
Foundations and Trends® in Optimization

Massively Parallel Computation:
Algorithms and Applications

Suggested Citation: Sungjin Im, Ravi Kumar, Silvio Lattanzi, Benjamin Moseley and
Sergei Vassilvitskii (2023), “Massively Parallel Computation: Algorithms and Applica-
tions”, Foundations and Trends® in Optimization: Vol. 5, No. 4, pp 340–417. DOI:
10.1561/2400000025.

Sungjin Im
University of California, Merced

Ravi Kumar
Google, Mountain View

Silvio Lattanzi
Google, Barcelona

Benjamin Moseley
Carnegie Mellon University

Sergei Vassilvitskii
Google, New York

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

1 Introduction 341
1.1 Purpose of This Monograph 343
1.2 Prerequisites . 344

2 The MPC Model 345
2.1 Formal Definition . 346
2.2 Example: Word Frequencies in Two Rounds 348
2.3 Other Related Models . 350
2.4 Section Notes . 353

3 Partitioning and Coresets 354
3.1 Overview . 355
3.2 Application: Minimum Spanning Tree 355
3.3 Application: k-Center Clustering 357
3.4 Coresets . 358
3.5 Application: k-Center Clustering in Euclidean Space 359
3.6 Problems . 360
3.7 Section Notes . 361

4 Sample and Prune 362
4.1 Overview . 362
4.2 Application: Top k Selection 366

4.3 Application: k-Center Clustering 366
4.4 Application: Monotone Submodular Maximization Subject

to a Cardinality Constraint 368
4.5 Section Notes . 369

5 Dynamic Programming 371
5.1 Overview . 372
5.2 Warm-up: Knapsack . 374
5.3 Interval Selection in MPC 376
5.4 Approximate Dynamic Programs 379
5.5 Section Notes . 380

6 Round Reduction via Sampling 381
6.1 k-core Decomposition and a Sequential Algorithm 381
6.2 Parallelizing the Sequential Algorithm: O(log n) Rounds . . 383
6.3 Round Compression via Random Vertex Partitioning:

O(log log n) Rounds . 386
6.4 Section Notes . 388

7 Round Reduction via Graph Exponentiation 390
7.1 Approximate Core Decomposition 391
7.2 Connected Components 396
7.3 Section Notes . 402

8 Lower Bounds 403
8.1 Connectivity in MPC . 403
8.2 Unconditional Lower Bounds 404
8.3 Conditional Lower Bounds 408
8.4 Section Notes . 410

9 Conclusions 411

References 412

Massively Parallel Computation:
Algorithms and Applications
Sungjin Im1, Ravi Kumar2, Silvio Lattanzi3, Benjamin Moseley4 and
Sergei Vassilvitskii5

1University of California, Merced, USA; sim3@ucmerced.edu
2Google, Mountain View, USA; ravi.k53@gmail.com
3Google, Barcelona, Spain; silviol@google.com
4Carnegie Mellon University, USA; moseleyb@andrew.cmu.edu
5Google, New York, USA; sergeiv@google.com

ABSTRACT
The algorithms community has been modeling the underly-
ing key features and constraints of massively parallel frame-
works and using these models to discover new algorithmic
techniques tailored to them. This monograph focuses on the
Massively Parallel Model of Computation (MPC) framework,
also known as the MapReduce model in the literature. It
describes algorithmic tools that have been developed to lever-
age the unique features of the MPC framework. These tools
were chosen for their broad applicability, as they can serve as
building blocks to design new algorithms. The monograph is
not exhaustive and includes topics such as partitioning and
coresets, sample and prune, dynamic programming, round
compression, and lower bounds.

Sungjin Im, Ravi Kumar, Silvio Lattanzi, Benjamin Moseley and Sergei Vassilvitskii
(2023), “Massively Parallel Computation: Algorithms and Applications”, Foundations
and Trends® in Optimization: Vol. 5, No. 4, pp 340–417. DOI: 10.1561/2400000025.
©2023 S. Im et al.

1
Introduction

The modern era is witnessing a revolution in the ability to scale compu-
tations to massively large data sets. A key breakthrough in scalability
was the introduction of fast and easy-to-use distributed programming
models such as MapReduce (Dean and Ghemawat, 2008), Hadoop
(hadoop.apache.org), and Spark (spark.apache.org). We refer to these
programming models as massively parallel frameworks.

Massively parallel frameworks were originally designed for relatively
simple types of computations such as counting the frequency of words
in a data set. Since then, they have been shown to be useful for a far
richer class of applications. The goal of a recent line of work is to study
these frameworks algorithmically to unlock their true underlying power
and expand their applicability. The hope is, through an algorithmic
investigation, to achieve successes similar to those on topics such as
cache-oblivious algorithms (Frigo et al., 2012) and data streaming
algorithms (McGregor, 2014).

Practically, massively distributed frameworks enable programmers
to easily deploy algorithms on tens to thousands of machines. Algo-
rithmically, the frameworks have restrictions on their computational
expressive power to help ensure programs can be efficiently parallelized.

341

hadoop.apache.org
spark.apache.org

342 Introduction

The challenges are then to (i) develop simple tools that reveal fun-
damentals of massive computation and aid algorithm design and (ii)
understand which computations can benefit from the framework.

The algorithms community has been addressing this problem by
modeling the underlying key features and constraints of massively par-
allel frameworks and using these models to discover new algorithmic
techniques tailored to them. The first model of massively parallel com-
putation was introduced for the MapReduce framework by Karloff et al.
(2010) and several variants have been proposed since (Feldman et al.,
2010; Koutris et al., 2018; Beame et al., 2017; Andoni et al., 2014; Goel
and Munagala, 2012; Goodrich et al., 2011; Pietracaprina et al., 2012;
Roughgarden et al., 2016). Perhaps the main advantage of the model
in Karloff et al. (2010) is its relative simplicity. It captures framework
characteristics that are sufficient for algorithm design, without delving
into the plethora of system parameters. In this monograph, we will
primarily focus on this version of the model; we call it the Massively
Parallel Model of Computation (MPC). See Section 2 for formal details.

The MPC model is a special case of the Bulk-Synchronous-Parallel
(BSP) model of Valiant (1990), where machines have sublinear memory
(i.e., nδ for δ < 1 and input size n) and computation proceeds in
alternating rounds of communication and sequential computation. The
MPC model can be thought of making different trade-offs than the
classic PRAM computational model. Much of the difference comes from
being able to run a sequential algorithm on a small sublinear portion of
the data during a single round. Full details are given in Section 2.

The MPC model has a strong connection to practice and this is
demonstrated by algorithmic developments resulting in good practical
performance (Chierichetti et al., 2010; Bahmani et al., 2012a; Suri
and Vassilvitskii, 2011; Karloff et al., 2010; Mirzasoleiman et al., 2013;
Broder et al., 2014; Feldman et al., 2010; Zhao et al., 2012; Ene et
al., 2011; Malkomes et al., 2015; Kumar et al., 2015; Bahmani et al.,
2012b; Ene and Nguyen, 2015; Cohen-Addad et al., 2021b; Cohen-
Addad et al., 2021a; Lattanzi et al., 2019; Ghaffari et al., 2019b; Bateni
et al., 2017; Assadi et al., 2019b; Bhaskara and Wijewardena, 2018)
and influencing software libraries. For example, theoretical algorithms

1.1. Purpose of This Monograph 343

for k-means clustering have been incorporated in the Spark Machine
Learning software library1 (Bahmani et al., 2012b).

1.1 Purpose of This Monograph

This line of work has demonstrated that massively parallel frameworks
are useful for some challenging applications. With this as a proof-
of-concept, an exciting area of research is to broaden the use of the
frameworks to address a wide range of problems by using theoretical
models to drive algorithm design.

This monograph will describe algorithmic tools that have been
developed for massively distributed computing that leverage the unique
features of the framework. The tools were chosen because we believe
they are generally applicable and can be used as building blocks to
design algorithms in the area.

This monograph is not exhaustive. However, it will cover the follow-
ing areas.

• Partitioning and Coresets: This is one of the most natural
approaches for parallel algorithms design. The idea is to partition
the input to the problem across machines, and have each machine
solve the problem on the individual parts. The individual solutions
are then combined to build the solution to the overall problem.

• Sample and Prune: Another common approach to solve prob-
lems on large data sets is to use sampling to reduce problem
size. Unfortunately, sampling from simple distributions, such as
uniform, often misses too much information to solve a problem
near optimally. We discuss the iterative sample-and-prune method,
which has been shown to be efficient for many problems.

• Dynamic Programming: Dynamic programming is a powerful
technique for solving problems. Unfortunately, it is typically dif-
ficult to parallelize. We discuss techniques for adapting certain
dynamic programs to the massively parallel setting.

1https://spark.apache.org/docs/2.2.0/mllib-clustering.html

https://spark.apache.org/docs/2.2.0/mllib-clustering.html

344 Introduction

• Rounds Reduction: A simulation approach to solve problems in
a parallel fashion is to apply a known algorithm, performing one
step in a single round of distributed computation. While simple,
it is often inefficient and leads to a large number of rounds. We
discuss round compression, where multiple iterative rounds are
compressed into a single round.

• Lower Bounds: Finally, we discuss the limitations of the mas-
sively parallel model of computation. We highlight the efforts to
develop lower bounds for the model and derive connections to
other models of computation.

1.2 Prerequisites

This monograph will assume the basics on approximation algorithm
design and randomized algorithms. For a quick overview, we recom-
mend the books by Williamson and Shmoys (2011, Chapter 2) and
Mitzenmacher and Upfal (2005, Chapters 1-4).

2
The MPC Model

The goal of this section is to formally introduce the massively parallel
computing (MPC) model and compare it to other concrete computa-
tional models. In some cases, the MPC model can provably simulate
algorithms in other models and vice versa. Further, many of the algo-
rithmic techniques developed for the MPC model have found uses in
parallel computing, distributed computing, and data stream algorithms.

Before we introduce the MPC model, we take a step back to consider
three characteristics that summarize the massively parallel framework.
The first is the frequency and synchronicity of communication: how
often do the machines coordinate with each other. The second is the
topology of the communication: what are the allowable communication
channels between machines? The third is the degree of parallelism: how
does the number of parallel tasks grow with the problem size? As we
will see below, different answers to these questions lead to different
models of computation. For instance, the PRAM model restricts neither
the frequency nor the topology, and allows for a super-linear degree of
parallelism; on the other hand, the LOCAL model restricts the topology
and parallelism.

345

346 The MPC Model

The different characteristics also have an effect on the difficulty
of programming under these conditions. For example, multithreaded
programming can be a notoriously tricky endeavor, since different ex-
ecutions of the same piece of code may result in different code paths,
leading to code that is very hard to test, and bugs that can be hard
to reproduce. Additionally, an often ignored issue is that of system
failures: with computation happening concurrently on multiple pieces
of hardware, the chance of one of them failing increases dramatically,
thus systems must be robust to failures, which leads to even more code
complexity.

Indeed, the development of MapReduce was largely motivated by
trying to hide as much of the system complexity as possible from
the algorithm designer, at the cost of slightly limiting the model of
computation. As Dean and Ghemawat (2008) write in their seminal
work:

The issues of how to parallelize the computation, distribute
the data, and handle failures conspire to obscure the original
simple computation with large amounts of complex code to
deal with these issues. As a reaction to this complexity, we
designed a new abstraction that allows us to express the
simple computations we were trying to perform but hides
the messy details of parallelization, fault-tolerance, data
distribution and load balancing in a library.

While the first uses of MapReduce were for simple computations,
the framework has proven incredibly versatile and powerful. Researchers
have developed new algorithmic techniques tailored to this compu-
tational model and MapReduce-style algorithms are now known and
implemented for a large number of problems, from clustering, and
submodular optimization, to basic graph problems.

2.1 Formal Definition

The MPC paradigm forces the algorithm designer to break up the
computation into a sequence of synchronous rounds, where individual
tasks must work in isolation during a round, and can communicate with

2.1. Formal Definition 347

each other only between rounds. Rounds are relatively expensive, and
thus the goal is to minimize the overall number of rounds an algorithm
takes.

Formally, consider an input of size N . To process it, we have p

machines, each with an M -bit memory. Initially, the input is distributed
among the memory of the p machines in an arbitrary manner. For
instance, machine 1 has bits 1 through M , machine 2 has bits M + 1
through 2M , and so on. The computation proceeds in rounds. In each
round each machine reads the M bits from its memory, performs an
arbitrary computation on them, and sends its output to the machines
that need it in the next round. After the final round of computation,
the machines write their result to the final output location. If at any
point one of the machines received more than M bits per round, the
computation fails.

The model as described is quite general, we next specify the trade-
offs between the size of the input (N), the number of machines (p), and
the memory for each machine (M). Clearly in order to store the whole
input for the first round, we must have p ≥ N/M . The key limitation
that makes the MPC model different from other systems is the upper
bounds placed on both M and p. Specifically, we require that M = N1−ϵ

for some constant ϵ, thus the amount of input available to each machine
on any round is a vanishingly small fraction (e.g., M =

√
N). The

amount of parallelism is also restricted, and we require that p = N1−ϵ′

for some constant ϵ′. Clearly ϵ′ + ϵ ≤ 1, else all of the input cannot be
stored.

The main metric for evaluating the efficiency of an algorithm in this
model is the number of rounds that it takes. We aim for algorithms that
take a constant number of rounds, but will see that sometimes that is
not possible, and that a logarithmic number of rounds is necessary.

2.1.1 Discussion

While it may seem that requiring ϵ and ϵ′ to be arbitrary constants gives
too much freedom to the algorithm designer, currently almost all of the
algorithms developed can be adapted to be used with arbitrary settings
of ϵ, at the cost of increasing the number of rounds of computation

348 The MPC Model

within a constant factor. In fact, we will often see algorithms that run
in O(1

ϵ) rounds.
From the setting of the parameters, it is easy to see that the total

size of the intermediate computation is bounded by M · p = N2−ϵ−ϵ′ .
Thus, it is beneficial to keep ϵ′ as large as possible to limit the potential
increase in intermediate computation size. While the model allows for
ϵ′ to be an arbitrarily small constant, we will again see that most
algorithms are memory-efficient in their intermediate computation, and
setting ϵ′ ≈ 1− ϵ is enough.

2.2 Example: Word Frequencies in Two Rounds

Now that we have seen the MPC model, let us consider a simple problem
and give a simple two-round algorithm to solve it. In this problem, the
input is a collection of documents. Each document is a tuple ⟨L, W ⟩
consisting of a numeric label L and a list W of words, where the words
are possibly duplicated. The goal is to output the number of times each
distinct word appears across all documents. For example if the input is
⟨0, [‘big’,‘data’]⟩, ⟨1, [‘big’]⟩, the output is (‘big’, 2), (‘data’, 1).

The total input size N is the total number of words across all
documents. Since many words are repeated often in documents (such as
“the”), for simplicity, we assume that the number of distinct words is
O(
√

N). We also assume that each document has at most O(
√

N) words
and that words are of constant size. We give a two-round algorithm
using p = Θ(

√
N) machines. Initially the documents are distributed

across the p machines.

Round 1

In the first round, for each distinct word w on a machine’s local memory,
the machine computes the frequency count of w on its local documents.
Let cw,i be the number of occurrences of word w on machine i. Now
each word w picks a unique machine, for example by hashing. Each
machine i communicates cw,i to the machine designated for word w.

2.2. Example: Word Frequencies in Two Rounds 349

Round 2

For each word w, the machine designated for it computes ∑p
i=1 cw,i and

outputs the resulting count.

Analysis

The algorithm runs in two rounds and clearly computes the correct
result. Initially, the data is partitioned equally across the machines
so the memory per machine is O(N/p) = O(

√
N); thus the memory

requirements are met with ϵ = 1/2. Since there are O(
√

N) distinct
words, each can be assigned a unique machine given the choice of p.
Moreover, each machine sends and receives at most O(

√
N) pieces of

information between the two rounds, satisfying the communication
requirements.

Note that we made several assumptions for this analysis. The algo-
rithm can be made more robust to relax some of these assumptions.

2.2.1 Easy and Hard Problems in MPC

The above warm-up demonstrates the power and versatility of the
MPC model. Similar techniques can be used to compute statistics
about datasets (e.g., the minimum or maximum element, median, other
quantiles) in constant number of rounds. These basic subroutines can
then be adapted to use for other algorithmic primitives like sorting.

However, many problems that are easy in the sequential model of
computation are much harder in MPC. As we will show in the rest of
the sections, we need new methods to adapt other common paradigms
such as dynamic programming, or common problems such as computing
matchings in bipartite and general graphs.

