
1

Multi-IMA Partition Scheduling
with Synchronized Solo-Partitions
for Multi-Core Avionics Systems

Jung-Eun Kim*, Man-Ki Yoon*, Sungjin Im†, Richard Bradford§, and Lui Sha*

*Department of Computer Science, University of Illinois at Urbana-Champaign,
{jekim314,mkyoon,lrs}@illinois.edu

†Department of Computer Science, Duke University, sungjin@cs.duke.edu
§Rockwell Collins, rmbradfo@rockwellcollins.com

Abstract

Integrated Modular Avionics (IMA) architecture has been widely adopted by the avionics industry due to its
strong temporal and spatial isolation capability for safety-critical real-time systems. Although multi-core systems are
receiving wide attention from the avionics industry, the fundamental challenge to integrating an existing set of single-
core IMA partitions into a multi-core system is to ensure that the isolation of the partitions will be maintained without
incurring huge redevelopment and recertification costs. In connection with meeting this challenge, several issues arise
such as speed differences between single-core systems and multi-core systems and synchronization for exclusive I/O
transactions. To address these challenges, we have developed an optimized Multi-IMA partition scheduling algorithm
which considers exclusive regions to achieve the synchronization between partitions across cores. We show that the
problem of finding the optimal Multi-IMA partition schedule is NP–complete and present a Constraint Programming
formulation. In addition, we relax this problem to find the minimum number of cores needed to schedule a given set
of partitions and propose an approximation algorithm which is guaranteed to find a feasible schedule of partitions if
there exists a feasible schedule of exclusive regions.

I. INTRODUCTION

The avionics industry has widely adopted the Integrated Modular Avionics (IMA) architecture [1], [2], which
supports the independent development of the various real-time avionics functions (having various safety-assurance
levels) and enables them to run within partitions that are temporally and spatially isolated from one another. This
partitioning mechanism has helped ease the certification process for avionics systems.

Over the past decade, microchip designers found it increasingly difficult to dissipate the waste heat that would
be generated if more and more transistors were squeezed into each unit of area of silicon; this challenge has led to
a leveling off of peak clock speeds [3]. As a result, designers have assembled devices into multiple microprocessor
cores as a way of achieving continued increases in computational power. Within the avionics industry, multi-core
systems are attractive because they offer the potential for more easily achieving size, weight, and power (SWaP)
requirements.

Migrating avionics systems from single-core systems to a multi-core system, however, is not a trivial task. The
fundamental challenge to integrating an existing set of pre-certified single-core avionics IMA systems into a multi-
IMA multi-core system is to ensure that the temporal and spatial isolation of the partitions will be maintained (and
to achieve this assurance without incurring huge recertification costs).

Several issues arise in connection with meeting this fundamental challenge. One such issue is the difference in
speed between a single-core processor and a multi-core processor; in general, one core of a multi-core system
has lower clock speed than that of a single-core system due to temperature and power consumption constraints.
Accordingly, a direct mapping, such as a one-to-one mapping, would not work if the speed difference is significant
or existing partitions have irregular and inconsistent sizes. Another issue is synchronization which arises in the
migration to multi-core. Synchronization is required for exclusive transactions such as I/O, and helps achieve I/O
virtualization. For example, some hardware devices such as graphic cards or storage units do not admit multiple
accesses. In such cases, the IMA partition schedules should be synchronized by exclusive executions so that no data
loss or corruption would occur.

2

solo-partition execution-partition

 partition length = Li

partition period

Li
S Li

E

Fig. 1. The structure of an IMA partition with a solo-partition.

In this report, we investigate the problem of scheduling IMA partitions on multi-core systems. To the best of our
knowledge, this is the first work that considers an exclusive region on multi-core IMA partitions. By considering
this, we can address obstacles in transitioning from single-core to multi-core. We formalize the problem as a multi-
IMA partition scheduling optimization problem and address the aforementioned challenges. Our investigation into
the problem includes a discussion of the theoretical aspects of the problem, the development of scalable algorithms
and the presentation of data from supporting experiments.

In our model, a partition consists of two logical regions – solo-partition followed by execution-partition, as
depicted in Fig. 1. Solo-partition is not a new concept in a single core system and has a special role in IMA-based
avionics systems, mainly that of performing I/O transactions (also known as the device management partition in [2]).
Since data to be used in an execution-partition should be ready in its solo-partition, an execution-partition follows
its solo-partition. In the multi-core setting, we require a solo-partition to be an exclusive region in order to achieve
synchronization between partitions across cores. In other words, only one solo-partition is allowed to be scheduled
at a time instant. In contrast, execution-partitions do not need to satisfy the exclusiveness that solo-partitions do.
Hence a partition can be feasibly scheduled on a core as long as it does not interfere with the solo-partitions of
other partitions and does not overlap with other partitions assigned to the same core. In addition, each partition is
strictly periodic and nonpreemptive. This supports temporal and spatial isolation among partitions.

With the IMA partition model described above, we formalize the following multi-IMA scheduling optimization
problems.

a) Straight Mapping (StraightMapping): Given a set of single-core IMA systems, their partitions, and a multi-
core system, we are required to construct a set of local core schedules that satisfy the exclusiveness of solo-partitions
using one-to-one mapping from a single-core IMA system to a core of the multi-core system. In other words, all
partitions from a single core must be scheduled on the same core of the multi-core system (they can be rescheduled
within the same core) as illustrated in Fig. 2 (a).

One-to-one mapping is the logical first step that one would try in migrating from single-core to multi-core.
However, it may be the case that no one-to-one mapping yields a feasible schedule. We show that this problem is
strongly NP–complete even when all solo-partitions have at most a unit size; without solo-partitions, the one-to-one
mapping always gives a feasible schedule. This would imply that it does not admit an efficient algorithm even if
all input parameters are small. We believe that our results show that exclusive solo-partitions add another layer of
complexity to multi-IMA scheduling problems. On the positive side, we formulate StraightMapping with Constraint
Programming (CP). Our experiments show that CP is an efficient approach that finds a feasible straight mapping
schedule in most cases.

