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HALLUCINATION HELPS: ENERGY EFFICIENT VIRTUAL
CIRCUIT ROUTING\ast 
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BENJAMIN MOSELEY\P , VISWANATH NAGARAJAN\| , KIRK PRUHS\#, AND
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Abstract. We consider virtual circuit routing protocols with an objective of minimizing energy
in a network of components that are speed scalable, and that may be shut down when idle. We assume
the standard model for component power: the power consumed by a component with load (speed) s
is \sigma + s\alpha , where \sigma is the static power and the exponent \alpha > 1. We obtain a very simple O(log\alpha k)-
approximation algorithm for multicommodity routing, where k is the number of demand pairs. This
improves upon previous results by several logarithmic factors. The key step in our algorithm is a
random sampling technique that we call hallucination, which is reminiscent of the sample-augment
framework for buy-at-bulk problems, and sampling in cut-sparsification algorithms. We also consider
the online setting of the problem, where demand pairs arrive over time. We show that our offline
algorithm naturally extends to the online setting, and obtain a randomized competitive ratio of
\~O(log3\alpha +1 k), which is the first nontrivial bound. The analysis of this algorithm involves the study
of priority multicommodity flows, where edges and demand-pairs have priorities and each demand-
pair must route its flow only on edges of lower priority. We establish a polylogarithmic flow-cut
gap for these priority flows, which we believe is of independent interest. Finally, we show how our
technique can be used to achieve a randomized (O(logm), O(log2 m)) bicriteria competitive algorithm
for the uniform capacitated network design problem, where m is the number of edges. Here, every
edge has a cost ce and uniform capacity q, and the goal is to choose the minimum cost subgraph that
can support the given multicommodity demand. This is the first online algorithm for this problem.
In fact, our approach also improves prior results in the offline setting by several logarithmic factors.
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1. Introduction. According to the U.S. Department of Energy [1], data net-
works consume more than 50 billion kWH of energy per year, and a 40\% reduction
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in wide-area network energy is plausibly achievable using network components that
dynamically adjust their speed to be proportional to demand. Virtual circuit rout-
ing, in which each connection is assigned a reserved route in the network with a
guaranteed bandwidth, is used by several network protocols to achieve reliable com-
munication [32]. In this paper we consider virtual circuit routing protocols, with an
objective of minimizing energy, in a network with speed-scalable edges.

The energy-efficient pouting problem (EERP). The input consists of an
undirected network G = (V,E), scalar nonnegative multipliers on edges ce, and a
common energy cost function f(\cdot ) defined as

(1.1) f(x) =

\biggl\{ 
0 if x = 0 ,
\sigma + x\alpha if x > 0 .

We are also given a collection of k requests of the form (si, ti, di), where for each
i \in [k] = \{ 1, 2, . . . , k\} , si \in V and ti \in V need to be connected by a flow path with
dedicated capacity/bandwidth of di \geq 1 (called a virtual circuit). The objective is to
find the flow paths Pi for each request i to minimize the overall energy cost of the
routing defined as \sum 

e\in E

ce \cdot f
\Biggl( \sum 

i:e\in Pi

di

\Biggr) 
.

We call this problem the EERP, and remark that this is precisely the problem
formulation studied in [4, 3, 11]. In the offline setting, all requests are known in
advance before selecting paths. In the more realistic (and harder) online setting,
requests arrive over time and the algorithm needs to select a virtual circuit Pi for each
request immediately upon arrival. We consider both the offline and online settings in
this paper.

1.1. Why this energy function \bfitf (\cdot )? Even though the model is by now stan-
dard, (see, e.g., [3]), we provide a brief motivation. Speed-scalable network compo-
nents (edges, in our case) are associated with a power-rate curve f(x). This function
measures the power consumption as a function of its speed x. The speed of a compo-
nent is assumed to be proportional to the traffic load passing through the component,
which in our case is the total bandwidth reserved on this edge.

In (1.1) above, the parameter \sigma is the static power. That is, the power used when
the component is turned on but idle. The static power can only be saved by turning
the component off, which only happens when its load/speed is 0. The term x\alpha is the
dynamic power of the component as it varies with the speed or, equivalently, load,
of the component. Here \alpha > 1 is a parameter specifying the energy inefficiency of
the components, as speeding up by a factor of s increases the energy used per unit
computation/communication by a factor of s\alpha  - 1. The value of \alpha is in the range [1.1, 3]
for essentially all technologies [13, 41]. As in prior work [3, 11], we will assume that all
components in the network are homogenous, so the parameters \alpha and \sigma are uniform
across all network components.

Relation to buy-at-bulk network design. The EERP has some similarity to
the classic buy-at-bulk network design problem [8, 39]. The difference is that buy-
at-bulk involves a concave edge cost-function instead of f as defined in (1.1). Note
that if the cost function is concave, then it is always better to aggregate flow as
much as possible. Indeed, the idea of aggregating flows forms the basis of all known
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algorithms for the buy-at-bulk problem. There are offline and online algorithms for
buy-at-bulk with polylogarithmic ratios under both uniform and nonuniform edge-
costs [8, 19, 15].

In contrast, the edge cost function (1.1) is not concave (it is not convex either).
In particular, the static power term in function f is concave, whereas the dynamic
power term is convex. This requires an algorithm to balance the two opposing goals
described below.

\bullet Effect of the static power. The static power is zero when the flow x = 0
and \sigma when x > 0. As this is concave, it is best to aggregate flow. Indeed,
an optimal solution here is to route all flow over a minimum cost Steiner
forest [2, 23] that connects the corresponding request-pairs. There is also an
O(log n)-competitive online algorithm for Steiner forest [27].

\bullet Effect of the dynamic power. The dynamic power is x\alpha which is convex. In
this case, it is better to disaggregate flow as much as possible. The greedy
algorithm that routes each request along a path of minimum increase in cost
tends to balance the flows on different edges, and is known to achieve an
O(1)-competitive ratio for any constant \alpha [6, 24].

Previous work by Andrews, Antonakopoulos, and Zhang [3] showed that these
competing forces can be somewhat balanced by giving a polynomial-time poly-
logarithmic approximation algorithm for EERP. In this paper, we provide a simpler
and better approximation algorithm that also extends to the online setting and other
related problems.

1.2. Our results. We present three main results in this paper, starting with the
offline EERP problem.

Theorem 1.1. There is an efficient randomized O(log\alpha k)-approximation algo-
rithm for the EERP.

This algorithm improves over the previously known approximation algorithm
from [3] in the following ways: (a) the approximation ratio is better by several log\alpha k
factors; (b) the algorithm is itself very simple to describe and implement; and (c) the
analysis is also considerably simpler, with the only real ``hammer"" being the classic
flow-cut gap for multicommodity flow. Moreover, our techniques extend naturally to
the online setting, which is our second main result.

Theorem 1.2. There is an efficient randomized \~O(log3\alpha +1 k)-competitive online
algorithm for the EERP.

This is the first nontrivial online algorithm for this basic energy minimization
problem. Previous results in the online setting could only handle the single-commodity
special case [11].

Finally, we consider the seemingly unrelated problem of capacitated network de-
sign (CapND). Here, we are given a graph G = (V,E) with n vertices and m edges,
where each edge e \in E is associated with a cost ce \geq 0 and uniform capacity of q \geq 0.
There are k requests of the form (si, ti, di) as in EERP. The goal is to choose a min-
imum cost subgraph H \subseteq E that can support the multicommodity flow requirement
of the requests (concurrently). In the online version, requests arrive online and the
algorithm must buy edges irrevocably to support the evolving flow requirements.

Theorem 1.3. There is a randomized (O(logm), O(log2 m)) bicriteria competi-
tive online algorithm for uniform CapND, i.e., with high probability, the solution costs
O(logm) times the optimum and violates edge capacities by a factor O(log2 m).
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Again, this is the first nontrivial online algorithm for CapND. In fact, this ap-
proach also improves significantly over the offline algorithm in [3] which had a (large)
polylogarithmic bicriteria approximation ratio. In the conference version [5] of this
paper, we described an offline algorithm with a slightly better (O(logm), O(logm))
bicriteria approximation ratio. Here, we only focus on the (more general) online
setting.

1.3. Our techniques. As discussed above, any algorithm for EERP needs to
balance the effects of aggregating and disaggregating flows. Intuitively, when the
static power is larger than the dynamic power (i.e., \sigma > x\alpha , where x is the flow on an
edge) then we want to aggregate flows. On the other hand, when the dynamic power
is larger (i.e., \sigma < x\alpha ) then we want to disaggregate flows. This suggests the approach
of (i) aggregating demands until the total demand exceeds the threshold q := \sigma 1/\alpha ,
and then (ii) routing these ``composite demands"" in a disaggregated manner. Indeed,
this is the approach used in [3]. We use a different approach: instead of explicitly
aggregating demands, we use random sampling of the requests to help identify edges
with large flow.

For simplicity, consider the case when all demands are one unit. In this case, our
algorithm proceeds as follows. First, the algorithm selects an approximate minimum
cost Steiner forest GS to ensure minimal connectivity between all request-pairs. Sec-

ond, each request-pair, with probability O(log k)
q , hallucinates that it wants to route q

units of flow instead of one.1 When every demand is at least q, the edge costs (1.1)
are always dominated by the dynamic power, so we can use existing algorithms [6, 24]
for minimizing just the dynamic power. This yields another subset GH of edges, i.e.,
all edges used in the routing of hallucinated demands. Finally, we route all the orig-
inal (unit) demands on the subgraph GS \cup GH so as to minimize just the dynamic
power; here we again use the algorithm from [6, 24]. The key steps in the analysis
are in showing that (i) the hallucinated demands can be routed at low cost (this is a
simple randomized rounding argument) and (ii) the original demands can be routed
at low cost on the chosen subgraph GS \cup GH (this use results in cut-sparsification and
flow-cut gaps).

The hallucination technique is rather similar to the sample-augment framework [25]
for solving buy-at-bulk type problems. This is perhaps surprising because in buy-at-
bulk, the cost on edges is purely concave, whereas in our case the cost is convex
after the jump at 0. The similarities stop there, as the analyses are very different
for the two problems: our analysis more closely resembles those of cut-sparsification
algorithms [29].

A striking benefit of this simple offline algorithm is that it directly extends to the
online setting. Indeed, there are good online algorithms for both Steiner forest [27]
and dynamic power minimization [6, 24], which can be used directly. The online algo-
rithm's analysis, however, is considerably more involved than the offline case, and we
believe that the techniques introduced here are of independent interest. The major
difference (compared to the offline setting) is that the subgraph GS \cup GH , which is
used in actually routing the demands, is built incrementally over time. Therefore,
we are faced with a nonstandard multicommodity flow problem, that we call priority
multicommodity flow. Here, each edge comes with a priority (indicative of the time
when it was chosen by our online algorithm), and each request also comes with a

1We assume here that q = \omega (log k), so the hallucination probability is well-defined. The case
q = O(log k) is much easier because the static power is always O(log\alpha k) times the dynamic power,
which means we can directly use existing algorithms [6, 24] for minimizing the dynamic power.
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priority (indicative of its arrival time), and a request can only use edges with priority
lower than or equal to itself. So the key question we are interested in is, under what
conditions is there a good concurrent priority multicommodity flow? To this end, we
introduce the notions of priority-cuts and prefix-sparsity, and establish relationships
between these quantities and priority multicommodity flows. In particular, we show
that the values of priority multicommodity flow, priority-cut, and prefix-sparsity are
all within a polylogarithmic factor of each other. In proving these results, we use a
variant of region growing [33, 21] as well as new charging arguments.

Finally, we show that the hallucination approach also works for the CapND prob-
lem. Indeed, the relevant sampling parameter q for CapND is the uniform edge ca-
pacity (instead of \sigma 1/\alpha in the EERP algorithms). The CapND instance consisting of
hallucinated demands (each of q units) can be solved online using an existing algo-
rithm for min-cost circuit routing [9]. Moreover, the analysis of this online algorithm
is very similar to the offline EERP algorithm.