For graphs, in particular, there is an important distinction between
dense (Ω(n1+ϵ) edges) and sparse (O(n) edges) settings. In the latter,
M = N1−ϵ = o(n), and therefore one cannot load all of the nodes onto
a single machine. This leads to additional complexity, as even simple
aggregations across nodes take multiple rounds. This aspect is key to
the lower bound construction in Section 8. On the other hand, in the
dense case, it is permissible to keep all of the nodes (and even Ω(n))

350 The MPC Model

edges on a machine, which makes some of these operations significantly
easier and allows for additional techniques, such as Sample and Prune
(Section 4) and Round Reduction (Section 6).

2.3 Other Related Models

2.3.1 Streaming

In the standard streaming model the input arrives in a sequence that
can be read in only one direction; reading the whole input sequence
from the first to the last constitutes a pass on in the input. The primary
goal is to perform a certain computation with a small number of passes
using memory whose size is sublinear in the input size. This model has
some subtle differences from the MPC model. In the streaming model
the machine is allowed to read the whole input, albeit in one direction.
In contrast, in the MPC model no single machine ever sees the entire
input. This makes it hard in general to simulate a streaming algorithm
in MPC. Further, streaming algorithms are typically expected to use
a much smaller memory (in many cases, poly log N) than what each
machine is allowed in the MPC model; this makes it hard in general to
simulate a MPC algorithm in streaming.

A variant of the streaming model is one augmented with a sorting
primitive. In this variant, a machine is capable of annotating each
item of the input with a key and sorting the items in the sequence
according to the keys; this sorting step is considered a pass. Sorting
greatly empowers the streaming model and in fact powerful enough
for simulating MPC algorithms (albeit without the parallelism). For
example, graph connectivity is a hard problem in the standard streaming
model but can be solved in O(log N) passes when sorting is allowed.

Yet another variant of streaming that is closer to MPC is the MUD
(massive, unordered, distributed) computational model. In this model
the computation has three stages: a local function operates on each item
of the input and produces a message; an aggregator that combines (pairs
of) the messages; an optional final post-processing step. The output can
depend on the order in which the aggregator operates on the messages.
Streaming algorithms can easily simulate the MUD model while the

2.3. Other Related Models 351

converse, for general functions, is not true. For symmetric functions,
however, an algorithm in the MUD model can simulate a streaming
algorithm, with the same communication complexity and square of the
space complexity.

2.3.2 Parallel Computing

NC and PRAMs

The standard parallel random access machines (PRAM) model allows
the use of an arbitrary number of machines that share an unbounded
memory in a synchronous way. In each round, each machine does certain
local computations and reads from and/or writes to the shared memory.
A primary goal for studying this model is to understand how much
parallel computing can be exploited to minimize the number of rounds.
NC defines the class of problems that be solved efficiently in the PRAM
model. A problem is in NC if a polynomial (in N) number of machines
can solve the problem in poly log N rounds.

Although the PRAM has been the most popular model to under-
stand the pure power and limitations of parallel computing, the model
has seen limited application in practice. This is partially due to its
lack of restrictions on the number of machines, (even a linear number
is unrealistic when the input is large), as well as synchronization of
such large number of machines. The MPC model is a more realistic
alternative with fewer number of machines but each with significantly
more computing power.

Although the two models, PRAM and MPC, are different, any
CREW PRAM algorithm using at most O(N2−ϵ) machines and O(N2−ϵ)
memory can be simulated in MPC Here, CREW stands for concurrent
read and exclusive write, meaning that more than one machine can read
a memory cell concurrently but only one can write to it in each round.

BSP

The bulk synchronous parallel model, aims to develop a more realistic
parallel computing model. In this model, computation proceeds in a
series of super-steps. In each super-step, each machine performs some

352 The MPC Model

local computations and sends messages to other machines. The machines
synchronize between the super-steps.

The model has parameters for the memory needed per machine,
local computation time, and time to send messages. The goal is to
reduce the total computation time, which is the sum over the rounds of
the of the maximum local computations and the maximum time for a
machine to receive all the messages.

MPC is a special case of the BSP model where the memory in the
machines is restricted, and the number of rounds is used to measure
the running time. BSP gives a more refined analysis of distributed
algorithms, whereas, MPC streamlines the model to allow the algorithm
designer to focus on what are typically the most important aspects, for
example, the number of rounds.

2.3.3 Distributed Computing

Local Model

In the Local model, there is an undirected graph where each node
represents a machine. Each node, while unaware of the topology, can
communicate only with its neighbors by sending any amount of data in
each round. All communication happens synchronously in each round.
Note that this model is not as restrictive on the amount of communica-
tion allowed per round as the MPC model, but the communication itself
is restricted to between a node and its neighbors. At the end of the
computation, each node is required to know its portion of the solution,
e.g., for a coloring problem, each node should know its color in a proper
coloring.

Despite the apparent differences, local algorithms have inspired
new MPC algorithms for various graph algorithms, including maximal
independent set, matching, and coloring; as well as reductions between
the models to prove conditional lower bounds in MPC (see Section 8).

Congested Clique Model

The congested clique model studies the power and the limitations of dis-
tributed computing when the amount of data transferred between each

2.4. Section Notes 353

pair of computationally unbounded machines is limited for each round,
e.g., O(log N) bits. Note that each machine can communicate with all
the other machines simultaneously; thus, each machine can receive Ω(N)
bits in total from other machines in each round. This is unlike the MPC
model where each machine in each round can send/receive o(N) bits.
On the other hand, the congested clique model is more restrictive than
MPC as it limits the communication between each pair of machines.
Although the two models are not directly comparable to each other, it
is known that any MPC algorithm can be efficiently simulated in the
congested clique model assuming that every machine has a sufficiently
large memory to store all the data it receives from other machines in a
round.

2.4 Section Notes

MapReduce, as a parallel computing system, stems from the seminal
work of Dean and Ghemawat (2008). The first model formalizing MapRe-
duce was given by Feldman et al. (2010), who gave more of a streaming
variant. The MPC model, which is the focus of this book was introduced
by Karloff et al. (2010).

The Bulk Synchronous Parallel (BSP) model was originally pro-
posed by Valiant (1990), and its connections to MPC were explored by
Goodrich (2010).

The closely related Local model for distributed computing was
proposed by Linial (1987). While making different trade-offs than MPC,
the Local model has inspired numerous MPC algorithms, and lower
bound techniques.

Finally, the connections between MPC and the Congested Clique
model were first explored by Hegeman and Pemmaraju (2015).

3
Partitioning and Coresets

The size of the problem instance is a critical constraint for MPC algo-
rithms. Therefore, a natural approach is to try and shrink the given
instance until it becomes small enough to fit in the memory of a single
machine. A simple way to achieve such a size reduction is to partition the
given instance into smaller sub-instances across the available machines,
solve the sub-instance on each of the machines to obtain sub-solutions,
and then combine the sub-solutions to obtain a solution to the given
instance.

We call this the partitioning approach. When the problem at hand
has no dependence between parts of the input, the partitioning approach
is particularly powerful. For instance, suppose we want to count the
number of times a specific word appears in a large corpus. It is easy to see
that splitting the corpus across the machines into smaller sub-corpora,
counting the number of occurrences of the word in each sub-corpus, and
combining all the counts yields the correct solution, while achieving the
instance-size reduction we seek.

Perhaps what is more surprising is that the same high-level par-
titioning approach works in situations where seemingly there is a lot
dependence between different parts of the input in producing an opti-
mum solution.

354

3.1. Overview 355

3.1 Overview

Problems for which the partitioning approach can be applied have the
following characteristic. Let f be the function that we wish to compute
and let A be an algorithm that computes or approximates f . Let X

be the given input. We define the following property of A that will be
useful in designing algorithms based on partitioning.

Definition 3.1 (Partition-friendly Algorithm). An algorithmA is partition-
friendly if for any input X and for any partition X1 ∪ · · · ∪Xp of X, it
holds that A(∪p

i=1A(Xp)) computes or approximates f(X).

Consider the following MPC algorithm to compute or approximate
f using a partition-friendly algorithm A.

Algorithm 1 Partitioning
PartitionA(X)

1: Arbitrarily partition X equally into X1, . . . , Xp

2: For the ith partition Xi, let Yi = A(Xi)
3: Fetch Yi’s from the partitions to one machine to form Y = ∪p

i=1Yi

4: return A(Y)

Since A is partition-friendly, the solution output by Algorithm 1 is
an approximation to f . Now we discuss the memory requirements of
the algorithm. Since X was partitioned equally, the following statement
is easy to see.

Lemma 3.1. Let r be the size of the output of A. Then, setting the
number of partitions p =

√
|X|/r ensures both |Y | and each of the

|Xi|’s are of size O(
√
|X| · r).

3.2 Application: Minimum Spanning Tree

Consider the classical Minimum Spanning Tree (MST) problem. Let
G = (V, E) be an undirected graph on |V | = n vertices and |E| = m

edges, and let we ∈ R+ be the weight of edge e ∈ E. For ease, let the
edges have distinct weights.

356 Partitioning and Coresets

Problem 3.2.1 (Minimum Spanning Tree). Given G = (V, E), find a
subset T ⊆ E of edges such that the edge-induced subgraph on V is
connected, and the total weight of T , ∑

e∈T we, is minimized.

To apply the partitioning framework, for simplicity, we define A to
be any algorithm to find the minimum spanning forest. This is so that
we can use it for graphs that are not connected. Let the input X be
the set E of edges, along with their weights. Let T be the output of
Algorithm 1. We need two facts about A. The first is that the since it
outputs a forest, trivially the size of the output is n. Since |X| = m, by
Lemma 3.1, setting p =

√
m/n will make each sub-instance to be of

size O(
√

mn), a substantial reduction from the size of the input graph
G when m is considerably greater than n.

Second, we need to argue that A is partition-friendly. In fact, we
will show that T is indeed the MST of G.

Lemma 3.2. T is the MST of G.

Proof. Let Ei = Xi be the partition of E and let Ti = Yi in Algorithm 1.
Our proof proceeds by showing that none of the edges that was

excluded in any partition, i.e., the edges in Ei \ Ti, can be a part of the
MST of G. Note that since the edge weights are distinct, the MST is
unique.

Recall the cycle property of MSTs: the maximum weight edge in
any cycle in G cannot be in the MST, and conversely, any edge not in
the MST is the heaviest edge on some cycle in G.

Now consider an edge e ∈ Ei \Ti that was removed by the algorithm.
By the cycle property, e must be the heaviest edge on some cycle C ⊂ Ei.
Since Ei ⊂ E, the edge is also the maximum cost edge on the same
cycle C in G, and therefore is not part of the optimal MST T .

Note that the approach above requires partitions be of size at least
Ω(n). If the system constraints are such that one cannot afford to store
all of the graph vertices on a single machine, then the partition approach
no longer works and we need to use other methods to find the MST in
parallel.

3.3. Application: k-Center Clustering 357

3.3 Application: k-Center Clustering

The k-center clustering problem is one of the classical clustering prob-
lems. At a high level, given a set of n points, the goal is to cover them all
by k balls of minimum radius. Formally, consider a metric space equipped
with a distance function d(·, ·) and let X be a set of points in it. The
metric assumption implies that (1) d(x, y)) = d(y, x) for all x, y ∈ X,
(2) d(x, x) = 0 and (3: triangle inequality) d(x, y) + d(y, z) ≥ d(x, z)
for all x, y, z ∈ X. We assume each point takes constant memory to
store and the distances d(x, y) can be computed in constant time given
x and y. For a set C in the metric space and a point x ∈ X, let
d(x, C) = minc∈C d(x, c).

Problem 3.3.1 (k-Center). Given X = {x1, . . . , xn}, select k points
C = {c1, . . . , ck} to minimize maxx∈X d(x, C).

The k-center problem is NP-hard, however there is a simple greedy
algorithm that produces a 2-approximation.Further, this approximation
guarantee is best possible for general metric spaces.

The greedy algorithm begins by selecting an arbitrary point x ∈ X

as the first center c1. It then repeatedly selects the point in X that is
furthest away from any of the previously chosen centers, and adds it to
the set of centers. The resulting algorithm is a 2-approximation to the
k-center problem. See Algorithm 2 for a formal description.

Algorithm 2 Sequential greedy algorithm for k-center.
Seq-KC(X, k)

1: C ← ∅
2: Add an arbitrary point x ∈ X to C

3: while |C| < k do
4: y ← arg maxx∈X d(x, C)
5: C ← C ∪ {y}
6: end while
7: return C

We will once again appeal to the partitioning framework by defining
A to be Seq-KC. Let X be the input set of points and C be the output

358 Partitioning and Coresets

of Algorithm 1. As before, we need two facts about A. The first is the
easy observation that the output is of size k. Setting p =

√
n/k, we can

ensure no sub-instance is of size more than
√

nk, which is sublinear in
the input size for k = o(n).

Second, we show that A is partition-friendly, however with a slightly
worse approximation factor than A.

Lemma 3.3. Algorithm 1 with A being Seq-KC outputs C that is an
8-approximation to the k-center of X.

Proof. Let OPT denote the value of the optimum k-center solution. We
first argue that for any i and any x ∈ Xi, it holds that d(x, Ci) ≤ 4OPT.
Indeed, since Xi ⊂ X, the value of the optimum solution OPTi on
this partition is no larger than 2OPT. Since Seq-KC returns a 2-
approximation, we have d(x, Ci) ≤ 2OPTi ≤ 4OPT.

Now consider Y = ∪iCi. Since Y ⊂ X, as before, the value of the
optimum solution OPTf is at most the value of 2OPT. Therefore, for
any x ∈ Y , we have d(x, C) ≤ 4OPT.

Putting these two facts together yields a 8-approximation. Indeed,
consider any point x ∈ X. If x ∈ Ci for some i, then d(x, C) ≤ 4OPT.
Otherwise, x ∈ Xi for some partition Xi with clustering Ci, and let
z ∈ Ci be the point minimizing d(x, Ci). Then, by the triangle inequality,

d(x, C) ≤ d(x, z) + d(z, C) ≤ 4OPT + 4OPT = 8OPT.

A more careful analysis can show an approximation ratio of 4.

3.4 Coresets

An interesting generalization of the partitioning framework is the com-
posable coreset framework. In this framework the input is still parti-
tioned into X1, . . . , Xp. However, instead of using the algorithm A twice
as in Algorithm 1, the idea is to use two different algorithms, one on the
partitions and another on the union of the outputs of the first algorithm.
The first algorithm can be thought of as computing a good summary of
the input partition. More formally,

Definition 3.2. An algorithm A′ computes an α-composable coreset if
for any input X and for any partition X1 ∪ · · · ∪Xp of X, there exists

3.5. Application: k-Center Clustering in Euclidean Space 359

an algorithm A such that A(∪p
i=1A′(Xi)) computes an α-approximation

of f(X).

Intuitively this can be useful because in some settings when a local
solution may not contain all the information needed to compute a good
global solution. As an application of this more general framework, we
will obtain an improved algorithm for k-center in Euclidean space.

An interesting variant of the α-composable coreset framework is
the randomized version, in which the input partition is assumed to be
random. Interestingly, there are problems (like submodular maximiza-
tion and maximum matching) that do not admit a good composable
coreset for an arbitrary input partition, but do admit for a random
input partition.

3.5 Application: k-Center Clustering in Euclidean Space

We consider the k-center problem where the set X of input points is
in the Euclidean space Rd. In this setting, assuming d is constant, it is
possible to improve upon the 8-approximation in Theorem 3.3 using the
composable coreset framework. The main idea is to design an algorithm
A′ that outputs a set of points so that every point x in an input partition
Xi will have a close neighbor in A′(Xi).

Toward this goal, on every partition Xi we run the sequential algo-
rithm Seq-KC (Algorithm 2) to obtain centers ci,1, . . . , ci,k and their
respective clusters Ci,1, . . . , Ci,k. For a cluster Ci,j let δi,j be the maxi-
mum distance between a point in Ci,j and ci,j . Then for every cluster
Ci,j we construct a δi,j×· · ·×δi,j d-dimensional grid centered at ci,j and
given ϵ > 0, we further partition this grid into ϵ

16
√

2d
δi,j×· · ·× ϵ

16
√

2d
δi,j

d-dimensional sub-grids. Now for every non empty sub-grid the algo-
rithm A′ chooses an arbitrary input point in Xi that falls inside the
sub-grid; the output A′(Xi) is the set of all the points chosen from Xi.

To prove that the algorithm computes a useful composable coreset
we need to show: (i) Y = ∪iA′(Xi) is not too big and (ii) an algorithm
A such that A(Y) is a good approximation to the Euclidean k-center.
We start with observing the first property, which is easy to see.

