
Secretary Problems: Laminar Matroid and Interval Scheduling

Sungjin Im ∗ Yajun Wang †

Abstract
The classical secretary problem studies the problem of hir-
ing the best secretary from among the secretaries who arrive
in random order by making immediate and irrevocable deci-
sions. After the interesting connection to online mechanism
design was found [19, 20], the random order input assump-
tion has been studied for a variety of problems. Babaioff et
al. [4] formalized a general version of the secretary problem,
namely the matroid secretary problem. In the problem, a sec-
retary corresponds to an element in the universe U . The goal
is to select the maximum weight independent set. They con-
jectured that the matroid secretary problem, for any matroid,
allows a constant competitive algorithm. The conjecture re-
mains open. Some constant approximation algorithms are
currently known for some special cases of matroids. Another
interesting type of secretary problem was studied where ele-
ments have non-uniform sizes, as is the case in the knapsack
secretary problem [3, 6].

In this paper, we consider two interesting secretary
problems. One is when the matroid is a laminar matroid,
which generalizes uniform / partition / truncated partition
matroids. For the laminar matroid secretary problem, using
a novel replacement rule which we call “kick next,” we
give the first constant-competitive algorithm. The other is
the interval scheduling secretary problem, which generalizes
the knapsack secretary problem. In this problem, each job
Ji arrives with interval Ii, processing time pi and weight
wi. If Ji is accepted, then it must be scheduled during
Ii, not necessarily continuously. The goal is to accept the
jobs of the maximum total weight which are schedulable.
We give a simple O(logD)-competitive algorithm and a
nearly matching lower bound on the competitive ratio of any
randomized algorithm, where D is the maximum interval
length of any job.

∗Department of Computer Science, University of Illinois, 201 N. Good-
win Ave., Urbana, IL 61801. im3@cs.illinois.edu Partially sup-
ported by NSF grants CCF-0728782, CNS-0721899, and a Samsung Fel-
lowship. This work was done while the author was visiting Microsoft Re-
search Asia.
†Microsoft Research Asia Beijing, Beijing, China.

yajunw@microsoft.com

1 Introduction
In the classical secretary problem [15, 12, 14], one inter-
views n secretaries who arrive in random order one by one.
The interviewer must make an immediate and irrevocable de-
cision concerning whether or not to hire each secretary upon
his or her arrival. The total number of secretaries n is known
prior to the algorithm. The goal is to hire the best secre-
tary. The beauty of the problem is that the random order
assumption makes the problem surprisingly tractable which
is otherwise hopeless 1. Furthermore, there is a very sim-
ple optimal algorithm that is known. The algorithm observes
the first n/esecretaries, and from among the remaining sec-
retaries hires the first secretary who is better than anyone
among the first observed n/e secretaries. It is known to hire
the best secretary with probability 1/e. For the fascinating
history of the secretary problems, we refer the reader to [13].

The interesting connection to online mechanism design
was recently revealed [19, 20]. The classical secretary
problem, for example, precisely captures the situation where
agents arrive with different values for a single item (if agents
are assumed to arrive in random order). Accordingly, the
essence of the secretary problem that the random input order
overcomes the restriction that decisions are irrevocable, has
been studied for a variety of problems.

One very interesting line of work was initiated by
Babaioff et al. [4]. They formulated the matroid secretary
problem. In the problem we are given a matroid M(U, I).
The elements arrive in random order. When an element ar-
rives, it reveals its weight. The algorithm must make an
immediate and irrevocable decision concerning whether to
accept it or not. The goal is to select an independent set
X ∈ I of the maximum total weight of the elements in
the set. They gave an O(log r)-approximation for a general
matroid, where r is the rank of the given matroid. Hence-
forth if there is no confusion in the context, for simplicity,
we will say that an algorithm is c-approximation if it is c-
competitive. They conjectured that any matroid secretary
problem allows a constant approximation. This conjecture
remains open. Constant approximations have been found for
several special cases of matroids. They include uniform /
partition matroids [20, 3], truncated partition matroids [4],
graphic matroids [1, 21] and transversal matroids [11, 21].

1In the worst case input model, it is known that any randomized
algorithm cannot have the best secretary with a probability greater than 1

n
.

For definition of these matroids, see [24].
Another interesting line of work for secretary-type prob-

lems involves elements which have non-uniform sizes. The
knapsack secretary problem is one such problem. In this
problem, items of different sizes and weights arrive in ran-
dom order. One must select some items which can be packed
into the given knapsack of a limited size. It adds more diffi-
culty since one item occupies a substantial amount of space
into which many smaller items could otherwise fit. Constant
approximations were given for this problem [3, 6].

Although a great deal of progress has been made to-
wards understanding the realm of secretary-type problems,
it would be fair to say that our understanding remains lim-
ited. This paper considers two interesting secretary prob-
lems. One is the secretary problem which is constrained on
a laminar matroid, which naturally generalizes uniform ma-
troids, partition matroids and truncated partition matroids.
Laminar matroids were specifically addressed as an impor-
tant case in the submodular minimization on matroid con-
straints [7, 8]. A laminar matroid is defined as follows. Let
F be a laminar family of sets defined over U , i.e. for any
two sets B1, B2 ∈ F , it must be the case that B1 ⊆ B2

or B2 ⊆ B1 or B1 ∩ B2 = ∅. Each B ∈ F is associated
with a capacity µ(B). A set S ⊆ U is in I if and only if
∀B ∈ F , |B ∩ S| ≤ µ(B). The reason why this problem
is non-trivial is because one element may belong to multiple
(possibly more than a constant number of) sets in the fam-
ily. Thus, when an element is considered to be selected, one
must ensure that the element does not violate any constraint.

The other problem we are considering is the problem
which we call the Interval Scheduling Secretary Problem
(ISSP), which generalizes the knapsack secretary problem.
In this problem, there is a unique resource which is available
during a time interval [0, T], where T > 0 is an integer. Each
agent (or job) Ji arrives in random order and asks for the
resource exclusively for pi amount of time during interval
Ii. The quantity pi can be seen as Ji’s processing time or
equivalently its size. The job Ji gives a weight (or profit) of
wi if it is accepted. Here the number of jobs n is known prior
to the algorithm. The accepted jobs must be schedulable;
each accepted job Ji must be scheduled in its interval Ii. We
allow preemption. By preemption we mean here that a job
does not have to be scheduled continuously. Any decision
is irrevocable, i.e. the acceptance or rejection of each job
cannot be revoked. We note that the only decision that the
algorithm must make is whether to accept or reject each job.
In other words, the algorithm does not assign time slots to
accepted jobs online. Our goal is to select jobs that give the
maximum total weight.

