BREAKING 1 - 1/e BARRIER FOR NON-PREEMPTIVE
THROUGHPUT MAXIMIZATION*

SUNGJIN IMt, SHI LI¥, AND BENJAMIN MOSELEY §

Abstract. In this paper we consider one of the most basic scheduling problems where jobs
have their respective arrival times and deadlines. The goal is to schedule as many jobs as possible
non-preemptively by their respective deadlines on m identical parallel machines. For the last decade,
the best approximation ratio known for the single-machine case (m = 1) has been 1 — 1/e — € =
0.632 due to [Chuzhoy-Ostrovsky-Rabani, FOCS 2001 and MOR 2006]. We break this barrier and
give an improved 0.644-approximation. For the multiple-machine case, we give an algorithm whose
approximation guarantee becomes arbitrarily close to 1 as the number of machines increases. This
improves upon the previous best 1 —1/(1+1/m)™ approximation due to [Bar-Noy et al., STOC 1999
and SICOMP 2009], which converges to 1 — 1/e as m goes to infinity. Our result for the multiple-
machine case extends to the weighted throughput objective where jobs have different weights, and
the goal is to schedule jobs with the maximum total weight. Our results show that the 1 — 1/e
approximation factor widely observed in various coverage problems is not tight for the non-preemptive
maximum throughput scheduling problem.

1. Introduction. Scheduling jobs with arrival times and deadlines is a funda-
mental problem in operations research and computer science. Due to this, there has
been a large amount of research focusing on the topic. When jobs must be scheduled
non-preemptively the complexity of several problems has yet to be well-understood.
Nonetheless, non-preemptive job scheduling occurs frequently in practice. For in-
stance, when jobs cannot be stopped during execution due to practical constraints or
because overhead costs are prohibitively large.

A central scheduling problem is determining how to schedule jobs by their dead-
line. In many cases, not all jobs can be scheduled by their deadline due to insufficient
job processing resources. In these situations an alternative goal is to complete as
many jobs as possible by their deadline. This paper considers this problem formally
known as throughput mazximization. There are m identical machines and n jobs. Each
job j has size pj;, arrival/release time r;, and deadline d;; all these quantities are
assumed to be integers in (0,7]. The goal is to schedule as many jobs as possible
by their deadline non-preemptively on the m machines. Non-preemptive scheduling
means that once a job starts being processed at time s; on a machine, then the job
must be scheduled until time s; 4+ p; on the machine. A machine can process at most
one job at a time. To highlight the non-preemptive aspect of the problem, in this
paper we will call this problem Job Interval Scheduling (JIS). Not surprisingly, JIS
has various applications in practice. For examples, see [10, 6, 8, 13] for pointers.

Throughput maximization was shown by Garey and Johnson to be NP-Hard [9].
Bar-Noy et al. [4] showed that there is an algorithm achieving an approximation ratio
1—1/(1+ L)™. The approximation ratio gets better when m becomes larger. In
particular, the ratio is 1/2 if m = 1 and converges to 1 — 1/e as m tends to infinity.

Later, Chuzhoy et al. [7] gave a (1 — 1/e — €)-approximation algorithm for a

*Submitted to the editors September 2017. A preliminary version of this paper appeared in IPCO
2017.

Funding: This work was funded in part by in part by NSF grants CCF-1409130, CCF-
1617653, CCF-1566356, CCF-1717134, CCF-1844890, CCF-1844939, CCF-1617724, CCF-1733873,
CCF-1824303, CCF-1845146 and CMMI-1938909, a Yahoo Research award, a Google Faculty Award,
and a Carnegie-Bosch junior faculty chair.

TUniversity of California Merced (sim3@ucmerced.edu).
tUniversity at Buffalo (shil@buffalo.edu).
8Carnegie Mellon University, (moseleyb@andrew.cmu.edu).

1


mailto:sim3@ucmerced.edu
mailto:shil@buffalo.edu
mailto:moseleyb@andrew.cmu.edu

2 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

m and T previous results our results

m =1 and T = poly(n) 1—1/e—¢€[7] 0.6448

smweighted m = O(1) and arbitrary T’ 11 —11/(11 —l—ll/m);" [ﬁi] 1 0.651418
arbitrary m and T -+ 1/mm ] —e-0/vm)
(=1—-1/easm —o00) | (=1—€asm — o0)

T = pol 1/2 [4 1—e—0(1
eighted “poly(n) /211, 5) 0/ m)

arbitrary T' 1/2 [4, 5] -
TABLE 1.1

Summary of our results compared to the previous results. Here, m is the number of machines
and T is the length of the time horizon. The O(-)-notation in the table is used to suppress a poly-
logarithmic factor in m.

discrete version of this problem. In this version, the input is a set of intervals Z;
in (0,T])" (which may have different lengths) for each job j. To schedule the job,
the scheduler needs to select an interval from the set Z;. A schedule is valid if the
intervals selected for all the scheduled jobs are disjoint. In this problem, adding more
machines does not add more generality to this problem.? In this paper, we will refer
to the problem we consider as the continuous variant to distinguish it from this work.
It seems that the discrete version generalizes the continuous version of the problem we
consider: for each job j with arrival time r;, deadline d; and processing time p;, the
set of intervals for j is all sub-intervals of (r;, d;] of length p; with integer end-points.
However, there is a small caveat: the number of intervals can be exponential in n.
It was not known how to handle this tricky issue using the algorithm of [7]. Thus,
when T is not polynomially bounded by n, the (1 -1/(1+ %)m)—approximation due
to [4] remains the state-of-art for this problem; in particular, a 1/2-approximation is
the best known when m =1 [4, 1, 16].

1.1. Our Results. This paper improves upon the state-of-the-art approxima-
tions for JIS for both the single-machine and multiple-machine cases. First, we show
that for constant m, there is an approximation algorithm for JIS whose factor is at
least 0.6448 > (1 —1/e).

THEOREM 1.1. For some g > 0.6448 > 1 — 1/e and any € > 0, there exists an

(g — €)-approzimation algorithm for the (unweighted) Job Interval Scheduling (JIS)
problem with running time nOm/€),

To complement this result, we give a second algorithm whose approximation ratio
approaches 1 as the number m of machines goes to infinity, improving upon the
previous 1 — 1/e limit. Thus, we can make our approximation ratio better than
1 —1/e for any m: we run the first algorithm if m is a small constant; we run the
second algorithm if m is large. Indeed, our second algorithm works for the more

IThroughout the paper, all time intervals have integer starting and ending time points and are
left-open-right-closed. This is to avoid possible confusions when we say two intervals are disjoint or
intersecting each other, while at the same time guaranteeing that the number of integer times in a
time interval is exactly its length, a property that makes our description simple.

2Suppose there are m machines. Then, in our new instance, the time horizon is (0, mT], which can
be viewed as the concatenation of m horizons of length T. If a job can be scheduled in (A, B] C (0, T]
in the original instance, it can be scheduled in (¢T + A, T + B] for every ¢ = 0,1,--- ,m — 1 in the
new instance.



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 3

general weighted version of the problem, provided that T is polynomially bounded by
n. In this version, each job ¢ has some positive weight w; and the goal is to maximize
the total weight of the jobs completed by their deadline. We remark that for the
unweighted version, we do not require 71" to be polynomially bounded.

THEOREM 1.2. For any € > 0, there exists a (170(\/(10gm)/m> 76)—
approximation for unweighted JIS on m machines. If T = poly(n), there erists a

(1 -0 ( (log m)/m)) -approzimation for weighted JIS on m machines.

1.2. Our Techniques. Our result in Theorem 1.2 will follow from a simple
rounding procedure based on the naive LP relaxation for the problem. The algorithm
scales down a naive LP solution by (1 —¢€), and applies a standard rounding technique
to obtain a tentative schedule. Then the algorithm converts the tentative schedule
to one that is feasible by removing jobs in a greedy manner. It is shown that the
probability that a job is removed from the tentative schedule is exponentially small in
m. An interesting technical contribution from this result is a method to solve the naive
LP for unweighted JIS when T is not bounded, that only sacrifices a (1 — €)-factor in
the LP value. This was not known previously.

Our main technical contribution is in obtaining an ag — € ~ 0.6448-approximation
stated in Theorem 1.1. The algorithm is based on a slightly different variation of the
configuration LP used in [7]. We highlight our algorithmic ideas as follows assuming
m = 1.