360 Partitioning and Coresets

Lemma 3.4. |Y | = O
(

1
ϵd kp

)
, where p is the number of input partitions.

Lemma 3.5. There is an algorithm A such that A(Y) is a (2 + ϵ)-
approximation to the k-center of X.

Proof. First note that each δi,j is upper-bounded by 2OPT. Indeed,
since Xi ⊂ X, the value of the optimum solution on this partition OPTi

is no larger than OPT and moreover, Seq-KC is a 2-approximation
algorithm. So for every i and every x ∈ Xi d(x,A′(Xi)) ≤ ϵ

4OPT.
Now consider any point x ∈ X. By construction, it has a point in Y

at distance at most ϵ
2OPT. This implies that there is a solution of cost

at most OPT + ϵ
2OPT, by the triangle inequality. Then once again

using the Seq-KC on Y , we obtain a (2 + ϵ)-approximation.

As before, using partitions of size
√

n/k and
√

n/k machines with
memory O

(
1
ϵd

√
nk

)
, we can obtain a (2 + ϵ)-approximation in two

rounds.

3.6 Problems

1. Generalize the MST algorithm for finding the maximum weight
independent set under a matroid constraint. More formally, con-
sider a matroid of rank k where U is the set of elements and I is
a collection of sets that are independent in the matroid. Say that
each element in u ∈ U has a positive weight wu and the weight
of set in I is the sum of the weights on the elements in the set.
Give an algorithm that computes the maximum weight set in I
in O(1) MPC rounds.

2. Consider the maximal matching problem. We are given an undi-
rected simple graph G = (V, E). Let n denote the number of
vertices and m the number of edges. For this problem we will
assume that m = Θ(n2). Thus, the input size is N := Θ(n2). The
goal is to select a set of edges S ⊂ E that is a maximal1 matching
in O(1) MPC rounds.

3. Count the number of triangles in a given graph in O(1) rounds.
1A subset S of edges is a matching if no two edges in S share an end point.

Further, a matching is maximal if there is no matching S′ such that S′ ⊇ S.

3.7. Section Notes 361

3.7 Section Notes

Partitioning is a common algorithmic technique and it was used for
MPC for the first time in Karloff et al. (2010). The generalization to
composable coresets is due to Indyk et al. (2014)

Triangle counting via partitioning for MapReduce was introduced
by Suri and Vassilvitskii (2011), see Park et al. (2014) for an extension
to multiple rounds and Afrati et al. (2012) on a discussion on the size
of the intermediate computation.

The 2-approximation algorithm for clustering is due to Gonzalez
(1985). The (2 + ϵ)-approximation for k-center can be improved to 2
using Sample and Prune; see Section 4.3 and the Notes in Section 4 for
further improvements.

4
Sample and Prune

In this section, we consider MPC algorithms based on a specific type of
sampling and testing framework. Generally, sampling is a powerful tool
to quickly estimate statistics of large data sets. For instance, uniform
sampling works for simple problems, such as computing the average:
choosing a uniform random subset of the input and computing its
average is likely to be a good estimate of the true average. However,
for more complex problems, different elements have different influence
on the final solution, and uniform random sampling may miss these
important elements and result in a significantly suboptimal solution.

In this section we present a powerful framework that we term sample
and prune. This is an iterative sampling method used to hone in on
important elements in the input, precisely addressing the previous issue.

4.1 Overview

Problems that are amenable in the sample-and-prune framework ask to
find a subset of size at most k from a universe U of size n optimizing a
given objective, subject to some constraints. When parallelism is not
required, these problems can usually be solved to (near-) optimality
by a simple greedy algorithm G. For instance, G may be the greedy

362

4.1. Overview 363

algorithm to find a maximal independent set: given a list of vertices,
iteratively add a vertex to the solution as long as it is not adjacent to
any of the previously added vertices. Generally, we assume G is a set
function that can be applied to any subset of U and returns a set of size
at most k. Further restrictions on G will be discussed shortly. Recall
that our memory size is Θ̃(M).

Algorithm 3 Sample-and-prune framework.
Sample-and-PruneG(U)

1: R← U

2: S ← ∅
3: while |R| > M do
4: Sample each element in R independently with probability

Θ̃(M/|R|) and add it to S

5: Construct a tester T G
S : R→ {KEEP, PRUNE} using G,

where T G
S (e) = PRUNE if and only if G(S) = G(S ∪ {e}).

6: R← R \ {e ∈ R | T G
S (e) = PRUNE}

7: end while
8: return G(R ∪ S)

The framework presented in Algorithm 3 repeatedly samples input
elements to form a subset S, and then uses a tester T G

S based on the
algorithm G to discard many of the input elements, thereby reducing
the problem size. More formally, the algorithm maintains the invariant
that R ∪ S contains enough information to find a good solution to
the problem. In particular, it ensures that the optimum solution to
the union of the sample S and the remaining elements R remains a
good approximation to the solution to the original input U . The main
algorithmic challenge in this framework is to design an efficient tester
T G

S that satisfies the following two properties: (i) It should not prune
any important elements still remaining in R; and (ii) After each sample,
it should help to prune out a large number of elements.

Before we delve into the analysis of the sample-and-prune framework,
we first discuss how to implement it in MPC by outlining how to run
each of the iteration steps in Algorithm 3. The sampling step can

364 Sample and Prune

be done in parallel if the elements are evenly partitioned across the
machines. The samples from the machines can be brought together on
one machine, where the tester T G

S can be constructed. The tester is
then communicated to every machine and pruning step can once again
be done in parallel. Each of the above takes one MPC round.

We now proceed with the analysis, beginning with two definitions.

Definition 4.1 (Usefulness). Fix S ⊆ U and a set function G. An element
e ∈ U \ S is useful for S under G if G(S) ̸= G(S ∪ {e}); otherwise, it is
useless.

We also need the following monotonicity property, satisfied by most
greedy algorithms.

Definition 4.2 (Monotonicity). A set function G is said to be monotone
if for any S ⊆ U , if e is useless for S, then it is useless for any S′ ⊃ S.

A natural way of constructing a tester T G
S satisfying Property (i)

is to check for each e ∈ R if e is useful for S, i.e., check G(S) against
G(S ∪ {e}). If e is useless for S, then it can be pruned; T G

S (e) returns
PRUNE. Otherwise, T G

S (e) returns KEEP.
We first argue the correctness of Algorithm 3.

Lemma 4.1. If G is monotone, the solution G(R ∪ S) returned by
Algorithm 3 is as good as the solution returned by G(U).

Proof. If an element e is pruned by T G
S during an iteration of the

algorithm, then it is useless for S, which by monotonicity of G implies
e is useless for U as well. In other words, no useful element was pruned
and hence G(R ∪ S) = G(U).

The only remaining thing to show is that at each iteration, a large
number of (useless) elements are pruned. To do this, we first upper
bound the size of the family of testers for a monotone G.

Lemma 4.2. For any S, |S| > k, we have T G
S ≡ T

G
G(S). Hence, the total

number of distinct testers is O(nk).

4.1. Overview 365

Proof. Since G is monotone, if e is useless for G(S), then it will be use-
less for S ⊇ G(S). Therefore, every possible output of G(S) corresponds
to a possibly unique tester. Since G’s output has at most k elements,
the total number of distinct testers is at most ∑

i≤k

(n
i

)
= O(nk).

We now define what it means for a tester in this family to be good.
Consider an iteration of Algorithm 3 and let R be the remaining set of
elements during the iteration and S be the set of elements sampled so
far.

Definition 4.3 (Good tester). A tester family {T G
S }S is good if for all

S ⊆ U it satisfies the following property: T G
S (e) = PRUNE ⇐⇒ T G

S ≡
T G

S∪{e}, for all e ∈ U .

In other words, if a tester T G
S decides to prune an element e ∈ R,

then it will be functionally identical to that of a tester constructed
by adding e to S. At the same time, if T G

S decides to keep an element
e ∈ R, then it will differ from the tester constructed by adding e to S,
i.e., e has a material effect on the behavior of the tester.

For simplicity let M = nδ for some constant 0 < δ < 1. In each
iteration, let the sampling probability be 1/(n1−δ). Then, the number
of samples in each iteration is O(nδ) in expectation and is O(knδ log n)
with probability 1−n−k by a tail bound. We now discuss the effectiveness
of the test in pruning out useless elements. Fix an iteration. We wish to
argue that a lot of elements are pruned by the tester. By contradiction,
fix a set R that is large, specifically, |R| > 10kn1−δ log n.

Recall that R is the set of elements that were kept (not pruned).
We claim that sampling any element from R would have changed the
tester. This follows from the definition of a good tester. Indeed, for all
S and e we have T G

S (e) = PRUNE ⇐⇒ T G
S ≡ T

G
S∪{e} and therefore for

any e′ ∈ R, T G
S (e′) = KEEP and T G

S ̸≡ T
G

S∪{e′}. Therefore, for a fixed
tester, we conclude that no element from R could have been sampled.

We can bound the probability of having the set R by the probability
of not sampling every element in R. Missing all elements in R happens
with probability(

1− 1
n1−δ

)|R|
≤ exp

(
−10kn1−δ log n · 1

n1−δ

)
= n−10k.

366 Sample and Prune

Next, we would like to union bound this probability over all possible
large R. Naively done, this will be futile since there are

(n
10kn1−δ log n

)
different R’s. Instead, the key observation is that the total number of
testers is relatively small, i.e., O(nk) by Lemma 4.2. Thus, using the
fact that the tester (and the fixed S) determines R, we can simply apply
a union bound over the number of testers.

This gives the following strategy to solve a problem with sample-
and-prune. Find a monotone greedy algorithm G and a corresponding
good tester. If the greedy algorithm returns at most k elements then
the above analysis bounds the number of rounds.

4.2 Application: Top k Selection

As a starting example to illustrate how the sample-and-prune framework
works, we consider the problem of finding the largest k out of the
given n elements (say, numbers); this is the top k selection problem.
For simplicity, let us assume every element is distinct. Note that the
algorithm we present is not the most memory-efficient for this problem.

An obvious way of selecting the top k elements is repeatedly choosing
the largest element from the remaining pool; call this greedy algorithm
G. It is easy to see that G is monotone and returns at most k elements.

The tester TS in this case is easily realized based on G: if e is not
in the top k elements in S ∪ {e}, then it outputs PRUNE. Indeed, if e is
not in G(S ∪ {e}) then e /∈ G(S′ ∪ {e}) for S′ ⊇ S. Thus, TS is a good
tester. The framework in Section 4.1 ensures the algorithm runs in a
small number of rounds.

We now argue the algorithm returns the optimal solution. We know
the tester will never discard one of the top k elements. Thus, they must
be returned in the end.

4.3 Application: k-Center Clustering

Recall the k-center clustering problem (Problem 3.3.1). We will give a
2-approximation solution in this section using sample-and-prune. For
simplicity, we assume that the value of the optimum objective, OPT,
is known to the algorithm. We can always run the algorithm for each

4.3. Application: k-Center Clustering 367

guessed value of OPT in parallel, with only a logarithmic factor blowup
in the memory requirements, by sacrificing a constant factor in the
approximation to OPT.

Our algorithm is based on one of the simple 2-approximate sequential
greedy algorithms G that works as follows. Set B = ∅. Fix an ordering
of the elements of U . Add the first point in U to B, and remove all
points from U that are within distance 2OPT from B. Repeat this until
U = ∅. Output B as the final solution. To see the algorithm obtains a
2-approximation, it suffices to show that it terminates after selecting at
most k points.

We will build our tester on this greedy algorithm. Let G(S) be the
output G gives on the sampled input S. Intuitively, we will discard
each point u ∈ U if it is within distance 2OPT from G(S). The only
tricky part is that since the greedy algorithm considers input points in
order, and its output is sensitive to the order the elements are presented.
To handle this, we will construct a canonical ordering on the fly over
iterations of the Algorithm 3. Let Si be the points sampled in iteration
i ≥ 1 and let Pi be the points pruned in the same iteration.

We will inductively define a canonical ordering of the points. For
a base case let C1 = G(S1). Construct a partial order where all points
in C1 come before S1 \ C1. Inductively, let Ci = G(Si ∪i−1

j=1 Cj) \ Ci−1

where G consider points in ∪i−1
j=1Cj first and then considers other points

of Si in an arbitrary but fixed order. This will ensure G returns ∪i−1
j=1Cj

first. The tester T G
S1∪···∪Si

in the ith iteration prunes a point if it is
within distance 2OPT from a point in C1 ∪ · · · ∪ Ci. The canonical
ordering of U is C1, S1\C1, P1, followed by C2, S2\C2, P2, Note that
the tester T G

S1∪···∪Si
is equivalent to running the greedy on the points

C1 ∪ P1 ∪ · · · ∪ Ci−1 ∪ Pi−1 ∪ Ci in the canonical order and pruning a
point if and only if it discards the point.

Under this canonical ordering, G’s monotonicity is immediate: if a
point is within distance 2OPT from X, then it must be within distance
2OPT from X ′ for any X ⊆ X ′ ⊆ U . Next, the algorithm returns
a 2-approximation since points are only discarded if they are within
2OPT of C1 ∪ · · · ∪ Cℓ where ℓ is the last iteration of the algorithm.

368 Sample and Prune

4.4 Application: Monotone Submodular Maximization Subject to a
Cardinality Constraint

We next consider the problem of maximizing a monotone submod-
ular function under a cardinality constraint and provide an almost
1
2 -approximation using a simple threshold greedy algorithm. The input
to this problem is a universe U of n elements and a parameter k. The
goal is to select k elements from U to maximize an objective function
f that is monotone and submodular. To streamline the discussion, we
assume each element in U takes constant memory to store, the submod-
ular function can be stored in constant memory and can be evaluated
on a machine in constant time.

We begin by formally defining the type of objective function.

Definition 4.4 ((Monotone) Submodular function). Let f : 2U → R+.
Define fA(e) := f(A ∪ {e}) − f(A) to be the marginal increase of f

when e is added to a set A. The function f is said to be submodular
if for every S′ ⊆ S ⊆ U and u ∈ U \ S, we have fS′(u) ≥ fS(u). A
function f is said to be monotone if S′ ⊆ S =⇒ f(S′) ≤ f(S).

While there is a natural greedy algorithm that gives a (1 − 1/e)-
approximation,to illustrate the sample-and-prune technique, we will use
a simpler greedy algorithm G called threshold greedy, which achieves
1
2 -approximation. The algorithm G is based on the following observation.

Lemma 4.3. Let f be a monotone submodular function. If S =
{s1, . . . , st} ⊆ U, t ≤ k is any set such that

(i) there is an ordering of elements in S such that for all 0 ≤ i < t,
f{s1,...,si}(si+1) ≥ OPT/(2k) and

(ii) if t < k, then fS(u) ≤ OPT/(2k), for all u ∈ U .

Then, f(S) ≥ OPT/2.

Proof. Let OPT be the value of an optimal solution S∗ and let τ =
OPT/(2k). If t = k, then f(S) = ∑k−1

i=0 f ′
Si

(si+1) ≥ ∑k−1
i=0 τ = kτ =

OPT/2. If t < k, we know that f ′
S(u∗) ≤ τ , for any element u∗ ∈ S∗.

4.5. Section Notes 369

Furthermore, since f is submodular, f(S ∪ S∗)− f(S) ≤ τ · |S∗ \ S| ≤
OPT/2. We have

f(S) ≥ f(S ∪ (S∗ \ S))− OPT
2 ≥ OPT− OPT

2 = 1
2OPT,

using the monotonicity of f .

This lemma can be used to obtain a greedy algorithm as follows. For
simplicity, as in Section 4.3, we assume that the algorithm knows the
value of OPT. If S in the lemma statement has k elements, then S is
immediately 1

2 -approximation since every element in S has a marginal
gain at least OPT/(2k). Otherwise, if every element not in S has a
marginal gain of at most OPT/(2k) when added to S, the S is still a 1

2 -
approximation. This gives us the greedy algorithm G, which sequentially
accepts an element if and only if the element yields a marginal gain of
at least 1

2k OPT; up to k elements are accepted.
To build the tester using G, we will inductively define an ordering

of the elements as in Section 4.3. The tester and the canonical ordering
are constructed on the fly.

We now argue that this is a good tester. Indeed, to see the tester
is monotone, we just need to check that if fE′(e) < 1

2k OPT, then
fE(e) < 1

2k OPT for any E ⊆ E′ ⊆ U . This is an immediate consequence
of f ’s submodularity. As observed, the tester is designed to be equivalent
to running the greedy on the elements in the canonical order. Thus, the
algorithm is 1

2 -approximation by Lemma 4.3. The number of rounds
follows from the general sample-and-prune framework.