Since straight mapping is not always possible, and further motivated by our hardness result, we consider the
following relaxed problem.

b) Minimization of the required number of cores (MinCores): In this problem, we can now put a partition in
any core of the multi-core system. The goal is to schedule all partitions with the minimum number of cores. See
Fig. 2 (b).

We also formulate a CP for this problem. However, since each partition has more freedom in that it can go to any
core, the search space becomes substantially larger, and the CP is no longer efficient. When solo-partitions have
a unit size, we propose a scalable approximation algorithm that outperforms the CP in the solution quality and,
particularly, in scalability. Recall that even unit-sized solo-partitions make the problem non-trivial. The assumption
of solo-partitions being unit-sized is justified by the fact that, in practice, solo-partitions are considerably smaller
than execution-partitions. Our algorithm is guaranteed to yield a feasible schedule if there exists a feasible one with
the solo-partitions. It builds on several algorithmic ideas from the problem of packing periodic tasks into periodic
idle intervals and the Bin packing problem [4], [5].

3

p

p

 p

p

p

p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p
p

p

p

a multi-core system

core 0 core 1 core 2 core 3

single-core
system 0

single-core
system 1

single-core
system 2

single-core
system 3

(a) StraightMapping (b) MinCores

p

p

p

p

p

p

core 0 core 1 core 2

a multi-core system

core 3

· · · ·

core 4

p

p

p

p

single-core
system 0

p

p

p

single-core
system 1

p

p : partition

Fig. 2. Abstracted overview of migrating concept of StraightMapping and MinCores.

A. Organization of the report

The remaining sections are organized as follows: Sec. II describes the system model and then formalizes the
multi-IMA scheduling optimization problem. In Sec. III, we explain the details of the StraightMapping problem,
showing that it is strongly NP-complete, and present its CP formulation. In Sec. IV, we propose an approximation
algorithm for MinCores problem, providing theoretical discussion. The experimental results are given in Sec. V.
And then, in Sec. VI, we summarize the related work. Sec. VII concludes this report.

II. SYSTEM OVERVIEW

In this section, we first provide the system model we consider in this report, and then formally describe the
scheduling optimization problems of multi-IMA partitions with exclusive regions.

A. System Model

We consider a set of NΠ partitions denoted by Π = {π0, π1, · · · , πNΠ−1}. Each partition i is represented by
πi = (Ti, L

S
i , L

E
i , ψi); the first execution of πi occurs at offset slot ψi (0 ≤ ψi < Ti) and then executes with a

period of Ti for a length of Li
1, which is the sum of solo-partition length, LS

i , and execution-partition length, LE
i .

We denote each partition type as πS
i and πE

i , respectively. Accordingly, πi executes during the time interval

[ψi + kTi, ψi + kTi + Li), (1)

for all k ∈ Z∗ ≤ (MC
Ti
− 1). As previously stated, any two solo-partitions on the system are not allowed to execute

at the same time. However, there is no such constraint on execution-partitions.
We then consider a multi-core system consisting of NC homogeneous cores, C = {C0, C1, · · · , CNC−1}. We

also consider a set of NC single-core systems, each of which is denoted as Cs
i and consists of a set of IMA

1A migration of a partition would require an adjustment of partition length due to the clock speed difference. This is beyond the scope of
our report, however interested readers can refer to the literature on hierarchical scheduling [6]–[8].

4

TABLE I
LIST OF SYMBOLS.

Parameter Description

C,Π set of cores, partitions
NC, NΠ number of cores, partitions
Ci, πi core i, partition i
πS
i , πE

i solo-/execution-partition of πi
C(πi) core where πi is in
Ti period of πi
ψi offset of πi
Li length of πi
LS
i , L

E
i length of πS

i and πE
i

MC major cycle

partitions. For the problem of one-to-one migration of a set of single-cores to a multi-core system, the partitions
in Cs

i are to be migrated to Ci as they were in each single-core system.
In the problem of finding the minimum required number of cores for a given Π, a partition in Cs

i is not necessarily
migrated to Ci. Depending on the optimization result, the partition can end up being in Cj where i ̸= j. However,
every partition must be migrated to any one of Cj ∈ C. In this particular problem, NC is not a fixed number. We
denote the minimum required number of cores for Π found by our approximation algorithm in Sec. IV as A(Π)
and the number of cores of the optimal solution as OPT(Π).

Throughout this report, partition periods are assumed to be harmonic.2 Additionally, in MinCores problem, we
assume each solo-partition has a unit length, i.e., LS

i = 1. Although these seem to be restrictive assumptions, we
will see that the optimization problem is still difficult to solve with such constraints.

B. Problem Description

StraightMapping
Given C and Π, we try to find a set of feasible partition offsets, {ψi|i = 0, · · · , NΠ − 1}, that satisfy the

following constraints:

∀i, Cs
i = C(πi),∀i,j,i ̸=j , k ∈ Z∗ ≤ (MC

Ti
− 1), andl ∈ Z∗ ≤ (MC

Tj
− 1),

[ψi + kTi, ψi + kTi + Li) ∩ [ψj+lTj , ψj + lTj + Lj) =∅, if C(πi) = C(πj). (2)

[ψi + kTi, ψi + kTi + LS
i) ∩ [ψj+lTj , ψj + lTj + LS

j) = ∅, if C(πi) ̸= C(πj). (3)

If a feasible schedule does not exist, it must be possible to determine that it is infeasible.
MinCores

Given Π, MinCores problem finds a set of feasible partition offsets, {ψi|i = 0, · · · , NΠ − 1}, and their core
assignments that satisfy both Constraints (2) and (3), while minimizing the required number of cores, thus,

Minimize A(Π). (4)

III. STRAIGHT MIGRATION FROM SINGLE-CORE SYSTEMS TO A MULTI-CORE SYSTEMS

In this section, we explain in detail how to generate schedules of the given IMA partitions migrated straight from
one single-core system to one core on a multi-core system. Scheduling partitions is ultimately about determining
the offsets of partitions, i.e., {ψi}, that satisfy Constraints (2) and (3). In [5], the authors expressed the constraint
that there can be no overlap between two strictly periodic tasks, which can be applied and transformed to our

2When the given periods are non-harmonic, one can convert non-harmonic periods to harmonic ones as in [9]–[11].