Chuzhoy et al. considered a configuration LP to obtain an approximation ratio
1—1/e —e =~ 0.632 [7]; it is known that a naive LP has an integrality gap of 2
when m = 1 [4, 16]. The configuration LP considered in [7] is fairly natural and
builds on “blocks” of jobs: a block is a window (a time interval) together with & jobs
scheduled in it, for some fixed k; all the block windows are required to be disjoint. It
is straightforward to construct the set of blocks from an integral schedule: take the
window in which the first £ jobs are scheduled, take the window in which the second
k jobs are scheduled, and so on. Chuzhoy et al. [7] used an involved preprocessing
step to guess the block windows corresponding to a (1 — €)-approximately optimal
schedule. Then, for each guessed block window there are variables encoding which &
jobs are scheduled within the block.

In contrast, our algorithm does not guess the block windows of an approximate
solution. Rather, our configuration LP allows the blocks to be scheduled fractionally,
ensuring that at most one fractional block covers every time point. Instead of par-
titioning time based on guessing where blocks are in an optimum solution, the time
horizon (0,7 is partitioned using the fractional blocks obtained from the configura-
tion LP, into a set W = {(t1, to], (to, t3], (t3,ta],- - - } of windows. By rounding each
window in W randomly and independently, our first rounding recovers the (1 — 1/e)-
approximation ratio of [7]. We remark that this novelty is not essential in obtaining the
improved approximation ratio; the improved approximation ratio could be obtained
using the involved preprocessing step and the configuration LP in [7]. However, our
configuration LP yields the following byproducts: (1) our configuration LP can handle
the case when T is super polynomial; (2) we can reduce the dependence of running
time on € from double exponential in [7] to single exponential; (3) we can obtain the
improved (a — €)-approximation for any constant m.?

3As mentioned before, the work [7] focuses on the discrete version of JIS while our work does
on the continuous version. The approach in [7] does not seem to easily extend to give a better than



4 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

To improve the (1 — 1/e)-approximation, we use a second rounding procedure,
which works only for the continuous version of JIS. Suppose each (r;,d;] is exactly
the union of some windows in Wj; in other words, r; = ¢; and d; = ¢; for some i < 7.
The rounding procedure is based on individual jobs as opposed to individual windows
as in the first rounding procedure. We assign each job to one of the windows according
to how much the job is assigned to each individual window in the LP solution. Here
a crucial observation is that the job can be scheduled anywhere in such windows —
the only constraint we have to ensure is that we do not assign too much volume of
jobs to the same window. With an additional preprocessing step of removing “big”
jobs, we can show that such a bad overflow event rarely occurs, and this leads to a
(1 — €)-approximation. Since each (r;,d;] may not be aligned with the partition W,
we do not get this (1 — €)-approximation in general. Among all the windows in W
that intersect (7, d;], the first and the last ones are special, since we can not schedule
4 anywhere inside these two windows. However, if the fraction of the job j assigned to
these two windows is large, then we observe that, in fact, the first rounding algorithm
can give a factor better than 1 — 1/e for the probability we schedule job j. Thus,
taking the better solution between those given by these two rounding procedures will
lead to an approximation ratio better than 1 — 1/e.

Removing Dependency on T: As mentioned above, for the continuous version of
JIS, the %-approximation was the best known polynomial time algorithm for the
single-machine case [4]. Interestingly, we also use the configuration LP to remove the
dependency on T'. This is somewhat counter-intuitive since the configuration LP is
more complicated than the standard LP which is a special case of the configuration
LP where each block has only one job. Thus, it may seem that using the configuration
LP is in the opposite direction to reduce the number of LP variables to obtain a true
polynomial time algorithm. One of our key observations is that if a set of k jobs are
very flexible, that is, can be scheduled seamlessly in “many” places, then such a block
can be added later. Then we show one job can be kicked out to schedule k additional

jobs. A similar configuration LP is used in the (1 — O(\/ W))—approximation to
reduce the dependence on T', although only the naive LP is needed when T = poly(n).

1.3. Related Work. A simple greedy algorithm that schedules a job with the
earliest deadline is known to be a %—approximation for the single-machine case [1,
16]. There are %—approximations known for the weighted throughput objective in the
multiple-machine setting [4, 5]. Bansal et al. [2] considered JIS when the algorithm is
given resource augmentation and gave an O(1)-speed 1-approximation. If preemption
is allowed, it is known that if m = 1 then there exists a polynomial time optimal
algorithm [3]. When m > 2 then the problem becomes NP-Hard [11]. To see why the
problem is hard, note that if all jobs have the same release time and deadline then
finding the minimum number of machines to schedule the jobs on is effectively the bin
packing problem. The problem has also been considered in the online setting [14, 12].

1.4. Organization. We first prove our theorems under certain simplifying as-
sumptions and then later give the full proof. Specifically, in Section 2, we show
Theorem 1.1 when T' = poly(n); recall that (0,7 is the time horizon we are consider-
ing. To illustrate how to generalize this proof, we consider the case where m = 1 and
T is large in Section 3. Finally, the proof is extended to consider large T and any m
in Section 4. We continue to show Theorem 1.2 in Section 5 under the assumption

1 — 1/e-approximation for multiple machines.



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION )

that T is polynomially bounded. The proof when T is large can be found in Section 6.
In the appendix, we prove a technical lemma that is useful in the analysis.

2. Proof of Theorem 1.1 when T = poly(n). The algorithm is based on a
configuration LP relaxation for the problem. The algorithm will use this relaxation
to partition the time horizon into disjoint windows. We remark that this step can
replace the involved preprocessing step of [7]. With the definition of windows in
place, the algorithm runs the rounding procedure of [7]; this will give a (1 —1/e — ¢)-
approximation for the unweighted case. To obtain the improved (ap—¢) approximation
ratio, a different rounding procedure is used and the final solution is obtained by
choosing the better solution from the two procedures. This will establish Theorem 1.1
when T = poly(n).

2.1. Linear Programming Relaxation for Job Interval Scheduling. An
important element we use in the LP for JIS is a block, defined below.

DEFINITION 2.1. A block B is a triple B = (L, Rp, Jp) where L and Rp are
two integer time points such that 0 < Lp < Rp < T, and Jp is a subset of jobs that
can be scheduled in the interval (Lg, Rg] non-preemptively on m machines. The size
of a block B, which is denoted as wpg, is defined as the number of jobs in Jg. The
block window of B is defined as (Lp, Rp].

We assume B is associated with a specific schedule of Jp in (Lp, Rp]; this can be
done, for example, by defining a lexicographic order over all schedules, and associate
B with the first valid schedule of Jp in (Lp, Rp] according to this order.

We define B to be the set of all blocks, and B* C B to be the set blocks B with
either wg = A, or Rg = T and wp < A. In the integer programming (IP) for JIS
we are defining now, we only consider blocks in B*. Let k = [3/e] and A = 2mk>;
recall that € is a parameter that stands for the proximity to the desired approximation
factor. The IP for JIS is defined as follows.

(IPconf) max Z wR - TR
BeB*
(2.1) > rp <1 vt € [T)
BeB*:Lp<t<Rp
(22) Y wp<i vieJ
BeB*:j€JB

vp€{0,1} VBeB

In the above IP, Constraint (2.1) ensures that block windows are disjoint, and Con-
straint (2.2) requires each job to be scheduled at most once. Note that the number
of constraints in (2.1) is polynomially bounded when T' = poly(n) — as mentioned
earlier, we discuss how to handle large T in later sections.

It is easy to see that any solution to the IP gives a valid schedule. On the other
hand, not every schedule can be converted to a feasible IP solution when m > 1:
Consider a schedule on m = 2 machines where the job scheduling intervals on the two
machines are (0,2],(2,4],(4,6],---,(T — 2,7T), and (1,3],(3,5], (5, 7], -+, (T — 1,7
respectively, for a large even integer T'; then we have to throw away many jobs when
breaking the time horizon into blocks. Thus, the IP may not give the optimum
throughput. However, we show that the loss is small in the following lemma.



6 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

LEMMA 2.2. The value of (IPconf) is at least ﬁ times the optimum through-
put.