1.4. Related work. The EERP was introduced in [4] and a polylogarithmic
approximation algorithm was obtained in [3]. It is also known (using the relationship

to buy-at-bulk) that EERP is hard to approximate to within an \Omega (log1/4 - \epsilon n) factor [3].
The high-level algorithmic strategy in [3] is to aggregate the flow within suitably
defined groups, such that each group contains a total crossing demand of roughly q.
Then, they find a low-cost routing across groups. Roughly, the flow paths going across
groups carry large loads, so the dynamic power dominates, whereas, flow paths within
each group carry small loads, so the static power dominates. However, the algorithm
design to achieve such a routing as well as its analysis in [3] are fairly complicated
and rely on various tools: the well-linked decomposition of Chekuri, Khanna, and
Shepherd [20], the construction of expanders via matchings of Khandekar, Rao, and
Vazirani [30], and edge-disjoint routings in well-connected graphs due to Rao and
Zhou [37]. Moreover, the exponent of log\alpha k in the poly-log approximation ratio is
sufficiently large that it was not explicitly calculated in [3].

Bansal et al. [11] considered EERP in the case of a common source vertex s for
all request-pairs, that is all si = s. Applications for a common source vertex include
data collection by base stations in a sensor network, and supporting a multicast
communication using unicast routing. In this single-commodity setting, [11] gave an
O(1)-approximation algorithm. The algorithm and analysis are considerably easier
than [3] because, after aggregation into groups, all the flow is going to the same place.
[11] also gave an O(log2\alpha +1 n)-competitive randomized online algorithm, by giving a
procedure for forming groups in an online fashion.

The uniform CapND problem was also studied in [3], where a polylogarithmic
bicriteria approximation algorithm was obtained. In fact, [3] used this result as a
subroutine for their overall algorithm for EERP. In this paper, we show that we can
use the hallucination approach to get a simpler and improved algorithm for CapND
which also extends to the online setting.

A related problem to the CapND problem we consider is capacitated survivable
network design [14, 17, 26], where the requirement is to compute a minimum cost
subgraph H which satisfies the flow requirement individually for each demand rather
than concurrently. These results are incomparable to those for CapND.

Finally, priority versions of a number of classic problems have been studied in
approximation algorithms, e.g., priority Steiner tree [18] and priority covering integer
programs [16]. We note however that our focus in the priority multicommodity flow
problem is structural (bounding its flow-cut gap) rather than algorithmic.
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2. Preliminaries. We begin by recalling the problem statement. The EERP
is defined on an undirected multigraph G = (V,E) with | V | = n vertices and m
edges. Each edge e is associated with a scaling factor ce \geq 0. There are k request-
pairs, where the ith pair specifies a source si, a destination ti, and an integer demand
di \geq 1. We need to route each request-pair unsplittably so as to minimize the objective\sum 

e\in E ce \cdot f(\ell e), where \ell e denotes the flow (i.e., total demand routed) on edge e and
function f is as defined in (1.1).

In the analysis we will also be concerned with splittable (fractional) routings,
where the demand of each request may be satisfied using multiple paths. Unless
specified otherwise, any routing in solutions we seek is assumed to be unsplittable.

The power incurred on any edge e \in E is naturally split into two parts: (i) the
static power which is ce\sigma if it routes any flow or 0 otherwise, and (ii) the dynamic
power which is ce\ell 

\alpha 
e , where \ell e denotes the total demand routed on edge e \in E. The

static (resp., dynamic) power of a routing is the sum over all edges of the static (resp.,
dynamic) power.

As mentioned earlier, a useful parameter throughout the paper is q := \sigma 1/\alpha which
is the amount of flow on an edge for which the static and dynamic power are equal.
We use Opt to denote the total power of a fixed optimal solution. We assume that
\alpha \geq 1 is a constant, so any function of \alpha is just O(1).

Moreover, we assume that q = \omega (log k), as otherwise it is easy to obtain an
O(log\alpha k)-competitive online algorithm for EERP. Indeed, when q = O(log k), we
have \sigma = O(log\alpha k) and the static power of any routing is at most O(log\alpha k) times the
dynamic power (recall that all demands are integer). In this case, we could simply
optimize for the dynamic power and obtain an approximation factor that is worse
by a factor of O(log\alpha k). As there are O(1)-competitive online algorithms for dy-
namic power minimization (see below), we would then immediately get an O(log\alpha k)-
competitive online algorithm for EERP for the case q = O(log k).

Dynamic power minimization (DynPM). A crucial subroutine in our algo-
rithms is the so-called waterfilling algorithm [24] for the problem of minimizing just
the dynamic power of the routing. The input to DynPM is the same as for EERP.
We need to route each request-pair unsplittably so as to minimize the dynamic power
objective

\sum 
e\in E ce(\ell e)

\alpha , where \ell e denotes the total demand routed on edge e. The
waterfilling algorithm is a natural online greedy algorithm for this problem, which
routes the demand of each request along the path that results in the smallest increase
in the objective. An important feature of this algorithm is that we can also implicitly
specify a subset \scrP i of allowed si-ti paths for each request (si, ti, di). This will be use-
ful in the online EERP algorithm, where the underlying graph is built incrementally,
and each request can only use the edges present at the time of its arrival.

Online Waterfilling Algorithm for DynPM.
When request i arrives:

1. Let \ell e denote the current load on each edge e in graph G.
2. Choose si-ti path Pi \in \scrP i in G to minimize

\sum 
e\in Pi

ce ((\ell e + di)
\alpha  - \ell \alpha e ).

Theorem 2.1. Given any graph G = (V,E), and requests (si, ti, di) with a set of
allowed paths \scrP i, the waterfilling algorithm is O(\alpha \alpha )-competitive for the objective of
minimizing the total dynamic power.

In all our applications of Theorem 2.1, each set \scrP i (allowed si-ti paths) consists
of all si-ti paths in some given subgraph of G. Note that in this case, the min-cost
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path Pi \in \scrP i in step 2 above can be computed in polynomial time by running any
shortest path algorithm on the given subgraph.

For the case where \scrP i is the set of all si-ti paths in G, [24] proved Theorem 2.1
using a dual-fitting framework. Previously, [10] used a potential function based frame-
work to prove a similar result in the special case of the load balancing problem. It
is not hard to adapt these existing analyses to our setting where each request also
specifies a set of allowed paths. For completeness, we give a proof of Theorem 2.1 in
Appendix A using the approach from [10].

3. Offline algorithm for EERP. In this section we give a polynomial-time
O(log\alpha k)-approximation algorithm for EERP, thereby proving Theorem 1.1. As men-
tioned in section 2 we may assume that q = \omega (log k); this makes the algorithm and
analysis simpler. Below we use \lambda = O(log k), where the constant term will be set
later such that \lambda 

q \leq 1. We also assume that each demand di \leq q; again this is because
demands larger than q can be routed using the algorithm for minimizing just dynamic
power, and combining the two solutions will only incur an extra multiplicative factor
of 2\alpha in the routing cost.

Our overall algorithm comprises two stages. In the first stage (steps 1 and 2
below) we decide which edges to power on or ``buy"" and incur the static cost. In
the second stage (step 3 below) we route all the requests using the bought edges, to
minimize just the dynamic power of the routing.

Offline Algorithm Description.
1. Constructing the Steiner backbone \bfitG \bfitS . Solve the Steiner forest instance
on graph G = (V,E) with edge-costs \{ ce : e \in E\} and pairs \{ (si, ti)\} ki=1 using the
2-approximation algorithm from [2, 23]. Let GS denote the resulting solution.
2. Constructing the hallucination backbone \bfitG \bfitH . Each request i \in [k]
independently ``hallucinates"" a demand of q \cdot Bi units, where Bi \sim Binomial(di,

\lambda 
q ).

Let \scrI hal denote the resulting (random) instance of DynPM on graph G and the
hallucinated demands. Run the waterfilling algorithm (Theorem 2.1) by feeding
the requests in \scrI hal in an arbitrary order, with \scrP i being the set of all si-ti paths
in G. Let \scrH denote the resulting unsplittable routing and let GH denote the
subgraph consisting of all edges used in \scrH .
3. Routing on the backbone. Let \scrI act denote the DynPM instance on graph
GF = GS \cup GH with all the original requests \{ (si, ti, di) : i \in [k]\} . Feed the
requests of \scrI act to the waterfilling algorithm (Theorem 2.1) in any order to obtain
the final unsplittable routing \scrR .

Note that the hallucinated flow \scrH is used solely to determine which edges to
consider for the final routing in step 3.

3.1. Analysis. Let Opt denote the optimal cost of the EERP instance. The cost
of the algorithm is bounded by the total static power of the backbone GF = GS \cup GH

(from steps 1 and 2) plus the total dynamic power of routing \scrR (from step 3).
Static power of \bfitG \bfitS . The static power of any feasible EERP solution is clearly at

least \sigma times the optimal Steiner forest cost. So, using the 2-approximation algorithm
for Steiner forest [2, 23], it follows that the static power for the edges in GS is at most
twice that in the EERP optimum, i.e., at most 2 \cdot Opt.

Static power of \bfitG \bfitH . The static power of the hallucination backbone GH is at
most the dynamic power of the hallucinated flow \scrH since every hallucinated request-
pair routes at least q units of flow unsplittably in \scrH . In Lemma 3.1 we show that the
dynamic power (and hence static power) for the hallucinated flow is O(\lambda \alpha ) \cdot Opt using
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a simple probabilistic argument. A similar idea was used in [11] for the online single
commodity EERP.

Dynamic power. In order to bound the dynamic power of our routing in Step 3,
by Theorem 2.1 it suffices to prove that there exists a routing of low dynamic power
in the subgraph GF . To this end, we assign each edge in the backbone GF a capacity\widehat qe equal to the amount of hallucinated flow routed on it in \scrH , plus \lambda q if it is in the
Steiner backbone GS . Importantly, using the dynamic power of \scrH , these capacities
will satisfy

\sum 
e\in E ce\widehat q\alpha e = O(\lambda \alpha ) \cdot Opt. Then we show (in Lemma 3.3) that the non-

uniform sparsest cut (w.r.t the demands of all requests in the original instance) under
these capacities is \Omega (log k) with high probability; this uses a classic cut sparsification
result [29]. Next, using the O(log k) flow-cut gap for multicommodity flow [33, 34, 7],
we obtain the existence of a fractional routing within the backbone GF that respects
capacities c. Finally, in Lemma 3.5 we show by randomly rounding this fractional
flow (as in [24]) that there exists an integral routing in GF with dynamic power O(1)
times the dynamic power of the fractional routing.

Lemma 3.1. The expected dynamic power of hallucinated flow \scrH is O(\lambda \alpha ) \cdot Opt.
Proof. Consider any fixed optimal EERP solution that routes each request i \in [k]

along some path P \ast 
i . Let \scrO denote the routing that sends the hallucinated demand

q \cdot Bi along path P \ast 
i for each i \in [k]. We will show that the expected dynamic power

of \scrO is O(\lambda \alpha ) \cdot Opt. Combined with Theorem 2.1, it would follow that the expected
dynamic power of the hallucinated flow \scrH is at most O(\lambda \alpha ) \cdot Opt.

We bound the expected dynamic power in \scrO separately for each edge e \in E. Fix
an edge e and let K \subseteq [k] denote the requests whose optimal paths P \ast 

i use e. Let
N =

\sum 
i\in K di be the load on e in the optimal EERP solution; so the cost of edge e

in this solution is ce(\sigma + N\alpha ). The load on edge e in \scrO is M =
\sum 

i\in K q \cdot Bi. Note

that we can write Bi =
\sum di

j=1 Xij , where each Xij \sim Bernoulli(\lambda q ) independently. So
random variable M is the sum of N independent random variables that each take
value q with probability \lambda /q (and zero otherwise). Using Corollary B.3 with p = \lambda /q
and D = q, we obtain

\BbbE [M\alpha ] \leq O(1)

\biggl( 
\lambda 

q
\cdot N \cdot q\alpha + (

\lambda 

q
\cdot N \cdot q)\alpha 

\biggr) 
\leq O(\lambda q) \cdot 

\bigl( 
Nq\alpha  - 1 +N\alpha 

\bigr) 
.

Note that Nq\alpha  - 1 \leq max\{ N, q\} \alpha \leq N\alpha + q\alpha = N\alpha + \sigma . Combined with the above
inequality, we obtain \BbbE [M\alpha ] = O(\lambda q) \cdot (2N\alpha + \sigma ), and so the cost of the edge e in \scrH 
is O(\lambda q) times the cost of edge e in the optimal EERP solution.

Now summing over all edges e \in E and using linearity of expectations, we conclude
that the expected dynamic power in \scrO is at most O(\lambda \alpha ) \cdot Opt.

