
Hallucination Helps: Energy Efficient Virtual Circuit Routing

Antonios Antoniadis∗ Sungjin Im† Ravishankar Krishnaswamy‡

Benjamin Moseley§ Viswanath Nagarajan¶ Kirk Pruhs‖ Cliff Stein∗∗

July 7, 2013

Abstract

We consider virtual circuit routing protocols, with an objective of minimizing energy, in a
network of components that are speed scalable, and that may be shutdown when idle. We assume
that the speed s of the router is proportional to its load, and assume the standard model for
component power, namely that the power is some constant static power plus sα, where typically
α ∈ [1.1, 3]. We give a polynomial-time offline algorithm that is the combination of three natural
combinatorial algorithms, and show that for any fixed α the algorithm has approximation ratio
O(logα k), where k is the number of demand pairs. The algorithm extends rather naturally to
a randomized online algorithm, which we show has competitive ratio Õ(log3α+1 k). This is the
first online result for the problem. We also show that this online algorithm has competitive
ratio Õ(logα+1 k) for the case that all connections have a common source.

1 Introduction

According to the US Department of Energy [1], data networks consume more than 50 billion kWH of
energy per year, and a 40% reduction in wide-area network energy is plausibly achievable if network
components could dynamically adjust their speed to be proportional to demand. Virtual circuit
routing, in which each connection is assigned a reserved route in the network with a guaranteed
bandwidth, is used by several network protocols to achieve reliable communication [19]. In this
paper we consider virtual circuit routing protocols, with an objective of minimizing energy, in a
network of components that are speed scalable, and that may be shutdown when idle.
We adopt the standard models for virtual circuit routing and component energy, in particular
these are the same as used in [3,4,6]. In the Energy Efficient Routing Problem (EERP), the input
consists of an undirected graph G = (V,E), with |V | = n, and a collection of k request-pairs
{(si, ti) | si, ti ∈ V and i ∈ [k]}. The output is a path Pi, representing the virtual circuit for a
unit bandwidth demand, between vertices si and ti, for each request-pair i ∈ [k]. In the online
version of the problem, the path Pi must be specified before later request-pairs become known to
the algorithm. We assume that the speed of an edge is proportional to its flow, which is the number

∗University of Pittsburgh.
†Duke University. Partially supported by NSF Award CCF-1008065.
‡Computer Science, Princeton University. Supported by the Simons Postdoctoral Fellowship.
§Toyota Technological Institute at Chicago
¶IBM T.J. Watson Research Center
‖University of Pittsburgh. Supported in part by NSF grants CCF-1115575, CNS-1253218 and an IBM Faculty

Award.
∗∗Supported in part by NSF grant CCF-0915681.

1

of paths that use that edge. We further assume that the power used by an edge with flow f is
σ+ fα if f > 0, and that the edge is shutdown and consumes no power if it supports no flow. The
objective is to minimize the aggregate power used over all the edges.
The term fα is the dynamic power of the component as it varies with the speed, or equivalently load,
of the component. Here α > 1 is a parameter specifying the energy inefficiency of the components,
as speeding up by a factor of s increases the energy used per unit computation/communication by
a factor of sα−1. The value of α is in the range [1.1, 3] for essentially all technologies [8,26]. The
parameter σ is the static power, that is the power used when the component is idle, and that can
only be saved by turning the component off. The static power is really only relevant/interesting
if it is large relative to the dynamic power of routing one unit of flow, thus we will assume that
σ � 1.
We remark that in a real network, the scalable components (routers) would be at vertices rather
than edges. The modeling of scalable network components by edges in [3,4,6] as well as here is
motivated primarily by reasons of mathematical tractability. Network design problems with vertex
costs tend to be harder than the corresponding edge versions. Also, obtaining algorithms for the
edge version often serves as a good starting point to handle the more general vertex case.

1.1 The Backstory

We first consider the case that the static power σ is zero. In this case, [14] shows, using convex
duality, that the natural online greedy algorithm is O(α)α-competitive. To understand the case
when there is no static power, assume that there is a common source and common sink, that is
all si = s and all ti = t, and the network consists of disjoint s-t paths. Then the convexity of the
power function implies that in the optimal solution each path has the same aggregate power. The
difficulty for a general network comes from the interplay between paths, but intuitively one still
wants to spread the flow out over the whole network.
Let us return to the case that the static power is nonzero. If the static power is very large (σ � kα),
then the optimal solution is essentially to route all flow over a minimum cardinality Steiner forest
that connects corresponding request-pairs (since this minimizes static power); that is, the flow
should be as concentrated as possible. The difficulty, in the general case, comes from the competing
goals of minimizing static power, where it’s best when flows are concentrated, and minimizing
dynamic power, for which the flows are spread out. Andrews et al. [4] show that there is a limit to
how well these competing demands can be balanced by showing that there is no polynomial-time
algorithm with approximation ratio o(log1/4 n), under standard complexity theoretic assumptions.
In contrast, [3] shows that these competing forces can be balanced fairly roughly by giving a
polynomial-time poly-log-approximation algorithm. We think it is fair to say that the algorithm
design and analysis in [3] are complicated and rely on big “hammers”, namely the well-linked
decomposition of Chekuri-Khanna-Shepherd [9], the construction of expanders via matchings of
Khandekar-Rao-Vazirani [18], and edge-disjoint routings in well-connected graphs due to Rao-
Zhou [23]. Moreover, The “poly” in the poly-log approximation is fairly large that it was not
explicitly calculated in [3]. A critical parameter in [3] is q = σ1/α. If the flow on an edge is at least
q, then one knows that the dynamic power on that edge is at least the static power, and thus static
power can be charged to the dynamic power in the analysis. Roughly speaking, the algorithmic
strategy in [3] is to aggregate the flow within groups, each containing q terminals, and then cleverly
combining the above mentioned results [9,18,23] to route between groups.
The work [6] considered the case of a common source vertex s for all request-pairs, that is all si = s.
Applications for a common source vertex include data collection by base stations in a sensor network,
and supporting a multicast communication using unicast routing. [6] gives a polynomial-time O(α)-

2

approximation algorithm. The algorithm design and analysis is considerably easier than [3] because,
after aggregation into groups, all the flow is going to the same place. Bansal et al. [6] also gives
an O(log2α+1 k)-competitive randomized online algorithm, by giving a procedure for forming the
groups in an online fashion. In addition, they also hardness results for various generalizations of
EERP.

1.2 The Story Here

We present three main results in this paper, which we now discuss separately:

1. A polynomial-time O(logα k)-approximation algorithm for EERP. The algorithm
consists of two parts, described below.
Buying Stage: The first part of the algorithm determines which edges to use (it is convenient to say
that we buy these edges). The algorithm first buys a Steiner forest (using just the static power of
σ) to ensure minimal connectivity. Then each request-pair, with probability Θ(log k

q) “hallucinates”
that it wants to route q units of flow unsplittably on a path between its end points. But now, when
the request-paired demands are all at least q, the static power costs are dominated by the dynamic
power costs. So we can simply use the natural greedy algorithm for minimizing dynamic power
from [14], to solve this hallucinated flow problem. We use this to decide which edges to buy : those
on which hallucinated flow is routed. Notice that the first stage simply chooses which edges to buy
(i.e., pay the static power) and does not actually route any flow yet.
Routing Stage: The second part of the algorithm simply routes the flow on the edges bought in the
first step, using the natural greedy algorithm from [14] to minimize the dynamic power, ignoring
the static power of σ since we’ve already bought these edges in the first phase.
The two main steps in the analysis are: (i) showing that unsplittably routing q units of flow
between the hallucinated demands has dynamic power comparable to OPT’s total cost (static
plus dynamic power), and (ii) showing that there is a routing on the edges bought which has low
dynamic power. While the first is a simple randomized rounding step, we establish the second
by assigning virtual capacities on edges equal to the flow routed by the hallucinated routing in
the first stage, and then showing that the sparsest cut in the graph with virtual capacities (and
demands of the original request-pairs) is large, namely Ω(log k). By appealing to the flow-cut
gap for multicommodity flows [20,21]), we can get a low-congestion routing respecting the virtual
capacities, and consequently, bound the dynamic power.
Overall, this improves on the results in [3] in the following ways: (a) the approximation ratio
is better by many logα k factors, (b) the algorithm is much simpler (being the combination of
simple combinatorial algorithms), and (c) the analysis is considerably simpler, with the only real
“hammer” being the flow-cut gap for multicommodity flow. The details are in Section 3.
We note that our framework is rather similar to the Sample-Augment framework [15] for solving
Buy-at-Bulk type problems. This is surprising because in these problems, the cost on edges is
purely concave, whereas in our case it is convex after the jump at 0. From a technical stand point,
the proof ideas are very different from the Buy-at-Bulk works, and in this aspect, the hallucination
step is more similar in spirit to cut-sparsification algorithms for undirected graphs [11,17,25].