5

multi-IMA partition scheduling problem. First of all, to be locally feasible, any two partitions in the same core
cannot overlap,

∀πi∀πj(i ̸= j and C(πi) = C(πj)), Li ≤ (ψj − ψi) mod gi,j ≤ gi,j − Lj , (5)

where gi,j represents the greatest common divisor of Ti and Tj . In addition, to be globally feasible, no two solo-
partitions on different cores can execute at the same time,

∀πi∀πj(i ̸= j and C(πi) ̸= C(πj)), L
S
i ≤ (ψj − ψi) mod gi,j ≤ gi,j − LS

j . (6)

Note that this problem is not an optimization problem but rather a decision problem to find a set of feasible
partition offsets satisfying the above two constraints. To address this problem, we thus formulate it with Constraint
Programming.

A. Proof of NP–Completeness

Prior to the CP formulation, we first prove that the Multi-IMA partition scheduling problem with exclusive solo-
partitions described in Sec. II-B is NP-complete in the strong sense even if we are given only two cores and all
solo-partitions have length of at most one. It is known that the problem of testing if a set of partitions is schedulable
on a single core is strongly NP-complete [5], even without considering solo-partitions. The reader may wonder if
their proof immediately implies a similar hardness result for our problem. One subtle difference is that in our
setting, we may already know a feasible schedule for each core in which all partitions on the core are feasibly
scheduled without considering the exclusiveness across cores of solo-partitions. If solo-partitions are allowed to
have non-uniform lengths that are greater than one, their proof can be easily adapted to our setting. However, it is
necessary that our proof differs from theirs in that we are allowed to use very restricted solo-partition lengths. Note
that the difficulty of our problem stems mainly from solo-partitions; without solo-partitions, the problem becomes
trivial.

We show its strong NP-completeness via a reduction from the 3-Partition Problem, which is a well-known strongly
NP-complete problem asking whether a given set of integers can be partitioned into the same sum of triples [12].
It would imply that the Multi-IMA partition scheduling problem does not admit an efficient algorithm even if all
parameters of the input are small. The 3-Partition Problem is formally defined as follows: the input consists of a
set S of n = 3k positive integers and the target sum E of each triple or subset. This problem asks whether S can
be partitioned into k (= n/3) disjoint subsets S0, S1, · · · , Sk−1, each of which includes exactly three integers that
add up exactly to E.

Theorem 1. The problem of Multi-IMA partition scheduling with exclusive solo-partitions which optimally finds
the partition schedule to make

• each πi schedulable according to its LS
i , L

E
i , and Ti in each local core C(πi), i.e. no overlap with πj for all

j ̸= i such that C(πi) = C(πj),
• all πS

i exclusively synchronized throughout all cores, i.e., no overlap with πS
j for all j ̸= i,

is strongly NP–hard. Further, it remains the case even if all solo-partitions have a length of at most one, and for
each core we are given a schedule where all and only the partitions assigned to the core are feasibly scheduled.

Proof: Consider any instance for the 3-Partition problem. Let a0, a1, · · · , a3k be the given 3k positive integers.
For the IMA partition system, we create two cores, C0 and C1, and k(E+5)+ 1 partitions. There are four groups
of partitions, and each group has its own role. The partitions are described as follows. For notational convenience,
we also use the notation π′ in addition to π. We also drop the offset from the tuple (only in this proof), i.e.,
πi = (Ti, L

S
i , L

E
i).

• π′
0 = (2(E + 1), 0, E + 1).

• π′
i = (2k(E + 1), 1, 0), 1 ≤ i ≤ k(E + 1).

• πi = (2k(E + 1), 1, ai − 1), 0 ≤ i ≤ 3k − 1.
• πi = (2k(E + 1), 1, E + 1), 3k ≤ i ≤ 4k − 1.

Core C0 is given to partitions π′
i, 0 ≤ i ≤ k(E+1), and core C1 is given to partitions πi, 0 ≤ i ≤ 4k− 1. Note

that E can be assumed to have a size that is polynomial in the input size since the 3-Partition is strongly NP-hard.
Hence, the above instance has a polynomial size. This completes the description of the instance for StraightMapping.
Note that there is a trivial, feasible schedule when we consider only the partitions assigned to each core.

6

0 10 20 30 40 50 60 70 80 90 110 120 130 140 150 160 170 180 190100
0 00 01 1 1 1

2
4

33 2
4

6 6 7 7

200
Core 0
Core 1
Core 2
Core 3

: solo-partition : execution-partition

1 1 1 1
2 233 33 33

4 45 5
6 6 6 6 6 6 7 77

occupied by
solo-partitions

Fig. 3. An example partition schedule with exclusive solo-partitions.

The partitions in C0 are used to enforce the constraints of the 3-Partition. Partitions π′
i fully utilize C0 with their

solo-partitions and execution-partitions, since the total utilization of π′
i is exactly one. The only feasible schedules

for C0 are to pack the unit-length solo-partitions π′
i, 1 ≤ i ≤ k(E + 1) into the empty time slots that are left after

scheduling π′
0. Observe that there is one periodic interval of length (E + 1) and period 2(E + 1) that can be used

by the solo-partitions in C1. Alternatively, we can equivalently think that there are k periodic intervals of length
(E + 1) and period 2k(E + 1) and they are equally spaced by E + 1 time slots away. Since all πi have period
2k(E + 1), we will focus on the time interval [0, 2k(E + 1)) and the k intervals of length E + 1 that are free for
solo-partitions. Assume without loss of generality that Ih = [2h(E + 1), 2h(E + 1) +E], 0 ≤ h ≤ k − 1 are such
intervals.