Proof. Fix an optimal schedule. Given the optimum schedule, sort all the jobs
according to their completion time. Let L = 0 initially. In each iteration, take the
first A jobs J' from the sequence and let R be the completion time of the A-th job; if
there are less than A jobs in the sequence, let 7’ be all the jobs in the sequence and let
R =T. Create a block B = (L, R, J') and set 5 = 1; clearly B € B*. Then, remove
all jobs whose starting time is before R from the sequence. Then let L = R and start
a new iteration. The process ends when the sequence becomes empty. It is easy to see
that the blocks created have disjoint windows. Moreover, if |J'| = A, we remove at
most A +m — 1 jobs from the sequence: other than the A jobs in J’, we may remove
at most m — 1 extra jobs that are scheduled intersecting the interval (R — 1, R]. If
|J’| < A in the last iteration, we only remove | 7’| jobs from the sequence. Thus, the
value of the IP is at least ﬁ times the optimum throughput.* |

The LP is obtained by relaxing the constraints zp € {0,1} to zp > 0; we
denote the LP by (LPconf). Note that the running time of solving the LP is
nO@) = pOm/e)  Let 2% € [0,1]8" denote the optimal solution to the above LP.
Let OPTrp = ZBEB* wpxp denote the optimal LP objective.

2.2. Preprocessing. In the preprocessing step, the time horizon (0, T7] is broken
into a set W of disjoint intervals, which we call base windows to distinguish them from
job windows and block windows. This preprocessing step constructs a new solution
2’ € [0,1]5. The primary goals are:

e to make each block window completely contained in a base window — this
makes the rounding procedures easier to apply;

e to ensure that each block contains no “big” jobs compared to its block window
size — intuitively, big jobs are less flexible to schedule; and

e to achieve the above while almost preserving the LP objective.

Towards achieving the last goal, we will upper bound the number of jobs discarded
during the partitioning because their scheduling interval is not fully contained in a
base window or their size is big. Here, we make use of the fact that each block contains
a large number of jobs, and therefore, we can afford to discard some jobs.

More precisely, we prove the following lemma. Recall that B O B* is the set of
all blocks; so unlike xz*, the vector z’ involves blocks outside B*.

LEMMA 2.3. In time no(m/€5), we can construct a vector ¥’ € [0,1]8 described as

a list of (B, ') pairs with x5 > 0, such that the following holds:

(2.5a) For every block B € B with 23 > 0, the block window (Lg,Rg] is fully
contained in some base window in W.

(2.3b) For every block B € B with 2%z > 0 and every j € Jp, we have p; <
(Rg — Lp)/k>.

(2.36) If OPTLP 2 A, then ZBGB ’LUB.’EIB Z (1 — 6/3)OPTLP

(2.5d) For all base windows (L, Rl € W, ¥ pep. 1y rpic(,r T8 < 1+ 1/k.

(2.3¢) For all jobs j, > pep.jer, 5 < 1.

Proof. We show how to break (0,7 into base windows and obtain 2z’ € [0,1]%
from z* € [0,1]8". Note that the blocks in the support of z* can overlap with one
another. To create 2/, we iteratively cut at the time point when an additional 1/k
fraction of blocks end according to z*. Formally, we associate each integer time-point

41t is worth noting that here we crucially use the assumption that jobs have uniform weights.



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 7

t € (0,7] with a weight e; := Y 5 p+.r,—; T, Which is the sum of 7, over all blocks
B ending at time ¢t. Let L = 0 and W = () initially. Each iteration works as follows.
Let R be the first time point such that ZiLH et > 1/k, or let R = T if no such
time point exists — note that the sum is counted from time L + 1. Create a base
window (L, R] and add it to W. Let L = R and start a new iteration. The procedure
terminates when L = T'. See Figure 2.1 for illustration of the partitioning process.

LB B RB

- -base window - - » Ty : ! ! |
| | Zet Z l/k. | | | |

F1G. 2.1. Partitioning (0,T] into base windows. Each horizontal solid line represents a block.
The x-value of a block B, w7, is added to egy; for example, the e-value at the time denoted by the
big dot is the sum of x*-values of the 3 blocks denoted by thick lines. The dashed lines below the
time horizon give the partitioning of (0,T] into base windows. For each base window (L, R] except
for the last one, we have Zte(L,R] et > 1/k.

Once we defined the base windows W, for every B with =} > 0, we cut B
into multiple blocks at the boundaries of the base windows. Formally, for ev-
ery base window (L,R] € W that intersects (Lp, Rp|, we create a block B’ =
(max{L,Lp},min{R,Rp},J") where J' is the set of jobs in Jp whose schedul-
ing intervals are contained in (L, R]. Then we remove big jobs from Jg = J': a job
j in Jps is said to be big compared to B’ if p; > (Rp — Lp/)/k3.> For each block
B’ created from B, we increase x5, by x7; (initially, all 25,’s are 0). Notice that the
jobs across the boundaries of base windows are deleted in this process.

We have constructed a set W of disjoint base windows and derived a new fractional
solution z’ € [0,1]% from z* € [0,1]%"; the running time of the algorithm is clearly
bounded by n€("/ ), It suffices to show that 2’ satisfies the required properties.

Properties (2.3a), (2.3b) and (2.3e) are immediately true. To see Property (2.3d),
consider a base window (L, R] € W. We know that > pcp..pe(r, ry ¥5 < 1 due to
Constraints (2.1). Due to the way we defined R, we have } pcpcp e(r,r—1)%5 =

Zf:;lﬂ e; < 1/k; that is, at most 1/k fractional block can end during (L,R —
1]. Notice that if (Lg, Rp] intersects (L, R], i.e, if max{Lg,L} < min{Rpg, R},
then either R € (Lp,Rp] or Rg € (L,R — 1]. So, overall, we have
ZBEB*:(LB,RB] intersects (LR T8 < 1+ 1/k. This implies Property (2.3d).

It now remains to show Property (2.3¢). When a block B includes a job j, we
say that in the LP solution z*, the job is (fractionally) scheduled by z7}; units on its
scheduling interval specified by the block. Observe that in «* there are at most m
units of jobs scheduled across the boundary of two adjacent base windows. This is
because due to Constraints (2.1), there are at most one unit of blocks whose window
includes time R and each block has at most m jobs whose scheduling interval includes
the time R. Each time (except for the last one) we built a base window, we collected

5As we shall show, the number of big jobs in a block will be small. This is another place where
we rely on the assumption that jobs have uniform weights.



8 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

at least units of 1/k fractional blocks, and thus A/k units of fractional jobs within the
blocks. So the total number of boundaries is at most OPTyp/(A/k) = kOPTrp/A.
Thus we discarded at most kmOPTp/A units of fractional jobs because of crossing
boundaries. Also at most mk? units of fractional big jobs are discarded from each base
window. Thus at most mk®-(kKOPTpp/A+1) units of fractional big jobs are removed.
Since OPTyp > A and k > % > 3, the total unit of fractional jobs removed is at most
2mk*OPTrp/A = OPTrp/k < €OPTLp/3. Hence Property (2.3c) follows. a

2.3. Rounding. As mentioned before, there are two rounding procedures we
use to round 2’ € [0, 1]® to obtain an improved approximation. We will first present
the two rounding procedures and show how combining the two leads to a better
approximation. Throughout this section, we assume OPTyp > A since otherwise we
can easily find an optimal solution by considering every set of A jobs in n®®) time.

2.3.1. The First Rounding Procedure. In this subsection, we describe and
analyze the first rounding algorithm. The first rounding utilizes indepdent random-
ized rounding. The procedure independently samples a block from the set of blocks
contained in each base window W. Formally, for each base window (L, R] € W, we
sample 0 or 1 block, so that for each block B € B with (Lp, Rp] C (L, R], B is sam-
pled with probability exactly %’f/k This is well defined due to Property (2.3d) — it
says that there are only (1+1/k) fractional blocks to be considered for each base win-
dow. Then our output schedule is the concatenation of all the sampled blocks; they
must have disjoint windows since windows in W are disjoint. If a job is contained in
more than one sampled block, we only keep it in one of these blocks. This completes
the description of the first rounding.

A standard analysis of independent rounding can be used to show that each job
is scheduled with probability at least (1 —1/e)/(1+ 1/k) times the fraction by which
the job is scheduled. To derive an improved approximation better than 1 — 1/e, we
will perform a more careful analysis.