Our results: We give the first constant approximation for
the Laminar Matroid Secretary Problem (LMSP).

THEOREM 1.1. There exists a constant-competitive poly-
nomial time algorithm for the Laminar Matroid Secretary
Problem.

For the ISSP problem, we give a simple O(logD)-
competitive algorithm, where D is the maximum length of
any interval Ii. We complement this result by showing a
nearly matching lower bound on the competitive ratio of any
randomized online algorithm.

THEOREM 1.2. For the ISSP problem, there exists an
O(logD)-competitive algorithm, where D = maxi∈[n] |Ii|.

THEOREM 1.3. For the ISSP problem, any randomized on-
line algorithm has a competitive ratio of Ω(logD

log logD), where
D = maxi∈[n] |Ii|. Further, this holds even when |Ii| =
pi = wi for all i ∈ [n].

The instance used to show Theorem 1.3 is fairly simple.
The intervals form a laminar structure. That is, for any two
intervals Ii and Ij , one contains the other, or the two are
disjoint. Further, each job has a weight equal to its length
and processing time. This suggests that it is generally hard
to obtain a constant approximation for secretary problems
that are constrained on some laminar structure.

Our techniques: In the Laminar Matroid Secretary Prob-
lem, the difficulty in obtaining a constant factor algorithm,
as already mentioned, lies in the fact that each element may
belong to multiple (possibly more than a constant number of)
sets in F . In literature concerning the secretary problems , a
popular approach is to show that an element in the optimal
solution is chosen by the algorithm with a constant proba-
bility. In this method, the element is shown, with a constant
probability, to pass a certain constraint which varies depend-
ing on each secretary problem. Thus a naive extension of
the standard approach fails because the failure probability
accrues for multiple constraints. In order to overcome this
hurdle, we will consider a novel, yet simple, algorithm. We
follow the standard approach, and build a reference set for
each B ∈ F , which is the best solution for B constructed
from the sample. The reference set is used to decide whether
or not to accept a newly arriving element i. We accept el-
ement i only when it can kick out an element of smaller
weight from the reference set. If we accept i, we kick out
the largest element smaller than wi from the reference set.
This is why we nickname our algorithm “Kick Next,” be-
cause it kicks out the element that is next to i in decreasing
order of weights. Due to this replacement rule, elements are
“locally” replaced; kicking out the smallest weight element
does not have this local property. This helps the analysis
in a setting such as a laminar matroid where multiple con-
straints intervene. However, we remark that we do not know
whether or not some threshold-type algorithms might work.

To the best of our knowledge, this “kicking the next element”
has not been used in the secretary problems literature. Our
algorithm is simple but the analysis is non-trivial. We do not
show that each element in the optimal solution is accepted
with a constant probability. We instead identify some “good”
elements in the optimal solution whose total weight is greater
than the sum of other elements in the optimal solution. We
remark that defining “good” elements is fairly non-trivial and
the essence of our analysis. Then we show that each good el-
ement is chosen by the algorithm with a constant probability.
For the goal, we show that each good element can find victim
elements that it can kick out overall for all sets in F to which
the element belongs. For a detailed overview of the analysis,
see the first paragraph in Section 2.2.

Related works: The random input model was also consid-
ered in the online adwords problem [10, 16]. The setting
where an accepted element can be canceled later with some
penalty was considered in [9, 2]. Babaioff et al. [1] stud-
ied the secretary problem where the values of elements de-
crease over time. Gupta et al. [18] recently studied the ma-
troid secretary problem with a submodular objective func-
tion. They gave an O(log r)-approximation for any matroid
of rank r, and constant approximations for uniform matroids
([6] gives this result as well) and partition matroids. Bateni et
al. [6] also considered the multiple knapsack secretary prob-
lem and gave an O(l) approximation where l is the number
of knapsack constraints. We note that the result [21] is in
fact on the maximum weight matching in bipartite graphs
and hypergraphs, which generalizes the transversal matroid
secretary problem. In the offline setting, the ISSP problem is
now a classical problem. For the problem of selecting non-
overlapping intervals of the maximum total weight, it is well
known that there exists an optimal dynamic programming
[17]. Lawler gave a pseudo polynomial time algorithm for
ISSP [22]. For more pointers to ISSP, we refer the reader to
[5].

Organization: In Section 2, we give the main algorithm
for the Laminar Matroid Secretary Problem and prove its
constant competitiveness. In Section 3, we study the Interval
Scheduling Secretary Problem. Finally, we conclude with
open problems in Section 4.

2 Laminar Matroid Secretary Problem
This section considers the Laminar Matroid Secretary Prob-
lem (LMSP). We first set up some notation. Let U =
{1, 2, ..., n} be the set of elements. Element i has weight wi.
A laminar family F is given over U . WLOG, we can assume
that U ∈ F . Each set A in F is associated with capacity
µ(A). Again, WLOG, we can assume that µ(A) < µ(B) for
any A,B ∈ F such that A ⊂ B; otherwise the constraint
for A is redundant. Given X ⊆ U , let w(X) denote the total

weight of all elements in X . We say that X ⊆ U is feasible
if for all A ∈ F , |A ∩ X| ≤ µ(A). The goal is to find a
feasible set of elements X ⊆ U which gives the maximum
total weight.

2.1 Algorithm Let M(i) denote the inclusion-wise min-
imal set B in F such that i ∈ B. We say B1 ∈ F is a
child of B2 ∈ F if B1 ⊂ B2 and there exists no inter-
mediate set B′ ∈ F such that B1 ⊂ B′ ⊂ B2. Natu-
rally, B2 is said to be the parent of B1. We denote it by
B2 = p(B1). The kth closest ancestor of B1 is denoted by
p(k)(B1). Thus when B2 is the parent of B1, then we can
write it as B2 = p(1)(B1) = p(B1).

For any A,B ∈ F s.t. A ⊆ B, we define Chain[A,B]
to be the sequence of sets in F starting with A and ending
with B where each set is a child of the following set.
Notation-wise, by Chain[A,B] we sometimes mean just the
collection of sets on the chain. In order to denote all sets in
F that i is in, we may interchangeably use Chain[M(i), U]
orF(i). To save notation, let OPT denote the set of elements
in the optimal solution, the optimal solution itself or the total
weight of the optimal solution, depending on the context. For
any V ⊆ U and B ∈ F , let OPTV (B) denote the optimal
feasible solution that can be obtained from V ∩ B. For the
sake of simple notation, let OPT(B) = OPTU (B). We will
use π to denote the random ordering of U = [n]. We present
the main algorithm as follows.

