargemiddle

)

As discussed above, if the α-point rounding tries to
satisfy a large-window request ρ in the middle of ρ’s
window, then we can almost always satisfy ρ within its
window, either in the first round or second round.

By selecting the better of these two outcomes, we can
get a total expected profit of at least the average of the two,

hence we get an approximation guarantee of

(1− ε)2 ·
(
(1− 1

2e
)OPTsmall + (

1

2
+

3

4e
)OPTlarge

)
≥ (1− ε)2 · (1

2
+

3

4e
)OPT ' 0.7759(1− ε)2OPT

3.3.1 Approximation Guarantee of Independent
Rounding: Proof of (3.9) In this section, we show that
the independent rounding of picking one configuration
Q ∈ Q(I) with probability yQ,I gives an expected total
profit claimed in (3.9). As before, we can show that we
get an expected profit of OPTsmall from small-window
requests. Hence we focus on proving that for each large-
window request ρ (which was not discarded in the begin-
ning), we get an expected profit of at least

(3.11) (2/e)zbρ + (3/(2e))zmρ

By summing this lower bound over all large-window
requests ρ, we can prove the profit claimed in (3.9) due
to linearity in expectation.

Recall that P (Q, I ′) denotes the pages that are trans-
mitted during interval I ′ by configuration Q. Also recall
zρ,I :=

∑
Q∈Q(I),pρ∈P (Q,Wρ∩I) yI,Q denotes the total

fraction of configurations in the LP that satisfies ρ in I .
For each large window request ρ we define the follow-
ing three quantities (for notational convenience we omit ρ
from the notation):

η1 := zρ,I for the unique I ∈ I s.t. W l
ρ ⊆ I

η2 :=
∑

I∈I:I⊆Wm
ρ

zρ,I

η3 := zρ,I for the unique I ∈ I s.t. W r
ρ ⊆ I

Intuitively, these quantities η1, η2 and η3 represent how
much the LP satisfies a large window request ρ in its
left, middle, right windows, respectively. Observe that
η1, η3 ≤ 1, but not necessarily η2 ≤ 1. Note that
zbρ = min{η1 + η2 + η3, 1} − zmρ and zmρ = min{η2, 1}.
The probability that ρ is satisfied in its window Wρ is at
least

(1− (1− η1)(1− η3))

+(1− η1)(1− η3)(1−ΠI∈I:I⊆Wm
ρ

(1− zρ,I))
≥ (1− (1− η1)(1− η3))

+(1− η1)(1− η3)(1− exp(−η2))

≥ (1− (1− η1)(1− η3))

+(1− η1)(1− η3)(1− exp(−zmρ))

≥ (η1 + η3 − η1η3) exp(−zmρ) + 1− exp(−zmρ)

We will show the following lemma which will show
(3.11), thereby completing the proof of (3.9). The proof
is fairly algebraic.

LEMMA 3.4. It holds that (η1 + η3− η1η3) exp(−zmρ) +

1− exp(−zmρ) ≥ 2

e
zbρ +

3

2e
zmρ .

Proof. For any fixed values of η1 + η3 and η2 (which fix
zbρ and zmρ), observe the left-hand-side is minimized when
η1 = η3. Hence it suffices to show that

(η1 + η3 − (η1 + η3)2/4) exp(−zmρ) + 1− exp(−zmρ)

≥ 2

e
zbρ +

3

2e
zmρ

Also since (η1 + η3 − (η1 + η3)2/4) increases in η1 + η3
(when 0 ≤ η1 + η3 ≤ 2), and zb ≤ η1 + η3, it suffices to
show that

(zbρ − (zbρ)
2/4) exp(−zmρ) + 1− exp(−zmρ)(3.12)

≥ 2

e
zbρ +

3

2e
zmρ

For notional convenience, let x := zbρ and y := zmbρ
(These variables have nothing to do with the variables in
the LP. This override will be in effect only in the proof
of this lemma). Note that x + y ≤ 1 and x, y ≥ 0. By
rearranging terms in (3.12) it remains to show

g(x, y) := (1− x

2
)2e−y +

2

e
x+

3

2e
y ≤ 1

Observe that for any fixed x, the function g(x, y) is
maximized when
• Case (i) y = 0; or
• Case (ii) ∂g∂y = 0; or
• Case (iii) y = 1− x.
We continue our analysis by considering these cases

as follows.