Lemma 3.2. The expected static power of the backbone GF is \sigma \cdot \BbbE [\sum e\in GF
ce] =

O(\lambda \alpha ) \cdot Opt.
Proof. Observe that the static power of the backbone,

\sigma 
\sum 
e\in GF

ce \leq \sigma 
\sum 
e\in GS

ce + \sigma 
\sum 

e\in GH

ce \leq 2Opt+ \sigma 
\sum 

e\in GH

ce

asGS is a 2-approximate Steiner forest. So the expected static power \sigma \cdot \BbbE [\sum e\in GF
ce] \leq 

2Opt+ \sigma \BbbE [
\sum 

e\in GH
ce]. It now suffices to bound \sigma \BbbE [

\sum 
e\in GH

ce] which is the expected
static power of \scrH . Note that if an edge has positive load in \scrH then it has load at least
q. So the static power of \scrH is at most its dynamic power. Combined with Lemma 3.1
we obtain \sigma \BbbE [

\sum 
e\in GH

ce] = O(\lambda \alpha ) \cdot Opt, which proves the lemma.
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It remains to bound the dynamic power of routing all demands in the backbone
GF . To this end, we assign a virtual capacity of q\lambda on all edges in GS , and for edges
in GH , we set the virtual capacity to be equal to the load e carries in \scrH (which is at
least q). Note that if we show that there exists a flow which respects these capacities
routing all demands, then the dynamic power of such a routing would be at most
O(\lambda \alpha ) times the static power of GS plus the dynamic power of GH , both of which are
bounded in the previous lemmas. Indeed, this is what we show by establishing good
bounds on the sparsity of the graph with these virtual capacities w.r.t. the demands
of the request pairs. More formally, let \{ He : e \in E\} denote the edge loads induced
by the routing \scrH . Then we define the following edge capacities:

\widehat qe = \biggl\{ He if e \in GF \setminus GS ,
He + \lambda q if e \in GS

\forall e \in E.

Note that only edges in GF = GS \cup GH have nonzero capacity.
Moreover, \widehat q\alpha e \leq 2\alpha (H\alpha 

e + \lambda \alpha \sigma \cdot 1e\in GS
), so we have

(3.1)
\sum 
e\in E

ce\BbbE [\widehat q\alpha e ] \leq 2\alpha 

\Biggl( \sum 
e\in E

ce\BbbE [H\alpha 
e ] + \sigma \lambda \alpha \cdot 

\sum 
e\in GS

ce

\Biggr) 
= O(\lambda \alpha ) \cdot Opt,

where the last inequality uses (i) the static power of GS is \sigma \cdot \sum e\in GS
\leq 2 \cdot Opt and

(ii) the expected dynamic power of \scrH is
\sum 

e\in E ce\BbbE [H\alpha 
e ] = O(\lambda \alpha ) \cdot Opt by Lemma 3.1.

Now we turn our attention to establishing lower bounds on the graph sparsity.
For an undirected graph G = (V,E) and subset S \subseteq V , we use the standard notation
\delta G(S) := \{ (u, v) \in E : u \in S, v \not \in S\} for the cut corresponding to S. We shall
sometimes refer to the vertices of these request-pairs as terminals to distinguish them
from Steiner vertices in G that do not participate in any request-pair. The sparsity of
a graph G with edge capacities \widehat q : E \rightarrow \BbbR + w.r.t. the demands of all the request-pairs
is the minimum (over all S \subseteq V ) of the ratio of the capacity crossing cut S to the
demand crossing it, i.e.,

sparsity(G) := min
S\subseteq V

\sum 
e\in \delta (S) \widehat qe\sum 

i\in [k]:| S\cap \{ si,ti\} | =1 di
.

It is well known that if the sparsity is \Omega (log k) then there is a fractional routing for
all the requests that respects the capacities [34, 7].

Lemma 3.3. With probability at least 1 - k - 3\alpha , the sparsity of graph GF with edge
capacities \{ \widehat qe : e \in E\} and requests \{ (si, ti, di) : i \in [k]\} is at least \lambda /3.

Proof. For the proof we consider a virtual graph \scrB on vertices V with the following
edges and capacities:

\bullet Steiner edges: each edge e \in GS has capacity \=qe = \lambda q.
\bullet Hallucinated edges: for each i \in [k] edge (si, ti) has capacity \=q(si,ti) = q \cdot Bi.

Each hallucinated edge (si, ti) in \scrB corresponds to an si-ti path carrying q \cdot Bi flow
in \scrH . Hence, for any T \subseteq V , the \widehat q-capacity of cut \delta (T ) is at least as much as its
\=q-capacity. Thus it suffices to show that the sparsity of \scrB is at least \lambda .

We observe that the connected components in \scrB are the same as those in the
Steiner forest GS : this is because every request pair \{ si, ti\} ki=1 is already connected
in GS . Moreover, in order to lower bound the sparsity of \scrB , it suffices to lower bound
the sparsity of each component of GS : this is because there are no requests across
components of GS . In particular, we will show that the sparsity of any component of



46 ANTONIADIS ET AL.

GS is at least \lambda with probability 1 - 1
k4\alpha . Then, a union bound over all components

in GS (which are at most k) would prove the lemma.
Consider now any connected component of GS . To reduce notation, we assume

in the rest of the proof that there is a single component in GS which connects all
k pairs. (Otherwise, exactly the same argument works by restricting to the request-
pairs in a particular connected component.) Let GS = (VS , ES) denote this connected
component, which is a Steiner tree on all terminals. By shortcutting over degree two
Steiner vertices, we may assume that the number of vertices | VS | is at most 4k (i.e.,
2k terminals and at most 2k Steiner vertices).

The main idea now is to apply a classic cut-sparsification result of [29]. To this
end, consider a random multigraph\scrM on vertices VS by independently sampling the
following edges:

\bullet For each e \in ES there are \lambda parallel edges e1, . . . , e\lambda between the endpoints
of e, each with probability p(ej) = 1.

\bullet For each request i \in [k] there are di parallel edges ri,1, . . . , ri,di between si
and ti, each with probability p(ri,j) = \lambda /q.

Note that scaling all edges in \scrM by factor q yields graph \scrB . Let \widehat \scrM denote the
weighted multigraph where each edge e has weight equal to its probability pe (defined

above). As ES corresponds to a tree on all vertices VS , the minimum cut in \widehat \scrM is at
least \lambda . By choosing \lambda \geq 9(4\alpha + 2) ln | VS | which is O(log k), and applying Theorem
2.1 from [29], we obtain

with probability at least 1  - k - 4\alpha , every cut in\scrM has capacity at
least 1

3 times its capacity in \widehat \scrM .

Now, observe that the capacity of any cut T \subseteq VS in \widehat \scrM is at least

\lambda 

q

\sum 
i\in [k]:| \{ si,ti\} \cap T | =1

di =
\lambda 

q
\cdot d(\delta T ),

where d(\delta T ) denotes the total demand crossing cut T . Combined with the above
cut-sparsification result and the fact that \scrB \sim q \times \scrM , it follows that the capacity of
any cut T \subseteq VS in \scrB is at least \lambda 

3 \cdot d(\delta T ) with probability at least 1 - k - 4\alpha . Thus the

sparsity of \scrB is at least \lambda 
3 with probability at least 1 - k - 4\alpha .

Corollary 3.4. With probability at least 1 - k - 3\alpha , there exists a fractional rout-
ing of all request-pairs in backbone GF that respects edge capacities \widehat q.

Proof. By Lemma 3.3 we know that the sparsity of GF is at least \lambda /3. We also
know that the flow-cut gap for concurrent multicommodity flow is \rho = O(log k).
Hence, choosing \lambda \geq 3 \cdot \rho it follows that there exists a feasible fractional routing.

Lemma 3.5. The expected dynamic power of the routing \scrR is at most

O(1)\times 
\Biggl( 
\BbbE [Static power of GF ] +

\sum 
e

ce\BbbE [\widehat q\alpha e ]
\Biggr) 
\leq O(\lambda \alpha ) \cdot Opt.

Proof. We will bound the expected optimal dynamic power of instance \scrI act by
O(\lambda \alpha ) \cdot Opt. The lemma would then follow from Theorem 2.1.

We first consider the case where there exists a fractional routing \scrF in GF that
respects capacities \widehat q (which happens with probability at least 1  - k - 3\alpha ). In this
case, the dynamic power of the fractional routing \scrF is at most

\sum 
e\in E ce\widehat q\alpha e . We now

construct an unsplittable routing \scrU from \scrF by simple randomized rounding. For each
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request i, we take a path decomposition \{ P i
j , \mu 

i
j\} of the si-ti flow in the fractional

routing; here \mu i
j is the fraction of i's demand routed along path P i

j . Then we route

di units along path Pi chosen independently from the distribution \{ P i
j , \mu 

i
j\} , for each

i \in [k]. For each edge e, let fe (resp., Ue) denote the load on e in routing \scrF (resp., \scrU ).
Note that Ue =

\sum k
i=1 di \cdot Ie,i, where Ie,i = 1e\in Pi

. Also fe = \BbbE [Ue]. For a fixed edge
e, as the random variables Ie,i are independent, we can use Theorem B.2 to obtain

\BbbE [U\alpha 
e ] \leq O(1) \cdot max

\Biggl\{ 
f\alpha 
e ,

k\sum 
i=1

d\alpha i \cdot \BbbE [Ie,i]
\Biggr\} 
\leq O(1) \cdot max\{ f\alpha 

e , q\alpha  - 1 \cdot fe\} .

The last inequality uses the fact that maxi\in [k] di \leq q. Moreover,

q\alpha  - 1 \cdot fe \leq max\{ q, fe\} \alpha \leq q\alpha + f\alpha 
e = \sigma + f\alpha 

e ,

which implies \BbbE [U\alpha 
e ] \leq O(1) \cdot (\sigma + f\alpha 

e ). So the expected dynamic power of \scrU is\sum 
e\in GF

ce\BbbE [U\alpha 
e ] \leq O(1)

\sum 
e\in GF

ce(\sigma + f\alpha 
e )

= O(1) \cdot \sigma 
\sum 
e\in GF

ce +O(1) \cdot 
\sum 
e\in GF

cef
\alpha 
e

\leq O(1) \cdot \sigma 
\sum 
e\in GF

ce +O(1) \cdot 
\sum 
e\in E

ce\widehat q\alpha e .
The first inequality uses the fact that only edges of GF are used in the routing

\scrU and the last inequality uses our assumption that \scrF respects capacities \widehat q. Taking
expectation over the random choices in step 2, we obtain

\BbbE 
\biggl[ \sum 
e\in GF

ceU
\alpha 
e

\biggr] 
\leq O(1) \cdot \sigma \BbbE 

\biggl[ \sum 
e\in GF

ce

\biggr] 
+O(1) \cdot 

\sum 
e\in E

ce\BbbE [\widehat q\alpha e ].
This proves the first part of the lemma (note that the first term in the right-hand side
above is the static power of GF ). Finally, using Lemma 3.2 and (3.1) the right-hand
side above is at most O(\lambda \alpha ) \cdot Opt.

Now we consider the case that there is no capacity-respecting fractional routing in
GF . By Corollary 3.4 this occurs with probability at most k - 3\alpha . In this case, consider
the routing that sends di demand along the unique si-ti path in GS for each i \in [k].
Since each edge is used at most k times and max di \leq q, the dynamic power is at most
k\alpha times the static power used by GS . So the dynamic power of this routing is at most
2k\alpha \cdot Opt. As this case only occurs with probability at most k - 3\alpha (Corollary 3.4), the
expected dynamic power of this routing is k - 3\alpha \cdot 2k\alpha \cdot Opt = O(1) \cdot Opt.

4. Priority multicommodity flows and priority cuts. We now take a de-
tour, and describe a generalization of multicommodity flows which will help us in the
analysis of our online algorithm for EERP. We stress that the online algorithm itself
remains very simple. The following abstractions will be used exclusively in the analy-
sis. We also believe that these priority extensions of the standard multicommodity
flows would be of independent interest.

In a priority multicommodity flow, we are given an increasing sequence of multi-
graphs G(1) \subseteq G(2) \subseteq \cdot \cdot \cdot \subseteq G(k) with respective requests \{ (si, ti, di)\} ki=1. Note that
the vertex set V remains the same for all the multigraphs. Also, while in general the
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edges could have arbitrary nonnegative capacities, we assume for simplicity that all
edges have unit capacity. Indeed, this is without loss of generality as we can replace
an edge e with capacity \widehat qe with \widehat qe parallel edges of unit capacity. Hence, for the rest
of this section, we assume that all edges have unit capacity.