Algorithm KICKNEXT FOR (LMSP):
Let t← Binom(n, 1/2) and S = {π(1), π(2), ..., π(t)}.
for each B ∈ F

let R(B)← OPTS(B)
for each i ∈ T = U \ S (in the random order π)

with probability 1/103, AddIt← 1,
otherwise AddIt← 0

for each B ← Chain[M(i), U]
if R(B) 6= ∅ and

wi is greater than some element in R(B) then
if AddIt = 1 then

add i to SOL(B) and
remove the largest element less than wi from R(B)

else
break (consider next i)

return SOL(U).

A simplifying assumption: In order to simplify our anal-
ysis, we will assume that in each B ∈ F there are suffi-
ciently many dummy elements of infinitesimal weight. Then
with high probability it is the case that for all B ∈ F ,
|R(B)| = |OPTS(B)| = |OPT(B)| = µ(B).

In the algorithm, we obtain a sample S by observing the
first t elements, where t is a random number obtained from

the binomial distribution Binom(n, 1/2), i.e. the number of
heads when a fair coin is tossed n times. It is easy to see that
the sample S can be equivalently obtained by sampling each
element with a half probability from [n]. For each B ∈ F ,
we set R(B) to be the optimal solution for the elements that
are restricted to B ∈ F and appear in the sample S. We
call R(B) the reference set for B. To decide whether or not
to add a new arriving element to the solution SOL(U), we
need to check if our solution, when i is added, violates the
capacity constraint for any set in F(i). Thus we consider
each B on Chain[M(i), U] in the order that the sets are
ordered on the chain.

The element i can be added to the solution only if
it can find a smaller element in R(B) for each B ∈
Chain[M(i), U]. However, it is added to the solution with
a small probability even though such a condition is satisfied
for each B ∈ F(i). Note that AddIt, the value used in the
decision concerning whether or not to add i to SOL, is ob-
tained only once for each element. It is important to note that
the largest element less than wi is removed from R(B) (not
the smallest element). To the best of our knowledge, this re-
placement rule does not seem to have been used before in the
secretary problems literature. After the algorithm ends, the
set SOL(B) is the solution of our algorithm restricted to B
(that is, SOL(B) ⊆ B). Thus the algorithm returns SOL(U)
as the final solution. We note that maintaining SOL(B) ex-
cept when B = U is solely for the purpose of analysis.

It is easy to see that the following simple algorithm
BottomToTop (BTT) gives the optimal solution for B ∩ S
for each B ∈ F .

Algorithm BTT(B):
If B has no child then

return the µ(B) largest elements in B ∩ S.
else

let C(B) ⊆ F be the collection of the children of B.
return the µ(B) largest elements

from
[
B ∩ S \

⋃
B′∈C(B)B

′
]
∪
⋃
B′∈C(B) BTT(B′).

Note that if OPTS(B)(= BTT(B)) selects some ele-
ments from B′, which is a child of B, then they must come
from OPTS(B′).

2.2 Analysis We first give an overview of the analysis.
The algorithm accepts an element by kicking out a smaller
element in R(A) for all A ∈ F(i). This can be seen
as replacing an element in R(A) with a larger element in
SOL(A). Thus our solution easily satisfies all of the capacity
constraints. Note that an element i may belong to a large
number of sets inF , and thus to be accepted it needs a victim
element to kick out in R(A) for each A ∈ F(i) when it
arrives. Intuitively, it is more likely to be accepted if it can
find many potential victims (of smaller weights). Thus we

define the backward rank for each element i and eachA ∈ F
which is the number of potential victims that i can kick
out in R(A). We show that the probability that there is no
element remaining in R(A) for i to kick out when it arrives,
is exponentially small depending on the backward rank of i
in R(A). Thus if i’s backward rank grows overall for the
sets on Chain[M(i), U], we call such an element good,
and we are able to show that i is selected by the algorithm
with a constant probability. Then we show that there are
plenty of good elements which account for the majority of
the total weight of the optimal solution, and this completes
our analysis.

We start with showing that the algorithm gives a feasible
solution.

LEMMA 2.1. The algorithm KickNext returns a feasible
solution.

Proof. We show that for all B ∈ F , |SOL(U) ∩ B| ≤
µ(B). We start with making an observation. Note that
SOL(U) ∩ B ⊆ SOL(B). This is because the algorithm
adds the element i ∈ B to SOL(U) only if it adds i to
SOL(B). Thus in order to prove the lemma it is sufficient to
show that |SOL(B)| ≤ µ(B). Recall that R(B) is initially
OPTS(B). Since each element in SOL(B) was added
when it kicks out an element from OPTS(B), it follows that
|SOL(B)| ≤ |OPTS(B)| ≤ µ(B), completing the proof. 2

We now turn to showing the quality of the solution. We
will show that our algorithm captures some “good” elements
in OPT with a constant probability. We need more notation
for further analysis including definition of “bad” elements in
OPT. Consider any element i ∈ OPT. Define the backward
rank of i for B, denoted by brank(i, B), to be the number
of elements in OPT(B) less than wi; for example, if i is
the smallest element in OPT(B) then brank(i, B) = 0.
Similarly let brankS(i, B) denote the analogous quantity
for the elements in OPTS(B). Note that brank(i, B) does
not depend on the sample S but brankS(i, B) does.

Intuitively, an element i ∈ OPT, when brankS(i, B) is
large, is more likely to be picked by the algorithm, by kicking
out a smaller element from R(B). However, the value
brankS(i, B) varies depending on the sample S. So for the
sake of analysis, we will use its lowerbound brank(i, B)
which does not depend on S. The following proposition is
not difficult to show by observing how the algorithm BTT
works.

PROPOSITION 2.1. For any i ∈ OPT ∩ B and any sample
S ⊆ U , we have that brankS(i, B) ≥ brank(i, B).
In particular, if i /∈ S, then we have brankS(i, B) >
brank(i, B).