2. Randomized O(log3α+1 k·(log log k)2α)-competitive online algorithm for EERP. The
offline algorithm rather naturally extends to an online algorithm: We buy the Steiner backbone
edges using any of the known online algorithms for Steiner forest. Whether a request-pair should
hallucinate is decided online by independent sampling. The greedy algorithm that is used for buying

3

the hallucinated backbone edges is already online [14]. Finally, we can also route the demands on
the edges bought (to minimize dynamic power) using the online algorithm from [14].
The analysis however is considerably more involved than in the offline case. Since the backbone
graph on which the online routing algorithm in the routing stage operates is itself bought online,
our dynamic power is only competitive against “priority routings” where a request-pair can only
route over edges bought by the online buying algorithm up until the arrival time of the request-
pair. (The priority routings, however can use the knowledge of the entire graph bought after all
request-pairs arrive.) To this end, we show that there is a low-congestion priority multicommodity
flow on the bought edges (w.r.t the virtual capacities), by (i) characterizing the notion of sparsest
priority-cuts, and then (ii) bounding the flow-cut gap for priority multicommodity flows.
We remark that this is the first poly-log-competitive online algorithm for EERP, and believe that
our techniques for priority flows and cuts will likely find further applications in the future. The
details appear in Section 4.

3. Our online algorithm is O(logα+1 k)-competitive for single source EERP. This im-
proves on the result in [6] in the following ways: (a) the competitive ratio is better by a factor
of O(logα k), (b) the algorithm is simpler as it avoids the use of exponential weighting functions,
and (c) the analysis is somewhat simpler. The analysis is easier than for the analysis of our online
algorithm in Section 4 for the multiple-source-sink case because we are able to adopt a simple
technique from [6] to show that there is a low congestion priority flow. We cover this in Section 5.

2 Notation and Terminology

Recall that the input to EERP is an undirected graph G = (V,E) with |V | = n vertices, and k
request-pairs {(si, ti)}ki=1. The cost for routing f units of flow over any edge is: zero if f = 0, and
σ + fα if f > 0. The power incurred by any solution is naturally split into two parts: (i) static
power which is σ times the number of edges with positive flow, and (ii) dynamic power which is∑

e∈E f
α
e where fe denotes the flow on edge e ∈ E. A useful parameter throughout the paper is

q := σ1/α, which is the amount of flow on an edge for which the static and dynamic power are
equal. We use Opt to denote the total power of a fixed optimal solution.
For an undirected graph G = (V,E) and subset S ⊆ V , we use the standard notation δG(S) :=
{(u, v) ∈ E : u ∈ S, v 6∈ S} for the cut corresponding to S. When the graph is clear from context,
we drop the subscript. We shall sometimes refer to the vertices of these request-pairs as terminals
to distinguish them from Steiner vertices in G.
Finally, we describe the online “waterfilling” algorithm from [14], that we use as a subroutine in
all our algorithms.

Online Waterfilling Algorithm WA Description: The input for this algorithm is an existing
flow {fe : e ∈ E} in the graph (i.e. a routing of previous request-pairs), a new request-pair (si, ti)
with a demand d. The output of the algorithm is an augmentation of the existing flow to include a
flow of d units along a single si − ti path Pi that increases the aggregate dynamic power the least
(which can be computed using a shortest path algorithm).

Notice that the waterfilling algorithm is concerned only with minimizing the dynamic power of the
routing, and does not involve the static power σ at all.

4

3 Offline Algorithm

In this section we give a polynomial time algorithm for the Energy Efficient Routing Problem
(EERP), and then show that it has approximation ratio O(logα k).

3.1 Algorithm Description

We are now ready to present our offline algorithm.

Offline Algorithm Description:

1. Constructing the Steiner backbone: Setting the cost of an edge to be the static power
σ, we first buy an (approximate) minimum-cost Steiner forest [2,13]. We denote the set of edges
bought in this step as the Steiner backbone GS .

2. Constructing the Hallucination backbone: Each request-pair (si, ti) decides to indepen-
dently “hallucinate” a demand of q, with probability p = min{1, 32λ/q}. Here λ = Θ(log k) ≥ log k
is the flow-cut gap for multicommodity flow [21]. We run the algorithm WA (in an arbitrary order
of the hallucinated demands) to find an unsplittable routing H of q units of flow between the end
points of each hallucinated request-pair. We call this routing the hallucinated flow. We then buy
each edge of H, i.e., pay the static power of σ, and include it the hallucination backbone GH . Note
that no flow is actually routed in this step, and the waterfilling algorithm is used only to determine
which edges to buy in the hallucination backbone.

3. Routing on the backbone: We then again run the waterfilling algorithm to route all
request-pairs (with unit demand) in the graph GF = GS ∪GH , to minimize the dynamic power.

3.2 Analysis

We need to bound the static power used in the backbone GF = GS ∪GH (Steps 1 and 2) plus the
dynamic power of the algorithm’s routing in Step 3 above. This proceeds along the following lines.

Static power of GS: By using the Steiner forest approximation algorithm from [2,13], one can
guarantee that the static power for the edges in GS is at most twice the minimum static
power required to achieve such connectivity, and hence at most 2 · Opt.

Static power of GH : The static power of the hallucination backbone GH is at most the dynamic
power of the hallucinated flow H since the every hallucinated request-pair routes q units of
flow unsplittably in H. Lemma 1 shows that the dynamic power for the hallucinated flow is
O(λα) · Opt (a similar argument can be found in [6]).

Dynamic power: In order to bound the dynamic power of our routing in Step 3, we show in
Lemma 4 that there is a good fractional routing F of low dynamic power in the subgraph
GF . This is sufficient, as the waterfilling algorithm used for routing within the backbone in
Step 3, is Oα(1)-approximate for dynamic power [14], even against fractional solutions.

To this end, we assign virtual capacities {ce : e ∈ E} to each edge in the backbone GF equal
to the amount of hallucinated flow routed on it in H, plus αλq if it is in the Steiner backbone
GS . Using these virtual capacities, we show (in Lemma 2) that w.h.p, the sparsity of every
cut is at least λ (w.r.t the original demands of the request-pairs). Therefore, there exists a
fractional routing within the backbone GF that respects these virtual capacities, owing to

5

the flow-cut gap for multicommodity flow [20]. Let F be such a flow. Using the fact that we
assign the virtual capacities based the hallucinated flow H (plus an extra capacity of λαq for
the Steiner edges GS), we can show in Lemma 4 that the aggregate power used by the flow
F is at most Oα(1) times the dynamic power used by the hallucinated flow H, plus O(λα)
times the static power used by GS . Finally, consider the case that here is no fractional flow
within GF that satisfies the virtual capacities which occurs with probability at most 1/k4α.
In this case let F be the most obvious witness flow that only uses the edges in GS . Since the
congestion on each edge is at most k, the dynamic power used by F is at most kα times the
static power used by GS . Then this high power is offset by the low probability 1/k4α.

We now present the details.