As is the case in C0, core C1 is fully utilized by its partitions πi. As mentioned above, since all partitions πi
have period 2k(E + 1), we will focus on the exactly one appearance during [0, 2k(E + 1)) of solo and execution
parts of each partition πi. Consider any interval Ih. We can, without loss of generality, consider I0. We claim that
one of πi, 3k ≤ i ≤ 4k−1 must be scheduled starting exactly at time E. Note that no partition πi can start at time
E + 1 ≤ t ≤ 2E + 1, since these time slots are used by the solo-partitions of π′

i. Hence during [E + 1, 2E + 1],
core C1 can be used only by a partition πi that starts no later than time E. Note that πi, 3k ≤ i ≤ 4k − 1 has a
length strictly larger than πi, 0 ≤ i ≤ 3k − 1 and that a πi of total length E + 2, 3k ≤ i ≤ 4k − 1 can cover the
entire interval [E+1, 2E+1] only when it starts at time E; recall that C1 cannot be wasted at any time. Therefore
we are left with k disjoint intervals of length E that are separated from each other. Now we are forced to pack
the remaining partitions πi of total length ai, 0 ≤ i ≤ 3k − 1 into these intervals. Each πi, 0 ≤ i ≤ 3k − 1 has a
length corresponding uniquely to a number ai in the given instance for the 3-Partition problem. Hence there exists
a feasible schedule if and only if the 3-Partition instance is a Yes-instance.

This completes the proof that our problem is strongly NP-complete, since it is trivial to see that it is in NP.

B. Constraint Programming (CP) Formulation
In this section, we present the CP formulation for the multi-IMA multi-core partition schedule problem of

StraightMapping described in Sec. II-B.
1) Decision variables:

• ψi : the offset of πi, 0 ≤ ψi ≤ (Ti − 1).

2) Constraint 1 – Local feasibility (5):

∀πi∀πj(i ̸= j and C(πi) = C(πj)),(ψj − ψi) mod gi,j ≥ Li,

(ψj − ψi) mod gi,j ≤ gi,j − Lj .

3) Constraint 2 – Global feasibility (6):

∀πi∀πj(i ̸= j and C(πi) ̸= C(πj)),(ψj − ψi) mod gi,j ≥ LS
i ,

(ψj − ψi) mod gi,j ≤ gi,j − LS
j .

We can linearize the constraints by replacing
(
(ψj − ψi) mod gi,j

)
with

(
(ψj − ψi)− gi,j ·Xi,j

)
, where Xi,j is a

new real-valued variable bounded in [⌊ 1−Ti

gi,j
⌋ − 1, ⌊Tj−1

gi,j
⌋+ 1] if Ti, Tj ≥ 2.

C. Example
Fig. 3 shows a schedule generated by CP for an example input set with four cores each of which has two

partitions. Note that, although no core is fully utilized in this example, any increase in LS
i of any partition makes

the schedule infeasible, which motivates the MinCores problem described in the following section.

7

IV. MINIMIZATION OF THE REQUIRED NUMBER OF CORES

As seen in the previous section, some input sets cannot be feasibly scheduled on the pre-assigned cores, e.g.,
because of the lower clock speed of each core of a multi-core processor than a single-core one or simply due to
the exclusive regions. Thus, in this section, we address the problem of finding the minimum number of cores that
can schedule a given set of partitions. For this problem, we first extend the CP formulation in the previous section
and present an approximation algorithm that can be scalable with respect to the number of partitions.

A. Extended CP Formulation

The CP formulation for MinCores problem can be extended from the one presented in Sec. III-B by adding the
following variables and constraints:

1) Added decision variables:

• λi,k =

{
1 if πi is assigned to Ck,
0 otherwise.

• µk =

{
1 if any partition is assigned to Ck,
0 otherwise.

2) Constraint 3 - Partition assignment: A partition must be assigned to a core.

∀i,
∑
k

λi,k = 1.

3) Constraint 4 - Core occupancy: If one or more partitions are assigned to core Ck, this indicates that the core
is being used, i.e., µk = 1.

∀k, if
∑
i

λi,k ≥ 1, then µk = 1.

4) Modified Constraint 1 and 2: Since partitions can be assigned to arbitrary cores, the condition C(πi) = C(πj)
of Constraint 1 in Sec. III-B needs to be modified to λi,k = λj,k. For Constraint 2, we can simply remove the
condition C(πi) ̸= C(πj).

5) Objective function: The optimization objective is to minimize the sum of µk, i.e., the total number of used
cores. Accordingly,

Minimize
∑
k

µk.

The presented CP, however, is not scalable with respect to the number of partitions because each partition
can be assigned to an arbitrary core. Thus, we need as many as NΠ·(NΠ−1)

2 · Nk of Constraint 1, where Nk is
the maximum possible number of cores. Accordingly, the problem size grows exponentially with the number of
partitions.

B. Approximation Algorithm

The key idea of the approximation algorithm for MinCores problem presented in this section is to pack partitions
into the smallest number of cores possible while guaranteeing that the remaining partitions can be schedulable by
tracking the availability of free space for solo-partitions.

Considering partitions πi in decreasing order of Li/Ti is inspired by the well-known heuristic called the First
Fit Decreasing (FFD) for the Bin Packing problem. The input of the Bin Packing problem consists of n items of
respective sizes a1, a2, · · · , an ∈ [0, 1]. The goal is to pack all items into the minimum number of bins, each having
a unit size. This problem is known to be NP-complete. The FFD algorithm is known to use at most 11/9OPT(Π)+1
bins, where OPT(Π) denotes the number of bins of the optimal solution [4]. The FFD algorithm simply sorts all
items in decreasing order according to their size. Then for each item in consideration, it attempts to add it to each
opened bin favoring earlier opened bins. If unsuccessful, it opens another bin and places the item into that bin. We
note that packing items in an arbitrary order results in a worse guarantee in that it uses at most 2OPT(Π) bins.