Now it is good time for us to introduce some new notations that will be used for
analyzing both rounding procedures. Let’s focus on each job j. Let W; be the set of
base windows that intersect (r;, d;]. We call the first and the last of the base windows
the boundary base windows for j and the other base windows in W; the non-boundary
base windows for j (see Figure 2.2). Let W;b and W;’ be the set of non-boundary
and boundary base window jobs for j respectively. Thus W; = WJ’-‘b W WJ'-’ . In the
case where W, contains only one base window, we assume the window is a boundary
base window. Notice that all non-boundary base windows for j are are completely
contained in (r;,d;]. Define

1 /
BGB:(LB,RB]QW,]EJB
(2.4) a; = Z fiw, and
wewrb
(25) bj = Z ijw.
Wew?

That is, f;w is the fraction by which job j is scheduled in W, scaled down by
1+ 1/k, and a; and b; are respectively the fraction by which job j is scheduled in
its non-boundary and boundary base windows, scaled down by 1 + 1/k. Notice that
aj + bj < ﬁ < 1.



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 9

_ - - --—-~-boundary base windows for j - - - _ _

~ N / -
non-boundary base windows for j

F1G. 2.2. Boundary and non-boundary base windows for job j.

Job j may appear in multiple base windows, more precisely in blocks contained
in multiple base windows. We give a refined analysis of the probability that each job
is scheduled by the first rounding by distinguishing how much the job is scheduled in
its boundary and non-boundary base windows.

LEMMA 2.4. The first rounding schedules each job j with probability at least 1 —
(1—0b;/2)%%.

Proof. Consider any fixed job j. Job j has only one boundary base window only if
(rj,d,] is fully contained in the boundary base window. In this case, job j is scheduled
with probability exactly b; > 1—(1—0b;/ 2)? and the lemma immediately follows since
a; = 0. Suppose j has two boundary base windows and call them le and Wj2. Let
b} = fj7W71 and b? = fj’sz be the contribution to b; made by each of the two boundary

base windows; so b; = b} + b?. Then, j is scheduled with probability

1-1-0ha-03) J[ - fiw)=1-Q-hHa-u) J[ eHw

WEW;b WeW}'b
=1 (=)L =Bj)e™ > 1~ (1= b;/2)% ™,

where we used the well-known inequality e* > 1 + x. ]

2.3.2. The Second Rounding Procedure. The second rounding makes use
of the flexibility of non-boundary base windows. This rounding procedure completely
ignores the boundary base windows and assigns jobs individually. Consider each job
j together with its non-boundary base windows W]”b. The fractional solution z’ tells
us how much job j can be scheduled in each of its base windows, and we randomly
assign the job to one of them exactly as the fractional solution suggests. Then, what
is the probability that job j cannot be scheduled since a lot of jobs are assigned to
the same base window? We can show such a probability is tiny by scaling down the
assignment probability slightly and using the fact that all jobs are small compared to
base windows.

Formally, the second rounding algorithm is as follows. Consider each job j. We
assign job j, independent of other jobs, to one of its non-boundary base windows
W e W;b with probability f;w. Notice that a; = ZWGW;_b fiw < Tll/k So, the
probability that j is assigned to some base window is exactly a;. For every W € W,
let J (W) be the set of jobs assigned to the base window W. Notice that for every job
j € J(W), we have (r;,d;] O W since W is a non-boundary base window for j. So, j
can be scheduled anywhere inside W. Then we try to assign (W) to the m machines
using the following simple greedy packing procedure. Initially, all jobs in J (W) are
not assigned. For every job j € J(W) in any order we do the following: If there is
a machine ¢ such that assigning j to 4 will not make the total size of jobs assigned
to i exceed the length of W, then we assign j to i; otherwise we declare failure. If
the greedy packing failed, then we discard all jobs in J(W). Otherwise, all jobs in
J (W) are assigned to machines and the total size of jobs assigned to each machine



10 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

is at most the length of W. Then we can schedule J(W) on the m machines within
the window W.
The remainder of this subsection is devoted to proving the following:

LEMMA 2.5. The second rounding successfully schedules each job j with probability
at least (1 —€/3)a;.
To establish Lemma 2.5, we first show that the greedy packing is quite effective

using the facts that each job j in J (W) can be scheduled anywhere within the window
and all jobs in J(W) are small compared to W.

LEMMA 2.6. Consider a base window W = (L, R]. If the total size of jobs in
J (W) is no greater than (1—1/k*)m(R — L), then all jobs in J (W) can be scheduled
on m machines within the window W.

Proof. Properties (2.3a) and (2.3b) imply that all jobs in J (W) have sizes no
greater than (R — L)/k3. If the greedy packing procedure for W failed, then it must
be the case that each of the m machines got assigned jobs of total size greater than
R—L—(R—-L)/k*=(1-1/k*)(R — L) before the failure. But this contradicts the
assumption that the total size of jobs in J (W) is at most (1 — 1/k*)m(R—L). O

We show that the bad event that job j is discarded after randomly assigned to
W — as the greedy packing fails to schedule all jobs in J (W) — happens with a low
probability. Towards this end, we make following observation.

LEMMA 2.7. For any W € W, the total size of jobs in J(W) is at most m(R —
L)/(1+ 1/k) in expectation.

Proof. We fix the base window W = (L,R] € W. It is the case that
Y BeBie(Lp.rp Te < 1 for every t € (L, R]; this holds due to Constraint (2.1)
and the way we obtain z’ from z*. Thus, Y pcp (1, rpcw(fle — Lp)tp =
D tew 2opeBie(Lp.rp) T8 < (R — L).  The probability that a job j with W € W]'?b
is assigned to W is exactly f; w. So the expected total size of jobs in J(W) is

1
Z fj,ij:m Z Z xic;pj

j:wewrnr J:Wew BeB:(Lp,Rp]CW,j€Tn

1
S TRk 2. 5 D P

BeB:(Lp,R]|CW Jj€EITB

1
< > apm(Rp — Lp)
1+ 1/k BeB:(Lg,Rp|CW
m
<—(R-1L).
StriEfo D

The equality follows from the definition of f;w, and the second inequality from the
fact that the total size of jobs in Jg is at most m(Rg — Lg). 0

This claim, together with the fact that all jobs are small compared to the base
window, will allow us to show that the bad event happens with a low probability. To
show this, fix a base window W = (L, R]. The upper bound in the following lemma
easily follows from a well known concentration inequality.

LEMMA 2.8. For any window W = (L, R], the total size of jobs in J(W) is at
most (1 —1/2k)m(R — L) with probability at least 1 — €/3.



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 11

Proof. Let X, be p; if job j is in J(W), and otherwise 0. Note that X; <
(R—L)/K>. Let Z = >_;X;. By Lemma 2.7, we know that p := E[Z] < m(R —
L)/(1+1/k) < (1-0.9/k)m(R—L) when k is large enough. By adding enough dummy
random variables, we may assume u = (1 — 0.9/k)m(R — L); this only increases
Pr(Z > (1 — 1/2k)m(R — L)]. We use the following concentration inequality (see
Theorem 2.3 in [15]).

THEOREM 2.9. Let Z be the sum of n independent random variables where each
random variable takes value in [0, K|. Let u = E[Z]. Then for any A € [0,1], it is the
case that

Pr[Z > (14 Mp| < e 03K,
Then, we have

Pr[Z > (1 —1/2k)m(R — L)]

(0.4/k)2/(1 — 0.9/k)? x (1 — 0.9/k)m(R — L)
< exp ( - 3(R—L)/k3 )

0.16km
3(1 - 0.9/k))
< eXp<_k/2O)7

:exp<—

which is at most €/3 when ¢ is small enough. |

Recall that each job j is assigned to one of its non-boundary windows with prob-
ability a;. Conditioned on j being assigned to a fixed base window W, the total
size of jobs in J(W) \ {j} doesn’t exceeds (1 — 1/2k)m(R — L) with probability at
least (1 — €/3) due to Lemma 2.8. Then, as observed in Lemma 2.6, all jobs in
J(W) can be scheduled within W via greedy packing as (1 —1/2k)m(R — L) + p; <
(1—-1/2k)m(R — L)+ (1/k*)m(R — L) < (1 — 1/k*)m(R — L). Thus, the probabil-
ity that job j is scheduled due to the second rounding is at least (1 —€/3)a;. This
completes the proof of Lemma 2.5

2.3.3. Combining the Two Rounding Procedures. We complete our round-
ing by taking the better between the two rounding solutions. For the sake of analysis,
we lower bound the probability stated in Lemma 2.4, by a linear combination of a;
and b;. The proof follows from a simple algebra and is given in Appendix A.