4.5 Section Notes

This section is based on work in Kumar et al. (2015), Lattanzi et al.
(2011), and Im and Moseley (2015). Nemhauser et al. (1978) showed
that the natural greedy algorithm gives a (1− 1/e)-approximation to
the maximization of submodular functions in the sequential setting.
Natural adaptions of the algorithm are asymptotically worse in the
distributed setting; however, the breakthrough results of Ponte Barbosa
et al. (2015) and Ponte Barbosa et al. (2016) showed how randomization
coupled with the greedy algorithm can yield a (1− 1/e)-approximation.

370 Sample and Prune

This can further be extended to show results when optimizing over
various constraints such as a knapsack or matroid constraints.

The k-center problem has been considered using partitioning-based
techniques in Malkomes et al. (2015) and Ceccarello et al. (2019).

5
Dynamic Programming

Dynamic programming (DP) is a powerful algorithm design technique
and is part of the basic toolkit. DP typically consists of the following
steps: (i) identifying subproblems, (ii) finding the right relationship
between them, often in the form of a recurrence, and (iii) implementing
the recurrence efficiently by reusing results from previous computations.
A vanilla DP implementation that closely follows the recurrence is
usually sequential, making it less appealing for the MPC model. In this
section we study a framework to implement some DP algorithms in the
MPC model. A central difficulty in defining such a framework is that
the recurrences are often problem-dependent, making it harder to find
a generic method. Nevertheless, we identify key properties that enable
the existence of such framework in a principled way.

In particular, we use a framework that adapts a class of dynamic
programs to the MPC model in a polylogarithmic number of rounds.
While the resulting algorithms are not the best possible in terms of the
number of rounds, this approach serves to illustrate the main ideas.

371

372 Dynamic Programming

5.1 Overview

To introduce the framework we start by identifying key properties that
allow for implementation in the MPC framework using a polylogarithmic
number of rounds. These properties can be rather rigid, and we later
discuss how to relax them via approximation; in particular we will
show how to use approximate dynamic programs to obtain efficient
algorithms.

Let us begin by defining some additional notation. Let x1, . . . , xn be
the input; we assume that the input is ordered a priori. Now consider a
dynamic program recurrence D(i, v), where the first entry i is the index
of the input element and the second entry v ∈ V is a value; here V is
the set of possible values. It is intuitive to think of v as a integer, but
in some applications it could be a vector.

We now define two properties for D(·, ·) that will allow us to imple-
ment it efficiently in MPC.

Memory efficiency: Each entry of D(i, v) should be take up poly-
logarithmic memory and can contain one of at most a polylogarithmic
number of possible v values.

Bounded dependencies: Consider any two consecutive non-empty
intervals I1 and I2 of the input such that I1 = [j, k] and I2 = [k + 1, ℓ]
with 0 ≤ j < k < ℓ ≤ n. Let D1(·, ·) denote the optimal entries of the
dynamic program if the entire input only consisted of I1. Similarly let
D2(·, ·) denote the optimal entries of the dynamic program if the entire
input only consisted of I2. Suppose that we would like to compute the
optimal entries of D1∪2(·, ·) corresponding to the interval [j, ℓ], i.e., the
concatenation of I1 and I2. Then it should hold that: (i) For any i ∈ I1,
for any v ∈ V , D1∪2(i, v) can be computed using the entry D1(i, v), a
polylogarithmic number of entries from D2, |I1|, and |I2|. We will let
S1,2(i, v) be the set of entries from D2 needed to compute D1∪2(i, v).
When the intervals I1 and I2 are clear in the context we may drop the
subscripts 1, 2 and 1 ∪ 2. (ii) The set S1,2(i, v) can be obtained using
only D1(i, v), |I1|, and |I2|.

The two properties guarantee that we can efficiently compute D(·, ·)
in MPC. We will formalize this next.

5.1. Overview 373

5.1.1 Round Efficiency

We now show how to compute D(·, ·) in logarithmic number of rounds,
using the properties of memory efficiency and bounded dependencies.

We start by partitioning the input x1, . . . , xn across the machines,
respecting the ordering. Let X[k] denote the interval (i.e., subset) of
indices of inputs stored on machine k. Each machine k computes D(i, v)
for each v and for each i ∈ X[k].

Next machines start to communicate to each other to compute the
optimal D(·, ·) for larger input sizes. Before describing the algorithm
we introduce some additional notation. Let X[k1, k2] = ∪k∈[k1,k2]X[k],
where k1 < k2. For brevity, let Xi[k1, k2] := X[k1 +k(i), k2 +k(i)] where
k(i) is the first index of the machine storing input xi. The computation
occurs in iterations. In iteration ℓ, each machine computes D(i, v) for
element xi in the machine, assuming that the only indices are Xi[0, 2ℓ],
we denote this quantity as Dℓ(i, v).

To proceed, assume Dℓ−1(i, v) has been computed considering the
indices in Xi[0, 2ℓ−1] and the goal now is for machine k(i) to com-
pute Dℓ(i, v) considering the indices in Xi[0, 2ℓ]. By assumption of the
bounded dependencies property, there is a set S(i, v) of entries that can
be computed only using Dℓ−1(i, v). If the entries in S(i, v) are known,
then Dℓ(i, v) can be optimally computed.

To do this, a fixed machine will have a collection of sets S(i, v) of
entries for each element xi stored on the machine. Using these sets, in one
round the algorithm collects the entries corresponding to S(i, v) stored
on other machines. In a second round, these machine communicate the
entries back. Using them, the Dℓ(i, v)’s can be computed.

First we show that Algorithm 4 can be realized in the MPC model.
The correctness of the algorithm directly follows from the assumptions.

Lemma 5.1. Algorithm 4 can be implemented in the MPC model with
m machines in O(log m) rounds using Õ(n

m |V |) memory per machine,
where each machine communicates Õ(n

m |V |) bits per iteration.

Proof. Note that each machine stores O(n/m) inputs and thus storing
the D(i, v)’s for each v ∈ V and each i that is local to the machine
takes at most polylogarithmic memory by memory efficiency property.

374 Dynamic Programming

Algorithm 4 Dynamic Program
1: Each machine k computes D(i, v) for all v ∈ V using only its subset

X[k] of the inputs
2: D0(i, v)← D(i, v)
3: for ℓ = 0, 1, . . . , log m do
4: {Do the following in parallel}
5: for each input index i on machine k and value v ∈ V do
6: Compute S(i, v) from Dℓ(i, v)
7: Fetch Dℓ(i′, v′) for all (i′, v′) ∈ S(i, v) by requesting from the

respective machines
8: {This is done for all i on machine k simultaneously}
9: Compute Dℓ+1(i, v) using Dℓ(i′, v′) for all (i′, v′) ∈ S(i, v)

10: end for
11: end for
12: return Dlog m(·, ·)

For each iteration ℓ, a machine requests entries S(i, v) for all i on
the machine, where by the bounded dependencies property, |S(i, v)| is
polylogarithmic.

The proof is complete by observing that each iteration can be done
in constant number of rounds and there are O(log m) iterations.

5.2 Warm-up: Knapsack

We first consider the knapsack problem to illustrate the framework.
This problem is significantly easier than the interval selection problem
we will subsequently discuss but it will serve as a warm-up example.

In the knapsack problem, we are given n items where each item
i ∈ [n] has size si and weight wi. The goal is to maximize the total
weight of items packed into a knapsack of capacity S. This problem
is weakly NP-hard and there exist algorithms whose running time is
polynomial in S and n, or in ∑

i wi and n. For any subset X ⊆ [n], let
w(X) := ∑

i∈X wi and s(X) := ∑
i∈X si. Also let W := w([n]), which we

assume is polynomial in n for simplicity. Recall the following sequential
dynamic program where we compute D(i, v) := minX⊆[i]:w(X)≥v s(X). In

5.2. Warm-up: Knapsack 375

words, D(i, v) refers to the smallest memory one has to use to achieve
weight v by choosing some items from the subset [i]. The following
recurrence is elementary:

D(i, v) :=
{

min{D(i − 1, v), wi + D(i − 1, max{v − wi, 0})} i ∈ [n], v ∈ [W]
0 i = 0 or v = 0

For simplicity suppose the items are stored in the following manner:
the first n/m items are in machine 1, the next n/m items are in machine
2, and so forth.

The first issue in simulating the dynamic program in MPC is that
there are too many entries to compute. Hence, we will compress them
by only considering weight values v that are powers of 1 + ϵ, which will
incur a (1 + ϵ)-factor loss in the approximation ratio; let V be the set of
weights considered. The second issue is that each machine stores only
n/m items and a naive implementation would need n/m rounds.

To fix the second issue, we will have to use parallelization more
aggressively. To this end, we define an extended notion of subprob-
lems. For simplicity of notation, assume that every machine has
only one item, i.e., m = n; removing this assumption is straightfor-
ward. Machine i will be responsible for computing {D(i, v)}v∈V . Let
Dℓ(i, v) := minX⊆[i]\[i−2ℓ]:w(X)≥v s(X); we let [i − 2ℓ] = ∅ if i ≤ 2ℓ. In
words, Dℓ(i, v) is a local version of D(i, v) where it only pretends that
there are items i− 2ℓ + 1, . . . i. Clearly we have D(i, v) = Dlog n(i, v).

Thus, to obtain an O(log n) round algorithm, it suffices to show how
machine i can compute Dℓ(i, v) in round ℓ, assuming that Dℓ−1(·, ·) has
already been computed:

Dℓ(i, v) = min
v1,v2∈V :v1+v2≈v

Dℓ−1(i− 2ℓ−1, v1) + Dℓ−1(i, v2). (5.1)

Here, v1 + v2 ≈ v implies an approximate equality within a factor
of 1 + ϵ, i.e., v/(1 + ϵ) < v1 + v2 ≤ v. Eqn. (5.1) can be easily shown
by first assuming that v1 and v2 can take any integer value up to W

and lowering their value as little as possible to ensure v1, v2 ∈ V . This
approximation incurs a (1 + ϵ)-factor loss in the value we obtain in
every iteration, thus (1 + ϵ)log n-factor in total. Therefore to obtain a
(1 + ϵ)-approximation we scale down ϵ by a factor of log n. Thus, we
will have |V | = O(1

ϵ log W) = O(1
ϵ log n).

376 Dynamic Programming

Note that this can be efficiently simulated in MPC because machine
i can compute its own entries {Dℓ(i, v)}v∈V by accessing only the
O(1

ϵ log n) entries stored on machine i− 2ℓ−1 (and itself).

5.3 Interval Selection in MPC

In this section, we show how interval selection fits into the MPC frame-
work using Algorithm 4. For this problem we will introduce an approx-
imate dynamic program. Later we will abstract out the approximate
dynamic programming piece and discuss general guidelines for develop-
ing an approximate dynamic program in Section 5.4.

In the interval selection problem, there is a collection of intervals
x1, . . . , xn where the ith interval xi is [si, ei] with weight wi. We assume
intervals are ordered by their ending time. The goal is to select a subset
of intervals of maximum total weight that do not intersect. To solve this
problem, we consider the following dynamic program. Let B(i, j) = v

for some value v ∈ [1,
∑

i∈[n] wi] denote the optimal objective if the
input instance only contains intervals xi, . . . xj .

Unfortunately, the dynamic program B(i, j) satisfies neither the
memory efficiency property nor the bounded dependency property. The
key idea is to transform this dynamic program into another with these
properties.

The first idea is to “swap” the value v with the index j. Define a new
recurrence C(i, v) := min{j | B(i, j) = v}. That is, C(i, v) is the least
index j such that there is a solution to the sub-instance {xi, . . . , xj}
with value at least v. Define C(i, v) =∞ if {j | B(i, j) = v} = ∅.

We can compute C(i, v) using the following recurrence. For the base
case, we have C(i, 0) = i and C(n, v) = ∞ for all v. Inductively, for
v > 0 we have:

C(i, v) = min
v1,v2≥0

{j2 | v1 + v2 = v, j1 = C(i, v1), j2 = C(j1, v2)}. (5.2)

Intuitively, we guess a “split” of v into v1 and v2 and concatenate
solutions corresponding to picking up value at least v1 and value at
least v2. If we compute C(i, v) for all v, then this suffices to compute
B(i, j) for all j.

5.3. Interval Selection in MPC 377

Note that C(·, ·) still does not satisfy the memory efficiency and
bounded dependencies properties. Interestingly we can relax it using
approximation to solve this issue.

5.3.1 Approximate DP for Interval Selection

We now show how to approximate C(i, v) using less memory. The key
idea is to “sketch” the values. Specifically we want to compute the
recurrence only for v’s of the form ρk for some non-negative integer k,
where ρ := (1 + ϵ/t) and t is a parameter to be chosen later. Note that
since B(1, n) is poly(n), we only need to consider integer exponents
k ∈ O(t

ϵ log n); let V := {ρk} be the set of values considered.
Let C ′(i, v) be the approximation of C(i, v) where i ∈ [n] and v ∈ V .

Note that C ′(·, ·) has only O(t
ϵn log n) entries and can be computed as

C ′(i, v) = min
v1,v2∈V

{j2 | v/ρ ≤ v1 + v2 ≤ v · ρ, j1 = C ′(i, v1), j2 = C ′(j1, v2)} .

(5.3)

Note that we lose a factor of ρ = 1 + ϵ/t in tracking the weights
each time we apply this recurrence. If we think of this recursive compu-
tation as a tree, by choosing t to be its depth, we can still ensure an
approximation of ρt = 1 + O(ϵ). Key is that the dynamic programming
framework given for the MPC setting ensures the depth is at most log n.
Notice this does not depend on the values of the weights, but rather
the total number of intervals.

Lemma 5.2. The recurrence C ′(·, ·) satisfies the memory efficiency and
bounded dependency properties.

Proof. We can assume that the weights are polynomial sized by sacrific-
ing an arbitrarily small factory in the optimal value. For this reason, the
recurrence is memory efficient as we need only consider a logarithmic
number of entries ρk in V for k ∈ [O(log n)].

Now we consider the bounded dependency property. Consider any
two substrings I1 and I2 of ordering such that I1 = [j, k] and I2 =
[k + 1, ℓ] with 0 ≤ j < k < ℓ ≤ n. Let C ′

1(i, v) be the recurrence in (5.3)
computed on I1 and similarly C ′

2(i, j) on I2. Let C1∪2 be the recurrence
for I1∪I2. We can compute C1∪2(i, v) as follows from C1(·, ·) and C2(·, ·).

378 Dynamic Programming

First C1∪2(i, v) = C2(i, v) for all i ∈ I2. Next consider an i ∈ I1. If
C(i, v) ̸=∞ we have C1∪2(i, v) = C1(i, v). Otherwise we compute this
as the following.

C ′
1∪2(i, v) = min

v1,v2∈V
(5.4)

{j2 | v/ρ ≤ v1 + v2 ≤ v · ρ, C ′
1(i, v1) ̸=∞, j2 = C ′

2(x2, v2) (5.5)
where x2 is the first element in I2 larger than C ′

1(i, v1)}.

In this recurrence we need only consider |V | many entries from
C2(·, ·) for each i, v1 pair. This is because there are V entries and each
one has exactly one corresponding value v2. The required indices (x2, v2)
can be directly computed from C1(i, v1). Thus, we have the bounded
dependency property.

This lemma along with Lemma 5.1 shows that the C ′(·, ·) can be
computed in MPC. In the next section, we bound guarantees on the
quality of the solution returned by C ′(·, ·).

5.3.2 Approximation Guarantees for Interval Selection

The next lemma bounds the final guarantee of computing C ′(·) using
Algorithm 4. The key is that in each recursive step a (1+ ϵ/t) factor can
be lost in the objective value. However, we know that the longest chain
of dependencies in the dynamic programming computation is at most
O(log n). This follows from Algorithm 4 running in O(log n) rounds and
only on such dependency is added for any entry in each iteration.

Lemma 5.3. Computing C using Algorithm 4 returns a (1 − O(ϵ))-
approximation to B(1, n).

Proof. We show the following stronger claim: For an input xi and
value v∗ ∈ V , let Cℓ(i, v∗) be the value of C(i, v∗) pretending that we
only have the intervals in Xi[1, 2ℓ]. Then, there exists v ∈ V such that
v > v∗/ρℓ and C ′

ℓ(1, v) ≤ Cℓ(1, v∗). Note that this claim would complete
the proof as the value of the solution given by the subproblems C ′

ℓ(i, v)
corresponds to the largest v ∈ V such that C ′

ℓ(i, v) <∞.

5.4. Approximate Dynamic Programs 379

We prove the claim by induction on ℓ. The base case for ℓ = 0 is
clear since we set C ′

0(i, v) = C(i, v) using only the intervals stored in
machine k.