Lemma 1 The expected dynamic power used by the hallucinated flow H is O(λα) · Opt.
Proof: Let Opt denote any fixed optimal solution that for each request-pair (si, ti), routes unit
flow on path P ∗i . Consider any outcome of the random hallucination process. Let Opt′ send q units
of flow on each path P ∗i for only the hallucinated request-pairs i. We will show that the expected
dynamic power used by Opt′ is O(λα) · Opt. Since the waterfilling algorithm is O(1)-approximate
for the objective of dynamic power [14], it would follow that the expected dynamic power of the
hallucinated flow H is at most O(1) times the dynamic power used by Opt′, i.e. O(λα) · Opt.
We bound the expected dynamic power in Opt′ separately for each edge e ∈ E. Fix an edge e and
consider all request-pairs whose optimal paths P ∗i use e: if there are N of them, then e’s (dynamic
plus static) power in Opt is

Nα + σ = Nα + qα ≥ N · qα−1.

This inequality easily follows using the fact that qα = σ, and considering two cases depending on
whether N ≥ q or not. Since each path P ∗i is chosen into Opt′ independently with probability
min{1, 32λ/q}, we can use Corollary 25 with p = min{1, 32λ/q} and D = q to bound the expected
dynamic power for e by the following (upto an O(1) factor)

pNDα + (pND)α ≤ O(λα) · (Nqα−1 +Nα) ≤ O(λα) · (2Nα + σ)

which is at most O(λα) times the power for e in Opt.
Now summing over all edges and using linearity of expectations, we conclude that the expected
dynamic power in Opt′ is at most O(λα) · Opt. 2

We now move on to bounding the dynamic power of the routing in Step 3. To this end, let us assign
a virtual capacities ce on edge e equal to the flow H routes on e plus αλq if e ∈ GS . Now consider
the multicommodity flow instance where there is unit demand for each request-pair {(si, ti)}ki=1.
The sparsity of GF is the minimum (over all S ⊆ V) of the ratio of the capacity crossing cut S to
the demand crossing it, i.e.

sparsity(GF) := min
S⊆V

c(δ(S))∣∣{i ∈ [k] : |S ∩ {si, ti}| = 1}
∣∣ .

Above c(δ(S)) =
∑

e∈δ(S) ce. It is well known that if the sparsity is Ω(log k) then there is a
fractional routing for the demands that respects the capacities [20,21]. The crux of our proof is
then the following lemma, which shows that the backbone GF has high sparsity.

Lemma 2 Assume 32λ ≤ q. Consider any κ such that λ ≥ log κ ≥ log k. Then with probability at
least 1− κ−4α, the sparsity of GF = GS ∪GH is at least λ.

6

Proof: Since there are exponentially many cuts, we will consider cuts systematically by defining
equivalence classes on cuts, and then show that all cuts in the same class will be large compared
to the demand across these cuts. To this end, we first eliminate degree 2 vertices in GS (only for
analysis): in GS , replace every minimal path P between u and v of degree greater than 2 by an
edge (u, v). Let P(GS) denote the set of paths in GS corresponding to edges in G′S . Note that any
leaf node of G′S belongs to some request-pair since the original graph GS has the same property.
Furthermore, G′S has at most 4k edges by observing that there are at most 2k terminals, and the
number of internal nodes is at most the number of leaf nodes.
We are now ready to define equivalence classes on cuts. We say that two cuts C and C ′ are
equivalent if both cut exactly the same set of edges in G′S (i.e, the same set of paths in P(GS)),
and have the same set of request-pairs crossing. More precisely, C ≡ C ′ if and only if

• C ∩G′S = C ′ ∩G′S , and

• A request-pair (si, ti) is separated by C if and only if it is also separated by C ′.

Let Classj denote the set of classes that cut exactly j edges in G′S . We first count the number
of classes in Classj : Since |G′S | ≤ 4k, there are at most (4k)j different subsets of edges to be cut.
Furthermore, each cut C and C ′ divides G′S into j + 1 components by deleting j edges. For each
component, there is a choice of which side of the cut to belong. We can then conclude that the
number of classes in Classj is at most 2j+1 · (4k)j ≤ (16k)j .
For each class C ∈ Classj , we show that with high probability, all cuts in C have capacity at
least λ times the demand across cuts in C. Let R(C) denote the set of demands across cuts in
C. We consider two cases. Firstly, consider the case where r := |R(C)| ≤ αjq. In this case,
since all cuts in C have j edges from GS (since it has j edges from G′S), each with capacity
αqλ, we are done. Secondly, consider the case where r := |R(C)| > αjq. For each demand in
R(C), let Xi denote a random variable that indicates if the pair hallucinates or not. Note that
Pr[Xi = 1] = min{1, 32λ/q} = 32λ/q. We show that the probability that a cut in C does not
support the demand R(C) is sufficiently small. By observing that each pair (si, ti) contributes to
every cut in C by at least qXi, it suffices to upper-bound the following probability:

Pr
[
q

r∑
i=1

Xi < rλ
]
≤ Pr

[r∑
i=1

Xi < rλ/q
]

[Since r > αjq]

≤ Pr
[r∑
i=1

Xi < E[
r∑
i=1

Xi]/32
]

≤ exp
(
− (E[

r∑
i=1

Xi])/4
)

= exp
(
− (αjq) · (32λ/q)/4

)
≤ exp(−8αj log κ) [Since λ > log κ]

≤ κ−8αj

The third inequality follows from the Chernoff bound (See Appendix A). By summing over all

j ≥ 1 and all classes in Classj , we derive that the probability that there is a cut C of GF whose
demand across C is more than the capacity of C divided by λ is at most∑

j≥1

|Classj | · Pr
[
q

r∑
i=1

Xi < rλ
]

=
∑
j≥1

(16k)jκ−8αj = O(1/κ4α),

7

which completes the proof. 2

Corollary 3 With probability at least 1−O(1/k4α), there exists a multicommodity flow F sending
one unit flow between the request-pairs while respecting the virtual capacities on the backbone GF .

Proof: If 32λ > q then all pairs hallucinate, and the hallucinated flow H itself respects the virtual
capacities. If 32λ ≤ q, the statement follows by Lemma 2 with κ = k and by the fact that
λ = Θ(log k) is the multicommodity flow-cut gap. 2

Lemma 4 There exists a fractional routing F of all demands within GF whose expected dynamic
power is O(λα) times the static power used by GS plus Oα(1) times the dynamic power used by the
hallucinated flow H.

Proof: We first consider the case where there exists a capacity-respecting flow using the virtual
capacities on GF . In this case, we let F be such a flow. The dynamic power of F for a flow of up
to 2qλα on each edge of GS is charged to O(ααλα) times the static power of the edges in GS . The
dynamic power for F on edges with a flow of greater than 2qλα is charged to the dynamic power
of the hallucinated flow H (which is at least qλα since the Steiner capacity is at most qλα on any
edge), upto an additional factor 2α. If there is no capacity-respecting flow, then let F be the flow
that routes each (si, ti) along the unique si − ti path in GS . Since each edge is used at most k
times, the dynamic power used by F is at most kα times the static power used by GS . Corollary 3
states that this event can occur with probability at most 1/k4α, hence we derive the lemma. 2

4 Online Algorithm

In this section we show that the offline algorithm can naturally be adapted to an online algorithm
with competitive ratio O(log3α+1 k · (log log k)2α). In order to present our algorithmic ideas more
transparently, we first describe the algorithm assuming that k is known in advance which we will
prove is O(log3α+1 k · (log log k)α)-competitive. We will then show in Section 4.4 how to discharge
this assumption to make the algorithm truly online with an additional factor of O((log log k)α).

Our Online Algorithm Description: In response to request-pair (si, ti) the algorithm takes
the following steps:

1. Augmenting the Steiner backbone: We run an online algorithm for Steiner forest to
connect si and ti, where the cost of edges is the static power σ. Let GS(i) be the Steiner forest
maintained after the ith request-pair.

2. Augmenting the Hallucination backbone: The request-pair (si, ti) hallucinates a demand
of q with probability p = min(1, 32 log k/q). We then use the online waterfilling algorithm WA to
find an unsplittable routing of q units of flow between si and ti. The edges used in this routing are
added to the hallucinated backbone GH(i− 1) to obtain GH(i).

3. Routing: We again run the online algorithm WA (in a separate instance) to route unit
demand between si and ti in the graph GF (i) = GS(i) ∪GH(i), to minimize the dynamic power.