Proof. For a set Z ⊆ U , let Z≥x denote the elements
in Z that are no smaller than x. We show a stronger

claim that for any x and any B ∈ F , |OPT≥x(B)| ≥
|OPT≥xS (B)|. We show it by induction. Let C(B) denote
the children of B in F . Suppose that for any A ∈ C(B),
|OPT≥x(A)| ≥ |OPT≥xS (A)|. If |OPT≥x(B)| = µ(B),
we are done. So suppose |OPT≥x(B)| < µ(B). Let
B′ := B \

⋃
A∈C(B)A. By observing how the algorithm

BTT works, it is easy to see that |OPT≥x(B)| = |B′≥x| +∑
A∈C(B) |OPT≥x(A)|. Then, by the induction hypothe-

sis and |B′≥x| ≥ |(B′ ∩ S)≥x|, the claim easily follows.
Thus we have that brank(i, B) = µ(B)−|OPT≥wi(B)| ≤
µ(B) − |OPT≥wi

S (B)| = brankS(i, B); recall the simpli-
fying assumption that |OPTS(B)| = |OPT(B)| = µ(B).
The second part of the lemma is easily obtained by setting
x = wi + ε where ε > 0 is a sufficiently small constant.
More concretely, if i /∈ S, then we have brank(i, B) =
µ(B)− |OPT≥wi(B)| = µ(B)− (|OPT≥wi+ε(B)|+ 1) ≤
µ(B)− |OPT≥wi+ε

S (B)| − 1 = brankS(i, B)− 1. 2

We now define bad elements OPTbad ⊆ OPT. For
any integer k ≥ 0, define OPTbadk : i ∈ OPTbadk if and
only if k is the smallest integer such that |{B ∈ F(i) :
brank(i, B) ≤ k}| ≥ 8(k + 1)4. Let OPTbad :=⋃
k≥0 OPTbadk . In words, an element i in OPTbad has a small

value of brank for many sets in F(i). Let OPTgood :=
OPT \ OPTbad. To guarantee the quality of our solution
SOL(U), it is not enough to bound the number of bad
elements. We show that there are good elements in OPT
whose total weight is greater than that of bad elements in
OPT. More concretely, we will show that there exists a
function f of mapping each bad element in OPTbad to a
distinct element in OPTgood of larger weight.

LEMMA 2.2. There exists an injective function f :
OPTbad → OPTgood s.t. wi < wf(i) for ∀i ∈ OPTbad.

In order to prove Lemma 2.2, we will show, in
Lemma 2.3, that in any number of elements of the largest
weights in OPT, there are only a fraction of bad elements.
After that, in Lemma 2.5, we will show the probability that
i ∈ OPTgood cannot be added to SOL(B) for anyB ∈ F(i),
is exponentially small depending on brank(i, B). Since
any good element i, roughly speaking, does not have the
same value of brank for many sets, we will be able to bound
the sum of the bad probabilities for all B ∈ F(i).

Let OPTlarge` denote the largest ` elements in OPT.
We say B ∈ F is OPT`-different if OPTlarge` ∩ B ⊃
OPTlarge` ∩ B′ for any child B′ of B; note that “ ⊇ ”
trivially holds (If B has no child, then B is said to be OPT`-
different if OPTlarge` ∩B 6= ∅). In words, B has at least one
more element from OPTlarge` than any child ofB. LetFdiff`

denote all OPT`-different sets in F . From the definition of
OPT`-different sets, we can easily bound the total number
of OPT`-different sets.

PROPOSITION 2.2. For any integer ` ≥ 1, |Fdiff` | ≤ 2`.

We are now ready to bound the number of bad elements
in OPTlarge` .

LEMMA 2.3. For any integer ` ≥ 1, |OPTbad ∩
OPTlarge` | < 1

2`.

Proof. Consider any fixed integer k ≥ 0. For i ∈ OPTlarge` ,
let di denote the number of sets in F(i) for which i’s brank
is at most k. Note that i ∈ OPTbadk implies di ≥ 8(k + 1)4.
Let d =

∑
i∈OPTlarge

`
di. It is easy to see that |OPTbadk ∩

OPTlarge` | ≤ d
8(k+1)4 . Thus we will focus on bounding d.

For B ∈ F(i), we say that i increases brank for p(B)
when brank(i, p(B)) > brank(i, B). We claim that all
elements in OPTlarge` ∩ B increase their branks for any
B /∈ Fdiff` . Notice that B, by definition of Fdiff` , has a
child C such that B ∩ OPTlarge` = C ∩ OPTlarge` . Note
that the elements in B ∩ OPTlarge` = C ∩ OPTlarge` have
the largest branks in OPT(B) and OPT(C), respectively.
Thus the claim follows from the fact that |µ(B)| > |µ(C)|.

We now count how much each B ∈ F contributes to
d. Suppose that B does not have any OPT`-different set
which is within B’s kth descendant, i.e. B 6= Dp(k′) for
any D ∈ Fdiff` and any 0 ≤ k′ ≤ k. Then by the above
claim, all elements in OPTlarge` ∩B have brank of at least
k + 1 for B. Thus B can contribute to d only when B has
any OPT`-different set that is within B’s kth descendant. It
is not difficult to see that there are at most 2(k + 1)` such
sets by Proposition 2.2. Further, each set in F can contribute
to d at most (k+ 1). Thus we conclude that d ≤ 2(k+ 1)2`,
and we have |OPTbadk ∩ OPTlarge` | ≤ 2(k+1)2`

8(k+1)4 ≤
`

4(k+1)2 .

Thus we obtain |OPTbad ∩ OPTlarge` | =
∑
k≥0 |OPTbadk ∩

OPTlarge` | ≤
∑
k≥0

`
4(k+1)2 = π2

24 ` ≤ 0.42`. 2

Using Lemma 2.3, it is easy to prove Lemma 2.2.

Proof of [Lemma 2.2] For each i ∈ OPTbad, let Ni denote
the elements in OPTgood greater thanwi. By Hall’s theorem,
it is enough to show that for anyC ⊆ OPTbad, |

⋃
i∈C Ni| ≥

|C|. Let s denote the smallest element in C. Note that⋃
i∈C Ni = Ns. Say s is the `th largest element in OPT.

Then by Lemma 2.3, |C| < `
2 , and therefore |

⋃
i∈C Ni| >

`− `
2 = `

2 . This completes the proof. 2

Our remaining task is to show that each element i ∈
OPTgood is chosen to be in SOL(U) with a constant prob-
ability. For this goal, we will bound the probability of
some bad events occurring. Since i may belong to multi-
ple sets in F , namely F(i), we need to check if our so-
lution, when i is added, remains feasible for each B ∈
F(i). Let ALLKICKED(B, i) denote the bad event that all
elements in OPTS(B) less than wi are kicked out when

the algorithm completes. In Lemma 2.5, we will show
Pr[ALLKICKED(i, B)|i /∈ S] ≤ 3 · 0.02brank(B,i)+1. Since
the probability exponentially decreases depending on i’s
brank which increases “overall” on Chain[M(i), U], we
will be able to bound the probability that any bad event oc-
curs concerning the element i.