Case (i): First consider the case when y = 0. Then
it is easy to see that g(x, 0) = (1 − x/2)2 + (2/e)x
is maximized when x = 0 for any 0 ≤ x ≤ 1, and
g(0, 0) = 1, hence g(x, 0) ≤ 1.

Case (ii): Now consider the case when ∂g
∂y = 0, which

yields (1 − x/2)2e−y = 3/(2e). Using this we have
g(x, y) = 3

2e (1 + y) + 2
ex. Also we observe that

y + 1 ≤ ey ≤ 2e
3 (1 − x

2)2. Hence we derive that
g(x, y) = 3

2e (1 + y) + 2
ex ≤ (1 − x

2)2 + 2
ex. As in

the previous case, this is at most 1 for any x ∈ [0, 1].

Case (iii): It now remains to consider the final case when
y = 1− x. By plugging this in g(x, y) we derive that

g(x) := g(x, 1− x) = (
x

2
− 1)2 exp(x− 1) +

1

2e
x+

3

2e

By simple calculations we have

g′(x) :=
d

dx
g(x) =

x

2
(
x

2
− 1)ex−1 +

1

2e

g′′(x) :=
d2

d2x
g(x) = (

x2

4
− 1

2
)ex−1

Since g′′(x) < 0 for any x ∈ [0, 1], g′(0) > 0 and
g′(1) < 0, there exists a unique x0 ≤ [0, 1] such
that function g(x) increases during [0, x0) and decreases
during (x0, 1]. From the facts that g(0.75) < 0.993994,
g(0.755) > 0.993996, and g(0.76) ≤ 0.993994, we
derive that 0.75 ≤ x0 ≤ 0.76.

Hence we conclude that

max
0≤x≤1

g(x) = g(x0)

< (
0.75

2
− 1)2 · exp(0.76− 1) +

1

2e
· 0.76 +

3

2e
< 0.99889 < 1

This completes the proof of the lemma.

3.3.2 Approximation Guarantee of the algorithm in
Section 3.2.1: Proof of (3.10) As before we assume that∑
t∈Wρ

xpρ,t ≤ 1, since otherwise it can only improve
our approximation guarantee. Now we take a closer look
at the proof of Lemma 3.2, and observe the following:

LEMMA 3.5. Suppose H ≥ 1/ε3 and 0 < ε ≤ 1/100.
Then for all large-window requests ρ ∈ Rlarge and any
time t, we have

Pr[Snd(ρ, t) | ¬Fst(ρ, t) and pρ ∈ At and t ∈Wm
ρ]

≥ (1− ε)/2

and

Pr[Snd(ρ, t) | ¬Fst(ρ, t) and pρ ∈ At and t ∈W b
ρ]

≥ (1− ε)

Proof. The proof is very similar to that of Lemma 3.2,
hence we give a sketch of the proof highlighting differ-
ences. The proof of the first probability remains the same.
The reason why we have a better probability for the sec-
ond case is the following. Recall that in the proof of
Lemma 3.2, we moved a overflowed transmission to the
right or left by at most εH time steps. Any large-window
request ρ we did not discard in the beginning (when solv-
ing the LP) intersects each of the two boundary windows
W l
ρ and W r

ρ by at lest 2εH time steps. Also recall that we
have shown that when we try to move the “overflowed”
transmissions in an interval I ∈ I to the right or left, we
can find enough empty time slots for those transmissions
with a probability of at least (1− ε). Hence regardless of
the direction in which the transmission (pρ, t) is moved,
it finds an empty time slot with a probability of at least
(1 − ε) and still satisfies ρ in its window conditioned on
the transmission not being chosen in the first round. 2