Definition 4.1 (priority multicommodity flow). Consider any sequence of multi-
graphs G(1) \subseteq G(2) \subseteq \cdot \cdot \cdot \subseteq G(k) and requests \{ (si, ti, di) : i \in [k]\} . A priority
multicommodity flow of value \gamma consists of a fractional routing of \gamma \cdot di units of flow
between si and ti only using edges of multigraph G(i) for each i \in [k], where the total
flow through any edge e is at most 1.

Intuitively, edges appear with priorities (think of the priority of an edge to be \ell 
if it first appears in G(\ell )), and the request pair si-ti can only use edges which have
priority less than or equal to i to route its flow. It is easy to see that the maximum
concurrent priority multicommodity flow can be computed efficiently using a linear
programming formulation.

As for the dual notion of cuts, there are in fact two plausible definitions. One,
inspired by the linear programming (LP) dual, is what we call priority cuts, and the
second, which will be easier to argue about, is what we call prefix cuts.

Definition 4.2 (priority cuts). Consider any sequence of multigraphs G(1) \subseteq 
G(2) \subseteq \cdot \cdot \cdot \subseteq G(k) with unit edge capacities and requests \{ (si, ti, di) : i \in [k]\} . We
say that a set Q \subseteq G(k) of edges priority separates pair i if and only if si and ti are
separated in the graph G(i) \setminus Q. The sparsity of a priority-cut Q is the ratio of | Q| to
the total demand of pairs that are priority separated by Q. The sparsest priority-cut
is the minimum sparsity over all priority-cuts.

Definition 4.3 (prefix-sparsity). Consider any sequence of multigraphs G(1) \subseteq 
G(2) \subseteq \cdot \cdot \cdot \subseteq G(k) with unit edge-capacities and -requests \{ (si, ti, di) : i \in [k]\} . The
prefix sparsity of this sequence is

k
min
i=1

min
S\subseteq V

| \delta G(i)(S)| \sum 
1\leq j\leq i:| S\cap \{ sj ,tj\} | =1 dj

.

4.1. Relationship between prefix and priority sparsity. In this section, we
relate the two definitions of sparsity. Indeed, from the definitions, it is clear that the
value of the sparsest priority cut is at most the prefix sparsity, since every prefix cut is
also a priority cut. However, the reverse direction is not obvious. Note that a demand
j may be priority cut by some subset Q \subseteq G(k) even though it is not separated in
G(i) \setminus Q for any i > j, i.e., j does not contribute to the ith prefix-sparsity for i > j.
To this end, we next show that there is indeed an approximate equivalence between
the two notions of sparsity.

Theorem 4.4. Consider a sequence of unit-capacity multigraphs G(1) \subseteq G(2) \subseteq 
\cdot \cdot \cdot \subseteq G(k) with requests \{ (si, ti, di) : i \in [k]\} . If the prefix-sparsity is at least \alpha , then
the sparsest priority-cut is at least \alpha 

2 log k .

Proof. Consider any Q \subseteq G(k) that priority separates pairs X \subseteq [k]. For any
subset Y \subseteq [k] of requests, let d(Y ) =

\sum 
i\in Y di denote its total demand. We will show

that d(X) \leq 2 log k
\alpha \cdot | Q| , which would imply the desired lower bound on the sparsest

priority-cut. Define graph H(i) := G(i) \setminus Q for each i \in [k]. The proof is based on
considering the connectivity structure in the sequence H(1) \subseteq H(2) \subseteq \cdot \cdot \cdot \subseteq H(k).
We say that at each time i \in [k] the request-pair (si, ti) arrives. At time j when
(sj , tj) arrives, the edges G(j)\setminus G(j - 1)\setminus Q are added to graph H(j - 1) to get graph
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H(j). Note that for each i \in X, the pair si-ti is separated in graph H(i), by the
definition of priority-cut Q.

To simplify the analysis, we assume (without loss of generality) that H(k) has a
single connected component: this can be ensured by adding a dummy request k + 1
at the end where the newly arriving edges G(k + 1) \setminus G(k), which are disjoint from
Q, contain a spanning tree.

For any subset of vertices V \prime \subseteq V , let N(V \prime ) = d(\{ i \in X : si, ti \in V \prime \} ) be the
total demand of requests in X that are induced in V \prime . We will show below by an
inductive argument that d(X) = N(V ) \leq 2 log k

\alpha | Q| . In the following, we refer to the
end points of request-pairs as terminals.

We now define a recurrence. Consider any i \in [k] and a connected component C
in H(i). Let j \leq i be the earliest time a request-pair arrived such that all vertices
in C became connected in graph H(j). Let C1, C2, . . . , C\ell be the components in
H(j - 1)[C] which merged to become connected as C, at time j. By definition, N(Ch)
equals the total demand of pairs in X that are contained in Ch for each h \in [\ell ]. Note

that N(C) equals
\sum \ell 

h=1 N(Ch) + d(I(C)), where I(C) denotes the set of requests in
X ``crossing"" \{ Ch\} \ell h=1, i.e., pairs having endpoints in two distinct components among
\{ Ch\} \ell h=1. For each h \in [\ell ] define

\bullet Qh = | \delta (Ch) \cap Q| , the number of edges in Q with exactly one endpoint in
Ch. Note that Qh = | \delta G(j - 1)(Ch)| because Ch is a connected component in
H(j  - 1) = G(j  - 1) \setminus Q;

\bullet Ih = \{ a \in X : a \leq j  - 1, | \{ sa, ta\} \cap Ch| = 1\} , the set of requests in X that
arrive by time j  - 1 and have exactly one endpoint in Ch.

We index the components \{ Ch\} \ell h=1 so that C1 contains the maximum number of

terminals. We claim that I(C) \subseteq \bigcup \ell 
h=2 Ih. To see this, note that each request in

I(C) must have exactly one endpoint in at least one component \{ Ch\} \ell h=2. Moreover,
I(C) \subseteq [j - 1] as each pair b \in I(C) is in X and is induced on C which gets connected
at time j: recall that sb and tb must be disconnected in graph H(b). Thus we have

N(C) \leq 
\ell \sum 

h=1

N(Ch) +

\ell \sum 
h=2

d(Ih).

We now use the prefix-sparsity condition to bound each d(Ih). Consider the cut
Ch in graph G(j - 1). The number of crossing edges

\bigm| \bigm| \delta G(j - 1)(Ch)
\bigm| \bigm| is at most Qh since

Ch is a maximally connected component of H(j  - 1) = G(j  - 1) \setminus Q. Moreover, Ih is
a subset of the requests with index at most j  - 1 crossing Ch. By the prefix-sparisty
assumption, the sparsity of cut Ch in graph G(j  - 1) is at least \alpha , i.e.,

\alpha \leq 
\bigm| \bigm| \delta G(j - 1)(Ch)

\bigm| \bigm| 
d (\{ a \in [j  - 1] : | Ch \cap \{ sa, ta\} | = 1\} ) \leq 

Qh

d(Ih)
.

Combining the above two inequalities, we obtain

(4.1) N(C) \leq 
\ell \sum 

h=1

N(Ch) +
1

\alpha 
\cdot 

\ell \sum 
h=2

Qh.

Consider expanding this recursion to obtain N(V ), which is possible as V is a
connected component inH(k). The base case of the recursion is singleton components,
i.e., N(\{ v\} ) = 0 for any v \in V . Consider the contribution of each edge e = (u, v) \in Q

separately. Whenever e participates in the expression 1
\alpha \cdot 
\sum \ell 

h=2 Qh in (4.1), the number
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vj2i+1 v(j+1)2i
· · ·

vj2i+2i+1 v(j+2)2i
· · · v2`−2i+1 v2`

· · ·v1 v2i
· · ·

Cliques of infinite capacity edges in G(i)

· · ·Unit capacity edges in G(0)

· · · · · ·

Request pairs in batch i

r

Fig. 1. Gap instance for prefix-sparsity and priority sparsest cut.

of terminals in the component containing either u or v doubles. This is because e must
have one endpoint in some \{ Ch\} \ell h=2 and we chose indices such that terminals(C1) \geq 
terminals(Ch) for all h \in [\ell ]. Thus, the number of times e contributes is at most
2 log2 k, and its total contribution is at most 2 log k

\alpha . It follows that N(V ) \leq 2 log k
\alpha \cdot | Q| .

This completes the proof.

Tight example. We now provide an example to show that the gap between
prefix sparsity and priority sparsest cuts can be \Omega (log k), thereby showing that The-
orem 4.4 is tight up to constant factors. For clarity in exposition, we assume that
request pairs arrive in batches of multiple request pairs per batch, and edges are also
correspondingly added in batches.

Consider the following priority multigraph. There are n = 2\ell leaf vertices, say
labeled v1, v2, . . . , vn, and one root vertex r. The graph G(0) consists of unit-capacity
edges (vj , r) for 1 \leq j \leq n. The graph G(1) then consists of infinite-capacity edges
between (v1, v2), (v3, v4), . . . , (vn - 1, vn). For each 1 \leq i \leq \ell , graph G(i) adds edges of
infinite capacity between any pair of vertices in \{ vj\cdot 2i+1, vj\cdot 2i+2, . . . , v(j+1)\cdot 2i\} for all
0 \leq j \leq 2\ell  - i  - 1. See Figure 1.

We now explain the request pairs which are introduced. In the batch correspond-
ing to G(0), for each 0 \leq a \leq 2\ell  - 1  - 1, there is a request pair with unit demand
introduced between v2a+1 and v2a+2. For each 1 \leq i \leq \ell  - 1, the ith batch corre-
sponding to G(i) has a request pair with unit demand between vj2i+a and v(j+1)2i+a

for all 1 \leq a \leq 2i and all even 0 \leq j \leq 2\ell  - i  - 1. Note that the total number of
request pairs is k := \ell \cdot 2\ell  - 1 as the requests in each batch correspond to a matching

on \{ va\} 2
\ell 

a=1. See also Figure 1.
This completes the construction of our instance. To finish the analysis, we show

that the priority sparsest cut value is at most 2/\ell , and that the prefix sparsity is at
least 1, thereby giving us a gap of \ell = \Theta (log k).

Indeed, note that the set of edges Q = \{ (vj , r) : 1 \leq j \leq n\} forms a priority-cut
which priority separates all the request pairs. To see this, consider graph G(i) for
any 0 \leq i \leq \ell  - 1. Note that each edge in G(i) \setminus Q is induced on some ``group""
\{ vj\cdot 2i+1, vj\cdot 2i+2, . . . , v(j+1)\cdot 2i\} for 0 \leq j \leq 2\ell  - i  - 1. Whereas, every request pair in
the ith batch is between vertices from different groups. Hence, all the request pairs
in the ith batch (for 0 \leq i \leq \ell  - 1) are separated in G(i) \setminus Q, giving us the desired
bound on the priority sparsest cut.

Next we note that the prefix sparsity is at least 1. Indeed, consider any i for
0 \leq i \leq \ell  - 1, and let us restrict our attention to the graph G(i) and all the requests
in the batches 0, 1, . . . , i. We now exhibit a concurrent multicommodity flow for these
requests in G(i). Indeed, for all request pairs in batches 0, 1, . . . , i  - 1, we directly
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send their flow using the infinite capacity edges present in G(i). For each request
(s, t) in the ith batch, we route the flow along the s-r-t path in G(0). Note that these

paths are edge disjoint as each vertex \{ va\} 2
\ell 

a=1 appears in exactly one request from
batch i. So all edge capacities are satisfied. As there is a feasible multicommodity
flow, the prefix sparsity (in fact, even its LP relaxation) must be at least one.

4.2. Priority multicommodity flows and priority sparsity. We can express
the maximum concurrent priority multicommodity flow problem as a linear program
(see below). Let F \ast denote the optimal value of this linear program. The dual of this
linear program (which also has optimal value F \ast ) turns out to be a natural relaxation
of the sparsest priority-cut problem. To bound the flow-cut gap, we show that an
optimal dual solution can be rounded to obtain an integral priority cut of sparsity
O(log2 k \cdot log log k)F \ast , which would establish an upper bound on the flow-cut gap for
priority multicommodity flows. From a technical perspective, our rounding uses the
region growing approach [22, 21] in a recursive manner to generate the priority-cut,
unlike traditional region-growing algorithms for sparsest cut. We remark that for the
static case (without priorities), a better \Theta (log k) flow-cut gap is known; however, this
relies on metric embedding ideas [34] which are not directly applicable in our setting
with priorities. Improving our upper bounds (or obtaining better lower bounds) for
the priority flow-cut gap is an interesting direction in its own right.