Theorem 5 Suppose the number k of demands is known prior to the algorithm. Then there is an
O
(
log3α+1 k · (log log k)α

)
-competitive randomized online algorithm for EERP.

8

The analysis of our online algorithm proceeds along the following lines. For online Steiner forest,
the greedy algorithm is known to be O(log2 k)-competitive [5], and there is a better O(log k)-
competitive algorithm [7]. Using this, the static power of the edges in GS(k) is O(log k) · Opt. We
buy the hallucinated backbone GH(k) as in the offline case, and the total static power is again
O(logα k) ·Opt. We are then left to bound the dynamic power used by our online algorithm which
routes greedily on the bought edges in Step 3.
The analysis here is more involved than in the offline case. Indeed, since we run the online routing
algorithm in Step 3 on a backbone graph that is changing (where earlier terminals are not given
access to edges bought later to route their flow), the waterfilling algorithm from [14] is only compet-
itive against an offline routing which also respects these priorities w.r.t when edges are bought. We
will show that there exists a priority multicommodity flow on the backbone GF (k) that has dynamic
power at most O

(
log3α+1 k · (log log k)α

)
·Opt: in a priority flow, each request-pair (si, ti) is routed

only on GF (i), i.e., using edges bought no later than the time that the request-pair arrived. Since
the waterfilling algorithm is αα-competitive [14] against such offline solutions, this would bound
our online algorithm’s dynamic power by O

(
log3α+1 k · (log log k)α

)
· Opt, and prove Theorem 5.

Existence of Priority Multicommodity Flow. As in the offline case, we first add virtual
capacities ci : E → Z+ to the edges bought: more specifically, for all i, the virtual capacity of
each edge ci(e) in GF (i) is the amount of hallucinated flow from the first i request-pairs that it
supports, plus (α log k) · q if it is in the Steiner backbone GS(i). Observe that the virtual capacities
are non-decreasing with arrivals, i.e., ci(e) ≥ ci−1(e). It will be convenient to view these virtual
capacities as unweighted parallel edges. For each i, we denote by G(i) the multigraph consisting
of ci(e) parallel edges between the end points of each edge e. We will show the existence of a large
priority multicommodity flow on this sequence G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) of multigraphs.

Definition 6 (Priority Multicommodity Flow) Consider any sequence of multigraphs G(1) ⊆
G(2) ⊆ · · · ⊆ G(k) and request-pairs {(si, ti) : i ∈ [k]}. A priority multicommodity flow of value λ
consists of a fractional routing of λ units between si and ti only using edges of multigraph G(i), for
each i ∈ [k], where the total flow through any edge in this routing is at most one.

The maximum priority multicommodity flow can be easily expressed as a linear program. To show
a large priority flow, we consider the dual to this LP formulation. (Both LPs are defined formally
in Section 4.2.) Integral solutions to the dual will correspond to priority-cuts, defined as follows.

Definition 7 (Priority Cuts) Consider any sequence of multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k)
and request-pairs {(si, ti) : i ∈ [k]}. We say that a set Q ⊆ G(k) of edges priority separates pair i
if and only if si and ti are separated in the graph G(i) \Q. The sparsity of a priority-cut Q is the
ratio of |Q| to the number of pairs that are priority separated by Q. The sparsest priority-cut is
the minimum sparsity over all priority-cuts.

We show the existence of a large priority multicommodity flow using two main steps: (i) bounding
the priority “flow-cut” gap, and (ii) proving a large sparsest priority-cut value. The flow-cut gap
for priority multicommodity flow is the ratio between the minimum sparsity of a priority-cut and
the maximum value of a priority multicommodity flow (This is analogous to the relation between
concurrent multicommodity flow and sparsest cut [20,21]). We show that the flow-cut gap for
any priority multicommodity flow instance is O(log2 k · log log k). Then we show that the sparsest
priority-cut of the sequence G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) resulting from our algorithm is large, with
high probability. The key property used in showing this is a condition similar to Lemma 2 (in the
offline algorithm) which says that for each i, the sparsest cut in the graph G(i) (restricted to the
first i demand pairs) is large. Formally,

9

Definition 8 (Prefix Sparsity) Consider any sequence of multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆
G(k) and request-pairs {(si, ti) : i ∈ [k]}. The prefix sparsity of this sequence is

k
min
i=1

min
S⊆V

∣∣δGi(S)
∣∣∣∣{j ∈ [i] : |S ∩ {sj , tj}| = 1}

∣∣ .
For notational convenience, we use δi(S) :=

∣∣δGi(S)
∣∣ for any i ∈ [k] and subset S ⊆ V .

Lemma 9 Suppose that 32 log k ≤ q. Then with probability of at least 1 − O(1/k2α), the prefix
sparsity of the sequence G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) seen in the online algorithm is at least log k.
That is, for all i and all S ⊆ V , the capacity δi(S) is at least log k times the number of pairs
{(sj , tj)}ij=1 crossing the cut (S, V \ S).

Proof: Fix some i. Note that multigraph G(i) is an equivalent representation of the backbone
GF (i) along with its virtual capacities ci(·). Since all pairs in [i] have hallucinated independently,
we can apply Lemma 2 and conclude that the sparsity of G(i) is at least λ w.r.t demand pairs [i].
The lemma follows by a simple union bound over all i ∈ [k]. 2

Summary: In the next subsection we use Lemma 9 to show that the sparsest priority-cut is Ω(1).
Then in the following subsection, we bound the priority flow-cut gap by O(log2 k·log log k). Combin-

ing these results, we obtain a priority multicommodity flow of value Ω
(

1
log2 k·log log k

)
satisfying the

virtual capacities. This implies a priority multicommodity flow of value one that satisfies virtual ca-
pacities scaled up by O(log2 k ·log log k), i.e. having dynamic power O

(
log3α+1 k · (log log k)α

)
·Opt.

The actual proof involves some case analyses depending on the prefix sparsity value and in Sec-
tion 4.3 we give explain how we put things together in detail to prove Theorem 5. Then in
Section 4.4 we remove the assumption that the algorithm knowns k prior with an extra factor loss
of O((log log k)α) in competitive ratio.

4.1 Prefix Sparsity to Priority Sparsest Cut

Here, we prove an important relation between the sparsest priority-cut and prefix sparsity.

Lemma 10 Consider a sequence of multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) with pairs {(si, ti) : i ∈
[k]}. If the prefix-sparsity is at least log k, then the sparsest priority cut is at least 1

3 .

Notice the difference between the conditions on sparsest priority-cut and prefix-sparsity. For exam-
ple, a demand j may be priority cut by some Q ⊆ G(k) even though it is not separated in G(i) \Q
for any i > j, i.e. j does not appear in the expression for the ith prefix-sparsity. In particular, a
large sparsest priority-cut clearly implies a large prefix-sparsity, but the converse is not obvious.
Lemma 10 proves this converse relation at the loss of a log k factor.

Proof of [Lemma 10] Consider any Q ⊆ G(k) that priority separates pairs X ⊆ [k]. We will show
that |X| ≤ 3 · |Q|, which would imply the desired lower bound on the sparsest priority-cut. Define
graph H(i) := G(i)\Q for each i ∈ [k]. The proof is based on considering the connectivity structure
in the sequence H(1) ⊆ H(2) ⊆ · · · ⊆ H(k). We say that at each time i ∈ [k] the request-pair
(si, ti) arrives. At time j when (sj , tj) arrives, the edges G(j) \ G(j − 1) \ Q are added to graph
H(j − 1) to get graph H(j). Note that for each i ∈ X, the pair si − ti is separated in graph H(i),
by the definition of priority-cut Q.
Observe that the number of pairs in X (i.e. pairs priority cut by Q) that are disconnected in
H(k) = G(k) \ Q can be bounded by |Q|/ log k, since G(k)’s sparsest cut has value at least log k.
We will now upper bound the number of pairs in X that are connected in H(k). For a subset of

10

vertices V ′ ⊆ V , let N(V ′) = |{j ∈ X : si, ti ∈ V ′}| be the total number of request-pairs in X that
are induced in V ′. We will show below that the sum of N(C) over all components C in H(k) is at

most 2 |Q|. This would prove that |X| ≤ |Q|
log k + 2|Q| ≤ 3 · |Q|. In the following, we refer to the end

point of a request-pair as a terminal.
Toward this end we define a recurrence. Consider any i ∈ [k] and a connected component C in
H(i). Let j ≤ i be the earliest time a request-pair arrived such that all vertices in C became
connected in graph H(j). Let C1, C2, . . . C` be the components in H(j − 1)[C] which merged to
become connected as C, at time j. By definition, N(Ch) equals the number of pairs in X that
are contained in Ch, for each h ∈ [`]. Note that N(C) equals

∑`
h=1N(Ch) + I(C) where I(C)

denotes the number of pairs of X “crossing” {Ch}`h=1, i.e. pairs having end points in two distinct
components among {Ch}`h=1. For each h ∈ [`] define:

• Qh = |δ(Ch) ∩Q| the number of edges in Q with exactly one endpoint in Ch, and

• Ih =
∣∣{a ∈ X : a ≤ j − 1, |{sa, ta} ∩ Ch| = 1}

∣∣ the number of pairs in X that arrive by time
j − 1 and have exactly one end point in Ch.