We are now ready to complete the proof of (3.10).
Since all the events that pρ ∈ At, t ∈ Wρ are disjoint, the
two bounds in the lemma will imply that a large-window

request ρ is satisfied within its window with a probability
of at least∑

t∈Wρ

Pr[Fst(ρ, t) or Snd(ρ, t) | pρ ∈ At]

·Pr[pρ ∈ At]

≤
∑
t∈W b

ρ

Pr[Fst(ρ, t) or Snd(ρ, t) | pρ ∈ At]

·Pr[pρ ∈ At](3.13)

+
∑
t∈Wm

ρ

Pr[Fst(ρ, t) or Snd(ρ, t) | pρ ∈ At]

·Pr[pρ ∈ At](3.14)

By taking similar steps we did in showing (3.8),
we can show that (3.13) ≥ (1 − ε)2(1 − 1/2e)zbρ and
(3.14) ≥ (1− ε)2zmρ . Hence we obtain

LEMMA 3.6. Suppose H ≥ 1/ε3 and 0 < ε ≤ 1/100.
Then any large-window request ρ ∈ Rlarge is satisfied
(in the first or second round) with a probability of at least
(1− ε)2

(
(1− 1/2e)zbρ + zmρ

)
.

We use the same bound shown in Lemma 3.1 for
small-window requests, and by summing over all request
ρ, we complete the proof of the profit claimed in (3.10).

3.4 Improving the Run Time In this section, we
show how to improve the run time of our algorithm to
(1/ε)O(1/ε) · poly(m). We first observe that we can eas-
ily remove the dependency on the time horizon length T .
This can be done by taking similar steps as we took in
Section 2.3. Here we explain an easy way of doing this:
If there is an interval of length greater than m on which
no request’s window starts or ends, we throw out all times
steps in the interval but m time steps. Note that one can
obtain as much profit in in this “down-sized” instance as
in the original instance. Also it is easy to observe that the
number of remaining time steps is at most O(m2).

The main idea for reducing the run time from
mO(1/ε4) to (1/ε)O(1/ε) · poly(m) is to solve the
LPThroughput more efficiently. More concretely, we will
solve the dual of the LP using an efficient separation ora-
cle. The dual LP is defined as follows.

(LPDual:Throughput)

min
∑
I∈I

γI +
∑

ρ∈Rlarge
ξρ

s.t. wI,Q +
∑

ρ∈Rlarge:pρ∈P (Q,I∩Wρ)

δρ ≤ γI

∀I ∈ I, Q ∈ Q(I)(3.15)

−δρ + ξρ ≤ wρ ∀ρ ∈ Rlarge(3.16)

γI ≥ 0 ∀I ∈ I
δρ, ξρ ≥ 0 ∀ρ ∈ Rlarge

To avoid considering all constraints (3.15), we use an
efficient separation oracle. Since there are only polyno-
mially many constraints (3.16) (with no dependence on
ε), we focus on giving a separation oracle for constraints
(3.15). We observe that for each fixed I ∈ I, the problem
of finding a (if any) violated constraint (3.15) is essen-
tially equivalent to finding a schedule during I that max-
imizes the throughput when each small-window request
ρ has a profit wρ and each large-window request ρ has a
profit δρ. Here we assume that I are the only time steps
that exist (each request ρ’s window is restricted to I). Ob-
viously we will need to transmit at most 2H/ε pages (the
interval I has a length of at most 2H/ε). Hence at each
time step t, as a potential page to transmit at the time,
we only need to consider the 2H/ε pages that yield the
maximum profit assuming that the time step t is the only
time step when we transmit a page. Hence we can find the
best schedule that maximizes the total profit in I in time
(H/2ε)H/2ε · poly(m) = (1/ε)O(1/ε) · poly(m). If the
configuration corresponding to this schedule violates the
constraint (3.15), then we report it as a violated constraint.
Otherwise, we conclude that no constraint is violated for
the interval I ∈ I.