LEMMA 2.10. For all a;, b; such that 0 < a; +b; <1, (1 - (1- bj/2)2e_“f) >
A1aj + A2b; where A\ = 0.62 and Ay = 0.69.

From Lemmas 2.4 and 2.5, the expected number of jobs we schedule is at least

(1 —e/3)max{z (1 - (1- bj/Z)Zefaj) ,Zaj}

> (1—6/3)max{/\1 Zaj+/\2zijzaj}
> (1—6/3)&41“(2@#2”)

Let ap = ﬁ > 0.64485. Notice that » . a; + >, b; is the total number of
jobs scheduled by the solution 2/, scaled down by 1+1/l<: wh1ch is at least (1—1/k)(1—



12 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

€/3)OPTLp, due to Property (2.3c). Noticing that OPTpp is at least AJﬁb_l >
(1 — €/3) times the optimum throughput, our approximation ratio is at least (1 —

€/3)(1—1/k)(1 —¢/3)(1 —¢/3)apg > (1 —4€/3)ag > ap — €. This proves Theorem 1.1.

3. Proof of Theorem 1.1 when m = 1 and T is large. In this section, we
remove the dependency of running time on T for the (g —¢€)-approximation algorithm
in Section 2. Since the case m = 1 is simpler yet uses the key ideas, we consider
this case first to illustrate them. The case where m > 2 is considered in Section 4.
Throughout this section, it is assumed that A := 2mk5 = 2k5, k = [3/e].

We first give an overview of our approach. The main issue with LPns is that
the number of its variables could become super-polynomial in n when T is large
because there is a variable xp corresponding to each block B = (Lg, Rp, Jg), where
0 < Lp < Rpg <T. To keep the number of variables polynomially bounded, we will
identify polynomially many blocks while ensuring the optimum value of the LP defined
over the corresponding variables is almost as large as the optimum throughput.

Towards this end, we slightly modify the definition of a block by replacing Jg5
with a sequence of jobs. Since we will only consider blocks of size A, which is a
constant for any fixed € > 0, specifying the order of the jobs will have no effect on the
asymptotic running time. Note that in this section the following definition overrides
Definition 2.1.

DEFINITION 3.1. [Modification of Definition 2.1] A block B is a triple B =
(Lp,Rp,0p) where Lp and Rp are two integer time points such that 0 < Lp <
Rp < T, and op is a sequence of some distinct jobs in [J that can be non-preemptively
scheduled inside (Lp, Rg] on m = 1 machine in the order they appear in op. The

size of a block B, which is denoted as wpg, is defined as the number of jobs in Jp.
The block window of B is defined as (Lp, Rp].

For notational convenience, we will allow op to denote the set of jobs in the
sequence. Note that one can check if the jobs in o can be actually scheduled inside
(Lp, Rp] in polynomial time. We let og(h) denote the h-th job in the ordering op.

The first observation we make to decrease the number of blocks to consider is
that we only need to consider minimal blocks in terms of their window (except some
“boundary” blocks whose R = T'). Also, we will distinguish two types of blocks
depending on whether the jobs in the sequence are tightly scheduled in their window
— for each type, we will use a different approach.

DEFINITION 3.2. We say a block B = (Lg,Rp,o5) is minimal if both (Lp +
1,Rp,0p) and (Lp,Rp —1,0p) are not blocks. A minimal block B is said to be tight
if R — Lp = )¢, pj; otherwise loose.

We can show that the number of loose blocks is polynomial in n (Lemma 3.5).
Intuitively, the jobs in a loose block cannot be scheduled in a sub-interval of its
window, which includes some idle times of the machine, because compressing the block
window would force some jobs out of their window. Thus, such jobs will determine
the pair of the block window’s starting and ending times.

However, the number of tight blocks can be super-polynomially large. Even if we
limit the potential starting and/or ending times of tight blocks based on the total size
of jobs in the block, there still can be too many tight blocks to consider. However,
we observe that such jobs must be very flexible in terms of where to be scheduled,
and therefore, we can take away such jobs via preprocessing. Then, we can bound
the number of tight blocks to consider. Using this, we obtain a compact LP. After
solving the compact LP and using the same rounding method (the running time of the



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 13

rounding does not depend on T'), we bring back the jobs removed in the preprocessing,
where we lose only a few jobs.

3.1. Preprocessing. The goal of this preprocessing step is to ensure that there
is no job sequence of length A + 1 that is very flexible in terms of where the jobs can
be scheduled.

DEFINITION 3.3. Fix a sequence o of jobs and consider the set of integers L such
that (L, L +3_;c, pj,0) is a tight block (it is easy to see that the set is an interval).

Let Ly be the smallest such L and Lo be the largest such L.5 We say the sequence o
is flezible if Lo — L1 > 2n) ., pj-

The preprocessing step is done by a simple greedy procedure: whenever there is
a flexible sequence o of length A + 1, we remove all the A + 1 jobs in ¢ from J. Let
F denote the set of removed flexible sequences.

We now show that the removed flexible sequences can be added back into any
schedule. Intuitively, this is because the sequence is so flexible and therefore there
must be times where it can be scheduled.

LEMMA 3.4. Let o be a flexible sequence of length A+ 1 and J' = J \ 0. Given
any schedule of a subset of jobs, A C J’', we can find a schedule of all jobs in AU o
except one job.

Proof. Given a schedule of A, we try to insert the sequence o to the scheduling
with the least overlap. Let P = )" jeo D and L and Lo be the smallest and largest
L such that (L, L+ P, o) is a tight block. Since o is flexible, we have Ly — L1 > 2nP.
Focus on the window [L1, Ls + P] of the schedule; o can be scheduled in any sub-
window of [Ly, Ly + P] of length P. If some job takes at least P time slots in this
window, we can then remove the job and schedule ¢ in the P time slots. Since we
removed one job from A to schedule jobs in o, the lemma follows. Otherwise, since
there are less than n jobs in J’, there must be an idle interval of length P during

[L1, Ly + PJ]. In this case, we can insert all jobs in ¢ without removing any job from
A. a0

Once we find a schedule for the remaining jobs, we can repeatedly add flexi-
ble sequences F to the schedule using the above lemma. Let opt’ be the optimum
throughput for the remaining jobs and suppose we have an a-approximate solution
for them; recall that our target approximation ratio is less than 0.7. The resulting

aopt’ +A|F|

approximation ratio is at least for the original instance defined by J.

opt’ +(A+1)[F]
This approximation guarantee is at least a when o < AAH, which holds true when ¢
is small enough. From now on, we assume w.l.o.g. there are no flexible sequences of

length A +1in J.

3.2. Building a Compact LP by Creating Blocks Parsimoniously. We
will build a set B’ whose size is polynomially bounded by n so that LP s restricted to
the variables corresponding to blocks in B’ has the optimum objective that is almost
as large as the optimum throughput. As discussed, we will only consider minimal
blocks (except the boundary blocks, which will be discussed below). We first show
there are not so many loose (minimal) blocks to consider.

60ne can find L (if it exists) in polynomial time. This is because it must be the case that
L1 =755) = Pop1) T Pog(2) T+ Pog(n)) for some h since L1 is the smallest such L. Finding
Lo can be done similarly.



14 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

LEMMA 3.5. The number of loose blocks of size s is at most s°n°, for any positive
integer s.