To show the inductive step, fix an iteration ℓ ≥ 1, interval i, and value
v∗ ∈ V . Consider the set S of inputs achieving v∗, i.e., S ⊆ Xi[1, 2ℓ] and
the total value of the inputs in S is v∗. Note that if S is fully contained in
Xi[1, 2ℓ−1] or in Xi[2ℓ−1 +1, 2ℓ] we are done by the induction hypothesis.
Otherwise, let Xj∗

1
be the largest index input in S ∩ Xi[1, 2ℓ−1]. Let

v∗
1, v∗

2 be such that j∗
1 = Cℓ−1(i, v∗

1), j∗
2 = Cℓ−1(j∗

1 , v∗
2), and v∗ = v∗

1 + v∗
2.

Note that v∗
2 can be computed from the intervals in Xi[2ℓ−1 + 1, 2ℓ].

By the induction hypothesis, there exist v1, v2 ∈ V with v1 > v∗
1/ρℓ−1

and v2 > v∗
2/ρℓ−1 such that

C ′
ℓ−1(i, v1) ≤ Cℓ−1(i, v∗

1) and C ′
ℓ−1(j1, v2) ≤ Cℓ−1(j1, v∗

2),

where j1 = C ′
ℓ−1(i, v1); if Xj1 ∈ Xi[1, 2ℓ−1], then let Ij1 be the smallest

index input in Xi[2ℓ−1 + 1, 2ℓ]. Due to the way the algorithm is defined,
we have C ′

ℓ(i, v) ≤ Cℓ−1(j1, v∗
2), where v ∈ V such that v > (v1+v2)/ρ >

(v∗
1 + v∗

2)/ρℓ = v∗/ρℓ. Note that j1 = C ′
ℓ−1(i, v1) ≤ C ′

ℓ−1(i, v∗
2) = j∗

1 and
both inputs Xj1 and Xj∗

1
are in Xi[2ℓ−1 + 1, 2ℓ]. Further, recall that v∗

2
is computed from the inputs in Xi[2ℓ−1 + 1, 2ℓ]. Thus, by definition of
C ′

ℓ−1, we have Cℓ−1(j1, v∗
2) ≤ Cℓ−1(j∗

1 , v∗
2), which immediately implies

C ′
ℓ(i, v) ≤ Cℓ−1(j∗

1 , v∗
2) = Cℓ(i, v∗), as desired.

The above lemmas imply the following result, setting t = Ω(log n).

Theorem 5.4. There is an MPC algorithm to compute a (1 − ϵ)-
approximate solution to interval selection. The algorithm uses Õ(n/m)
memory per machine and runs in O(log n) rounds.

5.4 Approximate Dynamic Programs

Many natural dynamic programs will not satisfy the bounded depen-
dency property or memory efficiency. However, often it is possible to
transform a dynamic program D(i, v) for i ∈ [n] and v ∈ V into an al-
ternative dynamic program C(i, v) for v ∈ VC where VC is much smaller
that V so that C(i, v) satisfies the bounded dependency and memory

380 Dynamic Programming

efficiency properties. The trade-off is that C(i, v) is sub-optimal, but is
an approximate solution.

An example of this was given in the prior section. In this section, we
give general guidelines for reducing the dependencies via approximation.

Approximation via Sketching: Consider a recurrence D(i, v) where
v ∈ V corresponds to the objective value. Say that there is a corre-
sponding recurrence C(i, v) where v ∈ VC such that VC ⊆ V and VC has
poly-logarithmic size so that C(·, ·) satisfies memory efficiency. Further,
assume that C has a corresponding recurrence satisfies the bounded
efficiency property.

The recurrence C need not be an exact dynamic program. Rather, the
key is the following. Say that we compute C using Algorithm 4. Further,
say that in each recursive computation of C, at most a (1 + ϵ/t) factor
is lost for any 0 < ϵ < 1 and integer t. Then by setting t = Ω(log n),
the proof in Lemma 5.3 can be extended to show that C(·, ·) is a
(1 + ϵ)-approximation for the overall problem.

Using such a framework it is possible to obtain (1+ϵ)-approximation
algorithms using O(1

ϵδ) rounds of MPC with O(n) total memory and
O(nδ) memory per machine for constants ϵ, δ > 0 for the problems of
weighted interval selection, optimal binary search tree, and the longest
increasing subsequence.

5.5 Section Notes

The framework described in this section is due to Im et al. (2017).

6
Round Reduction via Sampling

In this section we develop a family of techniques to reduce the number
of rounds of MPC algorithms when working with large graphs.

The key idea is to identify properties (e.g., vertex degree) that are
well preserved when working with a random subset of the data. As
our primary focus is on graphs, such a random subset can be obtained
by sampling either edges or vertices; these two approaches leads to
two different guarantees. As a case study, we will consider the k-core
decomposition problem but the same technique can be applied to several
classical problems such as matching and maximum independent set.

The k-core problem can be solved sequentially by a simple iterative
sequential algorithm. In this section we will show how to use edge
sampling to modify this algorithm to obtain an O(log n)-round algorithm
that uses near-linear memory per machine. We will then extend the
analysis via vertex partitioning to get an O(log log n)-round algorithm
that also uses near-linear memory.

6.1 k-core Decomposition and a Sequential Algorithm

A wide range of data mining, machine learning, and social network anal-
ysis problems can be solved by identifying dense regions in large graphs

381

382 Round Reduction via Sampling

and understanding the role of vertices in a density-based hierarchical
decomposition of the graph. A commonly used technique for this task is
the k-core decomposition: the k-core of a graph is a maximal subgraph
where every vertex has induced degree at least k.

Formally, let G = (V, E) be a graph with |V | = n vertices and
|E| = m edges. For a vertex v ∈ G we denote by d(v) the degree of
the vertex in G. If H is an induced subgraph of G, for any vertex
v ∈ H we denote by dH(v) the degree of v in H. A k-core is a maximal
subgraph H ⊆ G such that ∀v ∈ H we have dH(v) ≥ k. For any k the
k-core is unique and possibly disconnected. We say that a vertex v has
coreness number k if it belongs to the k-core but not to the (k + 1)-core.
We denote the coreness number of vertex v in the graph G by CG(v);
we may drop the subscript notation when the graph is clear from the
context. We let V≥t := {v ∈ V | CG(v) ≥ t} denote the set of vertices
with coreness number at least t in the original graph G. We define V≤t

similarly.
We also define the core-labeling for a graph G as the labeling where

every vertex v is labeled with its coreness number. It is worth noting
that this labeling is unique and that it defines a natural hierarchical
decomposition of G as shown in Figure 6.1. In the sequential setting a
simple iterative greedy algorithm computes the k-core decomposition
efficiently. In Algorithm 5 we provide the pseudocode for it.

Figure 6.1: Hierarchical decomposition induced by the coreness numbers.

6.2. Parallelizing the Sequential Algorithm: O(log n) Rounds 383

Algorithm 5 Sequential k-core algorithm.
1: Input: G = (V, E)
2: Output: Coreness numbers {CG(v)}v∈V

3: VH ← V
4: for ℓ← 0 to n do
5: Repeatedly remove any v with dH(v) = ℓ from VH and set CG(v)← ℓ
6: end for

6.2 Parallelizing the Sequential Algorithm: O(log n) Rounds

It is easy to construct a graph for which the sequential algorithm can
take Ω(n) iterations to label all vertices. In this section we present a
simple technique to obtain an MPC algorithm that only uses O(log n)
rounds and almost linear memory to solve the problem approximately.

The first step toward this goal is to define relaxed notions of k-core
decomposition and coreness number. We define an (1−ϵ)-approximate k-
core of G to be a subgraph H that (i) H contains the k-core of G and (ii)
∀v ∈ H, dH(v) ≥ (1− ϵ)k. In other words, a (1− ϵ)-approximate k-core
of G is a subgraph of the ((1− ϵ)k)-core of G and a supergraph of the
k-core of G. In Figure 6.2 we illustrate the 3-core and a 2/3-approximate
3-core for a small graph.

Figure 6.2: Example of 3-core and 2/3-approximate 3-core.

Similarly, in a (1− ϵ)-approximate core-labeling of a graph G, each
vertex is labeled with a number between its coreness number and its
coreness number multiplied by 1

1−ϵ .
The main intuition behind our MPC algorithm is to compute core-

ness numbers in decreasing order by grouping them in O(log n) buckets
and solving the problem for each bucket in O(1) rounds. In particular

384 Round Reduction via Sampling

for decreasing i, vertices with coreness numbers in the range (2i−1, 2i]
are processed, and all the edges whose both endpoints have coreness
value larger than 2i are ignored as they will already be labeled. The
remaining edges are sampled with probability Θ̃(2−i), which reduces
the maximum coreness value in the remaining graph to Õ(1). Here, only
the vertices whose degrees are considerably larger than 2i−1 still have
incident sampled edges and can be labeled approximately. The reason
starting from the bucket with the largest coreness numbers is because
to fit the sampled edges into a single machine we have do significantly
down sample edges, so only high-degree vertices are distinguishable
after sampling.

The following pseudocode shows the O(log n)-round MPC algorithm.

Algorithm 6 Approximate coreness for all vertices.
1: Input: G = (V, E) and an approximation parameter ϵ

2: Output: Approximate coreness number {C̃G(v)}v∈V

3: Γ0 ← ∅
4: for i← 1 to log1+ϵ n do
5: Find Γi ⊆ V s.t. (i) Γi ⊇ V≥(1−ϵ)i−1n and (ii) Γi ∩ V≤(1−ϵ)in = ∅
6: C̃G(v)← (1− ϵ)i−1n for all v ∈ Γi \ Γi−1
7: end for

Recall that V≥t denote the set of vertices with coreness number at
least t in the original graph G. We label an unlabeled vertex v if its
coreness number is too big for the iteration, i.e., CG(v) ≥ (1 − ϵ)i−1;
conversely, if a vertex’s coreness number is too small, we defer its
labeling to subsequent iterations. We have the freedom to handle the
other vertices either way. It is immediate that this algorithm yields
(1− 2ϵ)-approximate1 coreness numbers in O(1

ϵ log n) iterations.
It remains to show how to compute Γi in O(1) rounds given Γi−1

that satisfies the properties (i) and (ii). Towards this goal, we use
the following memory-efficient algorithm based on edge sampling. It
is essentially combining Algorithm 5 with edge sparsification. In the
following note that H is different from the subgraph induced on V \Γi−1.

1More precisely, (1 − ϵ)2-approximate.

6.2. Parallelizing the Sequential Algorithm: O(log n) Rounds 385

Algorithm 7 Computing Γi, given Γi−1 satisfying (i) and (ii)
1: k ← n(1− ϵ)i−1 and p← min{1, 50 log n

kϵ2 }
2: EH ← edges sampled in parallel independently from E \ E[Γi−1] with

probability p, where E[Γi−1] is the edges with both end points in Γi−1
3: Let H = (VH ← V, EH)
4: Repeatedly remove vertices v from VH such that dH(v) < (1− ϵ/2)pk
5: Γi ← VH

Lemma 6.1. Given Γi−1, Algorithm 7 correctly computes Γi, w.h.p.

Proof. We assume that p < 1, and consequently 50 log n
kϵ2 < 1, as other-

wise H equals G for the unlabeled vertices and the lemma immediately
follows. Observe that this assumption also implies k > 50 log n

ϵ2 , which
will be important for showing that our bounds hold w.h.p.

We first show V≥k ⊆ Γi. By definition of coreness, each v ∈ V≥k has
at least k neighbors in V≥k. For any u ∈ V≥k, we thus have E[dH0(u)] ≥
pk ≥ 50 log n

ϵ2 , where H0 is the subgraph H right after the sampling before
no vertices are removed. Then, by a Chernoff bound, with probability
at least 1− n−4, dH0(u) ≥ (1− ϵ/2)pk. By a union bound, this holds
for all vertices with probability at least 1−n−3. Therefore, Algorithm 7
never removes vertices from V≥k, meaning V≥k ⊆ Γi.

We next show Γi∩V≤(1−ϵ)k = ∅. For each v ∈ V≤(1−ϵ)k, let Ev denote
the set of edges incident to v in the k′-core of G where k′ = CG(v).
In other words, Ev is the set of witness edges that certify that v has
coreness number k′. By definition of V≤(1−ϵ)k, |Ev| ≤ (1− ϵ)k. It then
follows that |Ev ∩H0| ≤ (1 − ϵ/2)pk for all v ∈ V≤(1−ϵ)k w.h.p. Thus,
all vertices in V≤(1−ϵ)k are removed from VH .

Finally we argue that the algorithm can be realized using Õ(n) mem-
ory per machine. This follows from the following simple observations.

Lemma 6.2. For any k, the number of edges incident to V≤k is at most
k|V≤k|.

Lemma 6.3. The number of edges sampled is O(1
ϵ2 n log n) w.h.p.

386 Round Reduction via Sampling

6.3 Round Compression via Random Vertex Partitioning:
O(log log n) Rounds

In this section we show how to exponentially reduce the number of
rounds used by the algorithm in the previous section. The main idea,
instead of sampling the edges independently, is to randomly partition
the vertices among different machines and analyze the induced subgraph
in parallel. This “round compression” idea enables to simulate multiple
rounds of the MPC algorithm in much fewer number of rounds.

Partitioning the vertices across 1/p machines uniformly at random is
equivalent, from each machine’s point of view, to sampling each vertex
with probability 1/p. The main advantage of vertex sampling over edge
sampling, which was used in Section 6.2, is the following. A vertex of
original degree d has an expected degree of pd after both edge sampling
and vertex sampling (conditioned on it being sampled in case of vertex
sampling). However, the resulting graph size is very different: the graph
has mp edges in expectation after edge sampling but only mp2 edges in
expectation after vertex sampling. See Figure 6.3.

Figure 6.3: Difference between vertex sampling and edge sampling with p = 1
2 .

In Algorithm 6, we first sampled edges with probability Θ̃(1/n)
(hiding logarithmic terms and setting ϵ = 1/2) to identify high-degree
vertices of degree in [n/2, n]. If the graph is dense, the resulting graph

6.3. Round Compression via Random Vertex Partitioning 387

could have Θ(n) edges, which would barely fit in a single machine of
memory Θ̃(n). This was the main bottleneck to parallelization. That is,
identifying lower degree vertices requires more aggressive sampling. For
example, to identify vertices of degree about

√
n, we have to sample

edges with probability p = Θ(1/
√

n). But the sampled edges can be as
many as mp = Ω(n1.5) (for dense graphs). In contrast, vertex sampling
with the same probability yields a subgraph of size mp2 = O(n). Thus,
we can handle all degrees and eventually coreness numbers in [

√
n, n]

in O(1) rounds. By subsequently handling vertices of degree [n1/4, n1/2]
[n1/8, n1/4], . . . , we will arrive at O(log log n) rounds.

The following pseudocode is presented to formally describes the
high-level flow, which is a natural generalization of Algorithm 6. The
definition of Γi remains unchanged.

Algorithm 8 Approximate coreness via round compression.
1: Input: G = (V, E) and an approximation parameter ϵ

2: Output: Approximate coreness number {C̃G(v)}v∈V

3: Γ0 ← ∅
4: for i← 1 to O(log log n) do
5: k ← n1/2i−1

6: for all j such that (1− ϵ)jn ∈ [
√

k, k] do
7: Find Γj ⊆ V satisfying (i) and (ii) described in Algorithm 6
8: CG(v)← (1− ϵ)j−1n for all v ∈ Γj \ Γj−1
9: end for

10: end for

To obtain an O(log log n)-round algorithm, we would like to execute
each iteration of the outer for loop in constant number of rounds.
Formally, we show the following.

Lemma 6.4. Given a set Γ such that V≥k ⊆ Γ and V≤(1−ϵ)k ∩ Γ = ∅,
we can compute in O(1) rounds Γj such that V≥(1−ϵ)j−1n ⊆ Γj and
V≤(1−ϵ)jn ∩ Γj = ∅, for all for j such that (1− ϵ)jn ∈ [

√
k, k].

The proof is almost as for Lemma 6.1.
Intuitively, this can be done in parallel because the same Γ is used

for all such j. The following procedure adapts Algorithm 7 to use vertex
sampling. It outlines how to compute each Γj .

388 Round Reduction via Sampling

Algorithm 9 Computing Γi for each j s.t. (1− ϵ)j−1n ∈ [
√

k, k] given
Γ.