We have shown that one can solve the dual LP in
(1/ε)O(1/ε) · poly(m) time. This implies that we can
find an optimal solution for the dual LP by considering
only (1/ε)O(1/ε) · poly(m) many dual constraints. Hence
by solving LPThroughput restricted only to the variables
corresponding to those dual constraints, we can obtain
an optimal solution for the primal LPThroughput by the
strong duality theorem. The run time of our randomized
algorithms is negligible.

References

[1] Airmedia website. http://www.airmedia.com.
[2] Directpc website. http://www.direcpc.com.
[3] Intel intercast website. http://www.iintercast.com.
[4] Open problems in scheduling, 10.02. - 14.02.2010. In Su-

sanne Albers, Sanjoy K. Baruah, Rolf H. Mhring, and Kirk
Pruhs, editors, Scheduling. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2010 (Can be also found in
http://www.cs.pitt.edu/ kirk/dagstuhl2010openproblems.pdf
).

[5] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-
based data delivery using broadcast disks. IEEE Pers.
Commun., 2(6):50–60, Dec 1995.

[6] Demet Aksoy and Michael J. Franklin. ”rxw: A schedul-
ing approach for large-scale on-demand data broadcast.
IEEE/ACM Trans. Netw., 7(6):846–860, 1999.

[7] Nikhil Bansal, Moses Charikar, Ravishankar Krish-
naswamy, and Shi Li. Better algorithms and hardness
for broadcast scheduling via a discrepancy approach. In
SODA, pages 55–71, 2014.

[8] Nikhil Bansal, Don Coppersmith, and Maxim Sviri-
denko. Improved approximation algorithms for broadcast
scheduling. In SODA, pages 344–353, 2006.

[9] Nikhil Bansal, Don Coppersmith, and Maxim Sviri-
denko. Improved approximation algorithms for broadcast
scheduling. SIAM J. Comput., 38(3):1157–1174, 2008.

[10] Nikhil Bansal, Ravishankar Krishnaswamy, and
Viswanath Nagarajan. Better scalable algorithms for
broadcast scheduling. In ICALP (1), pages 324–335,
2010.

[11] Amotz Bar-Noy, Randeep Bhatia, Joseph (Seffi) Naor, and
Baruch Schieber. Minimizing service and operation costs
of periodic scheduling. Math. Oper. Res., 27(3):518–544,
2002.

[12] Yair Bartal and S. Muthukrishnan. Minimizing maximum
response time in scheduling broadcasts. In SODA, pages
558–559, 2000.

[13] Wun-Tat Chan, Tak Wah Lam, Hing-Fung Ting, and Pru-
dence W. H. Wong. New results on on-demand broadcast-
ing with deadline via job scheduling with cancellation. In
COCOON, pages 210–218, 2004.

[14] Jessica Chang, Thomas Erlebach, Renars Gailis, and
Samir Khuller. Broadcast scheduling: Algorithms and
complexity. ACM Transactions on Algorithms, 7(4):47,
2011.

[15] Chandra Chekuri, Avigdor Gal, Sungjin Im, Samir
Khuller, Jian Li, Richard Matthew McCutchen, Benjamin
Moseley, and Louiqa Raschid. New models and algo-
rithms for throughput maximization in broadcast schedul-
ing - (extended abstract). In WAOA, pages 71–82, 2010.

[16] Chandra Chekuri, Sungjin Im, and Benjamin Moseley.
Online scheduling to minimize maximum response time
and maximum delay factor. Theory of Computing,
8(1):165–195, 2012.

[17] Marek Chrobak. Personal Commnication, 2013.
[18] Marek Chrobak, Christoph Dürr, Wojciech Jawor, Lukasz

Kowalik, and Maciej Kurowski. A note on scheduling
equal-length jobs to maximize throughput. J. of Schedul-
ing, 9(1):71–73, 2006.