Recall that partitions must be scheduled nonpreemptively. Generally in this case, the utilization Li/Ti of partitions
πi is not sufficient for determining the feasibility of a set of partitions. There is, in fact, an easy example of two

8

Algorithm 1 A(Π)

1: SΠ : The sorted list of Π in decreasing order of Li

Ti

2: πσ(i) : ith partition in SΠ

3: ∆ : The set of generated periodic intervals
4: C : The set of generated cores
5: C = C ∪ {C0}
6: for all πσ(i), i = 0, · · · , NΠ − 1 do
7: for all Cj , j = 0, · · · , |C| − 1 do
8: ψ ← FINDOFFSET(Cj , πσ(i),∆, SΠ)
9: if ψ ≥ 0 then

10: Assign πσ(i) on core Cj at offset ψ
11: {∆ was updated in FINDOFFSET}
12: Break the loop
13: end if
14: end for
15: if πσ(i) is not assigned then
16: Create a new core Cj .
17: C = C ∪ {Cj}
18: Do Line 8–13
19: end if
20: end for
21: return |C|

partitions that cannot be scheduled together although the sum of utilization is very small [9], [13]. However,
utilization could still be a useful metric for designing a heuristic. We use the obvious necessary condition for a set
of partitions being schedulable on a single core: the total utilization of all the partitions should not exceed one. By
viewing each partition as an item in the Bin Packing problem and its utilization as the item size, the FFD suggests
the ordering in Line 1,6, and 7 of Algorithm 1.

There can, however, be conflicts between solo-partitions if partition offsets are not carefully chosen. The
importance of selecting a proper offset can be seen if partitions choose arbitrary offsets. In such a case, the
remaining partitions might not be able to be assigned even if an infinite number of cores were available. Thus, in
our algorithm, when trying to assign a new partition to a core, we find a proper offset that can ensure that all the
remaining partitions will be guaranteed to be assigned (Line 8 in Algorithm 1, which is detailed in Algorithm 2).
In order to do so, we maintain guaranteed slots for the remaining solo-partitions by a set of periodic intervals [5].
A periodic interval (PI), δj , can be represented by (T δ

j , L
δ
j) meaning that consecutive free slots of Lδ

j appear
periodically at every T δ

j slots in the schedule. For example, if only one partition with Ti = 10 and Li = 2 has been
scheduled, we have one periodic interval with T δ

j = 10 and Lδ
j = 8. Partition πi can be assigned to δj if and only

if [5]

Li + (T δ
j − Lδ

j) ≤ gcd(Ti, T δ
j) or Lδ

j = T δ
j . (7)

A periodic interval, however, can only tell us of its existence, not where it is actually located. Thus, in order to
precisely represent the available slots, we extend each periodic interval to a three-tuple, (T δ

i , L
δ
i , ψ

δ
i) in which a

free space of length Lδ
i begins at ψδ

i and appears at every T δ
i .

The algorithm keeps track of the empty time slots that can be used for solo partitions, as a compact set of PIs of
a unit length. Let a1, a2, · · · , al be the set of periods of all partitions in increasing order. Initially the empty slots
are expressed as a1 PIs: (a1, 1, h), 0 ≤ h < a1. When πi’s solo-partition is scheduled in δj with offset ψi, δj splits
into multiple periodic intervals based on the rules in Algorithm 3, which are also illustrated in Fig. 4; finding the
offset ψi will be discussed soon. The key idea is to maintain the set ∆ of current PIs to be minimal. We say that a
∆ is minimal if all PIs in ∆ have a unit length and no subset of ∆ can be replaced with a PI with a smaller period.
For example, suppose all periods are powers of two. Then ∆ = {(4, 1, 0), (4, 1, 1), (4, 1, 2)} is not minimal, since
the PIs (4, 1, 0) and (4, 1, 2) are equivalent to a PI (2, 1, 0). In contrast, ∆ = {(4, 1, 1), (4, 1, 2)} is minimal. It is
easy to see that the minimal expression of PIs is unique.

9

Algorithm 2 FINDOFFSET (Cj , πi,∆, SΠ)

1: S∆: Sorted list of ∆ in decreasing order of T δ

2: for all δk in S∆ do
3: if CANFIT(πi, δk) then
4: for all ψ ∈ [0, Ti − 1] s.t. ψ = ψδ

k (mod T δ
k) do

5: if ISLOCALLYFEASIBLE(πi, ψ, Cj) then
6: ∆∗ ←∆/{δk} ∪ UPDATEPI(πi, ψ, δk)
7: if CANGUARANTEE(∆∗, SΠ, i) then
8: ∆←∆∗

9: return ψ
10: end if
11: end if
12: end for
13: end if
14: end for
15: return -1 {No offset has been found.}

We now explain in detail how to find the offset ψi of partition πi on core Cj as described in Algorithm 2. We
try each periodic interval that has been created up until that point in decreasing order of periods. Thus, the periodic
interval set, ∆, is sorted in decreasing order of T δ

i . Once ∆ is sorted, we pick each δk and check if πS
i can fit

into the interval by using Eq. (7) with Li = LS
i . In fact this is easy: by definition of minimal PIs, it fits if and

only if Ti ≥ T δ
k , because periods are harmonic. Note that πS

i must have an offset ψi ∈ [0, Ti) to fit in δk such that
ψ = ψδ

k (mod T δ
k). However, it could not be available to πi since even if πS

i can be allocated at ψ, πi could
be in conflict with another partition πℓ in the same core (recall that δk is the periodic interval for solo-partitions
in our algorithm). Thus, we check if πi and all partitions already assigned to Cj satisfy Eq. (5), assuming πi has
an offset of ψ (Line 5). If not, we try another offset ψ. If all ψ fail in Line 4, we move to the next PI in the
sorted list δ, S∆. Now, let us consider a case in which πS

i can fit in a δk ∈ ∆ and further placing πi at offset ψ
makes no conflict with other partitions already assigned to Cj . The final ascertaining of ψ is whether or not all the
remaining partitions yet to be assigned are guaranteed to find their offsets after πS

i is placed in δk with offset ψ.
In the following, we explain how to implement the function CANGUARANTEE in Line 7.