Priority multicommodity flow linear program and dual. We begin by
stating the linear program for priority multicommodity flow, and its dual problem.
In the linear programs below, \scrP i denotes the set of all si-ti paths in G(i). Also, in
the primal formulation, the variable f(p) denotes the amount of flow to be routed on
some path p.

max \gamma (PriorityFlowLP)

s.t.
\sum 
p\in \scrP i

f(p) \geq \gamma di \forall i \in [k],(4.2)

\sum 
p| e\in p

f(p) \leq 1 \forall e \in G(k),(4.3)

f(p) \geq 0 \forall i \in [k],\forall p \in \scrP i;(4.4)

min
\sum 

e\in G(k)

ze(PriorityCutLP)

s.t.

k\sum 
i=1

di\eta i \geq 1(4.5) \sum 
e\in p

ze \geq \eta i \forall p \in \scrP i \forall i \in [k],(4.6)

ze \geq 0 \forall e \in G(k),(4.7)

\eta i \geq 0 \forall i \in [k].(4.8)

The feasible solutions for the primal linear program are fractional routings such
that each request-pair i routes at least a \gamma -fraction of its demand between them in
graph G(i) (constraint (4.2)), and such that no edge supports flow more than one
(constraint (4.3)). This is precisely the priority multicommodity flow problem.
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In the dual, we have an LP relaxation of the sparsest priority-cut problem: if an
integral solution Q \subseteq G(k) priority-cuts k\prime request-pairs, we set \eta i = 1/k\prime for the
request-pairs which are priority separated, and ze = 1/k\prime for edges in Q and 0 other-
wise. The objective value is then the sparsity of the priority-cut Q. We now present
our main result of this section, which essentially establishes a bound on the flow-cut
gap.

Lemma 4.5. Given a fractional solution to (PriorityCutLP) of value F \ast , we can
obtain a priority cut of sparsity at most O(log k \cdot log(Dk) \cdot log log k)F \ast .

Here is an outline of the proof. Consider any fixed optimal solution (\eta \ast , z\ast ) to
(PriorityCutLP). First, we use a geometric scaling step (Claim 4.6) to reduce to a ``pri-
ority multicut"" problem where all requests in some subset must be priority cut. This
step incurs an O(log kD)-factor loss in the sparsity. Then we apply a variant of the
region growing method (Lemma 4.5) to round fractional priority multicut solutions,
which loses another O(log k \cdot log log k) factor.

We now define the priority multicut problem formally. An instance of priority
multicut is given by a sequence H(1) \subseteq H(2) \subseteq \cdot \cdot \cdot \subseteq H(r) of multigraphs with a
set of demand pairs \Pi = \{ (si, ti)\} ri=1. The goal is to find a minimum size subset
Q \subseteq H(r) of edges that priority cuts each pair, i.e., si-ti is disconnected in H(i) \setminus Q
for all i \in [r]. The natural LP relaxation for priority multicut is

min
\sum 

e\in H(r)

ze(MultiCutLP)

\sum 
e\in p

ze \geq 1 \forall i \in [r], \forall p \in \scrP i,(4.9)

ze \geq 0 \forall e \in H(r).(4.10)

Above, \scrP i is the set of si-ti paths in graph H(i).

Claim 4.6. Given any solution (\eta \ast , z\ast ) to (PriorityCutLP), there is a subset \Pi \subseteq 
[k] and solution z feasible to (MultiCutLP) for separating the requests in \Pi such that\sum 

e ze\sum 
i\in \Pi di

\leq 8 log(Dk) \cdot 
\sum 
e

z\ast e .

Proof. For all i \in [k], where \eta \ast i \leq 1/(2Dk) we reset \eta \ast i = 0. Notice that since
there are at most k variables \eta i, this results in a solution to (PriorityCutLP) where the
constraint (4.5) has

k\sum 
i=1

di \cdot \eta \ast i \geq 1 - k \cdot D \cdot 1

2Dk
\geq 1

2
.

In other words, (4.5) is satisfied to extent at least 1/2. We now geometrically group
the \eta \ast variables, according to classes

Ch = \{ i \in [k] | 2 - h < \eta \ast i \leq 2 - h+1\} for h \in \{ 1, 2, . . . , log(2Dk)\} .

Let C\ell be the group that maximizes
\sum 

i\in C\ell 
di\eta 

\ast 
i . Since there are at most log(2Dk)

groups and
\sum 

i di\eta 
\ast 
i \geq 1/2, we have 2 - \ell +1

\sum 
i\in C\ell 

di \geq 
\sum 

i\in C\ell 
di\eta 

\ast 
i \geq 1

(4 log(Dk)) , and

so we have
\sum 

i\in C\ell 
di \geq 2\ell  - 3/ log(Dk).
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Now, to get our instance for priority multicut and associated fractional solution
to (MultiCutLP), we simply set \Pi = C\ell , i.e., all the requests in C\ell need to be priority
cut. The graph sequence G(1) \subseteq G(2) \subseteq \cdot \cdot \cdot G(k) is also restricted to the requests in
\Pi . To ensure that every pair in C\ell is separated, we scale the metric \{ z\ast e\} e\in E by a
factor of 2\ell , i.e., set ze = min(1, 2\ell z\ast e ). It is now easy to see that z is a valid fractional
solution for (MultiCutLP) for separating the requests in \Pi = C\ell . Moreover,\sum 

e ze\sum 
i\in \Pi di

\leq 2\ell 
\sum 

e z
\ast 
e

2\ell  - 3/ log(Dk)
\leq 8 log(Dk) \cdot 

\sum 
e

z\ast e ,

which proves the claim.

We will use the fractional solution z to the priority multicut instance on \Pi (ob-
tained from Claim 4.6) to find a priority cut of low sparsity. We restrict the graph
sequence G(1) \subseteq G(2) \subseteq \cdot \cdot \cdot G(k) to the requests in \Pi : let H(1) \subseteq H(2) \subseteq \cdot \cdot \cdot H(r)
denote this subsequence, where r = | \Pi | . To reduce notation we also renumber the
requests so that the requests in \Pi are numbered 1, 2, . . . , r in the order of their arrival.

We now proceed with our rounding algorithm. The next step relies on a variant of
the region-growing technique [33, 22, 21]. Before describing the rounding, we introduce
some useful notation. Given a graph L \subseteq H(r), let dL denote the shortest-path metric
defined by \{ ze : e \in L\} , i.e., dL(u, v) is the length of the shortest path between u and
v with weight z only on edges of L. For any vertex v \in V and \rho > 0, define

BL(v, \rho ) :=
\bigl\{ 
u \in V : dL(v, u) < \rho 

\bigr\} 
, the ball of radius \rho around v in metric dL;

L(v, \rho ) as the induced graph of L on vertices BL(v, \rho );

\delta L(v, \rho ) = \{ (u,w) \in L : u \in BL(v, \rho ), w /\in BL(v, \rho )\} , the edges cut by BL(v, \rho );

\scrV L(v, \rho ) :=
\sum 

e\in L(v,\rho )

ze +
\sum 

(u,w)\in \delta L(v,\rho )

\bigl( 
\rho  - dL(v, u)

\bigr) 
+
\scrV \ast 

r
\cdot terminals

\bigl( 
BL(v, \rho )

\bigr) 
,

the volume of ball BL(v, \rho ), where \scrV \ast =
\sum 

e\in H(r) ze is the total LP volume.
We will use the following technical lemma.

Lemma 4.7 (see [21]). For any i \in [r] and L \subseteq H(r) with dL(si, ti) \geq 1, there
exists a value 0 < \rho < 1/2 such that

| \delta L(si, \rho )| \leq 4 log log r \cdot \scrV L(si, \rho ) \cdot log
\biggl( 
2 \cdot \scrV L(si, 1/2)

\scrV L(si, \rho )

\biggr) 
.

In rounding solution z of (MultiCutLP), we will recursively generate the priority
multicut Q. Recall that we have now restricted ourselves to the requests in \Pi that are
renumbered [r] = \{ 1, 2, . . . , r\} . The input to our recursive procedure is an index i \in [r]
and vertex subset U \subseteq V such that i is the maximum index with both si, ti \in U . Let
\Pi U denote the set of all requests in \Pi with both endpoints in U . The initial call is
with i = r and U = V , and the solution Q = \emptyset initially. For the recursive step, given i
and U , we consider the induced graph L = H(i)[U ]. Note that dH(i)(si, ti) \geq 1 by the
feasibility of fractional solution z. Using the fact that both si, ti \in L \subseteq H(i) we have
dL(si, ti) \geq 1. Let Z :=

\sum 
e\in L ze +

\scrV \ast 

r \cdot terminals(U) denote the volume of subgraph
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L. Applying Lemma 4.7 to both si and ti, we find two radii \rho s, \rho t <
1
2 such that

| \delta L(si, \rho s)| \leq 4 log log r \cdot \scrV L(si, \rho s) \cdot log
\biggl( 

2 \cdot Z
\scrV L(si, \rho s)

\biggr) 
and

| \delta L(ti, \rho t)| \leq 4 log log r \cdot \scrV L(ti, \rho t) \cdot log
\biggl( 

2 \cdot Z
\scrV L(si, \rho )

\biggr) 
.

Above we used the fact that \scrV L(si, 1/2) \leq Z since ball BL(si, 1/2) \subseteq L; simi-
larly, \scrV L(ti, 1/2) \leq Z. Note that the balls BL(si, \rho s) and BL(ti, \rho t) are disjoint
as dL(si, ti) \geq 1 and \rho s, \rho t < 1

2 . So one of them, say the ball around si, has vol-
ume X := \scrV L(si, \rho s) \leq Z/2. We update the solution Q \leftarrow Q \cup \delta L(si, \rho s). Let
U1 \leftarrow BL(si, \rho s) and U2 \leftarrow U \setminus BL(si, \rho s). Note that all request-pairs j \in \Pi U which
have exactly one endpoint in U1 are priority cut by \delta L(si, \rho s); in fact request j is
separated even in graph H(i) \supseteq H(j). The remaining pairs of \Pi U are induced on
either U1 or U2, and we handle them recursively in the two calls with U1 and U2

(along with the indices of the maximum induced requests). Let X \prime and Y denote the
volumes of the induced graphs H(i)[U1] and H(i)[U2], on which we recurse.2 Note
that X \prime \leq X and Y \leq Z  - X.

In order to bound the total cost of our solution Q we make use of a recursive
bound from [40, 21]. For any value 0 \leq x \leq \scrV \ast , let f(x) denote the maximum
cost of the priority cut computed by this procedure on any subgraph of volume x.
Note that f(x) = 0 for x < 2\scrV \ast 

r since this would correspond to a subgraph with
at most one terminal, i.e., containing no induced request-pair. We will show that
f(x) \leq 8 log log r \cdot x \cdot log

\bigl( 
2r\cdot x
\scrV \ast 

\bigr) 
. From the preceding discussion, for any volume Z

subgraph we have

f(Z) \leq max
\scrV \ast 
r \leq X\leq Z

2

\biggl( 
4 log log r \cdot X \cdot log 2Z

X
+ f(X) + f(Z  - X)

\biggr) 
.

Inductively substituting f(X) \leq 8 log log r \cdot X \cdot log
\bigl( 
2rX
\scrV \ast 

\bigr) 
and similarly for f(Z  - X),

one can check directly (usingX \leq Z/2) that the expression above is at most 8 log log r\cdot 
Z \cdot log

\bigl( 
2rZ
\scrV \ast 

\bigr) 
.

Clearly the total cost of Q is at most f(3\scrV \ast ), which by the above calculation is
O(log r \cdot log log r) \cdot \scrV \ast = O(log r \cdot log log r) \cdot \sum e\in H(r) ze. Moreover, all demands in \Pi 
are separated. So the sparsity of priority-cut Q is

O(log r \cdot log log r) \cdot 
\sum 

e\in H(r) ze\sum 
i\in \Pi di

\leq O(1) log k \cdot log(Dk) \cdot log log k
\sum 
e

z\ast e ,

where the inequality is by Claim 4.6. This completes the proof of Lemma 4.5.
An immediate consequence of Lemma 4.5 is the following.

Theorem 4.8. The worst-case ratio between sparsest priority-cut and maximum
priority flow is O(log k \cdot log(kD) \cdot log log k), where D is the max-to-min demand ratio.