In order to obtain an exponentially decreasing bound on
the probability, we need the following lemma. We say that an
element i qualifies for B if for each B′ ∈ Chain[M(i), B],
there exists an element in OPTS(B′) less than wi. Note that
an element i will be considered to be included in SOL(B)
by the algorithm only if i qualifies for B. In the following
lemma, we will bound the number of qualifying elements in
T = U \S that appear in OPTS(B). A similar idea was used
for the uniform matroid secretary problem [20].

LEMMA 2.4. Consider any B ∈ F . Let OPTS(B) =
{a1, a2, ..., am}, where elements are sorted in decreasing
order of weights. Let w(a`) denote the weight of a`; for
simple notation, let w(a0) = ∞. Let N`(B) ⊆ T , 1 ≤
` ≤ m denote the elements which qualify for B and whose
weights are bigger than w(a`) and smaller than w(a`−1).
Let I ⊆ [m]. Let n` ≥ 0, ` ∈ I be any integer. Then, for
any i ∈ U , we have that Pr[

∧
`∈I(|N`(B)| = n`) | i /∈ S] ≤

Π`∈I
1

2n`
.

Proof. In order to prove the lemma, we will show that for
any n`′ ≥ 0, `′ ∈ I s.t. `′ < `,

Pr
[
|N`(B)| = n` |

∧
`′∈I,`′<`

(|N`′(B)| = n`′)∧(i /∈ S)
]
≤ 1

2n`

Note that a sample S is an outcome. Conditional on the
event that (

∧
`′∈I,`′<`(|N`′(B)| = n`′)) ∧ (i /∈ S), consider

each case that w(a`′) = x where `′ = ` − 1. Let us call
this event ε(x). Let L(x) ⊆ U denote the set of elements
whose weights are no smaller than x. It is not difficult to see
that U \ L(x) does not affect the event ε(x). Conditional
on ε(x), consider each case where each element in L(x) is
fixed either in S or in T . Let L′(x) ⊆ L(x) denote the
elements that are fixed to be in S. Let Yx(`, B) ⊆ B \ L(x)
denote the set of elements such that j ∈ Yx(`, B) if and
only if j ∈ OPTL′(x)∪{j}(B). If |Yx(`, B)| ≤ n`, the event
|N`(B)| = n` cannot occur, thus the probability is 0; this is
one of the reasons why we obtain only an upper bound on
the probability. So suppose that |Yx(`, B)| > n`. Note that
all elements from Yx(`, B) may not be included together,
since they together may violate some capacity constraints. It
is easy to see that |N`(B)| = n` occurs only if the largest
n` elements in Yx(`, B) are in T and the (n` + 1)th largest
element in Yx(`, B) is in S. Knowing thatL(x) and i decides
ε(x), and L(x) ∩ Yx(`, B) = ∅, we obtain the desired
probability. 2

We now bound the probability that a bad event occurs.
In the proof, Lemma 2.4 and Proposition 2.1 will be used

with the Chernoff inequality. We remind the reader that
brank(B, i) does not depend on the sample S.

LEMMA 2.5. Consider any i ∈ OPT and any setB ∈ F(i).
Then Pr[ALLKICKED(i, B)|i /∈ S] ≤ 3 · 0.02brank(i,B)+1.

Proof. Let OPTS(B) := {em, em−1, ..., e1} where the ele-
ments are ordered in decreasing order of weights. Let w(ei)
denote the weight of ei. Let d = brank(B, i). Sup-
pose that i /∈ S. Note that wi > w(ed+1) by Proposi-
tion 2.1. Let A` denote the number of elements in SOL(B)
of weights smaller than w(e`+1); for simple notation, let
w(em+1) = ∞. Let Q` denote the number of qualifying
elements for B that are less than w(e`+1). It is not diffi-
cult to see that ALLKICKED(i, B) occurs only if A` ≥ `
for some d + 1 ≤ ` ≤ m. Thus we focus on bounding
Pr[
∨
d+1≤`≤m(A` ≥ `) | i /∈ S]. To this end, we use

Pr[A` ≥ ` | i /∈ S]

≤ Pr[Q` ≥ 20` | i /∈ S](2.1)
+ Pr[(Q` < 20`) ∧ (A` ≥ `) | i /∈ S](2.2)

We first bound (2.1). Let Nl denote the number of
elements that qualify for B and whose weights are between
w(el) and w(el+1). Note that Q` = N1 + N2 + ... + N`.
Then for any integer k ≥ 0, by Lemma 2.4, we have

Pr[Q` = k | i /∈ S] ≤
(
k + `− 1

`− 1

)
1

2k

The quantity
(
k+`−1
`−1

)
is the number of sets of non-

negative integers n1, n2, ...n` satisfying that n1 + n2 + ...+
n` = k. Therefore we have

(2.1) =
∑
k≥20`

Pr[Q` = k | i /∈ S]

≤ 2`
∑
k≥20`

(
k + `− 1

`− 1

)
1

2k+`

≤ 2` exp(−8.5`)

The last inequality is obtained as follows. We interpret
pk =

(
k+`−1
`−1

)
1

2k+` as a probability of an event. Consider a
fair coin being tossed infinite times. Let Hk denote the event
that the first k+ ` tosses give exactly ` heads and end with a
head. Note that the events Hk, k ≥ 20` are disjoint and that
P [Hk] = pk. Also note that for any event Hk, k ≥ 20`, at
most ` heads are observed for the first 21` tosses. Then the
last inequality follows by applying the Chernoff inequality
(Theorem A.1).

We now bound (2.2) as follows.

(2.2)

= Pr[(Q` < 20`) ∧ (A` ≥ `) | i /∈ S]

≤
20∑̀
k=1

Pr[(Q` = k) ∧ (A` ≥ `) | i /∈ S]

≤
20∑̀
k=1

Pr[Q` = k | i /∈ S] · Pr[A` ≥ ` | Q` = k ∧ i /∈ S]

≤
20∑̀
k=1

Pr[Q` = k | i /∈ S] · (0.02)` ≤ (0.02)`

The second to last inequality is obtained as follows.
Recall that each element i is added to SOL(B) with a
probability of 1/103. Let coin(1

103) denote a biased coin that
gives a head with probability 1

103 . Thus Pr[A` ≥ ` | Q` =
k ∧ i /∈ S] is bounded by the probability that at least ` heads
are observed when a coin(1

103) is tossed k(≤ 20`) times,
which is maximized when k = 20`. Therefore we have
Pr[A` ≥ ` | Q` = k ∧ i /∈ S] ≤ (20

103)` by applying the
Chernoff inequality (Theorem A.2) with µ = (20/103)` and
(1 + δ) = 103/20.