Feasibility test: To describe how to implement CANGUARANTEE (Line 7 in Algorithm 2), it suffices to show how
to examine if a set S of solo-partitions can be scheduled into a minimal set E of PIs of a unit length. It should be
noted that there always exists a feasible schedule for a set of strictly periodic tasks whose periods are harmonic,
lengths are unit-sized, and total utilization is less than or equal to 1, provided that they are sorted in increasing

Algorithm 3 UPDATEPI (πi, ψ, δj)

1: Let Ti be ap and T δ
j be ah

2: ∆← ∅
3: if (Ti == T δ

j) & (ψ == ψδ
j) then

4: return ∆
5: else if Ti > T δ

j then
6: for m = h to p− 1 do
7: for all ψ s.t. ψ = ψδ

j (mod am) and
ψ ̸= ψδ

j (mod am+1) do
8: ∆ = ∆ ∪ (am, 1, ψ).
9: end for

10: { am+1

am
− 1 periodic intervals are created.}

11: end for
12: end if
13: return ∆

10

order of periods [9], [13]. We however need a stronger test that works also when all time slots are not available.
To the best of our knowledge, our feasibility test seems to appear only implicitly in previous work.

To formally define our feasibility test, we need to define more concepts. Recall that a1, a2, · · · , al are the periods
in increasing order. We say that v(S) = (s1, s2, · · · , sl) is the canonical vector of S when si is the number of
solo-partitions in S whose period is exactly ai. Likewise, we say that v(E) = (e1, e2, · · · , el) is the canonical
vector of set E when ei is the number of PIs in E whose period is exactly ai. Let l′ be the smallest integer in
{1, 2, · · · , l} such that sl′ ̸= 0 or el′ ̸= 0. We say that v(E) ≽ v(S) if l′ = l and el′ ≥ sl′ , or if l′ < l, el′ ≥ sl′ and
(0, 0, · · · , 0, al′+1

al′
(el′ − sl′) + el′+1, el′+2, · · · , el) ≽ (0, 0, · · · , 0, sl′+1, sl′+2, · · · , sl). Note that ≽ is recursively

defined.

Core 0

δ1 (2,1,1)

: solo-partition : execution-partition : periodic interval

10 2 3 4 5 6 7 98 10 1112 1314 15

0 0 0 0

δ2 (4,1,2)
δ3 (8,1,4)

Core 0

δ3 (8,1,4)

Core 1

Core 0

δ4 (16,1,12)

Core 1

Core 2

Core 0

δ4 (16,1,12)

Core 1

Core 2

Core 0

Core 1

Core 2

δ6 (8,1,1)

10 2 3 4 5 6 7 98 10 1112 1314 15

10 2 3 4 5 6 7 98 10 1112 1314 15

10 2 3 4 5 6 7 98 10 1112 1314 15

10 2 3 4 5 6 7 98 10 1112 1314 15

δ1 (2,1,1)

δ1 (2,1,1)

δ6 (8,1,1)

δ5 (4,1,3)

2 2

0 0 0 0

1 1 1 1 1 1 1 1

3 3 3 3

4 4

0 0 0

1

0

2 2

1 1 1 1 1 1 1

0 0 3 3 0 0

1

3

2 2

1 1 1 1 1 1 1

3

0 0 0 0

1 1 1 1 1 1 1 1

δ5 (4,1,3)

Fig. 4. An example of partition assignment and scheduling for five partitions generated by our approximation algorithm.

11

Theorem 2. Consider any set S of solo-partitions and any minimal set E of periodic intervals of a unit length.
Then the solo-partitions in S can be scheduled into the periodic intervals in E if and only if v(E) ≽ v(S).

Proof Sketch. Let 1 ≤ l′ ≤ l be the smallest integer such that sl′ ̸= 0 or el′ ̸= 0. We prove the theorem using
induction on the value of l′ in decreasing order. In the initial case that l′ = l, the theorem trivially holds. Suppose
the theorem is true for all l′ > h. We want to show that the theorem holds also when l′ = h.
(⇒) A partition π1 cannot be scheduled in a unit length PI of larger period. Hence it must use one of the PIs of
the same period (no PIs of smaller periods are available by definition of l′ = h). Clearly each (solo-)partition πi
of period ah in S uses one PI of the same period. Hence it follows that eh ≥ sh. Now after serving sh partitions
of period ah, the remaining PIs of period ah can be turned into ah+1

ah
(eh − sh) PIs of period ah+1. The induction

hypothesis completes the proof of this direction.
(⇐) The proof is similar to the one above and is thus omitted. �

C. Example

Fig. 4 shows how to generate a schedule for an example set of five partitions with the presented algorithm. Note
that after π0 is assigned, π1 finds its offset at slot 2 of δ2, not slot 4 of δ3, since its period is 4. Also note that π3
takes slot 5 on C0 by updating δ1. If it were to utilize slot 12 of δ4, an additional core would be required since π3
cannot fit into any existing core with the offset of 12.

V. EVALUATION

In this section, we show the impact of solo-partition on the feasibility of Multi-IMA partitions through the result
of StraightMapping with CP. Then, we evaluate the proposed approximation algorithm of MinCores with varying
partition packing order and offset searching. We executed all the experiments on Intel(R) Core(TM)2 Duo CPU
2.66 GHz with 4GB RAM. For CP, we used IBM ILOG CPLEX CP Optimizer [14]. In the evaluation of MinCores,
we do not compare the solving time of CP with that of our approximation algorithm since those are incomparable.
The algorithm’s running time is in millisecond order while CP’s is in few dozens of minutes order.