Proof. Focus on a loose block B and a sequence op in (Lp, Rg]. Since B is
minimal, o5 (1) starts at L and op(s) completes at R. Since the block is loose, there
is an idle time slot in (Lp, Rg], i.e, no jobs are executed in the time slot. Consider
the first idle slot and the set of jobs in op scheduled before this slot. We then try to
shift the scheduling intervals for these jobs to right by one slot. Shifting will make the
scheduling invalid since B is a minimal block. This is because some job j in the set
has completion time equal to its deadline. Similarly, find the last idle slot in (L g, Rp]
and try to shift the scheduling intervals for jobs scheduled after this time slot to left.
There must be a job j' whose starting time equals its arrival time. For fixed op,j
and j/, Lp and Rp are determined. There are at most n® different sequences op and
s? different (j,j’) pairs. Thus, there are at most s?>n® different non-tight minimal
blocks. O

We now formally describe how to construct B’. As before, we only consider
blocks B with either wp = A := 2mk’® = 2k° k = [3/¢], or Rg = T. Thanks to
Lemma 3.5, we can afford to add all loose (minimal) blocks of size A to B’. Then, we
add “boundary” blocks: For every o of length at most A, we add a block (L, T, o) to
B’, where L is the largest L such that (L, T, o) is a block (if no such L exists, nothing
is added for this 0). These boundary blocks are not necessarily minimal.

Finally, we need to add some tight (minimal) blocks to B’. Consider each sequence
o of length A+1. Let P =3, p; be the total size of jobs in 0. Let L1 (Lo,
resp.) be the smallest (largest, resp.) integer L such that (L, L+ P, o) is a tight block
(in case L1 and Lo are not well-defined, we do not do anything for this o). It is an
easy observation that the set of such L forms an interval, i.e., [L1, Lo]. Let ¢’ be the
sequence obtained from o by removing the largest job. For every L € [Lq, Ly + P]
that is a multiple of Q := [2(?111)—" let R be the smallest integer such that o’ can
be scheduled in [L, R]; if such R exists, then add a block (L, R,0”) to B’. For every
R € [Ly1, Ly + P] that is a multiple of @, let L be largest integer such that ¢’ can
be scheduled in [L, R]; if such L exists, we add the block (L, R,0’) to B’. This is
where the preprocessing helps — as it is assumed w.l.o.g. that there are no flexible
sequences of length A + 1 in J, we can bound the number of tight blocks we added
to B'.

The following lemma formally bounds the number of blocks in 5.

LEMMA 3.6. The number of blocks in B’ is at most 10An"+2,

Proof. By Lemma 3.5, the initial size of B’ is at most A?n®. For each o of
length at most A, we added at most one block (L, T, ) to B'. Therefore, we added
at most n® “boundary” blocks. Now for each ¢ of length A + 1, we inserted at most
2 [%] <2 (<L2“+P;£1>'2<A“> n 1) < 2(4n(A +1) +1) < 9An blocks for
large enough A and n. The second inequality used the fact that o is not flexible.
Thus, the size of B’ is at most A?n® + n® + n®*t1 x 9An < 10An?+2  for large
enough n. ]

After changing Jp to op in Constraint (2.2), we solve the LPcn, with the re-
striction that only blocks in B’ can take positive x value. We refer this LP as the
compact LP. Since |B| is at most 10An”*2, the compact LP can be solved in n®(»)

"We can find L in polynomial time by considering the jobs in ¢ in the reverse order.



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 15

running time. Once the LP is solved, we can use the same rounding algorithm that
was used to solve the case when T' is polynomial in n.

To complete the proof, we show that the set B’ suffices to give a good relaxation.
The following lemma shows that this process of removing the dependency on T has a
negligible effect on the approximation ratio.

LEMMA 3.7. The optimum objective of the compact LP is at least <2—opt = (1-

A+
O(€®))opt.

Proof. To prove the lemma, from a fixed optimum solution we will construct a
feasible LP solution whose objective is at least AA_H times the optimum throughput.
The challenge is to use only blocks in B’ to construct such an LP solution. Towards
this end, divide the set of scheduled jobs in the optimum solution into blocks of size
A + 1. If the last block (L, R,o0) has size at most A, we can replace it with the
block (L', T,0) € B’ (Notice that L' > L) — this is a “boundary” block we added to
B’. Now consider each block (L, R,0) of size A + 1 constructed from the optimum
solution. Let o’ be the sequence of A jobs obtained from ¢ by removing the largest
job. We will find a block (L', R',¢") € B’ such that (L', R') C (L, R). This suffices to
prove the lemma. Intuitively, removing the largest job will allow us to shift the block’s
starting or ending time. Therefore, even if we only added blocks to B’ whose starting
or ending time are a multiple of @, we will be able to find such a block (L', R, o”).

We find an arbitrary minimal block (L, R"”,o’) such that (L”,R") C (L, R).
If (L”,R",0’') is loose, then (L’ = L”, R’ = R",0’) is in B’ since we added all loose
blocks to B’. It remains to consider the case that (L”, R”,0’) is tight. Then R” —L" <
AAH(R — L) since R” — L" is the total size of jobs in ¢/, R — L is at least the total
size of jobs in o, and ¢’ is obtained from o by removing the largest job. Then

L' —L+R—R" > %=L implying cither L'~ > Q := [%] or R—R" > Q. We
consider the case L' —L > @ (the other case is analogous). Thereisa L’ € [L, L”] such
that L’ is a multiple of Q. Then (L', R’,¢’) is a block where R’ is the smallest time
such that ¢’ can be scheduled during (L', R"). Regardless of whether the block is tight
or loose, by our construction, we have added a block (L', R',o’) with R" < R” < R
to B'.

To summarize, for each block B resulted from partitioning the optimum solution,
we found a block B’ € B’ whose window is fully contained in B’s window and has
an equal number of jobs or one less. In particular, when B’ had one less job, B had
A + 1 jobs. Thus, we have shown the lemma. 0

4. (o — ¢)-approximation for Unweighted JIS when m > 2 and T is
Super-polynomial in n. In this section, we describe our (« — €)-approximation for
JIS on constant m > 2 machines when 7" is super-polynomial in n. The algorithm
works by combining ideas similar to those we developed in Section 2 and 3. Since
the analysis is almost identical, we will only formally state the new definitions and
lemmas explaining how their proof should be modified. Throughout this section, let
k= [3/e] and A = 2mk>.

We start by extending the definition of blocks to multiple machines.

DEFINITION 4.1. [Extension of Definition 3.1] A block B is a triple B =
(Lp,Rp,0p) where L and Rp are two integer time points such that 0 < Lp <
Rp < T, and op, called a sequence tuple, is a set of m sequences of some distinct
jobs in J such that the i-th sequence o'y in o can non-preemptively scheduled inside
(L, Rp] on one machine in the order they appear in o%. The size of a block B,
which is denoted as wpg, is defined as the total number of jobs in the m sequences.



16 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

The block window of B is defined as (Lp, Rpg].

Note that the jobs in the m sequences are all distinct, and the sequences may
have different number of jobs. We let o5 (h) denote the h-th job in o%.

DEFINITION 4.2. [Extension of Definition 3.2] We say a block B = (Lp, Rp,0p)
is minimal if both (Lg + 1, Rp,0p) and (Lg, R — 1,05) are not blocks. A minimal
block B is said to be tight if Rp — Lp = max;c [ Zj@g p;j, otherwise loose.

As before, we first take a preprocessing step and construct a set B’ of a polyno-
mially many blocks.

4.1. Preprocessing.

DEFINITION 4.3. [Extension of Definition 3.3] Fix a sequence tuple o. Let P =
Max; e Zjegq; pj, and Ly (Lg, resp.) be the smallest (largest, resp.) L such that
(L, L+ P, o) is a tight block. We say the sequence tuple o is flexible if Ly — Ly > 2nP.

LEMMA 4.4. [Extension of Lemma 3.4] Let o be a flexible sequence tuple of A+m
jobs and J' = J \ 0. Given any schedule of a subset of jobs, A C J', we can find a
schedule of all jobs in AU o except m jobs.

Proof. As in the proof of Lemma 3.4, we can add all jobs in ¢? to the i-th machine
while removing at most one job. O

Thanks to Lemma 4.4, we can repeatedly remove a flexible sequence tuple o of
A + m jobs if such a tuple exists. Let F denote the set of removed flexible sequence
tuples.

We first show that this preprocessing has no effect on our target approximation
ratio. Once we find a schedule for the remaining jobs, we can repeatedly add flexible
sequence tuples F to the schedule using the above lemma. Let opt’ be the optimum

throughput for the remaining jobs and suppose we have an a-approximate solution for
aopt’ +A|F]|
opt’ +(A+m)|F]|

instance defined by J. This approximation guarantee is at least a when a < Aiﬁ’
which holds true when € is small enough.