[19] R. K. Deb. Optimal control of bulk queues with compound
poisson arrivals and batch service. Opsearch., 21:227–
245, 1984.

[20] R. K. Deb and R. F. Serfozo. Optimal control of batch
service queues. Adv. Appl. Prob., 5:340–361, 1973.

[21] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online
scalable scheduling for the ;k-norms of flow time without
conservation of work. In SODA, pages 109–119, 2011.

[22] Uriel Feige and Jan Vondrák. The submodular welfare
problem with demand queries. Theory of Computing,
6(1):247–290, 2010.

[23] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy,
and Aravind Srinivasan. Dependent rounding and its

applications to approximation algorithms. J. ACM,
53(3):324–360, 2006.

[24] Michel X. Goemans, Maurice Queyranne, Andreas S.
Schulz, Martin Skutella, and Yaoguang Wang. Single
machine scheduling with release dates. SIAM J. Discrete
Math., 15(2):165–192, 2002.

[25] Sungjin Im. Online Scheduling Algorithms for Average
Flow Time and its Variants. PhD thesis, Computer Sci-
ence, University of Illinois at Urbana-Champaign, 2012.

[26] Sungjin Im and Benjamin Moseley. An online scalable
algorithm for average flow time in broadcast scheduling.
In SODA, pages 1322–1333, 2010.

[27] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. J. ACM, 47(4):617–643, 2000.

[28] Bala Kalyanasundaram, Kirk Pruhs, and Mahendran Ve-
lauthapillai. Scheduling broadcasts in wireless networks.
J. Scheduling, 4(6):339–354, 2000.

[29] Jae-Hoon Kim and Kyung-Yong Chwa. Scheduling broad-
casts with deadlines. Theor. Comput. Sci., 325(3):479–
488, 2004.

[30] Colin McDiarmid. Concentration. In Michel Habib, Colin
McDiarmid, Jorge Ramirez-Alfonsin, and Bruce Reed,
editors, Probabilistic Methods for Algorithmic Discrete
Mathematics, volume 16 of Algorithms and Combina-
torics, pages 195–248. Springer Berlin Heidelberg, 1998.

[31] Benjamin Moseley. Online Scheduling Algorithms for
Broadcasting and General Cost Functions. PhD the-
sis, Computer Science, University of Illinois at Urbana-
Champaign, 2012.

[32] Prabhakar Raghavan. Probabilistic construction of deter-
ministic algorithms: Approximating packing integer pro-
grams. J. Comput. Syst. Sci., 37(2):130–143, 1988.

[33] Martin Skutella and David P. Williamson. A note on
the generalized min-sum set cover problem. Operations
Research Letters, To appear, 2011.

[34] J. Weiss. Optimal control of batch service queues
with nonlinear waiting costs. Modeling and Simulation,
10:305–309, 1979.

[35] J. Weiss and S. Pliska. Optimal policies for batch service
queueing systems. Opsearch, 19(1):12–22, 1982.

[36] J. Wong. Broadcast delivery. Proc. IEEE, 76(12):1566–
1577, 1988.

[37] Feifeng Zheng, Stanley P. Y. Fung, Wun-Tat Chan, Fran-
cis Y. L. Chin, Chung Keung Poon, and Prudence W. H.
Wong. Improved on-line broadcast scheduling with dead-
lines. In COCOON, pages 320–329, 2006.

A Concentration Inequalities
The following theorem follows from Bernstein inequali-
ties.

THEOREM A.1. ([30]) Let X1, X2, ..., Xn be n inde-
pendent random variables such that for all i ∈ [n], Xi ≤
b. Let Y =

∑n
i=iXi, µ := E[Y], and V := Var[Y].

Then it follow that

Pr
[
Y − µ ≥ ∆

]
≤ exp

(
− ∆2

2V (1 + (b∆/3V))

)

B Pseudocodes

INPUT: An estimate L of the maximum flow time L∗; P
andR.