Firstly, Fig. 5 shows the result of StraightMapping obtained by the presented constraint programming formulation.
For the experimental parameters, except for the length of the solo-partition, the following parameters are fixed: four
cores; 3–5 partitions per core; execution-partition length is in {1,2,· · · ,30}; period is in {64,128,256,512}; 40
random input sets for each solo-partition length group. For each input set, CP outputs one of the following: a)
solution found: a feasible schedule for a given set of partitions pre-assigned on each core is found; b) timeout:
we put a 30–minute time limit on the execution of each input set. During the experiment we observed that when
there exists a feasible solution, the solving time was a few minutes and no more than 10 minutes. Thus, when a
CP execution terminates by timeout, we suspect that no solution for the given input set exists; c) infeasible input
set: the input set itself cannot satisfy some constraints. We can see from the result that, in the stable conditions,

0 10 20 30 40 50 60 70 80 90 100

1 ~ 3

6 ~ 8

11 ~ 13

Percentage (%) of each case in the whole input sets

Le
ng

th
 o

f s
ol

o−
pa

rt
iti

on

Solutions found
Timeout
Infeasible input sets

Fig. 5. Result of StraightMapping obtained by Constraint Programming in Sec. III-B.

12

0~2 2~4 4~6 6~8 8~10 10~12
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Total utilization

A
vg

. o
f (

C
P

 −
 a

lg
or

ith
m

)/
C

P
 in

 th
e

nu
m

be
r

of
 c

or
es

Fig. 6. Average relative differences between the required number of cores by our algorithm and CP of MinCores divided by CP according to
the six total utilization range groups.

except for the length of solo-partitions, the proportion of infeasible sets increases only as the solo-partition lengths
increase. This shows having solo-partitions is the bottleneck affecting the schedulability of the whole system.

Next, we evaluated our approximation algorithm in Sec. IV-B by comparing the minimum number of cores it can
find for a given set with what can be found by CP. For this evaluation, we generated 200 random input sets, each
of which consists of {5,6,· · · ,50} partitions. The length of execution-partition and the period were chosen from
{5,6,· · · ,50} and {64,128,256,512}, respectively. Also, the time limit of CP was set to 30 minutes. In the case of
a timeout, the solution of CP is the best solution found up until the time limit. In Fig. 6, the y–axis shows the
average relative differences between the required number of cores found by our algorithm and the solution of CP.
We grouped input sets into six different range groups according to their total utilizations, i.e., the sum of Li

Ti
over

partitions. A higher utilization is mainly attributed to the number of partitions in each set. Thus, as we can see from
the result, as the total utilization increases, CP could not find any better solution than the one our approximation
algorithm could find because of the exponentially increasing search space. This thus shows how well our algorithm
can be scalable and efficient.

Lastly, we evaluated our approximation algorithm by adding randomness in order to justify the theoretical
effectiveness of the algorithm. We compared the original algorithm described in Sec. IV-B and the following
three variations:

1) Random Sorting: Partitions are packed into cores in a random order.
2) Random Offset: When a partition πi finds its offset on a core, it randomly tries offsets within [0, Ti) until it

either finds a feasible one or fails Ti times.
3) Random Sorting and Random Offset: Both of the above combined.

For this evaluation, we used the same experimental parameters as in Fig. 6. For each input set, we take the average
of the results of 100 executions. First of all, as we can see from the results, the added randomness increased the
required number of cores, as expected. This is worse in the case of (c); in the worst-case, it used more than 1.5
times of the number of cores that were found by the original algorithm, and could not output the same solution in
the range over 20 partitions. Although there are some cases where the variations found better solutions than the
original algorithm, these results show the theoretical importance of the proposed algorithm.

VI. RELATED WORK

On a general IMA architecture, a set of partitions runs in Time Division Multiple Access (TDMA) according
to a cyclic scheduling table constructed by partition periods and pre-specified time durations. Within a partition,
a set of applications are scheduled by a local scheduling policy which is, in general, a fixed-priority preemptive
scheduling such as Rate Monotonic [15]. IMA-partition scheduling is a class of strictly periodic scheduling due
to the nature of cyclic and nonpreemptive scheduling; that is, the distance between the starting times of two
consecutive executions of a partition is exactly the same as its period, that is, strictly periodic. The periodicity of

13

0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

The total number of partitions

(R
an

do
m

O
rd

er
−

al
go

rit
hm

)/
al

go
rit

hm

(a) Random Sorting.

0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

The total number of partitions

(R
an

do
m

O
ffs

et
−

al
go

rit
hm

)/
al

go
rit

hm

(b) Random Offset.

0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

The total number of partitions

(R
an

do
m

O
rd

er
&

O
ffs

et
−

al
go

rit
hm

)/
al

go
rit

hm

(c) Random Sorting & Random Offset.

Fig. 7. Average relative differences between our algorithm and three random variations in partition packing order and offset searching.

tasks in hard real-time scheduling has been addressed from different aspects in previous literature. The Pinwheel
problem [13] is a special class of hard real-time scheduling that guarantees the occurrence of each symbol (task)
within any sequence of a given length of consecutive intervals. In [9], Han et al. proposed a similar task model
called a distance-constrained task system (DCTS), in which the distance between the finishing times of consecutive
executions are constrained to be no longer than a certain threshold. These two classes of task models, however, differ
from our partition scheduling model in that a task can start its execution at an arbitrary time instant as long as the
constraint can be met in each respective model. A more closely related work to our scheduling problem is [5], [16];
Korst et al. addressed the problem of scheduling a set of strictly periodic, nonpreemptive tasks on the minimum
number of processors. We adopt their mathematical property of a strictly periodic and nonpreemptive task model
and extend it to our multi-IMA partition scheduling with exclusive regions. [17] considered a similar problem of
finding a schedule of strictly periodic tasks, maximizing the relative distances between them. The authors proposed
a Game Theory based algorithm for uniprocessor scheduling and extended it to a multiprocessor case. This work
was extended in [18] to support harmonic and near-harmonic periods in IMA-based architectures.