1: k′ ← (1− ϵ)j−1n and p← 50 log n
k′ϵ2

2: Assign each vertex V \ Γ uniformly at random among 1
p machines

3: for each machine do
4: Let H = (VH , EH) be the induced subgraph on the vertices assigned to

the machine
5: Repeatedly remove vertices v from VH such that dH(v) < (1− ϵ/2)pk′

6: Γj ← VH

7: end for

Lemma 6.5. The induced graphs Hi have O(n log2 n/ϵ4) edges w.h.p.

Proof. Consider a fixed machine and consider k′ =
√

k, which results
in the highest sampling probability. Then, the fixed machine has an edge
after the partitioning with probability p2 = Θ(log2 n

kϵ4). Observation 6.2
implies that there are at most kn edges in E[V \ Γ]. Thus, the machine
is assigned O(log2 n

kϵ4)kn edges in expectation. An appropriate use of the
Chernoff bounds completes the proof.

6.4 Section Notes

The content of this section is mainly based on Esfandiari et al. (2018)
and Ghaffari et al. (2019b) The O(log n)-round algorithm presented in
this section is inspired by the filtering technique from Section 4 and was
first presented in Esfandiari et al. (2018). The use of round compression
to efficiently estimate the coreness number was introduced in Ghaffari
et al. (2019b).

Round compression has found many uses in the MPC model. The
technique was first introduced by Czumaj et al. (2018), who obtain
the first algorithm for matching that runs in sub-logarithmic number
of rounds and uses near-linear memory. Their result has then been
improved in a series of follow-up (Behnezhad et al., 2019b; Ghaffari
et al., 2018; Assadi et al., 2019a), leading to the current best result of a
(1 + ϵ)-approximate matching in O(log log n) rounds. These techniques
have been used in related problems such as computing independent sets

6.4. Section Notes 389

(Ghaffari et al., 2018), vertex cover (Assadi et al., 2019a), and graph
coloring (Chang et al., 2019).

7
Round Reduction via Graph Exponentiation

In this section we introduce a new technique called graph exponentiation
that improves the running time of MPC graph algorithms when memory
per machine is strongly sublinear in the number of vertices. The main
idea behind graph exponentiation is that if the decision of an algorithm
for a vertex v in round i only depends on v’s ith neighborhood1, then
we can simulate multiple rounds in parallel by loading the extended
neighborhood for every vertex. Here is an example.

Suppose that an algorithm runs in O(log n) rounds and all the choices
of the algorithm for every vertex in round i only depend on its ith
neighborhood. Furthermore, suppose that an O(

√
log n)-neighborhood

of every single vertex can fit on a machine. Then one could split the
O(log n) rounds of the algorithm in O(

√
log n) phases, each consisting

of O(
√

log n) rounds, and simulate the O(
√

log n) rounds in a single
round by aggregating the O(

√
log n) neighborhood of each vertex into

a single machine. It is possible to collect the O(
√

log n) neighborhood
of each vertex using only O(log log n) rounds (by iteratively sending,
in step j, the 2j−1-neighborhood to all of the 2j−1th neighbors). In

1The ith neighborhood of vertex v is defined as the set of vertices that are
reachable from v by traversing at most i edges.

390

7.1. Approximate Core Decomposition 391

this way one would obtain an MPC algorithm using Õ(
√

log n) rounds.
Unfortunately in many cases the O(

√
log n)-neighborhood does not fit

effortlessly in a single machine; hence, this technique is often combined
with sampling and other problem-specific ideas. Figure 7.1 illustrates
graph exponentiation.

Figure 7.1: Visual representation of the graph exponentiation technique. A
T -round algorithm is divided in

√
T phases of

√
T rounds that are executed

locally. In the figure, T = 4. To load the 4-neighborhood efficiently for every
vertex in step j every vertex sends its 2j−1 neighbors to all its 2j−1th neighbors.
The vertices v receive in this doubling process in the first and second steps
are colored orange and red, respectively.

We apply graph exponentiation approach to two problems, finding
approximate core decomposition and finding connected components.

7.1 Approximate Core Decomposition

In Section 6 we presented efficient algorithms for approximate k-core
decomposition that used memory per machine that is almost linear in
the number of vertices of the graph. In this section we focus on the more
challenging setting where machines have strictly sublinear memory, i.e.,
each machine has memory nα for some constant α < 1. In this setting,

392 Round Reduction via Graph Exponentiation

we first present a simple (2 + ϵ)-approximation algorithm that runs in
O(log n) rounds; we then show, using graph exponentiation, how to
improve it to run in Õ(

√
log n) rounds.

7.1.1 O(log n)-round Algorithm

For a graph G = (V, E), let V≤k be the set of vertices with coreness
number ≤ k and let D≤(2+ϵ)k the set of vertices with degree ≤ (2 + ϵ)k.
We let degS(u) denote u’s degree in the subgraph induced on S ⊆ V .

The O(log n)-round algorithm is based on the following simple
observation:

Lemma 7.1. |V≤k \D≤(2+ϵ)k| ≤
|V≤k|
1+ϵ/2 .

Using this, for any fixed k we can find a (2 + ϵ)-approximate V≤k

by the following method (Algorithm 10). The algorithm repeatedly
removes vertices of degree less than 2(1 + ϵ)k and adds them to Λ. From
Lemma 7.1 it follows that Λ is unchanged after Θ(1

ϵ log n) rounds.

Algorithm 10 Computing (2 + ϵ)-approximate V≤k for fixed k.
1: Input: Graph G = (V, E) and a threshold k
2: Output: Λ such that V≤k ⊆ Λ ⊆ V≤2(1+ϵ)k

3: Λ← ∅
4: for Θ(1

ϵ log n) rounds do
5: Find S := {u ∈ V | degV (u) ≤ (2 + ϵ)k}
6: V ← V \ S
7: Λ← Λ ∪ S
8: end for

It is easy to see that Algorithm 10 computes Λ as desired. To
implement the algorithm in the MPC model, we use the fact that it
only needs to scan the adjacency list of each vertex to find S, which can
be done using memory max(∆, nα), where ∆ is the maximum degree in
the graph. With slightly more care, the dependence on ∆ can in fact
be removed.

We next show how to compute approximate coreness numbers. For
each integer i ≥ 1, let Λi be such that V≤(1+ϵ)in ⊆ Λi ⊆ V≤(2+ϵ)(1+ϵ)in

and let Λ0 := V≤0. We can compute all Λi, 0 ≤ i ≤ log log1+ϵ n in
parallel in O(1

ϵ log n) rounds, using Algorithm 10. We declare u has

7.1. Approximate Core Decomposition 393

coreness number (2+ϵ) ·(1+ϵ)i for the highest i such that u ∈ Λi. Then,
from by definition of Λi, we have (1 + ϵ)i−1n ≤ CG(u) ≤ (2 + ϵ)(1 + ϵ)in,
which implies a ((2 + ϵ)(1 + ϵ))-approximate coreness labeling.

To summarize, a primitive that we used to obtain a (2 + ϵ)-
approximate algorithm was the following: identifying and removing
a set S of vertices in constant number of rounds from V≤k such that
(i) each vertex in S has coreness number at most (2 + ϵ)k and (ii) the
size of V≤k decreases by a constant factor. Lemma 7.1 offers the basis
for the primitive, which states S can be the set of vertices of degree at
most (2 + ϵ)k in the remaining graph.

7.1.2 O(
√

log n)-round Algorithm

To reduce the required number of rounds to Õ(
√

log n), we will modify
the primitive as follows: Can we remove a set S of vertices in O(log log n)
rounds from V≤k ensuring (i) each vertex in S has coreness number
at most (2 + 3ϵ)k and (ii) the size of V≤k decreases by a factor of
1/(1+ ϵ/6)

√
log n? If this is feasible, by repeatedly applying the primitive

Θ(
√

log n) times, we will achieve Õ(
√

log n) rounds. We will construct
this new primitive will by compressing multiple rounds using graph
exponentiation combined with a couple of other ideas, detailed below.

We start by observing a certain local property in Algorithm 10:
whether a vertex u is removed from V in the ith iteration of the for
loop depends only on u’s ith neighborhood, i.e., the vertices that are
within i hops from u. More precisely, whether u ∈ Si or not only depends
on u’s ith neighborhood. Indeed, this can be verified by seeing that every
vertex u in Si must be adjacent to some vertex in Si−1 for otherwise, u

must have been added to the solution in the (i− 1)st iteration.
As discussed earlier, this suggests a way to simulate Algorithm 10 in

MPC more efficiently: if we could store the O(
√

log n)-neighborhood of
every single vertex in a machine we could simulate O(

√
log n) rounds in

almost a single round; this would lead to an Õ(
√

log n)-round algorithm.
Unfortunately it is often not possible to load the entire O(

√
log n)-

neighborhood of every vertex in a machine. Thus, the key challenge lies
in simulating graph exponentiation in a memory efficient manner.

394 Round Reduction via Graph Exponentiation

The key idea is to use sampling. We observe that Lemma 7.1 offers
some flexibility: instead of removing all vertices of degree less than
(2 + ϵ)k, we can try to remove all vertices of degree, say, less than
(2 + ϵ/3)k but none of degree higher than (2 + 3ϵ)k; the remaining
vertices can be handled arbitrarily. It is easy to show that this modified
process still decreases V≤k by a constant factor. Thus, we only need to
approximately measure the degree of each vertex.

The following lemma allows us to run Algorithm 10 using (2 + 2ϵ
3)pk

as a new threshold after sampling each edge with probability p. Note
that (i) in the modified primitive comes from its guarantees. Its proof
is a direct application of a Chernoff bound.

Lemma 7.2. Let G′ be the graph obtained by sampling every edge of
G with probability p = min

{
1, 10 log n

(ϵ/3)2k

}
. Then, w.h.p. it holds:

• If dG(v) ≤ (2 + ϵ
3)k, then dG′(v) < (2 + 2ϵ

3)pk.

• If dG(v) ≥ (2 + 3ϵ)k, then dG′(v) ≥ (2 + 2ϵ
3)pk.

However, even after sampling, the O(
√

log n)-neighborhood of some
vertex may be too large to fit in O(nα) memory. To tackle this problem,
at the beginning of every phase we freeze vertices with significantly high
degrees and we do not delete any frozen vertices in the phase. Inter-
estingly we can show that this does not effect the algorithm too much.
Indeed by Lemma 6.2, there are not many vertices with coreness number
smaller than k yet have such high degree. Furthermore, by “ignoring”
all the frozen vertices, after sampling the O(

√
log n)-neighborhood of

every vertex fits in a single machine’s memory, whp.
To make the high-level ideas more transparent, we only focus on

how we can simulate the first
√

log n iterations of Algorithm 10 in
O(log log n) MPC rounds. We can make the total memory usage at
most nδ factor more than the whole input size for any constant δ > 0.
This is achieved by the following algorithm.

Every vertex in V \ F has a degree at most h. Therefore, after
sampling it has a degree at most hp in expectation and at most 2hp

whp by a Chernoff bound. Thus, for every vertex u ∈ V \F , u’s
√

log n-
neighborhood in (V \ F, E′) has size at most (2hp)

√
log n ≤ n2δ for

7.1. Approximate Core Decomposition 395

any constant ϵ and sufficiently large n. This implies that the
√

log n-
neighborhood fits in a single machine and we can process all non-frozen
vertices in parallel by using at most n2δ factor more memory than
the input size in total. Further, as observed before, we can determine
if Algorithm 10 adds v to Γ within

√
n iterations only using v’s

√
n-

neighborhood. Using graph exponentiation, this can be simulated in
log(
√

log n) = O(log log n) rounds.
We now check properties (i) and (ii) needed for the primitive. Thanks

to Lemma 7.2, every vertex added to Λ in Algorithm 11 has coreness
number at most (2+3ϵ)k; thus Λ satisfies (i). Further, due to Lemmas 7.2
and 7.1 with threshold (2 + ϵ/3)k, we know that |V≤k \ F \ Λ| ≤

1
(1+ϵ/6)

√
log n
|V≤k \ F |. Further, by Lemma 6.2, we know that |F | ≤

2k|V≤k|/h = 1
2
√

log n
|V≤k|. Therefore, Λ satisfies (ii).

Algorithm 11 Compressing
√

log n rounds into O(log log n)-rounds
via graph exponentiation

1: Input: Graph G = (V, E) and a coreness threshold k
2: Output: Λ such that (i) Λ ⊆ V≤(2+3ϵ)k, (ii) |V≤k \Λ| ≤ 2

(1+ϵ/6)
√

log n
|V≤k|

3: F ← vertices with degree ≥ h := 2k · 2
√

δ log n (frozen vertices)
4: E′ ← edges sampled i.i.d. with probability p = min

{
1, 10 log n

(ϵ/3)2k

}
5: Each vertex collects in V \ F its

√
log n-neighborhood in (V \ F, E′) in

parallel in O(log log n) rounds
6: Simulate Algorithm 10 with graph (V \ F, E′) threshold (2 + 2ϵ

3)pk for
each v ∈ V \ F ; if v ∈ Si for some i ≤

√
log n, then add v to Λ

Thus, by repeating Algorithm 11 q times such that
(

2
(1+ϵ/6)

√
log n

)q

<

1
n , we will have Λ such that V≤k ⊆ Λ ⊆ V≤(2+3ϵ)k. And this can be done
in O(log log n)q = Õ(

√
log n) rounds for any fixed constant ϵ > 0. This

produces essentially the same output as Algorithm 10 but using only
Õ(
√

log n) rounds. The remaining procedure is almost identical. Thus,
we can compute (2 + ϵ)-approximate coreness in Õ(

√
log n) rounds.

396 Round Reduction via Graph Exponentiation

7.2 Connected Components

Finding connected components in an unweighted graph is a fundamental
primitive with many practical applications. In this section we first
describe a basic sequential algorithm. Then we will discuss how to
parallelize it to obtain an O(log n)-round algorithm using sublinear
memory. We will then show how to modify it using graph exponentiation
to obtain an Õ(log D) algorithm, where D is the diameter of the graph.

We first present a simple sequential algorithm for finding connected
components (Algorithm 12).

Algorithm 12 Sequential connected component algorithm.
1: Input: Graph G = (V, E)
2: Output: Set S of connected components of G
3: S = ∅
4: ∀v ∈ V,S = S ∪ {v}
5: while ∃S ∈ S that has an edge to another component S′ ∈ S do
6: S = S \ S, S′

7: S = S ∪ {S ∪ S′}
8: end while
9: Output S

Note that the algorithm can be efficiently implemented in sequential
setting using a union-find data structure and it returns the correct
connected components of the graph. Next, we will discuss how to
parallelize this algorithm to run in O(log n) rounds.

7.2.1 O(log n)-round Algorithm

The main idea to parallelize Algorithm 12 is to activate multiple con-
nected components in every round. But, we cannot arbitrarily let every
connected component to merge with a neighboring connected component
at the same time, since it can lead to long merging chains.

To circumvent this problem we design a simple merging strategy
where in every round the algorithm merges only disjoint sets of connected
components. In particular, the following steps are done in constant
number of rounds: (i) each connected component in S picks either red
or green uniformly at random, (ii) each connected component informs

7.2. Connected Components 397

all its neighboring connected components about its color choice, and
(iii) every red connected component selects a random green neighboring
connected component (if any). In this way disjoint “stars” are formed,
each consisting of a central green connected component connected to
one or more red neighboring connected component(s). Then, we merge
all connected components in each star. Figure 7.2 presents a visual
representation of the process. See Algorithm 13 for a formal description.

Figure 7.2: In step (a), we represent each connected component with a vertex.
In step (b), each connected component picks a random color. In step (c) every
red components pick a random neighboring green components and finally in
step (d) the connected components are collapsed.

Theorem 7.3. For large enough constant C, Algorithm 13 computes
with high probability the connected components of G in O(log n) rounds
in MPC using machines with sublinear memory.

Proof. Let nδ be the memory per machine where δ ∈ (1
2 , 1)2. We first

discuss how to implement the algorithm in MPC and then prove its
correctness.

2We assume that δ > 1
2 only for simplicity.

398 Round Reduction via Graph Exponentiation

Algorithm 13 Parallel connected components algorithm.
1: Input: Graph G = (V, E)
2: Output: Set S of connected components of G
3: S = ∅
4: ∀v ∈ V,S = S ∪ {v}
5: for C log n rounds in parallel do
6: for S ∈ S do
7: S selects a random color {red, green}
8: S sends its color to its neighboring connected components
9: if S is red and has at least one neighboring green connected compo-

nent then
10: S select a random neighboring green connected component and

merges with it
11: end if
12: end for
13: end for
14: Output S

There are two obstacles to implementing Algorithm 13 in the MPC
model. First, a connected component may have size more than nδ, in
which case it will be split across machines. Second, in the selection step,
a green component may be selected by more than nδ red components,
in which case, again, the merge step needs to be distributed.