We index the components {Ch}`h=1 so that C1 contains the maximum number of terminals. We

claim that I(C) ≤
∑`

h=2 Ih. To see this, note that each pair in I(C) must have exactly one end-
point in some component {Ch}`h=2. Also, since each pair b ∈ I(C) is in X and is induced on C
which gets connected at time j, we must have b < j: recall that for b ∈ X, sb and tb must be
disconnected in graph H(b). Thus we have

N(C) ≤
∑̀
h=1

N(Ch) +
∑̀
h=2

Ih.

We now use the prefix-sparsity condition to bound Ih. Consider the cut Ch in graph G(j − 1).
The number of crossing edges

∣∣δG(j−1)(Ch)
∣∣ is at most Qh since Ch is a connected component of

H(j − 1) = G(j − 1) \Q. The number of crossing pairs with index at most j − 1 is at least Ih. So
the sparsity of cut Ch in graph G(j − 1) is bounded between:

log k ≤
∣∣δG(j−1)(Ch)

∣∣∣∣{a ∈ [j − 1] : |Ch ∩ {sa, ta}| = 1}
∣∣ ≤ Qh

Ih
.

The lower bound is by the prefix-sparisty assumption, and the upper bound is by the preceding
argument. Combining the above two equations, we obtain

N(C) ≤
∑̀
h=1

N(Ch) +
1

log k
·
∑̀
h=2

Qh. (1)

Consider expanding this recursion to obtain
∑

D:comp(H(k)) N(D); the base case is singleton com-
ponents, i.e. N({v}) = 0 for any v ∈ V . Consider the contribution of each edge e = (u, v) ∈ Q
separately. Whenever e participates in the expression 1

log k ·
∑`

h=2Qh in (1), the number of terminals
in the component containing either u or v doubles. This is because e must have one end-point in
some {Ch}`h=2 and we chose indices such that terminals(C1) ≥ terminals(Ch) for all h ∈ [`]. Thus,

the number of times e contributes is at most 2 log2 k, and its total contribution is ≤ 2 log k
log k = 2. It

follows that
∑

D:comp(H(k)) N(D) ≤ 2 · |Q|. This completes the proof. 2

11

4.2 Priority Flow-Cut Gap

This subsection proves the following result:

Theorem 11 The flow-cut gap for priority multicommodity flow is O(log2 k · log log k).

Consider any instance of priority multicommodity flow, given by a sequence G(1) ⊆ G(2) ⊆ · · ·G(k)
of multigraphs on vertex-set V and demand pairs {(si, ti)}ki=1. We follow a natural approach by
considering the LP formulation for priority multicommodity flow and its dual (which is an LP
relaxation for sparsest priority-cut). We bound the flow-cut gap by showing that this sparsest
priority-cut LP has a small integrality gap: this relies on a variant of the region growing approach [].
We refer to edges in G(i) \G(i− 1) as having priority i. The LP for priority multicommodity flow,
and its dual are given below.

max γ (PriorityFlowLP)

s.t.
∑
p∈Pi

f(p) ≥ γ ∀i ∈ [k] (2)

∑
p|e∈p

f(p) ≤ 1 ∀e ∈ G(k) (3)

0 ≤ f(p) ≤ 1 ∀i ∈ [k], ∀p ∈ Pi (4)

min
∑

e∈G(k)

de (SparsestPriorityCutLP)

s.t.
k∑
i=1

ηi ≥ 1 (5)∑
e∈p

de ≥ ηi ∀p ∈ Pi ∀i ∈ [k] (6)

de ≥ 0 ∀e ∈ G(k) (7)

ηi ≥ 0 ∀i ∈ [k] (8)

Here Pi denotes the set of paths from si to ti in G(i) and f(p) denotes the flow on some path p.
The feasible solutions for the primal LP are fractional routings such that each request-pair i routes
at least a γ flow between them in graph G(i) (constraint (2)), and such that no edge supports flow
more than one (constraint (3)). This is precisely the priority multicommodity flow problem.
In the dual, we have an LP relaxation of the sparsest priority-cut problem: if an integral solution
Q priority-cuts k′ terminals, we set ηi = 1/k′ for the terminals which are separated, and de = 1/k
for edges in Q and 0 otherwise. The objective value is then the sparsity of the priority-cut Q.
By duality, the optimal values of these two LPs are equal. So, to prove Theorem 11, it suffices to
upper bound the integrality gap of SparsestPriorityCutLP by O(log2 k · log log k). Consider any fixed
optimal solution to SparsestPriorityCutLP (η∗, d∗). First, we use a standard geometric scaling step
to reduce the problem to a “priority multi-cut” problem, where the η values are in {0, 1}, with an
O(log k)-factor loss in the sparsity. Then we apply a variant of region growing to round fractional
priority multi-cut solutions to integral solutions, which loses another O(log k · log log k) factor.

Lemma 12 For any optimal solution (η∗, d∗) to SparsestPriorityCutLP, there exists another feasible
solution (η′, d′) satisfying the following properties:

•
∑

e d
′
e ≤ 8 log k ·

∑
e d
∗
e, and

• there is a subset C ⊆ [k] such that η′i = 1
|C| for i ∈ C and 0 otherwise.

Proof: For all i ∈ [k] where η∗i ≤ 1/(2k) we set η∗i = 0. Notice that since there are at most k
variables ηi, this results in a solution to SparsestPriorityCutLP where the constraint (5) is satisfied to
extent 1/2. We now geometrically group the η∗ variables, according to classes Ch = {i ∈ [k] | 2−h <

12

η∗i ≤ 2−h+1} for h ∈ {1, 2, . . . , log(2k)}. Let C` be the group that maximizes
∑

i∈C`
η∗i . Since there

are at most 2 log k groups and η∗ totals to at least half, we have |C`|
2`−1 ≥

∑
i∈C`

η∗i ≥ 1
(4 log k) .

For each i /∈ C` set η′i = 0 and for each i ∈ C` set η′i = 1
|C`| . Also set d′e to be 2`

|C`| ·d
∗
e for all e ∈ G(k).

It is easy to see that (η′, d′) is a valid fractional solution for SparsestPriorityCutLP. Moreover, the

objective
∑

e d
′
e = 2`

|C`| ·
∑

e d
∗
e ≤ 8 log k ·

∑
e d
∗
e. 2

Fix the solution (η′, d′) and subset C ⊆ [k] from the above lemma. By scaling d′ up by a factor
|C|, we obtain a fractional solution {ze : e ∈ G(k)} to the priority multicut instance restricted
to the multigraph sequence 〈G(i) : i ∈ C〉 and pairs C. Next, we show that z can be rounded
to obtain an integral solution Q ⊆ G(k) that priority-cuts all the pairs in C, and has |Q| ≤
O(log k · log log k) ·

∑
e ze. The sparsity of such a priority-cut Q is at most:

|Q|
|C|

≤ O(log k · log log k) ·
∑

e ze
|C|

≤ O(log2 k · log log k)
∑
e

d∗e.

This would complete the proof of Theorem 11.