We are now ready to complete the proof. We have
Pr[A` ≥ ` | i /∈ S] ≤ (2.1) + (2.2) ≤ 2 · 0.02`. Finally,
using the union bound of the probabilities, we obtain

Pr
[∨
`≥d+1

(A` ≥ `)
∣∣∣ i /∈ S] ≤

∑
`≥d+1

Pr[A` ≥ ` | i /∈ S]

≤
∑
`≥d+1

2 · 0.02`

≤ 3 · 0.02d+1

2

We are now ready to prove the main lemma.

LEMMA 2.6. Each element i ∈ OPTgood is chosen by
the algorithm to be included in SOL(U) with an O(1)
probability.

Consider any element i ∈ OPTgood. We first bound the sum
of all bad probabilities for i as follows.

Pr
[∨
B∈F(i)

ALLKICKED(i, B)
∣∣∣i /∈ S](2.3)

≤
∑

B∈F(i)

Pr
[
ALLKICKED(i, B)

∣∣∣i /∈ S]
≤

∑
d≥0

∑
B∈F(i),brank(i,B)=d

Pr
[
ALLKICKED(i, B)

∣∣∣i /∈ S]
≤

∑
d≥0

8(d+ 1)4 · 3 · 0.02d+1 <
1

4

The second to last inequality is due to definition of
OPTgood and Lemma 2.5. Since Pr[i /∈ S] = 1

2 , we have

that Pr
[∧

B∈F(i) ¬ALLKICKED(i, B) ∧ i /∈ S
]
> 1

2 ·
3
4 =

3
8 . Thus when element i arrives, with a probability of at least
3
8 , there exists at least one element remaining in R(B) that i
can kick out for eachB ∈ F(i). Since i is added to OPT(U)
with probability 1

103 , we conclude that i ∈ OPT(U) with a
probability of at least 3

8 ·
1

103 . Lemma 2.6 and 2.2 shows
that the algorithm has a competitive ratio of at least 3

16·103 ,
proving Theorem 1.1.

3 Interval Scheduling Secretary Problem
This section studies the Interval Scheduling Secretary Prob-
lem (ISSP). For the definition of the problem, see Section 1.
Let D denote the maximum length of any interval Ii. In
Section 3.1, we give a simple O(logD)-approximation and
then in Section 3.2, show a nearly matching lower bound of
Ω(logD/ log logD) on the competitive ratio that any online
randomized algorithm can achieve.

3.1 O(logD)-approximation In this section, we give a
simple randomized algorithm with approximation factor
O(logD) as follows.

Algorithm for the ISSP:
Let h be a random integer from [0, dlog2De].
Let Vh,` = [2h+2`− α, 2h+2(`+ 1)− α),

where α is a random number from [0, 2h+2).
for each ` do parallelly as follows:

input: only consider job Ji
if |Ii| ∈ [2h, 2h+1) and Ii ⊂ Vh,`

with probability 1/2,
run Dynkin’s classical secretary algorithm;

otherwise, run the knapsack secretary algorithm
with knapsack size 2h.

The algorithm picks an integer h uniformly randomly
from [0, dlog2De]. Our algorithm then only consider jobs
with interval size Ii ∈ [2h, 2h+1). Furthermore, we partition
[0, T] into disjoint intervals as Vh,` = [2h+2`− α, 2h+2(`+
1) − α), for ` ≥ 0 and drop all jobs that do not entirely fall
into the intervals. Notice α is a random number in [0, 2h+2).
Any job with size in [2h, 2h+1) will be contained in one
interval Vh,` with probability at least 1/2. Now we have
fixed all the jobs that we will process. Since all {Vh,l} for
a fixed h are disjoint, we can parallelly run one algorithm
with each `. In particular, we run the Dynkin’s classical
secretary algorithm [12] with probability 1/2; here only
weights are considered. Otherwise, we run the knapsack
secretary algorithm [3] with the knapsack having size 2h.
We prove the algorithm achieves a constant approximation.
Proof of [Theorem 1.2] Let OPT be the optimal offline
solution and w(OPT) be the total weight. Define OPT(h, `)
be the set of jobs such that |Ii| ∈ [2h, 2h+1) and Ii ⊂ Vh,`.
Based on the construction of Vh,`, we have

∑
h,`

E[w(OPT(h, `))] ≥ 1

2
w(OPT).(3.4)

Now let A(h, `) and w(A(h, `)) denote the analogous
set and quantity obtained by the algorithm, respectively. We
will show that

(3.5)

E[w(A(h, `))] ≥ 1

dlog2De+ 1
· 1

320e
E[w(OPT(h, `))].

Let us say a job of processing time at least 2h/2 is “long”,
and otherwise “short”. Define wl and ws be the total
weight of the “long” jobs and the “short” jobs in OPT(h, `),
respectively. We consider two cases. (1) wl ≥ ws. Since
we can pack at most 8 “long” jobs in Vh,`, there exists a
long job of weight at least 1

16w(OPT(h, `)). This job, with a
1/e probability, is captured by Dynkin’s algorithm [3] which
runs with probability 1/2. Thus in this case, the expected
weight is at least 1

32ew(OPT(h, `)). (2) wl < ws. In this
case, we claim that the knapsack secretary algorithm with
approximation factor 1

10e , which runs with a half probability,
achieves an expected weight of at least 1

20ew(OPT(h, `)).
Recall that we run the knapsack algorithm with the knapsack
having size 2h. Thus all of the jobs accepted by the
knapsack algorithm will have total processing time at most
2h. Notice that we can safely assume |Vh,` ∩ [0, T]| ≥ 2h,
since otherwise OPT(h, `) is empty. Each job we accpet
will have interval size at least 2h. It is not difficult to
show that the accepted jobs can be scheduled, as we allow
preemptions. Now sort all “short” jobs in OPT(h, `) by
decreasing ratio of weight to processing time. The jobs
span at most 4 · 2h processing time. Notice that each short
job has processing time at most 2h/2. The first several
jobs with total processing time up to 2h will have a total
weight of at least 1/8 of the total weight of all short jobs
in OPT(h, `). Since all “short” jobs in OPT(h, `) have a
total weight of at least w(OPT(h, `))/2 in this case, the
knapsack secretary algorithm will give an expected weight
of 1

320ew(OPT(h, `)). Since the above argument assumes
that h = h′, which occurs with a probability of 1

dlog2De+1 ,
we obtain (3.5).