Both of these issues can be addressed by a single level of indirection:
one can use a two level tree to route all of the necessary communication.
For instance, in the first case, each large component can have nδ vertices
selected as “coordinators,” and all of the other vertices are assigned to
a unique coordinator. All of the communication is first passed to the
coordinators, who then pass the information to the individual vertices.
Since we had assumed δ > 1/2, a single level of indirection suffices, but
it is easy to extend the same argument for arbitrarily small δ. A similar
approach can be used to handle the case of many red vertices connecting
to a single green vertex.

Now we turn our attention to correctness. Clearly the algorithm
does not merge disconnected components so we only need to show that
every connected component is correctly identified. To prove this we
focus on a single connected component C of size k. Initially, we have k

7.2. Connected Components 399

distinct components and we will now show that if we have more than
one active connected component in C after each execution of the for
loop, the number of connected components decreases in expectation
by a factor of 3

4 . Note that a connected component is not merged in
a round of the algorithm if it either selects the color green (happens
with probability 1

2) or if none of its neighbors is colored green (happens
with probability at most 1

4 since every component in C has at least
one neighboring component.) So every component is not merged with
probability at most 3

4 . Thus in expectation the number of components
in C decreases by 3

4 in every round. Hence with constant probability,
a constant fraction of the connected components is merged in every
round and so with high probability the process converges to a single
connected component in O(log k) rounds.

7.2.2 Õ(log D)-round Algorithm

To improve the round efficiency of the algorithm presented in Sec-
tion 7.2.1, a key observation is that it does not always make sense to
sample the green and the red color with the same probability. Sup-
pose hypothetically that all of the connected components would have
neighborhood of size nγ for constant γ in every round of the algorithm.
Then, by coloring every component green with probability n− γ

2 and red
otherwise we would make more progress. In fact, the probability of a
connected component failing to merge would be at most n− γ

3 and so the
algorithm would converge in O(1

γ) rounds. Unfortunately, the hypothet-
ical condition may not hold. Nevertheless, we will show how to leverage
on the double exponential size reduction techniques to circumvent this
obstacle. In particular we show how to obtain an O(1

γ log D)-round
algorithm.

The main idea is that connected components with small neighbor-
hoods can be efficiently modified to become connected components with
large neighborhoods. In particular, every connected component can send
all its neighboring components to all its neighbors iteratively. In this
way, in i rounds every connected component receives its 2i-neighborhood.
Unfortunately one cannot run this exponentiation until convergence
since it can require too much memory. However, one can run this process

400 Round Reduction via Graph Exponentiation

until every connected component has at least n
δ
2 neighboring connected

components. At that point every connected component colors itself
green with probability n− δ

3 or red otherwise. Then every red connected
component selects a neighboring green connected component and merges
with it as before. In Figure 7.3 we present a visualization of the process,
which can be shown to converge in O(1

γ log D) rounds.

Figure 7.3: In step (a), we represent each connected component with a vertex.
In step (b), grows its neighborhood. In step (c) every connected component
select its colors randomly. In step (d) every red component picks a random
neighboring green component and the connected components are collapsed.

We now present the pseudo-code in Algorithm 14.

Theorem 7.4. With high probability, Algorithm 14 computes the con-
nected components of G in O(1

δ log D)-rounds in the MPC model where
each machine has memory nδ, 1

2 < δ < 1.

Proof. The implementation details of this algorithm are very similar to
that of Theorem 7.3. The only additional difficulty is to implementation
the graph exponentiation process, but this can be easily done using a
coordinator and by noticing that the total number of edges received by
a single machine in the doubling phase is bounded by O(nδ).

7.2. Connected Components 401

Algorithm 14 Õ(log D) connected component algorithm.
1: Input: Graph G = (V, E).
2: Output: The set S of connected components of G
3: S = ∅
4: ∀v ∈ V,S = S ∪ {v}
5: for C log n rounds in parallel do
6: for log D rounds in parallel do
7: for S ∈ S do
8: if S neighborhood is smaller than n

δ
2 then

9: if S has a neighboring connected component S′ with n
δ
2 + 1

neighboring connected component then
10: S connects with all neighboring connected components of S′

11: else
12: S connects to all the neighboring connected components of

its neighboring connected component
13: end if
14: end if
15: end for
16: end for
17: for S ∈ S do
18: if S neighborhood is larger than n

δ
2 then

19: S colors itself green with probability n− δ
3 or red otherwise

20: S sends its color to its neighboring connected component
21: if S is red and has at least one neighboring green connected

component then
22: S select a random neighboring green connected component and

merge with it
23: end if
24: else
25: if S is the smallest id components between its neighbors then
26: S collapse all its neighbors in a single connected component
27: end if
28: end if
29: end for
30: end for
31: Output S

Furthermore, we note that in O(log D) rounds of graph exponen-
tiation, a connected component is either transformed into a clique or
into a graph where every vertex has degree at least n

δ
2 . In the first case,

the connected component is found in a single round. In the second case,

402 Round Reduction via Graph Exponentiation

the number of active connected components decreases by a n− δ
4 factor,

with high probability. Thus with constant probability the algorithm
converges to the right solution in O(1

δ log D) rounds.

7.3 Section Notes

The content of this section is mainly based on Ghaffari et al. (2019b)
and Andoni et al. (2018). In particular the first parallel algorithm using
sublinear memory and sub-logarithmic rounds for k-core decomposition
was presented in Ghaffari et al. (2019b). The first parallel algorithm
using less then O(log n) parallel rounds and sublinear memory has been
presented in Andoni et al. (2018).

The graph exponentiation technique was first introduced to speed-up
algorithm in the distributed LOCAL model by Lenzen and Wattenhofer
(2010) and then adapted to the MPC model by Ghaffari and Uitto (2019)
to provide efficient algorithms for matching and maximum independent
set. Algorithm 10 is reminiscent of the densest subgraph algorithm for
MPC due to Bahmani et al. (2012a). To the best of our knowledge,
there is no algorithm with better than 2-approximate algorithm that
runs in o(log n) rounds using strictly sublinear memory for the k-core
decomposition problem.

Developing algorithms for graph connectivity has been an important
topic in the MPC model; see Andoni et al. (2018), Behnezhad et al.
(2019a), and Coy and Czumaj (2022) for recent work on this topic.

8
Lower Bounds

Owing to numerous applications, graph problems have received signif-
icant attention in the MPC model. In previous sections, we studied
MPC algorithms for vertex cover, connected components, maximum
matching, independent set, and many others.

8.1 Connectivity in MPC

While new algorithms have been developed, there seems to exist a barrier
to obtaining constant round algorithms for many of these problems.
Intuitively, this may be due to graph properties depending on the global
structure, which is difficult to grasp in a small number of rounds when
each machine can only see part of the input graph. The sharpest example
of this is the graph connectivity problem, for which we can state the
following challenge:

Given an n-vertex undirected graph whose edges are arbi-
trarily partitioned across machines each with memory O(nα)
for some constant α < 1, can we determine if the graph is
connected in o(log n) rounds?

Recall the O(log n)-round algorithm in Section 7.2. Can we do better?

403

404 Lower Bounds

To appreciate this question, we will consider the following problem.

Problem 8.1.1 (1-vs-2-cycle). Given an undirected graph on n vertices
and n edges where the edges are arbitrarily placed across machines of
memory size M = O(nα) for α < 1, determine if it is a single cycle of
length n or two cycles of length n/2.

Even this simple instance of the graph connectivity problem has
resisted an o(log n)-round algorithm.

We can, however, formally rule out natural approaches for solving
this problem. For example, consider the approach of merging edges to
obtain paths, retaining only the endpoints of the path (which is memory-
efficient), and iterating to merge adjacent paths. For merging, note that
paths sharing endpoints must be on the same machine. However, it
seems hard to merge a super constant number of paths into a single path
during a single round. Indeed, this idea can be formalized to show that
it is hard to decrease the total number of paths stored across machines
by more than a constant factor, which implies a lower bound of Ω(log n)
rounds for algorithms using this approach.

Generally, it is believed that the connectivity problem admits no
o(log n)-round algorithm. However, proving such a statement would
resolve a long standing open problem in computational complexity.
In this section, we will first discuss an unconditional lower bound
showing that graph connectivity (and many other graph problems)
need Ω(logM n) rounds, and improving this lower bound would imply
a breakthrough result in circuit complexity theory, i.e., NC1 ̸= P.
We then discuss conditional lower bounds, showing a reduction from
maximum matching and maximal independent set problems to the
graph connectivity, and showing that they require Ω(log log n) rounds.

8.2 Unconditional Lower Bounds

We first discuss why traditional computational complexity tools are hard
to use to obtain unconditional lower bounds. Consider communication
complexity, a standard lower bound tool, which quantifies the amount of
communication needed between different parties owning different pieces
of the input to jointly compute a function. Given that the difficulty

8.2. Unconditional Lower Bounds 405

of the graph connectivity comes from each machine seeing only part
of the input, communication complexity seems appealing. However,
in an MPC setting, the total amount of communication is allowed
to exceed the input size. Unfortunately, communication complexity
becomes meaningless here since the entire input can be communicated.

Circuit complexity offers a different set of tools for showing lower
bounds. A (Boolean) circuit takes n binary inputs, (x1, . . . , xn) ∈ {0, 1}n,
processes them via interconnected gates, such as ‘and’, ‘or’, ‘not’, and
produces a binary output. The depth of a gate is the length of the
longest path from any input to the gate and the depth of the circuit is
the maximum depth of all gates. If every gate can take at most f inputs,
then the circuit’s fan-in is f . In the MPC model, while each machine’s
computation in round r can be viewed a “super” gate of depth r in a
circuit, there are fundamental differences between MPC and circuits.
First, a circuit is a static object while in MPC, depending on the local
computation result, a machine can send data to different machines in
the shuffle phase. Second, in MPC, a machine can choose to (be silent
and) send out no data after the local computation, while each gate in a
circuit always has an output.

The two differences are closely related to each other. Obviously,
dynamic communication topology can give more power to MPC and it
becomes more effective with silence being allowed since it can reduce
unnecessary communication. Further, silence itself can carry extra
information—for example, receiving no data from machine i could
imply that the machine does not have the data that is desired. In fact,
a Boolean circuit computation can be simulated in MPC, essentially
meaning that MPC is more powerful than circuit computation.

Lemma 8.1. Every Boolean circuit of depth d and fan-in 2 can be
simulated in O(d/ log M) MPC rounds.

Proof. Each gate of depth log2 M depends on at most M inputs as
each gate has fan-in 2. It is easy to see that all gates of up to depth
log2 M can be simulated in one round of MPC. Repeating this completes
the proof.

The contrapositive of this immediately yields the following.

406 Lower Bounds

Corollary 8.2. If a problem P in P requires ω(log n/ log M = logM n)
MPC rounds, then the problem admits no Boolean circuit of depth
O(log n) and fan-in 2, i.e., P /∈ NC1.

It is a long-standing open question if P ̸= NC1. Thus, we cannot
expect a better than Ω(logM n) lower bound without a breakthrough
in circuit complexity.

8.2.1 Overview of Ω(logM n) Lower Bound

In the remainder of this section, we sketch an Ω(logM n) lower bound.
The high-level strategy will consist of the following steps.

1. Defining an M -shuffle computation, which is more powerful than
the MPC model; hence any lower bound for the M -shuffle model
would imply the same lower bound for MPC. Roughly speaking,
the model allows unlimited number of machines for computation
and exponential time local computation.

2. Showing any R-round computation of the M -shuffle model can be
expressed as a Boolean function that is a multi-linear polynomial
of degree at most MR.

3. Showing most graph properties, including connectivity, require
high-degree polynomials.

8.2.2 M -Shuffle Model

Defining a model that is simpler yet more powerful than MPC will help
obtain the desired lower bounds. To highlight the main ideas, we only
present the important features of the M -shuffle model. The key insight
to the modeling is to explicitly account for a machine not communicating
with another machine through the use of a special symbol, ⊥.

• There is no limit on the number of machines available. Thus, we
can assume that each machine u is used only in a specific round
r(u) ∈ {1, . . . , R}, where R is the number of rounds.

• Each machine has an ordered set {1, . . . , M} of input ports.

8.2. Unconditional Lower Bounds 407

• In each round, each machine u sends a message αuv(·) ∈ {0, 1,⊥}M
to each machine v with r(v) > r(u).

• Machine v receives 0, 1, or ⊥ on its ith input port from every
machine u with r(u) < r(v). If the machine receives more than one
non ⊥ symbol on each port, the computation is declared invalid.
Otherwise, machine v’s input, denoted as g(v), is naturally defined:
g(v)i is 1 (0, resp.) if and only if its ith port receives a 1 (0, resp.);
otherwise ⊥.

We assume for ease of analysis that each machine’s input ports are
ordered. We leave it as an exercise to show that the assumption can be
removed and how the model can extend to capture randomization.

8.2.3 Representing M -Shuffle Computation by Polynomials

Now we show that any R-round computation of the M -shuffle model
can be expressed as a polynomial of degree at most MR. We sketch the
main idea here. Let I(·) be the binary indicator function. We would like
to show that for any machine v and any specific input z′ to the machine,
I(g(v) = z′) can be expressed as a polynomial of degree at most M r(v).

To illustrate the idea, we only show that I(g(v) = z′) is a polynomial
of degree at most M2 for a fixed machine v from round 2. Repeating
this argument will give the desired claim: a machine from round 3 will
take messages from a set of machines from round 1 or 2 and take their
aggregation as its input. Let fuit(x) be a Boolean function that has
value 1 if and only if machine u sends a symbol t ∈ {0, 1,⊥} to machine
v on port i when the input is x. Machine u is from round 1 and has
memory M bits, so can depend on at most M input variables. Using
y1 ∧ y2 = y1y2, y1 ∨ y2 = (1 − y1)(1 − y2), ¬y1 = 1 − y1, y1 = y2

1 for
any y1, y2 ∈ {0, 1}, it is easy to see that fuit can be expressed as a
polynomial of degree M . Then, we have

I(g(v)i = 0) =
∑
u∈U

fui0(x), I(g(v)i = 1) =
∑
u∈U

fui1(x),

I(g(v)i = ⊥) = 1− I(g(v)i = 0)− I(g(v)i = 1),

408 Lower Bounds

where we used the fact that v receives at most one non-⊥ symbol on
port i. Thus, we have,

I(g(v) = z′) =
∏

i∈[M]
I(g(v)i = z′

i),

which proves that I(g(v) = z′) can be represented as a polynomial of
degree M2, as desired.

8.2.4 Graph Connectivity is a High Degree Polynomial

It is well-known that any Boolean function f : {0, 1}n → {0, 1} can be
represented as a multilinear polynomial ∑

S⊆[n] h(S)xS where h(S) ∈
{0, 1} and xS := ∏

i∈S xi, using the fact that x2
i = xi. For a given f ,

this multilinear polynomial is unique and its degree is called the degree
of f .

Consider the following simple graph problem. There are n+1 vertices,
indexed 0, 1, 2, . . . , n. Edges can be present only between vertices i− 1
and i for i ∈ [n] and xi indicates the presence or absence of the edge
(i− 1, i). Then, the Boolean formula ∏n

i=1 xi of degree n variables has
value 1 if and only if the graph is connected. As shown before, an
R-round M -shuffle can compute a polynomial of degree at most MR,
and therefore, it immediately follows that even this special case of graph
connectivity requires Ω(logM n) MPC rounds.

In general, graph connectivity is one example of a monotone graph
property. Recall that for undirected graphs, a graph property is inde-
pendent of the vertex labeling, is monotone if it becomes false when a
new edge is added to the graph, and is non-trivial unless the property
holds for all graphs or does not hold for any graph. It is known that any
non-trivial monotone graph property has Ω(n2) decision-tree complexity,
and any Boolean function f of degree d has decision-tree complexity
at most 2d4. Together these imply that computation of any monotone
graph property requires Ω(logM n) rounds in the M -shuffle model.

8.3 Conditional Lower Bounds

Due to the barriers in obtaining a logarithmic lower bound for Prob-
lem 8.1.1, there have been efforts to prove super-constant lower bounds

8.3. Conditional Lower Bounds 409

for other graph problems, assuming a logarithmic lower bound for
connectivity. We highlight some of these recent results. The first is a
conditional lower bound for s-t-connectivity in terms of the diameter.

Theorem 8.3. If there is no o(log n)-round MPC algorithm for Prob-
lem 8.1.1, then there is no o(log D)-round MPC algorithm for solving
s-t-connectivity problem on graphs of diameter D.

Conditional lower bounds for many graph problems can also be
obtained.