Bounding the integrality gap for priority multicut. Consider any instance of priority multi-
cut given by a sequence H(1) ⊆ H(2) ⊆ · · · ⊆ H(r) of multigraphs with demand pairs {(si, ti)}ri=1.
The goal is to find a minimum size subset Q ⊆ H(r) of edges that priority cuts each pair, i.e. si− ti
is disconnected in H(i) \Q for all i ∈ [r]. The natural LP relaxation for this problem is:

min

 ∑
e∈H(r)

ze :
∑
e∈p

ze ≥ 1 ∀p ∈ Pi, ∀i ∈ [r], ze ≥ 0, ∀e ∈ H(r)

 .

Above, Pi is the set of si − ti paths in graph H(i).
We first give a rounding algorithm for priority multicut that loses an O(log2 r) factor- this is based
on applying “region growing” [] recursively. Then we show that a more careful recursion as in []
can be used to obtain an O(log r · log log r) bound.
Before the proof, we introduce some useful notation. Given a graph L ⊆ H(r), let dL denote the
shortest-path metric defined by {ze : e ∈ L}, i.e. dL(u, v) is the length of the shortest path between
u and v with weight z on edges of L. For any vertex v ∈ V and ρ > 0, define:

• BL(v, ρ) :=
{
u ∈ V : dL(v, u) < ρ

}
the ball of radius ρ around v in metric dL.

• δL(v, ρ) = {(u,w) ∈ L : u ∈ BL(v, ρ), w /∈ BL(v, ρ)} the edges cut by BL(v, ρ).

• L(v, ρ) the induced graph of L on vertices BL(v, ρ).

• VL(v, ρ) :=
∑

e∈L(v,ρ) ze +
∑

(u,w)∈δL(v,ρ)

(
ρ− dL(v, u)

)
+ V∗

k · terms
(
BL(v, ρ)

)
the volume of

ball BL(v, ρ). Here V∗ =
∑

e∈H(r) ze is the total “volume” of the LP solution.

Rounding Algorithm I. This is a careful adaptation of the LP rounding for multi-cut [12]. We
first state a useful result from that paper.

Lemma 13 ([12]) For any i ∈ [r] and L ⊆ H(r) with dL(si, ti) ≥ 1, there exists 0 < ρ < 1/2 such
that |δL(si, ρ)| ≤ 3 log k · VL(si, ρ).

13

Our rounding procedure is recursive: the input is an index i ∈ [k] and vertex subset U ⊆ V such
that i is the maximum index with both si, ti ∈ U . The goal is to priority-cut all pairs ΠU induced
on U . (The initial call is with i = k and U = V ; the initial solution Q = ∅.) Given i and U we
consider the induced graph L = H(i)[U]. Note that dL(si, ti) ≥ 1 since both si, ti ∈ L and by
feasibility of fractional solution z, dH(i)(si, ti) ≥ 1. By applying Lemma 13 to both si and ti, we
find two radii ρs, ρt <

1
2 such that:

|δL(si, ρs)| ≤ 3 log k · VL(si, ρs), and |δL(ti, ρt)| ≤ 3 log k · VL(ti, ρt)

Note that the balls BL(si, ρs) and BL(ti, ρt) are disjoint. So one of them has at most |ΠU |/2
induced pairs. We consider the ball, say around si, which has fewer request-pairs induced inside
it. We add the cut δL(si, ρs) to Q, and set U1 ← BL(si, ρs) and U2 ← U \ BL(si, ρs). Note that
all request-pairs in ΠU and having exactly one end-point in U1 are priority-cut by Q (they are
separated even in graph H(i)). To handle the remaining pairs of ΠU , we recurse on U1 (resp. U2)
with the maximum induced pair in U1 (resp. U2). By Lemma 13 the increase in |Q| is at most
3 log k times VL(si, ρs) the volume of H(i)[U1]; in this case we say that all edges in H(i)[U1] get
charged. Moreover, by the choice of ball BL(si, ρs) = U1, the number of induced pairs in U1 is at
most |ΠU |/2 i.e. half the induced pairs in U . This implies that whenever an edge e gets charged,
the number of induced pairs in the recursive call containing e reduced by a factor two: so each edge
gets charged at most log2 k times. Hence the final solution cost |Q| is at most 3 log2 k ·

∑
e∈H(r) ze.

Rounding Algorithm II. Here we make use of a different region growing result:

Lemma 14 ([10]) For any i ∈ [r] and L ⊆ H(r) with dL(si, ti) ≥ 1, there exists 0 < ρ < 1/2 s.t.

|δL(si, ρ)| ≤ 4 · VL(si, ρ) · log

(
VL(si, 1/2)

VL(si, ρ)

)
· log log

(
VL(si, 1/2)

V∗/k

)
.

Vish: complete this.

4.3 Putting the pieces together

In this section we show how we prove Theorem 5 by putting what we proved together.

Corollary 15 Consider the random priority multicommodity flow instanceM seen in Step 3 of the
online algorithm: sequence G(1) ⊆ G(2) ⊆ · · ·G(k) of multigraphs with request-pairs {(si, ti)}ki=1.
Then with probability of at least 1 − O(1/k2α), there exists a priority multicommodity flow that
respects all capacities within a factor of O(log2 k · (log log k)).

Proof: Suppose that 32 log k ≤ q. Then by Lemma 9, the prefix sparsity of the sequence of graphs
GF (1) ⊆ GF (2) ⊆ ... ⊆ GF (k) is at least log k with probability at least 1−O(1/k2α). This implies
that the sparest priority-cut is at least 1/3 by Lemma 10. Then the proof follows since we have
shown that the prefix flow-cut gap is at most O(log2 k(log log k)). If 32 log k ≥ q, all demand pairs
hallucinate, and the hallucinated flow H is the desired priority multicommodity flow. 2

As discussed before, the static power used by the algorithm can be easily upper bounded by
O(logα k)Opt as in the offline case. Further, it suffices to show that there exists a witness priority
multicommodity flow F of low dynamic power in expectation since the waterfilling algorithm yields
a routing of dynamic power Oα(1) times the dynamic power used by a witness priority flow. This
is formally stated in the following lemma, and the proof is very similar to that of Lemma 4.

14

Lemma 16 There exists a priority muticommodity flow F that route all demands within {GF (i)}i∈[k]

whose expected dynamic power is O(log3α k · (log log k)) times the static power used by GS plus
O(log2α k · (log log k)) times the dynamic power used by the hallucinated flow H.

Proof: Suppose that there exists a priority muticommodity flow that respect all capacities within
factor γ = O(log2 k · (log log k)). Then we let F be such a priority flow. The dynamic power of F
for a flow of up to qγ log k on each edge of GS is charged to O(log3α k · (log log k)α) times the static
power of the edges in GS . The dynamic power for F on edges with a flow of greater than qγλ is
charged to γα times the dynamic power of the hallucinated flow H (with a loss of factor 2α). If
there is no capacity-respecting priority flow, we let F be the flow that routes each demand (si, ti)
along the shortest path connecting the demand in GS(i). Since each edge is used by at most k
times, the dynamic power used by F is at most kα times the static power used by GS . Corollary 15
states that this event can occur with probability at most 1/k4α, hence the lemma follows. 2

Due to the facts that the static power of GS is O(logα k)Opt and the dynamic power used by the
hallucinated flow H is O(logα k)Opt in expectation (by a straightforward modification of Lemma 1),
we derive Theorem 5.

4.4 When k is not known a priori

Our algorithm extends easily to the truly online setting when the final number k of request-pairs
is not known in advance: this results in an additional (log log k)α overhead in the competitive ratio
(cf. Theorem 5).

Theorem 17 There is an O
(
log3α+1 k · (log log k)2α

)
-competitive randomized online algorithm for

EERP.

When request-pair i arrives (in Step 2 of the algorithm), we hallucinate a demand q with probability

min
(

1, (32 log i) · 1
q

)
. In addition, we maintain the invariant that by the arrival time of the ith

request-pair, every pair j ∈ {1, 2, . . . , i} hallucinates with probability ≈ min
(

1, (32 log i) · 1
q

)
. This

can be ensured by sampling each request-pair j several times, each with probability 1
q : in particular,

at the arrival time of request-pair j it is sampled d64 log je times, and after each subsequent request-
pair i > j we sample j more times to ensure a total of d64 log ie samples. This results in the following
(weaker) version of Lemma 9, with an identical proof.