In [10], [11], Lee et al. considered an IMA system in which multiple processors are connected over Avionics
Full-Duplex Switched Ethernet (AFDX). The authors addressed the problem of generating a cyclic schedule for
both IMA partitions and bus channels, considering the timing requirements of tasks and messages. Although not
directly assuming an IMA model, Tămaş–Selicean et al. [19], [20] considered an optimization problem of mixed-
criticality, cost-constrained partitioned resources in a distributed architecture. In this work, the authors developed a
meta-heuristic algorithm that finds the assignments of tasks and partitions as well as their schedules that can satisfy
application schedulability while minimizing the development cost.

Lastly, in [2], a closely related and meaningful discussion on synchronization issues of distributed IMA

14

architectures is found. This article addressed the necessity of a special purpose partition called a device management
partition on processors that communicates over a shared bus. Due to the exclusiveness on the communication line,
the necessity of a global schedule that excludes simultaneous executions of device management partitions was
addressed, which motivates our work.

VII. CONCLUSION

In this report, we have developed an optimized Multi-IMA partition scheduling algorithm which considers
exclusive regions, solo-partitions, to achieve synchronization between partitions across cores on a multi-core system.
We have shown that the problem of finding an optimal Multi-IMA partition schedule for StraightMapping problem
is NP-complete and presented a Constraint Programming formulation. In addition, we have relaxed the problem
to find the minimum number of cores needed to schedule a given set of partitions. The proposed approximation
algorithm is guaranteed to find a feasible schedule if there exists a feasible schedule of solo-partitions. To the
best of our knowledge, this is the first work that studies the problem of scheduling multi-IMA partitions with
exclusive regions on a multi-core system. An interesting direction for future work would be to extend the problem
to non-uniform sized solo-partitions. This would help solo-partitions find wider application.

REFERENCES

[1] ARINC Specification 651: Design Guidance for Integrated Modular Avionics, ser. ARINC report. Airlines Electronic Engineering
Committee (AEEC) and Aeronautical Radio Inc, Nov. 1991.

[2] J. Rushby, “Partitioning in avionics architectures: Requirements, mechanisms, and assurance,” NASA Langley Technical Report Server,
Mar. 1999.

[3] D. Patterson, “The trouble with multi-core,” IEEE Spectrum, vol. 47, no. 7, pp. 28–32, Jul. 2010.
[4] M. Yue, “A simple proof of the inequality FFD(L) ≤ 11/9 OPT(L) + 1, ∀L for the FFD bin-packing algorithm,” Acta Mathematicae

Applicatae Sinica (English Series), vol. 7, no. 4, pp. 32–331, 1991.
[5] J. H. M. Korst, E. H. L. Aarts, and J. K. Lenstra, “Scheduling periodic tasks,” INFORMS Journal on Computing, vol. 8, no. 4, pp. 428–435,

1996.
[6] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions: response-time analysis and server design,” in Proc. of the 4th ACM

international conference on Embedded software, 2004, pp. 95–103.
[7] G. Lipari and E. Bini, “Resource partitioning among real-time applications,” in Proc. of the 15th Euromicro Conference on Real-Time

Systems, 2003, pp. 151–158.
[8] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” in Proc. of the 24th IEEE Real-Time Systems Symposium,

2005, pp. 389–398.
[9] C.-C. Han, K.-J. Lin, and C.-J. Hou, “Distance-constrained scheduling and its applications to real-time systems,” IEEE Transactions on

Computers, vol. 45, pp. 814–826, 1996.
[10] Y.-H. Lee, D. Kim, M. Younis, and J. Zhou, “Scheduling tool and algorithm for integrated modular avionics systems,” in Proc. of the 19th

Digital Avionics Systems Conference (DASC), 2000.
[11] Y.-H. Lee, D. Kim, M. Younis, J. Zhou, and J. Mcelroy, “Resource scheduling in dependable integrated modular avionics,” in Proc. of the

International Conference on Dependable Systems and Networks (FTCS-30 and DCCA-8), 2000, pp. 14–23.
[12] M. R. Garey and D. S. Johnson, “Tutorial: hard real-time systems,” J. A. Stankovic and K. Ramamritham, Eds. IEEE Computer Society

Press, 1989, ch. Complexity results for multiprocessor scheduling under resource constraints, pp. 205–219.
[13] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel, “The pinwheel: a real-time scheduling problem,” in Proc. of the 22nd Annual

Hawaii International Conference on System Sciences, 1989, pp. 693–702.
[14] “IBM ILOG CPLEX CP Optimizer,” http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/.
[15] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,” Journal of the ACM,

vol. 20, no. 1, pp. 46–61, January 1973.
[16] J. Korst, E. Aarts, J. K. Lenstra, and J. Wessels, “Periodic assignment and graph colouring,” Discrete Appl. Math., vol. 51, no. 3, pp.

291–305, Jul. 1994.
[17] A. Al Sheikh, O. Brun, P.-E. Hladik, and B. J. Prabhu, “A best-response algorithm for multiprocessor periodic scheduling,” in Proc. of

the 23rd Euromicro Conference on Real-Time Systems, 2011, pp. 228–237.
[18] ——, “Strictly periodic scheduling in IMA-based architectures,” Real-Time Syst., vol. 48, no. 4, pp. 359–386, Jul. 2012.
[19] D. Tămaş-Selicean and P. Pop, “Design optimization of mixed-criticality real-time applications on cost-constrained partitioned architectures,”

in Proc. of the 32nd IEEE Real-Time Systems Symposium, 2011, pp. 24–33.
[20] ——, “Optimization of time-partitions for mixed-criticality real-time distributed embedded systems,” in Proc. of the 2011 14th IEEE

International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, 2011, pp. 1–10.