1: for t = L to T do
2: Qf (t)← ∅.
3: end for
4: Qf (L − 1) := {{(0, p0), (1, p1), ..., (L −

1, pL−1)} | p0, p1, ..., pL−1 ∈ P}.
5: for t = L to T do
6: for each Q = {(t − L, pt−L), (t − L +

1, pt−L+1), ..., (t− 1, pt−1)} ∈ Qf (t− 1) do
7: for each pt ∈ P do
8: if all requests with release time t − L are

satisfied by pt−L+1, pt−L+2, ..., pt−1 or pt
then

9: Let Q′ = {(t − L + 1, pt−L+1), (t − L +
2, pt−L+2), ..., (t, pt)}.

10: Prev(Q′) = Q.
11: Add Q′ to Qf (t).
12: end if
13: end for
14: end for
15: end for
16: if Qf (T) = ∅ then
17: Declare that the maximum flow time is greater than

L.
18: else
19: Consider any Q ∈ Qf (T).
20: for t = T to L do
21: Let (t, pt) ∈ Q.
22: p′t ← pt.
23: Q← Prev(Q).
24: end for
25: Let Q = {(0, p0), (1, p1), ..., (L− 1, pL−1)}.
26: p′1 ← p1, p′2 ← p2, ..., p′L ← pL.
27: Transmit page p′t at time t, 1 ≤ t ≤ T .
28: end if
Algorithm 1: Dynamic Programming with run time
O(T) · nO(L∗)

INPUT: Modified instance J ′ with ` = 2 + 1/ε.

1: T ′ := dmaxρ rρ
εL∗ e+ `.

2: for t = ` to T ′ do
3: Qf (t)← ∅.
4: end for
5: Qf (` − 1) := {{(0,A0), (1,A1), ..., (` −

1,A`−1)} | Ai ∈
(⋃`−2

k=0 Pk
εL∗

)
, 0 ≤ i ≤ ` − 1}.

6: for t = ` to T ′ do
7: for each Q = {(t − `,At−`), (t − ` +

1,At−`+1), ..., (t− 1,At−1)} ∈ Qf (t− 1) do
8: for each At ∈

(⋃`
i=1 Pt−i
εL∗

)
do

9: if Pt−` ⊆
⋃`−1
i=0 At−i then

10: if no page appears more than twice in
At−`+1,At−`+2, ...,At then

11: Let Q′ = {(t− `+ 1,At−`+1), (t− `+
2,At−`+2), ..., (t,At)}.

12: Prev(Q′) = Q.
13: Add Q′ to Qf (t).
14: end if
15: end if
16: end for
17: end for
18: end for
19: if Qf (T ′) = ∅ then
20: Declare that the maximum flow time is greater than

`.
21: else
22: Consider any Q ∈ Qf (T).
23: for t = T ′ to ` do
24: Let (t,At) ∈ Q.
25: A′t ← At.
26: Q← Prev(Q).
27: end for
28: Let Q = {(0,A0), (1,A1), ..., (`− 1,A`−1)}.
29: A′1 = A1, A′2 = A2, ..., A′`−1 = A`−1.
30: Transmit pages A′t at time t, 1 ≤ t ≤ T ′.
31: end if
Algorithm 2: Dynamic Programming when L∗ ≤
(1/ε2) log T

	Introduction
	A PTAS for the Maximum Flow Time
	Case: L* (1 / 3) logT.
	Case: L* (1 / 3) logT.
	Removing the Dependency of Run Time on T
	Derandomization
	Lower Bound on LP-guided FIFO

	Throughput (Profit) Maximization
	When Small-window Requests Give Large Profits
	When Large-window Requests Give Large Profits
	Algorithm
	Analysis

	Further Improvement: 0.7759-approximation
	Approximation Guarantee of Independent Rounding: Proof of (??)
	Approximation Guarantee of the algorithm in Section ??: Proof of (??)

	Improving the Run Time

	Concentration Inequalities
	Pseudocodes