Proof. Given any instance \scrI of priority multicommodity flow (Definition 4.1), let
\scrI \prime denote the instance with all demands and capacities scaled down by the minimum
demand mini di. It is clear that the sparsest priority-cut remains the same in both
\scrI and \scrI \prime ; a similar observation is true for the maximum priority flow. Note that the

2The actual volumes may be even smaller as the recursive call on U1 (similarly U2) has volume
H(j)[U1], where j < i is the maximum index with sj , tj \in U1.
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maximum demand in \scrI \prime is D = maxi di/mini di. We can now apply Lemma 4.5 to \scrI \prime 
to obtain an O(log k \cdot log(kD) \cdot log log k) ratio between the priority-cut and flow. So
we obtain the same ratio for instance \scrI also.

4.3. Removing dependence on demand values. We now show that the de-
pendence on the maximum demand can be eliminated in Theorem 4.8. The only part
in our analysis which has the dependence on D is in Claim 4.6, which reduces priority
sparsest cut to multicut. Our idea to eliminate the dependence on D is to (i) break
up the original instance into several subinstances, such that the ratio of max-to-min
demand is polynomial in k in each subinstance, and (ii) combine the flow solutions
across all subinstances while incurring only an extra constant factor in congestion.
This high-level approach is similar to that of Plotkin and Tardos [36] for flow-cut
gaps in the static setting where earlier bounds of O(log k logD) [31] were improved to
O(log2 k). However, the specific flow combination used in [36] is inapplicable in the
priority setting. So we provide a different method below.

Theorem 4.9. The worst-case ratio between sparsest priority-cut and maximum
priority flow is O(log k \cdot log n \cdot log log k), where n is the number of vertices.

Proof. By assigning edge capacities, we assume (without loss of generality) that
the number of edges in each graph G(i) is at most m = O(n2). Using LP extreme
point properties, it follows that any flow for any request i \in [k] can be decomposed
into at most m nonzero flow paths.

As a first step, we break up the demands into classes, where

\scrD h = \{ i \in [k] : (2m)4h \leq di < (2m)4(h+1)\} \forall h \in \BbbZ .

Note that the ratio of maximum demand to minimum demand in each class is at
most m4. By Theorem 4.8, the flow-cut ratio for all requests within any class is
\rho := O(log k \cdot log n \cdot log log k). Hence there is a priority multicommodity flow \scrF h

routing all demands in each class h with congestion \rho .
It suffices to obtain a routing of all the demands with congestion O(\rho ). We

combine flows in the following manner. We combine all the odd classes into one flow
of O(\rho ) congestion, and all the even classes into another flow of O(\rho ) congestion.
Putting the two together would imply the desired flow of O(\rho ) congestion for all
classes.

To this end, we now show how to combine the flows of the odd classes into one
common flow (handling even classes is identical). Here, we use the fact that the
number of nonzero flow paths for each request in class \scrF h is at most m. We simplify
each flow \scrF h in the following manner: for each i \in \scrD h, simply ignore all flow paths
carrying less than di/(2m) flow. Note that after this, the total flow routed for each
demand i is still at least di/2. Moreover, each edge carrying nonzero flow in \scrF h in
fact carries a flow of at least (2m)4h/(2m). Now we observe that even if we simply
add all flows into a single flow, the overhead in congestion would be small. Formally,
consider any edge e and let h denote the largest class whose demands route flow
using e. Then, the total utilization of edge e by demands of all odd classes before
h is L<h

e \leq k \cdot m4(h - 1) \leq m4h - 3. (Note that as we are only combining odd classes,
all demands from previous classes are at most (2m)4(h - 1).) On the other hand, the
utilization of e in just \scrF h is at least (2m)4h - 1 \geq 1

2 \cdot L<h
e . So we can combine all odd

classes with only a factor 4 increase in congestion.

5. Online algorithm. In this section we provide a randomized online algorithm
for EERP with competitive ratio O(log3\alpha +1 k\cdot (log log k)2\alpha ), which proves Theorem 1.2.
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For better clarity in presentation, we will first assume that k is known up front to
the algorithm, and in section 5.2 we discharge this assumption to make the algorithm
truly online. Recall that we use \lambda = O(log k) as in the offline algorithm; this value is
determined since we assume we know the value of k.

Similarly to the offline algorithm, our overall online algorithm comprises two
stages: in the first ``buying"" stage, we decide which edges to power on (or buy) and
incur the static cost, in an online manner. Once this is done, the natural thing to do
would be to route all the requests using the edges bought, to minimize the dynamic
power of the routing. Note that the waterfilling algorithm is naturally suited for
solving this DynPM problem in an online manner. We perform the buying stage in
steps 1 and 2 below, and the final routing in step 3 below.

Our algorithm separately runs two instances of the online waterfilling algorithm
(Theorem 2.1). The first one routes the hallucinated demands to determine the edges
to buy, and the second one actually routes all the original demands. The first instance
is called \scrI hal and the second is called \scrI act. Initially, both are empty instances.

In response to request-pair (si, ti) the algorithm takes the following steps:
1. Augmenting the Steiner backbone: We run an online algorithm for
Steiner forest to connect si and ti, where the edges have costs \{ ce : e \in E\} .
2. Augmenting the hallucination backbone: Request i \in [k] hallucinates
a demand of q \cdot Bi units, where Bi \sim Binomial(di,

\lambda 
q ). We feed the hallucinated

demand to the online waterfilling algorithm (Theorem 2.1), for instance, \scrI hal,
which updates its routing \scrH to add an unsplittable routing of q \cdot Bi units of flow
between si and ti. Let GH(i) \supseteq GH(i - 1) denote the subgraph of all edges used
in \scrH .
3. Routing: Define graph GF (i) := GS(i) \cup GH(i), and let \scrP i denote the set
of all si-ti paths in GF (i). Now feed the actual demand (si, ti, di) to the online
waterfilling algorithm (Theorem 2.1) for instance \scrI act to find a path Pi \in \scrP i.
Output Pi as the routing of request i.

5.1. Analysis. The outline of the analysis closely mirrors that of section 3, with
the main difference being that we use the bounds established in section 4 on the flow-
cut gap of priority multicommodity flows instead of the classical flow-cut gaps we
used in section 3. We now show that our online algorithm, which knows k upfront, is
O
\bigl( 
log\alpha +3 k \cdot (log log k)\alpha 

\bigr) 
-competitive for EERP. The high-level approach is the same

as for the offline problem.
Static power of \bfitG \bfitS (\bfitk ). To maintain an online Steiner forest, we use the

O(log k)-competitive algorithm from [12]. This allows us to bound the static power
of edges in GS(k) by O(log k) \cdot Opt.

Static power of \bfitG \bfitH (\bfitk ). We bound the static power for the hallucination
backbone by its dynamic power (as each hallucinated demand is at least q), which
in turn can be bounded by O(log\alpha k) \cdot Opt, using an argument analogous to that of
Lemma 3.1.

Dynamic power. The analysis of the dynamic power of the algorithm's routing
is significantly more involved than in the offline case. Again, using Theorem 2.1, it
suffices to prove the existence of a routing of low dynamic power, where each request
i is routed on a path from \scrP i, which is the set of all si-ti paths in the current graph
GF (i). But how do we ensure that there exists a good (offline) routing with the
additional restriction on the edges allowed for each request? In the offline algorithm,
because the backbone graph was static, we could appeal to the classic multicommodity
flow-cut gap: this is no longer applicable in the online case. Indeed, this is the main
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difference from the analysis of the offline algorithm, and we resort to the bounds we
established on the flow-cut gap of priority multicommodity flows in Theorem 4.9.

Lemma 5.1. The expected static power of the backbone GF (k) is O(\lambda \alpha ) \cdot Opt.
Proof. The proof is identical to Lemma 3.2 in the offline case, except that the

static power of GS(k) is O(log k) \cdot Opt due to the online Steiner forest algorithm.

In order to show that the dynamic power of our routing is small, we need to show
that there is a low-congestion priority multicommodity flow on the backbone edges.
Formally, let \{ He(i) : e \in E\} denote the edge loads induced by the routing \scrH after
arrival of request pair si-ti. Then we define the following edge capacities:

\widehat qe(i) = \biggl\{ He(i) if e \in GF (i) \setminus GS(i),
He(i) + \lambda q if e \in GS(i),

\forall e \in E.

Note that only edges in GF (i) = GS(i) \cup GH(i) have nonzero capacity. Also, note
that the values \widehat qe(i) are monotonically nondecreasing over the value of i, since the
routing \scrH is an online routing which doesn't reroute any flows, and GS is the output
of an online Steiner forest algorithm which only adds edges. Finally, similarly to the
offline algorithm, we can bound \widehat qe(k)\alpha \leq 2\alpha 

\bigl( 
He(k)

\alpha + \lambda \alpha \sigma \cdot 1e\in GS(k)

\bigr) 
, so we have

(5.1)
\sum 
e\in E

ce\BbbE [\widehat qe(k)\alpha ] \leq 2\alpha 

\left(  \sum 
e\in E

ce\BbbE [He(k)
\alpha ] + \sigma \lambda \alpha \cdot 

\sum 
e\in GS(k)

ce

\right)  = O(\lambda \alpha +1) \cdot Opt,

where the last inequality uses (i) the static power of GS(k) is \sigma \cdot \sum e\in GS(k) ce \leq 
O(log k) \cdot Opt due to the online Steiner forest algorithm and (ii) the expected dynamic
power of \scrH is

\sum 
e\in E ce\BbbE [He(k)

\alpha ] = O(\lambda \alpha ) \cdot Opt by Lemma 3.1.
Equipped with the above notations, we show that the prefix-sparsity of the graphs

GF (1) \subseteq GF (2) \subseteq \cdot \cdot \cdot \subseteq GF (k) is large w.r.t the original demands, where an edge
e \in GF (i) has capacity \widehat qe(i). This is analogous to Lemma 3.3 for the offline setting.

Lemma 5.2. With probability at least 1 - O(1/k2\alpha ), the prefix-sparsity of the se-
quence of graphs GF (i) (equipped with edge capacities \{ \widehat qe(i)\} ) is at least \lambda /3.

Proof. Fix some i. Since all pairs in [i] = \{ 1, 2, . . . , i\} have hallucinated indepen-
dently, we can apply Lemma 3.3 and conclude that the sparsity of G(i) is at least \lambda /3
with requests [i]. The lemma follows by a simple union bound over all i \in [k].

Corollary 5.3. With probability at least 1 - k - 2\alpha , there exists a fractional pri-
ority routing that respects capacities O(log2 k \cdot log log k)\times \widehat q.

Proof. We first argue that it suffices to exhibit a good priority multicommodity
flow in the following sequence of virtual graphs \scrB (1) \subseteq \scrB (2) \subseteq \cdot \cdot \cdot \subseteq \scrB (k) with \scrB (i)
defined on vertices V with the following edges and capacities:

\bullet Steiner edges: each edge e \in GS(i) has capacity \=qe = \lambda q in \scrB (i).
\bullet Hallucinated edges: for each j \in [i] we add a direct edge (sj , tj) with capacity

\=q(sj ,tj) = q \cdot Bj in \scrB (i).
Note that each hallucinated edge (sj , tj) in \scrB (i) corresponds to an actual sj-tj path
carrying q \cdot Bj flow in the actual hallucinated routing \scrH (based on which we assign
the virtual capacities \widehat qe in the first place). Hence, if we find a low-congestion priority
multicommodity flow in \scrB , then it is easy to translate it into a low-congestion priority
flow in GF with virtual capacities \widehat qe. Finally, we make another simplification which
again does not alter the flows: for any degree two Steiner vertex v in \scrB (k), where
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both its incident edges (u, v) and (v, w) are from the Steiner forest GS(k), short
cut these edges, i.e., remove (u, v) and (v, w), and add edge (u,w) with capacity
\lambda q. By repeatedly doing this, we will end up with a graph without such degree two
Steiner vertices, which will imply that the total number of edges in \scrB (k) (and hence
in all its subgraphs) is at most O(k). Now we can utilize Theorem 4.9 to obtain
an O(log2 k \cdot log log k) flow-cut gap for such instances. Combining this fact with
Lemma 5.2 and Theorem 4.4 then completes the proof.