Lemma 18 For each i ∈ [k], with probability at least 1− O(1/i2α), the sparsity of the multigraph
G(i) with demands {(sj , tj)}ij=1 is at least log i.

Using this condition (instead of the log k prefix-sparsity from Lemma 9) we can prove (see Lemma 19
below) that the sparsest priority-cut is Ω(1/ log log k) (instead of constant). Combined with the

flow-cut gap (Theorem 11) we would obtain a priority multicommodity flow of value Ω(1)
(log k·log log k)2

satisfying the virtual capacities. This would imply Theorem 17.

Lemma 19 Consider a sequence of multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) with pairs {(si, ti) : i ∈
[k]}. Assume that for each i ∈ [k], the sparsity of multigraph G(i) with demands {(sj , tj)}ij=1 is at

least log i. Then the sparsest priority cut is at least Ω
(

1
log log k

)
.

15

Proof Sketch. This is almost identical to the proof of Lemma 10. The only difference is in inequal-
ity (1) which becomes:

N(C) ≤
∑̀
h=1

N(Ch) +
1

log j
·
∑̀
h=2

Qh. (9)

Recall that here C is a connected component that forms at time j ≤ k due to the merging of
components {Ch}`h=1 in graph H(j − 1). Also C1 is the component in {Ch}`h=1 with maximum
terminals. This change in the recurrence for N(·) in turn affects the total contribution of each
edge e ∈ Q in the expansion of

∑
D:comp(H(k)) N(D). The number of times e contributes remains

β ≤ 2 log2 k. Let 2 ≤ T1 ≤ T2 ≤ · · · ≤ Tβ ≤ 2k denote the number of terminals in e’s component
whenever e contributes. Recall that the number of terminals in e’s component (at least) doubles
whenever e contributes in the recursion, i.e. Tb+1 ≥ 2 · Tb for all 1 ≤ b < β. Also, note that if e’s
component has Tb terminals then the total number of terminals at that time jb ≥ Tb. So e’s total
contribution is:

β∑
b=1

1

log Tb
≤

β∑
b=1

1

log (2b)
=

β∑
b=1

1

b
≤ log(2 log k).

This completes the proof of Lemma 19.

Lemma 20 Consider the random priority multicommodity flow instance M seen in Step 3 of the
online algorithm: sequence G(1) ⊆ G(2) ⊆ · · ·G(k) of multigraphs with request-pairs {(si, ti)}ki=1.
The expected dynamic cost of routing on M is Oα(1) · log3α+1 k · (log log k)2α · Opt.
Proof: Consider any outcome w of the hallucination random process. We may add w to notation
to make the outcome in consideration clear. As discussed to prove the lemma, it suffices to show
a witness priority flow Fw that consumes dynamic power Oα(1) · log3α+1 k · (log log k)2α · Opt in
expectation. Then the waterfilling algoirthm will find a priority flow that uses dynamic power
within Oα(1) factor. Let SP(GS(k)) and DP(GwH(k)) denote the static power of GS(k) and the
dynamic power of GwH(k), respectively. Note that GS(k) has no dependency on hallucination,
hence is deterministic. Let I be the random variable denoting the maximal index i ∈ [k] that
does not satisfy the sparsity condition in Lemma 18. We will construct two separate priority flows
on M: flow Fw1 for pairs indexed more than I and Fw2 for pairs indexed up to I, and will set
Fw := Fw1 + Fw2 . We will show that F1 has dynamic power

Oα(1) · log2α k · (log log k)2α
(

logα k · SP(GS(k)) + DP(GwH(k))
)

(10)

with probability one. We will also show that Fw2 has dynamic power

Oα(1) · SP(GS(k)) (11)

in expectation. This would imply that that F1 + F2 has expected dynamic power at most Oα(1) ·
log2α k · (log log k)2α

(
logα k · SP(GS(k)) +DP(GH(k))

)
; in this combination another 2α factor loss

can occur, but it is subsumed by Oα(1). Since the SP(GS(k)) is O(log k)Opt and DP(GwH(k)) can
be easily shown to be O(logα k)Opt from Lemma 1, this will prove the lemma.
Constructing flow F1. By definition of I, if we restrict attention to pairs I + 1, . . . , k then the
assumption in Lemma 19 holds. So the sparsest priority cut for the instance G(I + 1) ⊆ G(I +

2) ⊆ · · · ⊆ G(k) is Ω
(

1
log log k

)
. By the priority flow-cut gap (Theorem 11) we obtain a priority

multicommodity flow Fw0 of value Ω(1)
(log k·log log k)2

satisfying the virtual capacities. Let {he} denote

16

the amount of hallucinated flow on each edge e ∈ GwH(k). Recall that the virtual capacity ck(e)
of any edge e equals he (if e ∈ GwH(k)) plus α log k · q (if e ∈ GS(k)). So the dynamic power
corresponding to the virtual capacities is:∑
e∈GF (k)

ck(e)
α ≤ 2α

(∑
e∈GH(k)

hαe +
∑

e∈GS(k)

(α log k)α ·σ
)
≤ Oα(1)

(
SP(GS(k))+DP(GwH(k))

)
We define flow Fw1 to be Fw0 scaled by O(log k · log log k)2 which is a valid priority flow for pairs
indexed more than I. This proves the upper bound on the dynamic power of Fw1 claimed in (10).
Constructing flow F2. This simply uses the edges in the Steiner forest GS(k) to route all the pairs
up to index I. The expected dynamic power on any edge e ∈ GS(k) is at most:

E[Iα] =
k∑
i=1

Pr[I = i] · iα ≤
k∑
i=1

1

i2α
· iα = Oα(1).

The inequality uses Lemma 18. Thus the expected dynamic power of Fw2 is at most O(1) times the
static power of GS(k) as claimed in (11). This completes the proof. 2

5 The Single-Source Case

We show that the online algorithm, with λ set to be Θ(log k), is O(logα+1 k)-competitive for the
single source case. Following the analysis in the previous sections, it is sufficient to prove that there
is a capacity-respecting priority routing within the backbone GF (k).

Lemma 21 With probability of at least 1− k−2α there exists a capacity-respecting priority routing
within GF (k).

Proof: Let Li be the set comprised of the source s and the sinks that have hallucinated by the
time sink ti arrived. In [6] (c.f. Lemma 1), it was shown that with probability of at least 1− k−2α,
it is the case that for each sink ti there exists a path Pi with the following properties:

• each path Pi goes from the sink ti to a sink in `i ∈ Li in the Steiner backbone GS(i), and
then from `i to source s along the path taken by the hallucinated flow emanating from ti,

• each edge of the Steiner backbone GS is used by O(q log k) such paths, and

• each node in Li is used by t O(q) such paths.

This is a priority capacity-respecting routing. 2

6 Capacitated Multicommodity Network Design

In this section, we consider the capacitated multicommodity design problem, as studied by [?]. In
this problem, we are given a graph G = (V,E) with each edge having a cost ce and capacity q. We
are also given a collection of k request-pairs {(si, ti) : i ∈ [k]} each with unit demand. The goal is
to pick a minimum cost subgraph H ⊆ G such that H can support a multicommodity flow of the
request-pairs.
Andrews et al. [?] consider this problem and use the techniques of embedding expanders via cut-
matching games [?] and expander routing [?] to give a (polylog, polylog) bicriteria approximation
algorithm for this problem. That is, the cost of their subgraph H is polylog times the optimal cost,
and H can support 1/polylog flow of each request-pair concurrently. In this paper, we show the
following theorem.

17

Theorem 22 There is an efficient (O(1), O(log k)) bi-criteria approximation algorithm for CapND
when all edges have the same capacity.