Hence from (3.4) and (3.5), the expected total weight
achieved by the algorithm is lower bounded as follows.

∑
h,`

E[w(A(h, `))] ≥ 1

dlog2De+ 1
· 1

640e
w(OPT)

2

3.2 Ω(logD
log logD) lower bound We start with describing the

“hard” instance for which no online algorithm can achieve
a good approximation. See Figure 1 for reference. In this

` = 2

` = 3

......

` = h
......

` = 1

Figure 1: There are in total h levels of nodes in the h2-ary tree. In level `,
there are h2(`−1) nodes, each with size and weight h−2(`−1).

instance, each job Ji has processing time of the length of its
associated interval, i.e. pi = |Ii|. Thus Ji must be scheduled
exactly on Ii. The weight of the job is wi = pi = |Ii|.
The jobs are randomly sampled from a h2-ary tree structure.
By scaling, we assume the given entire interval is [0, 1] (the
top node), and the smallest job has length h−2(h−1) (in the
hth level); note that D = h2(h−1). In the `th level of the
tree for ` ∈ [h], the set of the intervals of the nodes is
L` := {[k−1

h2(`−1) ,
k

h2(`−1)] | k ∈ [h2(`−1)]}. In other words,
L` is the set of intervals that are obtained by partitioning the
interval [0, 1] seamlessly into subintervals of size h−2(`−1).
Let L :=

⋃
`∈[h] L`. Note that each interval in L` when

` ≥ 2 is contained in exactly one interval in L`′ for any
1 ≤ `′ < `. There are in total H =

∑
`∈[h] h

2(`−1) nodes.
There will arrive H/h jobs. At each time t ∈ [H/h],

exactly one job Jt will arrive. Its interval It is sampled
uniformly randomly from L. If It ∈ L`, we will have
pt = wt = |It| = h−2(`−1). Since at each time the interval is
randomly sampled, our random instance is clearly oblivious
to the random permutation which is assumed in the secretary
problem.

Before giving the formal analysis, we give some in-
tuition why any (randomized) online algorithm cannot do
well. Since there are only H/h random jobs, all jobs only
from one level L` can give an expected weight of at most
1
h ; h−2(`−1) · h

2(`−1)

H · Hh = 1
h . On the other hand, we

will show that the expected profit of the optimal solution
is at least 1 − 1/e, which means the optimal algorithm can
carefully pack the jobs in different levels to achieve a good
profit. However, selecting jobs only from one level, as in the
O(logD) approximation algorithm, cannot give a large to-
tal weight. Thus the algorithm should collect weights from
many levels. A job of larger weight (a node in higher level
in the tree) arrives with a smaller probability in our samples.
The algorithm, in order to capture a job of larger weight, may
have to wait while discarding jobs of smaller weights, sacri-
ficing weights from lower levels. Further, the samplings are
identical at all times, thus the standard technique used for the
secretary problems, learning by sampling or waiting does not
help here.

LEMMA 3.1. The optimal solution has an expected total
weight of at least 1− 1/e.

Proof. Consider one node v in the lowest level, with size
and length h−2(h−1). Let C(v) be the set of nodes in the
path from v to the root in the tree. If the algorithm accepts
a node u ∈ C(v), we say v is covered, i.e., there is a job
scheduled during the time interval of v.

Clearly, the optimal algorithm will accept nodes as
higher as possible in the tree to maximize the total weight.
Therefore, if v is not covered by the optimal algorithm, there
is no node in C(v) appeared in our H/h random samples.
This happens with probability at most (1−h/H)H/h ≤ 1/e.
Hence the optimal algorithm will cover v with probability at
least 1−1/e. By linearity of expectation, the lemma follows
by taking the expectation over all nodes in the lowest level.
2

We now show that no online algorithm can have an
expected total weight greater than 2

h . We first define two
notations: empty node and maximal empty node. A node v is
an empty node at time t, iff any of v’s descendants, ancestors
and v itself is not selected by the algorithm. v is a maximal
empty node if it is empty and there is no other empty nodes
in the path from v to the root.

At any given time, the total length of the maximal empty
nodes is at most 1, since they are mutually disjoint. For any
algorithm, if the job Jt arriving at time t is a node in the
set of maximal empty nodes, we should definitely accept the
job. Of course, the algorithm can also accept jobs which are
not maximal empty. The follow lemma, however, claims that
such jobs are very rare.

LEMMA 3.2. adf The total weight of the non maximal empty
nodes accepted by any algorithm is at most 1/h.

Proof. For any non maximal empty node v that the algorithm
accepts at time t, its parent u as well as all u’s children
must be empty before time t. Now after v is accepted, the
other h2 − 1 children of u become maximal empty nodes
immediately. None of them can be accepted as non maximal
empty node any more. Therefore, the total length of the non
maximal empty nodes accepted is at most h−2 of the total
length of the nodes in the entire tree, which is h−2 ·h = 1/h.
Since each job gives a weight equal to its length, the lemma
follows. 2

THEOREM 3.1. For a sequence of random jobs {Jt} for
t ∈ [H/h] sampled from the tree, no online algorithm can
have an expected total weight greater than 2/h.

Proof. It is sufficient to bound the total weight that the
algorithm achieves from maximal empty nodes during the
execution of the entire algorithm. Similar to the analysis
of the optimal algorithm, consider any node v in the lowest

level in the tree. In the chain C(v), the path from v to the
root, there is at most one maximal empty node by definition
before any time t. Therefore, the probability that v is covered
by a maximal empty node at time t is at most 1/H . By
simple union bound, the probability that v is covered by
any maximal empty node during the algorithm is at most
1/H · H/h = 1/h. This implies the total expected weight
any algorithm achieves from maximal empty nodes is at most
1/h, simply counting the lowest level nodes that are covered
by them. The theorem follows by considering the additional
gains from the non maximal empty nodes (Lemma 3.2). 2

Thus any online algorithm cannot have an expected total
weight greater than 2/h, while the optimal solution has an
expected total weight of at least 1 − 1/e. Thus any online
algorithm has a competitive ratio of Ω(h) = Ω(logD

log logD),
and this completes the proof of Theorem 1.3.