Lemma 5.4. The expected dynamic power of the online algorithm's routing is

O(1)\times 
\Biggl( 
\BbbE [Static power of GF ] + \rho \alpha 

\sum 
e

ce\BbbE [\widehat q\alpha e ]
\Biggr) 
\leq O(\lambda \alpha +1 \rho \alpha ) \cdot Opt,

where \rho = O(log2 k \cdot (log log k)).
Proof. This proof is identical to Lemma 3.5 (for the offline problem), where we
\bullet use Corollary 5.3 to get the existence of a fractional routing respecting ca-
pacities \rho \cdot \widehat q (instead of Corollary 3.4);

\bullet use Lemma 5.1 to bound the static power (instead of Lemma 3.2);
\bullet use (5.1) to bound \BbbE [\widehat q\alpha e ] (instead of (3.1)); and
\bullet use online guarantee from Theorem 2.1 for minimizing dynamic power.

Combining Lemmas 5.1 and 5.4, we obtain the following.

Theorem 5.5. There is an O(log3\alpha +1 k \cdot (log log k)\alpha )-competitive randomized on-
line algorithm for EERP when the number k of requests is known.

5.2. When number of requests is unknown. Our algorithm extends easily
to the truly online setting when the final number k of request-pairs is not known
in advance. The only place where our online algorithm relies on knowledge of k
is in the hallucination step. Recall that each request i hallucinates a demand of
q \cdot Binomial(di, \lambda /q) units, where the parameter \lambda = O(log k). Let \lambda (i) = O(log i),
where the constant factor in the big-O is the same as for \lambda . We now modify the
online algorithm as follows. When request-pair i arrives, we hallucinate a demand of
q \cdot Binomial(di, \lambda (i)/q) units. Subsequently, upon the arrival of each request j \geq i,
we ensure that request-pair i has total hallucinated demand of q \cdot Binomial(di, \lambda (j)/q)
units. This can be done easily by resampling i's hallucinated demand (with the
appropriate probability) after each request arrival j > i.

We will show that the competitive ratio of this algorithm is only an O((log log k)\alpha )
factor more than that in Theorem 5.5. Recall (from section 5.1) the definitions of
capacities \widehat q and graphs GF (1) \subseteq GF (1) \subseteq \cdot \cdot \cdot GF (k). We continue to have Lemma 5.1
and (5.1). However, the prefix-sparsity condition (Lemma 5.2) is no longer true, as
our sampling probabilities are now smaller. We have the following (weaker) version
of Lemma 5.2 (the proof is identical).

Lemma 5.6. For each i \in [k] with probability at least 1  - O(1/i2\alpha ), the sparsity
of multigraph G(i) with demands \{ (sj , tj)\} ij=1 is at least \Omega (log i).

We first analyze the algorithm assuming the following.

(5.2) Assume that for each i \in [k], the sparsity of G(i) is at least log i.

Later we show how to handle the (low probability) case where (5.2) does not hold.
By (5.2), the prefix-sparsity of the sequence GF (1) \subseteq GF (2) \subseteq \cdot \cdot \cdot G(k) is \Omega (1).

Using this in Theorem 4.4 (instead of the log k prefix-sparsity from Lemma 5.2) we
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immediately obtain that the sparsest priority-cut is \Omega (1/ log k). We can actually
obtain a better bound by modifying the proof of Theorem 4.4, as shown below.

Theorem 5.7. Consider a sequence of multigraphs G(1) \subseteq G(2) \subseteq \cdot \cdot \cdot G(k) with
requests \{ (si, ti, di) : i \in [k]\} . Assume that for each i \in [k], the sparsity of multigraph
G(i) with requests indexed \{ 1, 2, . . . , i\} is at least log i. Then the sparsest priority cut
is \Omega ( 1

log log k ).

Proof. We only provide an outline as the proof is almost identical to that of
Theorem 4.4. The difference is in inequality (4.1) which now becomes

(5.3) N(C) \leq 
\ell \sum 

h=1

N(Ch) +
1

log j
\cdot 

\ell \sum 
h=2

Qh.

Recall that here C is a connected component that forms at time j (i.e., when request
j arrives) due to the merging of components \{ Ch\} \ell h=1 in graph H(j  - 1). Also C1

is the component in \{ Ch\} \ell h=1 with the maximum number of terminals. This change
in the recurrence for N(\cdot ) affects the total contribution of each edge e = (u, v) \in Q
in the expansion of

\sum 
D:comp(H(k)) N(D). Recall that whenever e contributes to this

sum, the number of terminals in the component containing either u or v doubles.
Consider the total contribution of e due to components containing u (the case of v is
identical). Let 2 \leq T1 \leq T2 \leq \cdot \cdot \cdot \leq T\beta \leq 2k denote the number of terminals in u's
component whenever e contributes due to u. Recall that the number of terminals in
u's component at least doubles each time, i.e., Tb+1 \geq 2 \cdot Tb for all 1 \leq b < \beta . Also,
note that if u's component has Tb terminals then the total number of terminals at
that time jb \geq Tb, so e's contribution at this time is 1

log jb
\leq 1

log Tb
. Therefore, e's

total contribution is at most

\beta \sum 
b=1

1

log jb
\leq 

\beta \sum 
b=1

1

log Tb
\leq 

\beta \sum 
b=1

1

log (2b)
=

\beta \sum 
b=1

1

b
\leq log(2 log k).

This completes the proof of Theorem 5.7.

Exactly as in Corollary 5.3, we obtain the following.

Corollary 5.8. Assuming (5.2), there exists a fractional priority routing that
respects capacities O(log2 k \cdot log log k)\times \widehat q.
The proof is identical to Corollary 5.3, where we use Theorem 5.7 (instead of Theo-
rem 4.4) along with the flow-cut gap (Theorem 4.9).

We now bound the overall expected dynamic power.

Lemma 5.9. The expected dynamic power of the online algorithm's routing is

O(1)\times 
\Biggl( 
\BbbE [Static power of GF ] + \rho \alpha 

\sum 
e

ce\BbbE [\widehat q\alpha e ]
\Biggr) 
\leq O(\lambda \alpha +1 \rho \alpha ) \cdot Opt,

where \rho = O(log2 k \cdot (log log k)2).
Proof. This proof is very similar to Lemmas 5.4 and 3.5. Let

I = \{ i \in [k] : graph G(i) has sparsity at least log i\} .

Then, if we restrict ourselves to the requests in I then (5.2) is satisfied. Now, exactly
as in Lemma 5.4 (using Corollary 5.8, Lemma 5.1, Inequality (5.1), and Theorem 2.1),
the expected dynamic power to route I is O(\lambda \alpha +1 \rho \alpha ) \cdot Opt.
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Now we bound the expected cost due to requests \=I = [k] \setminus I. We will bound the
optimal dynamic power of instance \scrI act restricted to \=I. To this end, consider the
feasible routing that sends di units along the unique si - ti path in GS for each i \in \=I.
The expected dynamic cost of this routing is at most\Biggl( \sum 

e\in GS

ce

\Biggr) 
\cdot 

k\sum 
i=1

Pr[i \in \=I] \cdot (iq)\alpha \leq 
\Biggl( \sum 

e\in GS

ce

\Biggr) 
\cdot 

k\sum 
i=1

i - 2\alpha \cdot (iq)\alpha \leq O(1) \cdot \sigma \cdot 
\sum 
e\in GS

ce,

where the first inequality uses Lemma 5.6. So the expected optimal dynamic power of
\scrI act restricted to \=I is at most O(1) times the static power of GS . Using Theorem 2.1,
the expected dynamic power of our online algorithm on \=I is also O(1) times the static
power of GS .

Combining the costs due to requests in I and \=I, the lemma follows.

Using Lemmas 5.1 and 5.9, we obtain the following.

Theorem 5.10. There is an O(log3\alpha +1 k \cdot (log log k)2\alpha )-competitive randomized
online algorithm for EERP.

6. Multicommodity CapND. In this section, we consider the (uniform) multi-
commodity (CapND) problem as studied by [3]. The CapND problem is also called the
fixed-charge network design problem in the operations research literature. In uniform
CapND, we are given an undirected multigraph G = (V,E) with each edge e \in E
having a cost ce and capacity q \geq 0 (the same across all edges). We are also given
a collection of k request-pairs \{ (si, ti) : i \in [k]\} each with demand di \geq 0. The goal
is to choose a minimum cost subgraph H \subseteq G such that H can support a concur-
rent multicommodity flow of the request-pairs. Let m = | E| denote the number of
edges in G. Unlike the earlier sections, the flow for each request does not have to be
unsplittable. In the case that each demand is at most q, we will in fact see that our
algorithm guarantees an unsplittable routing even if the optimum is splittable. We
assume (without loss of generality) that there is at most one request between each
pair of vertices, so k \leq | V | 2 \leq m2.

We only consider the online version of this problem where the requests arrive over
time, and one needs to buy edges in an online fashion so that the current set of edges
can support the desired multicommodity flow. We will prove Theorem 1.3, i.e., an
(O(logm), O(log2 m)) bicriteria competitive ratio. An (\alpha , \beta ) bicriteria performance
guarantee means that the solution has (i) cost at most \alpha times the optimum (with
edge capacities q) and (ii) the total flow on each chosen edge is at most \beta \cdot q. For the
(simpler) offline version, we can obtain a slightly better (O(logm), O(logm)) bicriteria
approximation algorithm as described in the conference version of this paper [5]; we
do not discuss this result here.

At a high level, our algorithm is similar to those in sections 3 and 5. The difference
is that we now try to minimize congestion (which corresponds to the maximum load
on edges) rather than the energy cost (which corresponds to the sum of \alpha powers of
these loads). We first consider (in section 6.1) the special case when each demand is
at least the capacity q. We then reduce the general case to this special case using the
hallucination idea (in section 6.2).

6.1. Online CapND for demands at least \bfitq . As a first step, note that if each
demand is at least q, then we can ensure that each demand di is an integer multiple
of q by considering demand \lceil di

q \rceil \cdot q this only loses a constant factor in the congestion
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bound. Further, each request (si, ti, di) can be split into \lceil di

q \rceil many requests of demand
q each with the same terminals si and ti. Hence, for the remainder of the subsection,
we assume that all demands are actually equal to q, the common edge capacity. Note
that we may assume that the total demand

\sum k
i=1 di \leq mq, as otherwise the CapND

instance must be infeasible (the total available capacity is mq). This means that the
number of demand-q requests after the above modification is at most k+m, which is
polynomial. The requests (si, ti) arrive online, and the algorithm must irrevocably buy
edges so that, at any point, the subgraph bought by the algorithm can simultaneously
support a (splittable) multicommodity flow of q demands for each request. We refer
to this special case of CapND as CapND\sansq .

A closely related problem is min-cost circuit routing that was considered in [9].
Here, the routing for each request is unsplittable (rather than splittable) and the cost
of the solution is the sum of costs over all paths used in the routing.

Theorem 6.1 (see [9]). There is an (O(1), O(logC)) bicriteria competitive al-
gorithm for min-cost circuit routing, where C =

\sum 
e\in E ce is the total cost of edges.

We note that this result also holds when we compare it to the splittable optimal
solution to min-cost circuit routing: the proof from [9] extends immediately by av-
eraging over all the flow paths in the splittable optimum. Moreover, for the CapND\sansq 

problem (where all demands and capacities are q), the cost guarantees carry over di-
rectly from the min-cost circuit routing problem, so we obtain an (O(1), O(logC))
bicriteria competitive algorithm for CapND\sansq . We will refer to this algorithm as
\scrA \sansC \sansN \sansD .

We can obtain an improved (O(1), O(logm)) bicriteria guarantee for CapND\sansq 

using a standard guess-and-double approach. At any point let B denote an upper
bound on the optimal cost (initially this equals the minimum edge cost). Then, we
simply ignore edges of cost more than B, and update the cost of any edge e with cost
ce \leq B/m to be equal to \^ce = B/m. Note that for the modified instance, all edge
costs \^c vary between B/m and B, so we may assume (by scaling) that the maximum
edge cost is m, which implies that C \leq m2. We then pass the modified instance to
algorithm \scrA \sansC \sansN \sansD and return its output. We double the guess B whenever algorithm
\scrA \sansC \sansN \sansD ``fails,"" i.e., either its cost exceeds O(1) \cdot B or the congestion exceeds O(logm).
Whenever B is doubled, we run the algorithm from Theorem 6.1 on the entire input
sequence again (this time with the new value of B). Note that this is still a valid
online algorithm for CapND\sansq as we do not need to commit to routing paths in an
online fashion. Clearly, the total cost incurred is O(1) times the optimal cost of
CapND\sansq . By considering only the edges bought in the last run of the algorithm from
Theorem 6.1, it is clear that there exists a routing for all requests with congestion
O(logm). So we obtain the following.

Lemma 6.2. There is an (O(1), O(logm)) bicriteria competitive algorithm for
uniform CapND when all demands are at least q.