A related problem is that of survivable network design, where the requirement is H to satisfy the
flow requirement, individually for each demand rather than concurrently.
We now present the details of our algorithm. Firstly, we argue that the case when the demands and
capacities are the same is easy to approximate, by randomized rounding a natural LP relaxation
(which allows violation in capacities by O(log k)).

min
∑
e

cexeLPcap (12)

s.t.
∑
p∈Pi

f(p) ≥ 1 ∀i ∈ [k] (13)

∑
p|e∈p

f(p) ≤ xe ∀e ∈ E (14)

0 ≤ f(p) ≤ 1 ∀i ∈ [k], ∀p ∈ Pi (15)

0 ≤ xe ≤ O(log k) ∀e ∈ E (16)

If the above LP is feasible, then we can do a simple randomized rounding (of its flow paths) for
each request-pair, and get that the expected cost is at most the LP cost, and each edge is used to
capacity at most O(log k).

Algorithm for CapND:

1. Constructing the Steiner backbone: Setting the cost of an edge to be ce, we first buy an
(approximate) minimum-cost Steiner forest [2,13]. We denote the set of edges bought in this step
as the Steiner backbone GS .

2. Constructing the Hallucination backbone: Each request-pair (si, ti) independently hal-
lucinates a demand of q, with probability p = min{1, 32λ/q}. Here λ = Θ(log k) is the flow-cut
gap for multicommodity flow [21]. Now, using the procedure described above, solve the case of
the problem where the hallucinated request-pairs have demand of q and edges have capacity q.
If the LP was infeasible, redo this step. Let the subgraph bought be GH , and let H denote the
hallucinated routing.

3. Final Solution: Return the subgraph GS ∪GH .

6.1 Analysis

The analysis proceeds along the following lines, and is similar to that in Section 3.

Cost of GS: By using the Steiner forest approximation algorithm from [2,13], one can guarantee
that the cost of the edges in GS is at most twice the minimum cost to even achieve connectivity
between the request-pairs, and is hence at most 2 · Opt.

Cost of GH : We can first apply a standard concentration bound to argue that, w.h.p, the demand
of the hallucinated request-pairs can be routed on the support of Opt while violating the
capacities by a factor of O(log k), giving us a feasible LP solution to LPcap. Then our rounding

18

algorithm for the case when demands and capacities are equal returns a graph GH which can
unsplittably route the scaled-up demands of the hallucinated request-pairs (violating the
capacities by O(log k)). Recall that we call this unsplittable routing H.

Routing on GS ∪GH : The last part of the proof shows there is a flow F of low congestion in
the subgraph GF . To this end, we assign virtual capacities {ĉe : e ∈ E} to each edge in GF
equal to the amount of hallucinated flow routed on it in H, plus O(λq) if it is in the Steiner
backbone GS . Using these virtual capacities, we can use Lemma 2 to conclude that w.h.p, the
sparsity of every cut is at least λ (w.r.t the original demands of the request-pairs). Therefore,
there exists a flow within the backbone GF that respects these virtual capacities, owing to
the flow-cut gap for multicommodity flow [20]. Finally, the virtual capacity of each edge is
O(log k)q because H uses any edge to at most O(log k)q, and we added O(log k)q units for
edges in GH .

If the demand flow is not routable with O(log k) violation in capacities, we repeat the algorithm.
This completes the proof of Theorem 22.

7 Conclusion

Say our results extend to splittably routing variable demands.
Say something about extending our techniques to unsplittably routing request-pairs with varying
demands using techniques in [14].
Ravi, Do you want to add something here about other routing problems that our techniques solve?

References

[1] Vision and roadmap: Routing telecom and data centers toward efficient energy use, May 2009. Pro-
ceedings of Vision and Roadmap Workshop on Routing Telecom and Data Centers Toward Efficient
Energy Use.

[2] Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized steiner problem on networks. SIAM J. Comput., 24(3):440–456, 1995.

[3] Matthew Andrews, Spyridon Antonakopoulos, and Lisa Zhang. Minimum-cost network design with
(dis)economies of scale. In FOCS, pages 585–592, 2010.

[4] Matthew Andrews, Antonio Fernández, Lisa Zhang, and Wenbo Zhao. Routing for energy minimization
in the speed scaling model. In INFOCOM, pages 2435–2443, 2010.

[5] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized steiner problem. In SODA, pages
68–74, 1996.

[6] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, Kirk Pruhs, and
Cliff Stein. Multicast routing for energy minimization using speed scaling. In MedAlg, pages 37–51,
2012.

[7] Piotr Berman and Chris Coulston. On-line algorithms for steiner tree problems (extended abstract). In
STOC, pages 344–353, 1997.

[8] David Brooks, Pradip Bose, Stanley Schuster, Hans M. Jacobson, Prabhakar Kudva, Alper Buyukto-
sunoglu, John-David Wellman, Victor V. Zyuban, Manish Gupta, and Peter W. Cook. Power-aware
microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro,
20(6):26–44, 2000.

19

[9] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-linked terminals,
and routing problems. In STOC, pages 183–192, 2005.

[10] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation algo-
rithms via spreading metrics. J. ACM, 47(4):585–616, 2000.

[11] Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi. A general frame-
work for graph sparsification. In STOC, pages 71–80. ACM, 2011.

[12] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi)cut theo-
rems and their applications. SIAM J. Comput., 25(2):235–251, 1996.

[13] Michel X. Goemans and David P. Williamson. A general approximation technique for constrained forest
problems. SIAM J. Comput., 24(2):296–317, 1995.

[14] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for non-linear opti-
mization with applications to speed scaling. CoRR, abs/1109.5931, 2011.

[15] Anupam Gupta, Amit Kumar, Martin Pál, and Tim Roughgarden. Approximation via cost sharing:
Simpler and better approximation algorithms for network design. J. ACM, 54(3):11, 2007.

[16] W. B. Johnson, G. Schechtman, and J. Zinn. Best constants in moment inequalities for linear combi-
nations of independent and exchangeable random variables. Ann. Probab., (1):234–253, 1985.

[17] David R Karger. Random sampling in cut, flow, and network design problems. Mathematics of Opera-
tions Research, 24(2):383–413, 1999.

[18] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning using single commodity
flows. J. ACM, 56(4), 2009.

[19] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach. Addison-Wesley
Publishing Company, USA, 2009.

[20] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

[21] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.

[22] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[23] Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected graphs. SIAM J. Comput.,
39(5):1856–1887, 2010.

[24] Haskell P. Rosenthal. On the subspaces of Lp (p > 2) spanned by sequences of independent random
variables. Israel J. Math., 8:273–303, 1970.

[25] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput.,
40(4):981–1025, 2011.

[26] Adam Wierman, Lachlan L. H. Andrew, and Ao Tang. Power-aware speed scaling in processor sharing
systems. In INFOCOM, pages 2007–2015, 2009.

20

A Probabilistic Inequalities

Theorem 23 ([22]) Let X1, X2, ..., Xn be n independent random variables such that Pr[Xi = 0] = 1 − pi
and Pr[Xi = 1] = pi. Let Y =

∑n
i=1Xi and µ = EY . Then for any δ > 0, it follows that

Pr
[
Y ≤ (1− δ)µ

]
≤ exp(−µδ2/2).

Theorem 24 ([16,24]) Let X1, X2, . . . , XN be independent non-negative random variables. Let α > 1 and
Kα = Θ(α/ logα). Then it is the case that(

E[(
∑
i

Xi)
α]

)1/α

≤ Kα max

(∑
i

E[Xi],

(∑
i

E[Xα
i]

)1/α
)
.

Corollary 25 ([6]) Let p ≥ 0, and let X1, X2, . . . , Xn be i.i.d. random variables taking value D with
probability max{1, p}. Then E[(

∑
iXi)

α] ≤ (Kα)α ·max{1, pN Dα + (pND)α}, where Kα = Θ(α/ logα).

Proof: For the case when p ≥ 1, Xi = D with probability 1, and hence we can conclude that E[(
∑
iXi)

α] =
(ND)α. For the case when p ∈ [0, 1], E[Xi] = pD, and E[Xα

i] = pDα. From this we can conclude that the
upper bound in Theorem 24 is Kα max(pND, (pN)1/αD). Taking αth powers and replacing the max by a
sum, we get E[(

∑
iXi)

α] ≤ (KαD)α((pN)α + pN). 2

21