4 Conclusions and Discussions
In this paper, we gave the first constant approximation for
the Laminar Matroid Secretary Problem (LMSP). Babaioff
et al. [4] showed that given a c-competitive algorithm for the
matroid secretary problem for matroid M, one can obtain
an O(c)-competitive algorithm for the truncated matroid
secretary problem. Can one extend this result to show that
there exists aO(c)-competitive algorithm for the intersection
of M and any laminar matroid? It is not difficult to get
an O(1)-competitive algorithm for the ISSP problem when
all of the jobs have a unit size using the algorithm in
[21]. We believe that there may be other interesting special
cases for the ISSP problem that allow constant-competitive
algorithms.

Acknowledgments: We thank Nitish Korula for his helpful
discussion on the Laminar Matroid Secretary Problem and
for his clear explanation on his past work [21]. We greatly
thank the anonymous reviewers for their many valuable
comments.

References

[1] Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole
Immorlica, and Kunal Talwar. Secretary problems: weights
and discounts. In SODA, pages 1245–1254, 2009.

[2] Moshe Babaioff, Jason D. Hartline, and Robert D. Kleinberg.
Selling ad campaigns: online algorithms with cancellations.
In EC ’09: Proceedings of the tenth ACM conference on
Electronic commerce, pages 61–70, New York, NY, USA,
2009. ACM.

[3] Moshe Babaioff, Nicole Immorlica, David Kempe, and
Robert Kleinberg. A knapsack secretary problem with appli-
cations. In APPROX ’07/RANDOM ’07: Proceedings of the
10th International Workshop on Approximation and the 11th

International Workshop on Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, pages 16–28,
Berlin, Heidelberg, 2007. Springer-Verlag.

[4] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg.
Matroids, secretary problems, and online mechanisms. In
SODA, pages 434–443, 2007.

[5] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph
(Seffi) Naor, and Baruch Schieber. A unified approach to
approximating resource allocation and scheduling. J. ACM,
48(5):1069–1090, 2001.

[6] Mohammad Hossein Bateni, MohammadTaghi Hajiaghayi,
and Morteza Zadimoghaddam. The submodular secretary
problem and its extensions. In To appear in APPROX ’10:
13th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, 2010.

[7] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan
Vondrák. Maximizing a submodular set function subject to a
matroid constraint (extended abstract). In IPCO, pages 182–
196, 2007.

[8] Chandra Chekuri and Jan Vondrák. Randomized pipage
rounding for matroid polytopes and applications. CoRR,
abs/0909.4348, 2009.

[9] Florin Constantin, Jon Feldman, S. Muthukrishnan, and Mar-
tin Pál. An online mechanism for ad slot reservations with
cancellations. In SODA ’09: Proceedings of the twentieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages
1265–1274, Philadelphia, PA, USA, 2009. Society for Indus-
trial and Applied Mathematics.

[10] Nikhil R. Devenur and Thomas P. Hayes. The adwords
problem: online keyword matching with budgeted bidders
under random permutations. In EC ’09: Proceedings of the
tenth ACM conference on Electronic commerce, pages 71–78,
New York, NY, USA, 2009. ACM.

[11] Nedialko B. Dimitrov and C. Greg Plaxton. Competitive
weighted matching in transversal matroids. In ICALP (1),
pages 397–408, 2008.

[12] E. B. Dynkin. Optimal choice of the stopping moment of a
markov process. Dokl.Akad.Nauk SSSR, 150:238–240, 1963.

[13] T.S. Ferguson. Who solved the secretary problem? J. Statist.
Sci., 4:282–289, 1989.

[14] P. R. Freeman. The secretary problem and its extensions: a
review. Internat. Statist. Rev., 51(2):189–206, 1983.

[15] M. Gardner. Mathematical games column. Scientific Ameri-
can Feb., Mar., 35, 1960.

[16] Gagan Goel and Aranyak Mehta. Online budgeted matching
in random input models with applications to adwords. In
SODA ’08: Proceedings of the nineteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 982–991,
Philadelphia, PA, USA, 2008. Society for Industrial and
Applied Mathematics.

[17] M. Golumbic. Algorithmic graph theory and perfect graphs.
Academic Press, 1980.

[18] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal
Talwar. Constrained non-monotone submodular maximiza-
tion: Offline and secretary algorithms. CoRR, abs/1003.1517,
2010.

[19] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and
David C. Parkes. Adaptive limited-supply online auctions.

In ACM Conference on Electronic Commerce, pages 71–80,
2004.

[20] Robert Kleinberg. A multiple-choice secretary algorithm
with applications to online auctions. In SODA ’05: Pro-
ceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 630–631, Philadelphia, PA, USA,
2005. Society for Industrial and Applied Mathematics.

[21] Nitish Korula and Martin Pál. Algorithms for secretary
problems on graphs and hypergraphs. In ICALP (2), pages
508–520, 2009.

[22] E. L. Lawler. A dynamic programming algorithm for preemp-
tive scheduling of a single machine to minimize the number
of late jobs. Ann. Oper. Res., 26(1-4):125–133, 1990.

[23] Rajeev Motwani and Prabhakar Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[24] Alexander Schrijver. Combinatorial Optimization: Polyhe-
dra and Efficiency, volume 24. Springer-Verlag, 2003.

A Analysis Tools
THEOREM A.1. ([23]) Let X1, X2, ..., Xn be n indepen-
dent random variables such that Pr[Xi = 0] = Pr[Xi =
1] = 1

2 . Let Y =
∑n
i=1Xi. Then, for any ∆ > 0, we have

Pr
[
|Y − n

2
| ≥ ∆

]
≤ 2 exp(−2∆2/n).

THEOREM A.2. ([23]) Let X1, X2, ..., Xn be n indepen-
dent random variables such that Pr[Xi = 0] = 1 − pi and
Pr[Xi = 1] = pi. Let Y =

∑n
i=1Xi. Then we have that

Pr
[
Y ≥ (1 + δ)µ

]
≤
(eδ

(1 + δ)1+δ

)µ
.

In particular,

• for any δ ≤ 2e − 1, Pr
[
Y ≥ (1 + δ)µ

]
≤

exp(−µδ2/4).

• for any δ ≥ 2e− 1, Pr
[
Y ≥ (1 + δ)µ

]
≤ 2−µ(1+δ).

	Introduction
	Laminar Matroid Secretary Problem
	Algorithm
	Analysis

	Interval Scheduling Secretary Problem
	O(logD)-approximation
	(logDloglogD) lower bound

	Conclusions and Discussions
	Analysis Tools