We will refer to this algorithm as \scrA \sansC \sansN \sansD .

6.2. Online CapND. We now consider the general demands setting. As a first
step, we split the instance into two subinstances, one which handles all requests
(si, ti, di) such that di \geq q, and the other which handles the requests (si, ti, di) such
that di < q. If we separately solve each of the subinstances and combine them, the
total cost and congestion would just add up. So this splitting only incurs a factor 2
overhead. We can solve the first subinstance (demands at least q) using algorithm
\scrA \sansC \sansN \sansD . For the remainder of this section, we assume that all demands are at most
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q. We handle this case by using our hallucination idea to randomly scale up some
demands to integer multiples of q, after which we can use algorithm \scrA \sansC \sansN \sansD .

Online CapND Algorithm when all demands are at most \bfitq .
1. Constructing the Steiner backbone \bfitG \bfitS (\bfiti ). Solve the online Steiner
forest instance on graph G = (V,E) with pairs \{ (si, ti)\} ki=1 using the O(log k)-
competitive online algorithm from [12]. Let GS(i) \supseteq GS(i - 1) denote the resulting
solution, maintained incrementally.
2. Constructing the hallucination backbone \bfitG \bfitH (\bfiti ). Request i \in [k] hal-
lucinates a demand of q \cdot Bi units, where Bi \sim Binomial(di,

\lambda 
q ) and \lambda = \Theta (log k).

Let \widetilde G denote the network obtained from G by replacing each edge e \in E by
\rho = O(logm) many parallel ``copies,"" each of cost ce and capacity q. Feed the

hallucinated demand in network \widetilde G to the online algorithm \scrA \sansC \sansN \sansD , which maintains
subgraph \widetilde GH(i) incrementally. Let GH(i) denote the subgraph of G that contains

an edge e \in E if and only if \widetilde GH(i) contains any copy of e.
3. Output. Return GS(i) \cup GH(i) as the final solution.

6.3. Analysis. The analysis proceeds along the same lines as in section 3. We
prove the following lemmas, the combination of which will prove Theorem 1.3.

Lemma 6.3. The cost of the Steiner forest GS is at most O(log k) \cdot Opt.
Proof. Since the optimal solution supports a multicommodity flow between all

the request pairs, it contains a Steiner forest connecting each si and ti. The lemma
now follows as we use an O(log k)-competitive algorithm for Steiner forest [12].

Lemma 6.4. With high probability, graph GH(k) has cost O(logm)Opt and can
route all the hallucinated demands with edge congestion O(log2 m).

Proof. The proof is similar to that of Lemma 3.1, except that we now need to
bound the maximum load on any edge as opposed to the total \alpha th power of the
loads. Consider the optimal CapND solution along with a splittable routing \scrS i for
each request i; note that the total load on any edge in this solution is at most q.
Let \scrO denote the following random routing: for each request i, sample Bi many si-ti
paths from \scrS i and send demand of q along each of these paths. We will show that \scrO 
corresponds to a solution to the hallucinated CapND instance with cost at most Opt
and congestion at most \rho = O(logm).

Since we only use edges of the optimal CapND solution, the cost of edges used
by \scrO is at most Opt. Moreover, the load on any edge (under the routing \scrO ) is the
sum of independent Bernoulli random variables (scaled by q) with mean at most
\lambda q = O(logm) \cdot q. So a straightforward application of Chernoff bounds implies that
the maximum load on any edge is at most O(logm) \cdot q with high probability. Consider

now the following solution to the hallucinated CapND instance on network \widetilde G. For all
e \in E, if \scrO sends \theta \cdot q flow through e then the solution contains \theta copies of edge e.
Therefore, the optimal value of the hallucinated CapND instance is at most \rho \cdot Opt.

Lemma 6.2 now implies that algorithm \scrA \sansC \sansN \sansD obtains (with high probability)

a solution to the hallucinated instance (in \widetilde G) with cost O(\rho ) \cdot Opt and congestion
O(logm). This translates to a solution in the original network G with cost O(logm) \cdot 
Opt and congestion O(\rho logm) = O(log2 m).

Lemma 6.5. With high probability, graph GS(k) \cup GH(k) can support routing all
demands with congestion O(log2 m).
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Proof. Much like the proof of Lemma 3.3, we consider a virtual graph \scrB on vertices
V with the following edges and capacities:

\bullet Steiner edges: each edge e \in GS(k) has capacity \=qe = \lambda q.
\bullet Hallucinated edges: for each i \in [k] edge (si, ti) has capacity equal to its

hallucinated demand, i.e., \=q(si,ti) = q \cdot Bi.
Using an argument identical to that of Lemma 3.3, we can show that the sparsity of
\scrB w.r.t. the original demands is at least \lambda = \Omega (log k) with high probability. In this
event, by using the flow-cut gap for multicommodity flows [34], we can conclude that
the graph \scrB can support a multicommodity flow on the original demands. Finally,
since the hallucinated demands can be routed on GH with congestion O(log2 m) (with
high probability), the edges in GF = GS \cup GH can support a multicommodity flow of
all requests with congestion O(log2 m).

Now, Lemmas 6.4 and 6.3 bound the cost of the solution, and Lemma 6.5 estab-
lishes the congestion bounds. In particular, it follows that with probability 1  - k - 3,
the final solution GS(k) \cup GH(k) has cost O(logm) \cdot Opt and congestion O(log2 m).
This completes the proof of Theorem 1.3.

7. Conclusion. In this paper, we considered the EERP with costs on edges.
We obtained an O(log\alpha k)-ratio approximation algorithm and an \~O(log3\alpha +1 k)-ratio
online algorithm, where \alpha > 1 is the dynamic power exponent. While a polyloga-
rithmic approximation ratio is necessary, an interesting open question is to obtain an
approximation ratio of the form g(\alpha ) \cdot log k, where the polylogarithmic factor is not
exponential in \alpha .

Appendix A. Waterfilling algorithm analysis.

Proof of Theorem 2.1. Our proof is essentially a direct adaptation of Theorem 4.2
in [10] for the online load balancing problem, to the online routing setting. For better
clarity in proof (and to closely mirror the proof of Theorem 4.2 [10]), we assume, for
the remainder of the proof, that all the scaling factors ce of edges is 1. This is without
loss of generality as we can assume each edge e with scaling factor ce is subdivided
into ce edges with unit scaling factor.

For the ith request, let P\scrA 
i denote the path that the waterfilling algorithm chooses

to route the demand, and let P \ast 
i denote the flow path of the optimal solution. Sim-

ilarly, let \ell e(i) denote the load of edge e after routing the ith request, and let \ell \ast e(i)
denote the load on edge e by using the optimal routing for the first i requests. Finally,
let the overall instance have k requests which arrive online, so the final load on any
edge e is \ell e(k) using the algorithm's routing, and is \ell \ast e(k) by using the optimal routing.

We use the following potential function \Phi (i) =
\sum 

e \ell e(i)
\alpha which tracks the total

dynamic power after routing the first i requests. Now, by the greedy nature of our
routing, note that

\Phi (i+ 1) - \Phi (i) \leq 
\sum 
e\in P\ast 

i

(\ell e(i) + di)
\alpha  - \ell e(i)

\alpha 

\leq 
\sum 
e\in P\ast 

i

(\ell e(k) + di)
\alpha  - \ell e(k)

\alpha 

\leq di \cdot \alpha 
\sum 
e\in P\ast 

i

(\ell e(k) + di)
\alpha  - 1

\leq \alpha \cdot di
\sum 
e\in P\ast 

i

\Biggl( 
c\ell e(k)

\alpha  - 1 +

\biggl( 
di

\biggl( 
\alpha  - 1

ln c
+ 1

\biggr) \biggr) \alpha  - 1
\Biggr) 

for any c > 1.
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Above, the first inequality follows from the greedy choice of our routing; the second
and third inequalities use the convexity of the dynamic power function (recall \alpha > 1);
and the fourth is from Lemma 4.1 of [10]. We can choose c > 1 to optimize our final
competitive ratio. Now, summing over all i, we get

\Phi (k) \leq \alpha \cdot c \cdot 
\sum 
e

\ell \ast e(k)\ell e(k)
\alpha  - 1 + \alpha 

\biggl( 
\alpha  - 1

ln c
+ 1

\biggr) \alpha  - 1\sum 
e

\sum 
i : e\in P\ast 

i

d\alpha i .

Next, we note that
\sum 

e

\sum 
i : e\in P\ast 

i
d\alpha i \leq 

\sum 
e(\ell 

\ast 
e(k))

\alpha since \alpha \geq 1 and \ell \ast e(k) =
\sum 

i : e\in P\ast 
i
di

by definition of \ell \ast e(k). So by using this, and the fact that \Phi (k) =
\sum 

e \ell e(k)
\alpha , we get

\sum 
e

\ell e(k)
\alpha \leq \alpha \cdot c \cdot 

\sum 
e

\ell \ast e(k)\ell e(k)
\alpha  - 1 + \alpha 

\biggl( 
\alpha  - 1

ln c
+ 1

\biggr) \alpha  - 1\sum 
e

(\ell \ast e(k))
\alpha .

We can now use Holder's inequality to get

\sum 
e

\ell e(k)
\alpha \leq \alpha \cdot c \cdot 

\Biggl( \sum 
e

(\ell \ast e(k))
\alpha 

\Biggr) 1
\alpha 
\Biggl( \sum 

e

\ell e(k)
\alpha 

\Biggr) \alpha  - 1
\alpha 

+ \alpha 

\biggl( 
\alpha  - 1

ln c
+ 1

\biggr) \alpha  - 1\sum 
e

(\ell \ast e(k))
\alpha .

Now, as in the proof of Theorem 4.2 in [10], if x\alpha = (
\sum 

e \ell e(k)
\alpha )/(

\sum 
e(\ell 

\ast 
e(k))

\alpha ), then

x\alpha \leq \alpha \cdot c \cdot x\alpha  - 1 + \alpha 

\biggl( 
\alpha  - 1

ln c
+ 1

\biggr) \alpha  - 1

.

It is now easy to see that we can bound x by \Theta (\alpha \alpha ) by choosing c to be a large enough
constant. For example, with c = e (base of natural logarithm), x\alpha \leq e\alpha x\alpha  - 1 + \alpha \alpha ,
i.e., x - \alpha \alpha 

x\alpha  - 1 \leq e\alpha , which implies x \leq 2e\alpha .

Appendix B. Probabilistic inequalities.

Theorem B.1 (see [35]). Let X1, X2, . . . , XN be N independent random vari-

ables such that Pr[Xi = 0] = 1  - pi and Pr[Xi = 1] = pi. Let Y =
\sum N

i=1 Xi and
\mu = \BbbE Y . Then for any \delta > 0, it follows that

Pr
\Bigl[ 
Y \leq (1 - \delta )\mu 

\Bigr] 
\leq exp( - \mu \delta 2/2).

Theorem B.2 (see [38, 28]). Let X1, X2, . . . , XN be independent nonnegative
random variables. Let \alpha > 1 and K\alpha = \Theta (\alpha / log\alpha ). Then it is the case that\Biggl( 

\BbbE 
\biggl[ \biggl( \sum 

i

Xi

\biggr) \alpha \biggr] \Biggr) 1/\alpha 

\leq K\alpha max

\Biggl( \sum 
i

\BbbE [Xi],

\biggl( \sum 
i

\BbbE [X\alpha 
i ]

\biggr) 1/\alpha 
\Biggr) 
.

Corollary B.3 (see [11]). Let p \geq 0, and let X1, X2, . . . , Xn be independent
random variables, each taking value D with probability min\{ 1, p\} . Then \BbbE [(

\sum 
i Xi)

\alpha ] \leq 
(K\alpha )

\alpha \cdot (pN D\alpha + (pND)\alpha ), where K\alpha = \Theta (\alpha / log\alpha ).

Proof. For the case when p \geq 1, Xi = D with probability 1 and, hence, we can
conclude that \BbbE [(

\sum 
i Xi)

\alpha ] = (ND)\alpha . For the case when p \in [0, 1], \BbbE [Xi] = pD and
\BbbE [X\alpha 

i ] = pD\alpha . From this we can conclude that the upper bound in Theorem B.2 is
K\alpha max(pND, (pN)1/\alpha D). Taking \alpha th powers and replacing the max by a sum, we
get \BbbE [(

\sum 
i Xi)

\alpha ] \leq (K\alpha D)\alpha ((pN)\alpha + pN).
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