We briefly discuss the running time of finding a flexible sequence tuple o of size
A + m. Firstly, we enumerate all sequence tuple o of size A + m, which can be
obviously done in nO(A? time. Let P = max;e(m| Zj.EUi pj. Let’s focus on each o?.
We find an interval [LY, L3] such that all jobs in o' can be schedulable in (¢t +
P] on a single machine for any time L{ < t < L. Then, we will set (L, Lo) =
(max;ep,) LY, minge () Lb). Thus, we can find a flexible sequence tuple o of size A+m
Oo(4)

them. The resulting approximation ratio is then at least for the original

time.
From now on, we assume w.l.o.g. that there are no flexible sequence tuples of
A+ m jobsin J.

inn

4.2. Building a Compact LP by Creating Blocks Parsimoniously. In this
section we discuss how we construct a small set B’ of blocks. Using essentially the
same argument as we used in the proof of Lemma 3.5, we can prove that the number
of loose blocks B of size s is at most s2n°. Thus, we can afford to add all loose blocks
of size A to B’. Then for every sequence tuple o of size at most A +m — 1, let L be
the largest number such that (L,T, o) is a block if such L exists, and add the block
to B’. So far the size of B is n®®).

Next, we add some tight blocks to B’. Consider each sequence tuple o of size
A+m. Let P = maX;epm] Y jecoi D be the maximum total size of jobs in any sequence.
Let Ly (Lo, resp.) be the smallest (largest, resp.) integer L such that (L, L+ P, o) is



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 17

a tight block (in case L; and Lg is not well-defined, we do not do anything for this o).
For each non-empty sequence o, we remove the largest job; if we removed less than
m jobs, we remove more jobs arbitrarily until we removed exactly m jobs. Let o’ be
the new sequence tuple (it has size A). For every L € [L1, Ly + P] that is a multiple

of Q := [m—‘ , let R be the smallest integer such that (L, R,o”) is a block; if such

R exists, then add (L, R,0’) to B'. For every R € [Ly, Ly + P] that is a multiple of
Q, let L be largest integer such that (L, R,o¢’) is a block; if such L exists, we add
(L,R,0’) to B'.

Using essentially the same argument as we used in the proof of Lemma 3.6, we
can show that |B/| = 10AnA+2 = pOA),

We solve the same LP.nf, except Jp in Constraint (2.2) being changed to
Usiegm ol and B being replaced with a smaller subset B’ we constructed. We re-
fer to this LP as the compact LP. It is clear that we can solve the compact LP in
nPA) time. As before, we can use the same rounding procedure we developed in
Section 2.

It now remains to show that solving this compact LP loses only little compared
to the optimum.

LEMMA 4.5. The optimum objective of the compact LP is at least
(1 — O(€%))opt.

A _
Afom—1OoPt =

Proof. The proof of this lemma is very similar to that of Lemma 3.7. Consider
the optimum schedule for the instance and divide the set of scheduled jobs into blocks
of size A 4+ m (some jobs may be dropped, but the number is at most m — 1). If
the last block (L, R, o) has size at most A +m — 1, we can replace it with the block
(L', T,0) € B; notice that L’ > L. Now consider each block (L, R, o) of size A +m
constructed from the optimum solution. We remove the largest job from each non-
empty sequence in ¢; remove more jobs if needed so that the number of removed jobs
is exactly m. Let ¢’ be the new sequence tuple of size A. It is sufficient to find a
block (L', R',¢") € B such that (L', R’) C (L, R).

We find an arbitrary minimal block (L”, R”,o’) such that (L”,R") C (L, R). If
(L",R",c’) is loose, then (L' = L”,R' = R",0’) is in B'. It remains to consider the
case that (L, R"”,¢’) is tight. Then R"—L" < %(R—L). Then L"—L+R—-R" >

itfw implying either L' — L > Q := [%-‘ or R— R"” > @Q. We consider the case
L" — L > @ (the other case is analogous). There is a L' € [L, L"] such that L' is a
multiple of Q. Then (L', R’,¢’) is a block where R’ is the smallest time such that all
sequences in o’ can be scheduled during (L, R']. By our construction, we have added
a block (L', R',0') with R" < R" < R to B'.

To summarize, when we obtained a block B of size A + m from partitioning the
optimum solution, we had to drop at most m — 1 jobs; and then, we found a block
B’ € B’ of size A whose window is fully contained in B’s window. If B was of smaller
size, we didn’t lose any job. Thus, we have shown the lemma. 0

5.1-0 (\/ (1/m)1n m) -approximation for JIS. In this section our goal is to
prove Theorem 1.2 assuming that 7' = poly(n).

We start by describing our algorithm which works by rounding the naive LP
relaxation for the problem. The relaxation is the following. Let x;; denote whether



18 SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

job j is started at time ¢. This variable is defined if r; <t < d; — p;.

(LPraive) max Z Z W;Tj
t

J
min{d, —p; .t—1}

(5.1) Z Z Tjpy <m vt € [TY;

J t'=max{r;t—p;}

(5.2) PRETTES VjieJ.
t

where x;, > 0 for all j € J,t € [r;,d; —p;]. The first constraint ensures that at most
m jobs are scheduled at any point in time. The second constraints ensure that each
job is scheduled at most once.

Our algorithm solves the LP and then rounds the fractional solution. For each
job, we do randomized rounding. Each job j selects a starting time ¢ to be scheduled
with probability (1 —€)xz;+, and j is not scheduled with probability 1 —(1—¢€) 3", z;,
where € < 1 is a parameter depending on m which will be fixed later. This is the
tentative schedule, which could be infeasible. Order the jobs by their starting times
in the tentative schedule. Consider a job j, whose starting time is ¢ in the tentative
schedule. Schedule job j at time ¢ whenever there is a machine free at time ¢. A job
j can be feasibly scheduled if and only if the time slot (¢, ¢+ 1] is covered by less than
m already-assigned jobs.

To bound the quality of the solution, the goal is to bound the probability that a
job is scheduled. The proof idea is quite simple. Consider any fixed job j. Condition
on the event that the algorithm chooses to tentatively schedule j at time ¢; this
happens with probability (1 — €)z;;. We bound the probability that j is removed
from the tentative schedule. We apply a concentration inequality (Theorem 2.9) since
each job is rounded independently of other jobs.

LEMMA 5.1. Each job j s scheduled with probability at least (1 —
2
€) (1 — exp (—mﬁ)) Yo Tt

Proof. Consider any fixed job j. We condition on the event that we chose to
tentatively schedule j at time ¢; this happens with probability (1 — €)z;;. We then
bound the probability that j is removed from the tentative schedule. For this to
happen, there must be at least m jobs ¢ # j with tentative scheduling intervals
covering (t,t + 1]. Let X; be an indicator random variable that is 1 if the tentative
interval for job i covers (¢,¢ + 1] and 0 otherwise. Then Z := ), ,; X; > m if job j is
removed from the tentative schedule. Also notice that p = E[>"" , X;] < (1 —€e)m
because at most m jobs are fractionally scheduled at time (¢,¢ + 1], and we schedule
i at t" with probability (1 — €)z; . By adding dummy random variables, we assume
1 := (1 — €)m; this only increases Pr[Z > m)].

Since € < 1, we have

¢ 2

Pr[Z > m] Sexp(— (1_6>2(1—6)m/3> zexp(—%).

Thus, the probability that j is tentatively scheduled at ¢ and is not removed from
the tentative scheduling is at least (1 —¢€) (1 — exp (735272))) 2. Adding this over

a
all ¢, job j is scheduled with probability at least (1 —¢) (1 — exp (—%)) YO



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 19

2

Set € = 21% Then exp (—%) < m~2/3 and (I—e) (1 — exp (—3(6171”6))) >

1— 21% —m™23=1-0 ( bfy;”) . This implies the second half of Theorem 1.2.

6. Handling Large 7T in the <1 -0 (1/W>)-approximation for
Unweighted JIS. In this section, we show how to handle large 7 in the
(1 -0 (4/ 107gnm>)—approximation in Section 5. Note that this is for the unweighted

case. Though the algorithm in Section 5 is for weighted JIS, we can only handle large
T when the jobs are unweighted and we will point out the technical reason below.