Theorem 8.4. If there is no o(log n)-round MPC algorithm for Prob-
lem 8.1.1, then there is no o(log log n)-round MPC algorithm that com-
putes an O(1)-approximate maximum matching, an O(1)-approximate
vertex cover, or a maximal independent set.

These conditional lower bounds are obtained using a novel connection
between the graph connectivity problem and the LOCAL model of
computation, described next. In the LOCAL model, each vertex of a
given graph only knows its own identity, the identity of its neighbors,
and the total number of vertices; in particular, it does not know the
whole graph. In each round, each vertex performs some computation
based on its knowledge and then sends messages to its neighbors. At
the end of these distributed steps of computation, each vertex needs to
know its part of the output. For example, in the maximum matching
problem, each vertex needs to know the vertex to which it is matched
(if at all). In the maximal independent set problem, each vertex needs
to know if it indeed belongs to the independent set.

The connection can be informally described as follows.

Theorem 8.5. Suppose a graph problem has a D-round lower bound in
the LOCAL model, where D ≤ logγ n for some constant γ < 1. Then,
there is no o(log D)-round MPC algorithm for the problem unless there
is an o(log n)-round algorithm for Problem 8.1.1.

Theorem 8.4 then immediately follows from applying the known
Ω(

√
log n/ log log n)-round lower bound in the LOCAL model for the

graph problems in the statement.

410 Lower Bounds

The proof of Theorem 8.5 is quite involved; we only provide a
high-level description of the main ideas. Suppose a graph problem has
a D-round lower bound in the LOCAL model. Then, the idea is to
show that if there is an MPC algorithm A solving this graph problem
in o(log D) rounds, then this algorithm must see certain “far away”
information (i.e., information that lies more than D hops away) to
produce the correct result. Specifically, one can construct two graphs
G and G′ with specialized vertices v and v′ such that G and G′ are
isomorphic within D hops from v and v′ respectively, but the output
at v and v′ are different when running A. Using this, the idea is to
construct an o(log D)-round MPC algorithm for solving the D-diameter
s-t-connectivity problem by using the o(log D)-round algorithm A as
an oracle, which will contradict Theorem 8.3.

8.4 Section Notes

The lower bounds and the formalization of the M -Shuffle was introduced
by Roughgarden et al. (2016), the conditional lower bounds are due
to Ghaffari et al. (2019a). Finally, Charikar et al. (2020) showed an
unconditional lower bound of Ω(logM n) for the 1-vs-2-cycle problem
by using a connection between query complexities and Boolean formula
degrees.

Many more results are known for restricted settings. Im and Moseley
(2019) showed that a certain class of algorithms require Ω(log n) rounds
to solve the 1-vs-2-cycle problem. A related result was shown earlier by
Beame et al. (2017) in the context of relational data sets. A lower bound
under similar algorithmic limitations was given for a certain game by
Jacob et al. (2014).

For specific problems, Pietracaprina et al. (2012) gave a lower bound
for matrix multiplication assuming that all elementary products must
be computed. Bilardi et al. (2012) gave tight lower bounds on the fan-in
for computing the Fast Fourier Transform in a restricted BSP model.

9
Conclusions

The MPC model has emerged as a valuable formalization of modern
parallel computing, encompassing many different frameworks and imple-
mentations, such as MapReduce, Hadoop, and Spark, among others. The
sublinear memory constraint, coupled with the goal of minimizing the
total number of rounds forces the algorithm designer to parallelize the
computation not too coarsely (respecting the memory constraints), and
not too finely (keeping to a small number of rounds). This sweet-spot
has led to new algorithms that we have covered in this monograph.

We have presented a lot of different techniques that are used in
design of MPC algorithms, but the coverage is not comprehensive by
design. We have chosen approaches that unify multiple results and
identify the key algorithmic and analytical insights. Our focus was on
exploring and understanding these techniques; for many problems we
deliberately did not present state-of-the-art results.

The field of MPC algorithms continues to be actively pursued by the
research community and the demand for new and more efficient MPC
algorithms continues to rise among practitioners. We hope this survey
will be useful to both these communities and will act as a conduit for
new problems and new algorithms.

411

References

Afrati, F. N., A. D. Sarma, S. Salihoglu, and J. D. Ullman. (2012). “Up-
per and Lower Bounds on the Cost of a Map-Reduce Computation”.
arXiv: 1206.4377.

Andoni, A., A. Nikolov, K. Onak, and G. Yaroslavtsev. (2014). “Parallel
Algorithms for Geometric Graph Problems”. In: STOC. 574–583.

Andoni, A., Z. Song, C. Stein, Z. Wang, and P. Zhong. (2018). “Parallel
Graph Connectivity in Log Diameter Rounds”. In: FOCS. 674–685.

Assadi, S., M. Bateni, A. Bernstein, V. S. Mirrokni, and C. Stein.
(2019a). “Coresets Meet EDCS: Algorithms for Matching and Vertex
Cover on Massive Graphs”. In: SODA. 1616–1635.

Assadi, S., M. Bateni, and V. S. Mirrokni. (2019b). “Distributed
Weighted Matching via Randomized Composable Coresets”. In:
ICML. 333–343.

Bahmani, B., R. Kumar, and S. Vassilvitskii. (2012a). “Densest Sub-
graph in Streaming and MapReduce”. PVLDB. 5(5): 454–465.

Bahmani, B., B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii.
(2012b). “Scalable K-Means++”. PVLDB. 5(7): 622–633.

Bateni, M. H., S. Behnezhad, M. Derakhshan, M. T. Hajiaghayi, R.
Kiveris, S. Lattanzi, and V. Mirrokni. (2017). “Affinity clustering:
Hierarchical clustering at scale”. In: NIPS. 6867–6877.

Beame, P., P. Koutris, and D. Suciu. (2017). “Communication steps for
parallel query processing”. JACM. 64(6): 40:1–40:58.

412

https://arxiv.org/abs/1206.4377

References 413

Behnezhad, S., L. Dhulipala, H. Esfandiari, J. Lacki, and V. S. Mirrokni.
(2019a). “Near-Optimal Massively Parallel Graph Connectivity”. In:
FOCS. 1615–1636.

Behnezhad, S., M. Hajiaghayi, and D. G. Harris. (2019b). “Exponentially
Faster Massively Parallel Maximal Matching”. In: FOCS. 1637–1649.

Bhaskara, A. and M. Wijewardena. (2018). “Distributed Clustering via
LSH Based Data Partitioning”. In: ICML. 569–578.

Bilardi, G., M. Scquizzato, and F. Silvestri. (2012). “A lower bound
technique for communication on BSP with application to the FFT”.
In: ECPP. 676–687.

Broder, A. Z., L. G. Pueyo, V. Josifovski, S. Vassilvitskii, and S. Venkate-
san. (2014). “Scalable K-Means by ranked retrieval”. In: WSDM.
233–242.

Ceccarello, M., A. Pietracaprina, and G. Pucci. (2019). “Solving k-center
Clustering (with Outliers) in MapReduce and Streaming, almost as
Accurately as Sequentially”. Proc. VLDB Endow. 12(7): 766–778.

Chang, Y., M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng. (2019).
“The Complexity of (∆+1) Coloring in Congested Clique, Massively
Parallel Computation, and Centralized Local Computation”. In:
PODC. 471–480.

Charikar, M., W. Ma, and L.-Y. Tan. (2020). “New lower bounds for
Massively Parallel Computation from query complexity”. In: SPAA.
141–151.

Chierichetti, F., R. Kumar, and A. Tomkins. (2010). “Max-cover in
map-reduce”. In: WWW. 231–240.

Cohen-Addad, V., S. Lattanzi, S. Mitrovic, A. Norouzi-Fard, N. Parot-
sidis, and J. Tarnawski. (2021a). “Correlation Clustering in Constant
Many Parallel Rounds”. In: ICML. 2069–2078.

Cohen-Addad, V., S. Lattanzi, A. Norouzi-Fard, C. Sohler, and O.
Svensson. (2021b). “Parallel and Efficient Hierarchical k-Median
Clustering”. In: NeurIPS.

Coy, S. and A. Czumaj. (2022). “Deterministic massively parallel con-
nectivity”. In: STOC. 162–175.

Czumaj, A., J. Lacki, A. Madry, S. Mitrovic, K. Onak, and P. Sankowski.
(2018). “Round compression for parallel matching algorithms”. In:
STOC. 471–484.

414 References

Dean, J. and S. Ghemawat. (2008). “MapReduce: Simplified Data
Processing on Large Clusters”. CACM. 51: 107–113.

Ene, A., S. Im, and B. Moseley. (2011). “Fast clustering using MapRe-
duce”. In: KDD. 681–689.

Ene, A. and H. L. Nguyen. (2015). “Random Coordinate Descent Meth-
ods for Minimizing Decomposable Submodular Functions”. In: ICML.
787–795.

Esfandiari, H., S. Lattanzi, and V. Mirrokni. (2018). “Parallel and
Streaming Algorithms for K-Core Decomposition”. In: ICML. 1396–
1405.

Feldman, J., S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitk-
ina. (2010). “On distributing symmetric streaming computations”.
TALG. 6(4): 66:1–66:19.

Frigo, M., C. E. Leiserson, H. Prokop, and S. Ramachandran. (2012).
“Cache-Oblivious Algorithms”. TALG. 8(1): 4.

Ghaffari, M., T. Gouleakis, C. Konrad, S. Mitrovic, and R. Rubinfeld.
(2018). “Improved Massively Parallel Computation Algorithms for
MIS, Matching, and Vertex Cover”. In: PODC. 129–138.

Ghaffari, M., F. Kuhn, and J. Uitto. (2019a). “Conditional Hardness
Results for Massively Parallel Computation from Distributed Lower
Bounds”. In: FOCS. FOCS ’19.

Ghaffari, M., S. Lattanzi, and S. Mitrovic. (2019b). “Improved Parallel
Algorithms for Density-Based Network Clustering”. In: ICML. 2201–
2210.

Ghaffari, M. and J. Uitto. (2019). “Sparsifying Distributed Algorithms
with Ramifications in Massively Parallel Computation and Central-
ized Local Computation”. In: SODA. 1636–1653.

Goel, A. and K. Munagala. (2012). “Complexity Measures for Map-
Reduce, and Comparison to Parallel Computing”. arXiv: 1211.6526.

Gonzalez, T. F. (1985). “Clustering to minimize the maximum inter-
cluster distance”. TCS. 38: 293–306.

Goodrich, M. T. (2010). “Simulating Parallel Algorithms in the MapRe-
duce Framework with Applications to Parallel Computational Ge-
ometry”. arXiv: 1004.4708.

https://arxiv.org/abs/1211.6526
https://arxiv.org/abs/1004.4708

References 415

Goodrich, M. T., N. Sitchinava, and Q. Zhang. (2011). “Sorting, Search-
ing, and Simulation in the Mapreduce Framework”. In: ISAAC. 374–
383.

Hegeman, J. W. and S. V. Pemmaraju. (2015). “Lessons from the
congested clique applied to MapReduce”. TCS. 608: 268–281.

Im, S. and B. Moseley. (2015). “Brief Announcement: Fast and Better
Distributed MapReduce Algorithms for k-Center Clustering”. In:
SPAA. 65–67.

Im, S. and B. Moseley. (2019). “A Conditional Lower Bound on Graph
Connectivity in MapReduce”. arXiv: 1904.08954.

Im, S., B. Moseley, and X. Sun. (2017). “Efficient massively parallel
methods for dynamic programming”. In: STOC. 798–811.

Indyk, P., S. Mahabadi, M. Mahdian, and V. S. Mirrokni. (2014).
“Composable core-sets for diversity and coverage maximization”. In:
PODS. 100–108.

Jacob, R., T. Lieber, and N. Sitchinava. (2014). “On the complexity
of list ranking in the parallel external memory model”. In: MFCS.
384–395.

Karloff, H., S. Suri, and S. Vassilvitskii. (2010). “A Model of Computa-
tion for MapReduce”. In: SODA. 938–948.

Koutris, P., S. Salihoglu, and D. Suciu. (2018). “Algorithmic Aspects
of Parallel Data Processing”. Foundations and Trends in Databases.
8(4): 239–370.

Kumar, R., B. Moseley, S. Vassilvitskii, and A. Vattani. (2015). “Fast
Greedy Algorithms in MapReduce and Streaming”. TOPC. 2(3):
14:1–14:22.

Lattanzi, S., T. Lavastida, K. Lu, and B. Moseley. (2019). “A framework
for parallelizing hierarchical clustering methods”. In: ECML/PKDD.
73–89.

Lattanzi, S., B. Moseley, S. Suri, and S. Vassilvitskii. (2011). “Filtering:
a method for solving graph problems in MapReduce”. In: SPAA.
85–94.

Lenzen, C. and R. Wattenhofer. (2010). “Brief announcement: exponen-
tial speed-up of local algorithms using non-local communication”.
In: PODC. 295–296.

https://arxiv.org/abs/1904.08954

416 References

Linial, N. (1987). “Distributive graph algorithms global solutions from
local data”. In: FOCS. 331–335.

Malkomes, G., M. J. Kusner, W. Chen, K. Q. Weinberger, and B.
Moseley. (2015). “Fast Distributed k-Center Clustering with Outliers
on Massive Data”. In: NIPS. 1063–1071.

McGregor, A. (2014). “Graph stream algorithms: a survey”. SIGMOD
Record. 43(1): 9–20.

Mirzasoleiman, B., A. Karbasi, R. Sarkar, and A. Krause. (2013). “Dis-
tributed Submodular Maximization: Identifying Representative Ele-
ments in Massive Data”. In: NIPS. 2049–2057.

Mitzenmacher, M. and E. Upfal. (2005). Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge Uni-
versity Press.

Nemhauser, G. L., L. A. Wolsey, and M. L. Fisher. (1978). “An Analysis
of Approximations for Maximizing Submodular Set Functions–I”.
Math. Program. 14(1): 265–294.

Park, H.-M., F. Silvestri, U. Kang, and R. Pagh. (2014). “MapReduce
Triangle Enumeration With Guarantees”. In: CIKM. 1739–1748.

Pietracaprina, A., G. Pucci, M. Riondato, F. Silvestri, and E. Upfal.
(2012). “Space-round Tradeoffs for MapReduce Computations”. In:
ICS. 235–244.

Ponte Barbosa, R. da, A. Ene, H. L. Nguyen, and J. Ward. (2015). “The
Power of Randomization: Distributed Submodular Maximization on
Massive Datasets”. In: ICML. Vol. 37. 1236–1244.

Ponte Barbosa, R. da, A. Ene, H. L. Nguyen, and J. Ward. (2016).
“A New Framework for Distributed Submodular Maximization”. In:
FOCS. 645–654.

Roughgarden, T., S. Vassilvitskii, and J. T. Wang. (2016). “Shuffles and
Circuits (On Lower Bounds on Massively Parallel Computation)”.
In: SPAA ’16.

Suri, S. and S. Vassilvitskii. (2011). “Counting triangles and the curse
of the last reducer”. In: WWW. 607–614.

Valiant, L. G. (1990). “A bridging model for parallel computation”.
CACM. 33(8): 103–111.

Williamson, D. P. and D. B. Shmoys. (2011). The Design of Approxi-
mation Algorithms. Cambridge University Press.

References 417

Zhao, Z., G. Wang, A. Butt, M. Khan, V. Kumar, and M. Marathe.
(2012). “SAHAD: Subgraph Analysis in Massive Networks Using
Hadoop”. In: IPDPS. 390–401.

	Introduction
	Purpose of This Monograph
	Prerequisites

	The MPC Model
	Formal Definition
	Example: Word Frequencies in Two Rounds
	Other Related Models
	Section Notes

	Partitioning and Coresets
	Overview
	Application: Minimum Spanning Tree
	Application: k-Center Clustering
	Coresets
	Application: k-Center Clustering in Euclidean Space
	Problems
	Section Notes

	Sample and Prune
	Overview
	Application: Top k Selection
	Application: k-Center Clustering
	Application: Monotone Submodular Maximization Subject to a Cardinality Constraint
	Section Notes

	Dynamic Programming
	Overview
	Warm-up: Knapsack
	Interval Selection in MPC
	Approximate Dynamic Programs
	Section Notes

	Round Reduction via Sampling
	k-core Decomposition and a Sequential Algorithm
	Parallelizing the Sequential Algorithm: O(n) Rounds
	Round Compression via Random Vertex Partitioning: O(n) Rounds
	Section Notes

	Round Reduction via Graph Exponentiation
	Approximate Core Decomposition
	Connected Components
	Section Notes

	Lower Bounds
	Connectivity in MPC
	Unconditional Lower Bounds
	Conditional Lower Bounds
	Section Notes

	Conclusions
	References