Using the preprocessing step described in Section 3, we can assume w.l.o.g. that
there are no flexible sequences of length A+1 in J; see Definition 3.3 for the definition
of flexible sequences. This is because once we find a schedule for the remaining jobs
after removing some flexible sequences in the preprocessing step, we can repeatedly
add back the deleted flexible sequences to the schedule using Lemma 3.4 on an ar-
bitrary machine. Then, define a block B = (Lp, Rg,0p) as in Section 3: Ly < Rp
are integers in (0,7] and op is a sequence of different jobs that can be scheduled on
(Lp, Rp] on one machine. The size wp of B is the number of jobs in op.

The LP is the following.

B
rp <m Yt € [T
B:Lp<t<Rp
Y ap<l  VjeJ
B:jeop
B Z 0 VB

Notice that the difference between this LP and LPy,s in Section 2 (other than the
difference between sequences and sets): in the above LP, the jobs in a block need
to be schedulable on 1 machine, and we require each time point to be covered by at
most m blocks. In contrast, in (LPenf), the jobs in a block need to be schedulable
on m machines and we require each time point to be covered by at most 1 block. We
note that the more complicated blocks used in (LPcnf) that encode schedules on m
machines was only needed to a get a better than (1 — 1/e)-approximation.

The value of the above LP is clearly at least the optimum throughput. Now our
goal is to reduce the number of blocks to remove the dependence on 7' similarly to
the procedure in Section 3. Thus, we limit blocks B considered in the LP to the set
B’ of blocks we constructed in Section 3. Lemma 3.6 ensures that |B| has size at
most 10An”*2 independent of T assuming that A := 2k k = [3/].

We have now restricted the possible blocks, potentially changing the value of the
LP objective. The proof of Lemma 3.7 ensures the LP with the restriction that only
blocks in B are considered has value at least AA_H times the optimum throughput.
This is critically where we use that the jobs are unweighted.

With this restriction, the LP has size independent of T. We solve this LP. Now
observe that a fractional solution to the above LP yields a solution to the naive LP of
the same objective value. We construct the solution to the naive LP. Using this LP
solution we run the algorithm in Section 5 to get an integer solution. The analysis in



20

SUNGJIN IM, SHI LI, AND BENJAMIN MOSELEY

Section 5 gives the final approximation ratio of 1 — O (\ / IOTgnm) — €. This proves the
first part of Theorem 1.2.

REFERENCES

Micah Adler, Arnold L Rosenberg, Ramesh K Sitaraman, and Walter Unger. Scheduling time-
constrained communication in linear networks. Theory of Computing Systems, 35(6):599—
623, 2002.

Nikhil Bansal, Ho-Leung Chan, Rohit Khandekar, Kirk Pruhs, Clifford Stein, and Baruch
Schieber. Non-preemptive min-sum scheduling with resource augmentation. In IEEE Sym-
posium on Foundations of Computer Science, pages 614—-624, 2007.

Philippe Baptiste. An O(n?*) algorithm for preemptive scheduling of a single machine to mini-
mize the number of late jobs. Oper. Res. Lett., 24(4):175-180, 1999.

Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Approximating the
throughput of multiple machines in real-time scheduling. SIAM Journal on Computing,
31(2):331-352, 2001.

Piotr Berman and Bhaskar DasGupta. Improvements in throughout maximization for real-time
scheduling. In ACM Symposium on Theory of computing, pages 680-687. ACM, 2000.
Jacek Blazewicz, Klaus H Ecker, Erwin Pesch, Giinter Schmidt, and Jan Weglarz. Scheduling

computer and manufacturing processes. Springer Science & Business Media, 2013.

Julia Chuzhoy, Rafail Ostrovsky, and Yuval Rabani. Approximation algorithms for the job
interval selection problem and related scheduling problems. Math. Oper. Res., 31(4):730—
738, 2006.

Matteo Fischetti, Silvano Martello, and Paolo Toth. The fixed job schedule problem with
spread-time constraints. Operations Research, 35(6):849-858, 1987.

M. R. Garey and David S. Johnson. T'wo-processor scheduling with start-times and deadlines.
SIAM J. Comput., 6(3):416-426, 1977.

Nicholas G Hall and Michael J Magazine. Maximizing the value of a space mission. Furopean
journal of operational research, 78(2):224-241, 1994.

Kwang Soo Hong and Joseph Y.-T. Leung. Preemptive scheduling with release times and
deadlines. Real-Time Systems, 1(3):265-281, 1989.

Gilad Koren and Dennis Shasha. D"over: An optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM Journal on Computing, 24(2):318-339, 1995.

FEugene L Lawler, Jan Karel Lenstra, AHG Rinnooy Kan, and DB Shmoys. Sequencing and
scheduling: Algorithms and complexity. Hanbooks in Operations Resarch, vol. 4, 1993.

Richard J. Lipton and Andrew Tomkins. Online interval scheduling. In ACM-SIAM Symposium
on Discrete Algorithms, pages 302—-311, 1994.

Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathemat-
ics, pages 195—248. Springer, 1998.

Frits CR Spieksma. On the approximability of an interval scheduling problem. Journal of
Scheduling, 2(5):215-227, 1999.



NON-PREEMPTIVE THROUGHPUT MAXIMIZATION 21

Appendix A. Proof of Lemma 2.10.

Proof of Lemma 2.10. Fix j. For notational convenience, drop j from the sub-
scripts. Our goal is to show 1 — (1 — b/2)%e~% > 0.62a + 0.69b for all a,b > 0 such
that a + b6 < 1.

We observe that we can assume w.l.o.g. that either b = 0 or a + b = 1. To see
this, fix a. So, we have 0 < b < 1 — a. Notice that it suffices to show the inequality
when (b/2—1)%e~%+0.69b is maximized, which occurs when either b =0 or b = 1—a.
Consider the easier case b = 0. Then, the inequality simplifies to 1 — 0.62a > e~
which is true for all 0 < a < 1.04.

We now consider the other case when b = 1 — a. By a simple calculation, the
inequality simplifies to

(A1) €*(0.28a + 1.24) > (a + 1)

Let g(a) = €%(0.28a + 1.24) — (a + 1)? and we need to show that g(a) > 0 for every
a € [0,1]. Let ¢'(a) := j—Z = e%(0.28¢+1.52) — 2(a+1) and ¢"(a) := ji—g = ¢%(0.28a +
1.8) — 2 be the first-order and second-order differential function of g respectively.
Notice that ¢”(a) is an increasing function of a, ¢”(0) < 0 and ¢”(1) > 0. Let ag €
(0,1) be the number such that ¢g”(ag) = 0. Then ¢’(a) is decreasing over a € [0, ag]
and increasing over a € [ag, 1]. So, the minimum of g(a) for a € [0, 1] is achieved when
a=0,a=1,or a=ay, where a; is the unique number in [ag, 1] such that ¢’(a1) = 0,
if this aq exists. Notice that g(0) = 0.24 > 0 and ¢(1) = 1.52e — 4 > 0.1317 > 0. So
it suffices to check if g(a1) > 0 when a; exists.

We notice that ¢/(0.6715) = %6715 x (0.28 x 0.6715 +1.52) —2 x (0.6715+1) < 0
and ¢/(0.6716) = %6716 x (0.28 x 0.6716 + 1.52) — 2 x (0.6716 + 1) > 0. So a; exists
and we must have a; € (0.6715,0.6716). But then g(a;) > €%¢71%(0.28 x 0.6715 +

1.24) — (0.6716 + 1)2 > 0. Thus, we proved g(a) > 0 for every a € [0, 1]. O



	Introduction
	Our Results
	Our Techniques
	Related Work
	Organization

	Proof of Theorem 1.1 when T = poly(n)
	Linear Programming Relaxation for Job Interval Scheduling
	Preprocessing
	Rounding
	The First Rounding Procedure
	The Second Rounding Procedure
	Combining the Two Rounding Procedures


	Proof of Theorem 1.1 when m = 1 and T is large
	Preprocessing
	Building a Compact LP by Creating Blocks Parsimoniously

	(0-)-approximation for Unweighted JIS when m 2 and T is Super-polynomial in n
	Preprocessing
	Building a Compact LP by Creating Blocks Parsimoniously

	1-O((1 / m) lnm)-approximation for JIS
	Handling Large T in the (1-O(logmm))-approximation for Unweighted JIS
	References
	Appendix A. Proof of Lemma 2.10

