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Abstract. This paper considers minimizing the `k-norms of flow time on a single machine offline
using a preemptive scheduler for k ≥ 1. The objective is ideal for optimizing jobs’ overall waiting
times while simultaneously being fair to individual jobs. This work gives the first O(1)-approximation
for the problem, improving upon the previous best O(log logP )-approximation by Bansal and Pruhs
(FOCS 09 and SICOMP 14) where P is the ratio of the maximum job size to the minimum. The
main technical ingredient used in this work is a novel combination of quasi-uniform sampling and
iterative rounding, which is of interest in its own right.

1. Introduction. Client-server scheduling is a central problem in various fields
and there is a wide range of research on the topic [30, 33]. Typically there is a server,
or alternatively a machine, which receives n requests for jobs to be processed on the
machine. Each job j requires pj units of time to be processed, arrives at some time
rj and can only begin processing after the job arrives. In some cases, the jobs have
priorities. In this case, each job j is associated with a positive weight wj where a
higher weight implies a higher priority. The goal is for the scheduler to process the
jobs in order to optimize a quality of service metric for the clients. This work considers
scheduling jobs that arrive over time on a single machine that are to be scheduled
preemptively offline where every job j’s arrival time rj and processing time pj are
known in advance.

Given a scheduler, a job j is completed at the first time Cj when the scheduler has
performed pj units of processing on job j. Many objective functions are considered in
scheduling theory because different systems have different needs. A widely considered
class of objective functions are those that depend on the completion time of jobs,
such as total completion time

∑
i Ci, total weighted completion time

∑
i wiCi and

maximum completion time (makespan) maxi Ci. These objectives are well understood
in many scheduling environments [18, 16, 1, 2, 26].

While completion time objectives have been widely considered, when jobs arrive
over time, more common metrics are based on the flow time of the jobs. The flow time
of j is Cj − rj , which is the total time job j waits to be completed after its arrival.
When jobs arrive over time, it is of more interest to consider the flow time of a job
rather than the completion time. This is because the completion time ignores when
the jobs arrive, which is critical for capturing the quality of service a client receives.
In particular, a client that submits a job j would like j to be completed as soon as
possible. In other words, the client would like the flow time of j to be minimized. In
the client-server setting, the scheduler typically considers a quality of service metric
over all the jobs’ flow times.

One of the most popular objectives based on flow times is minimizing the total (or
equivalently average) flow time

∑
j(Cj−rj). This objective focuses on optimizing the
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average quality of service of the jobs or, alternatively, the average waiting time of jobs
in the system. In the case where the jobs have priorities, the goal is to find a scheduler
minimizing the total weighted flow time

∑
j wj(Cj − rj). While total (weighted) flow

time is a fundamental objective, unfortunately an algorithm that minimizes the total
flow time of a schedule may be unfair to individual jobs. Amongst other priorities,
fairness is one of the highest concerns in almost all systems in practice [34]. Due to
the potential for unfairness, it is not surprising that some systems in practice do not
use algorithms that are designed to minimize total flow time only.

To enforce fairness into the schedule, the most commonly considered metric is

minimizing the `k-norm of the flow times k

√∑
j(Cj − rj)k. For the `k-norms, typically

k ∈ [2, 3], in which case the schedule is seeking to reduce the variance of flow times
of the jobs. By optimizing the variance, the scheduler enforces fairness among the
clients. Due to the importance of fairness criteria, the `k-norms of flow time has
been extensively studied in many machine environments in search of discovering the
most efficient schedulers. For example: on a single machine [6, 7], multiple machines
[14, 11, 9, 22, 27], in broadcast scheduling [19, 15, 24], for parallel processors [19, 24]
and on speed scalable processors [25].

The setting this work considers, preemptive job scheduling on a single machine,
has been studied for decades. Despite being well researched, the complexity of some
of the most fundamental quality of service objectives are not known. This is despite
the fact that this is perhaps the most basic environment considered in the client-server
setting. In particular, the complexity of the total weighted flow time and the `k-norms
of flow time remain unresolved. The likely reason is that flow time based objectives
require fundamentally different, and in many cases more sophisticated, algorithmic
techniques than completion time objectives.

Two central open problems in the client-server scheduling setting are if min-
imizing the total weighted flow time and/or the `k-norms of flow time admit an
O(1)-approximation. It is well-known that unweighted total flow time can be solved
optimally in polynomial time using the shortest-remaining-processing-time algorithm.
Weighted flow time was shown to be strongly NP-Hard [29] over three decades ago.
The `k-norms of flow time for k ≤ 2 <∞ had resisted a hardness proof until recently
it was shown to be strongly NP-Hard for all k ≤ 2 < ∞ [32]. Neither problem is
known to be APX-Hard.

The best known algorithms for both problems were shown in [7] which gave a
O(log logP )1 approximation algorithm in both cases where P is the ratio of the max-
imum to minimum job size. A recent breakthrough by Batra, Garg and Kumar [8]
gave a O(1)-approximation for weighted flow time in pseudo-polynomial time and
Feige, Kulkarni and Li [21] improve this to give a O(1)-approximation in polynomial
time. If all jobs arrive at the same time, the shortest job first algorithm is optimal for
the `k-norms of flow time and Smith’s rule is an optimal algorithm for weighted flow
time. A quasi-polynomial time approximation scheme is known for weighted flow time
[17]. Due to the existence of the pseudo-polynomial time and the quasi-polynomial
time algorithm, it is reasonable to believe that total weighted flow time admits an
O(1)-approximation. As will be discussed shortly, the `k-norms of flow time is similar
to weighted flow time, so it is additionally reasonable to believe this problem admits

1More precisely, one can get a O((log logP )1/k)-approximation for the `k-norm of flow using the
algorithm in [7] since it gives a O(log logP )-approximation for the kth power of flow, i.e.

∑
j(Cj −

rj)k.
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an O(1)-approximation.
Similar techniques have been used to develop algorithms for both problems [20,

5, 4, 3, 23]. This is natural as the objectives are closely related. Indeed, consider the
total weighted flow time objective and some fixed schedule A. Let WA(t) denote the
total weight of the jobs that have arrived but are unsatisfied in A at time t. Then
the objective value of A is

∫∞
t=1

WA(t). Thus the goal is to ensure the algorithm A
has small aggregate weight of jobs that are unsatisfied at each time step on average in
the schedule. Similarly, for the `2-norm of flow, let LA(t) denote the sum of the ages
of the jobs that have arrived and are unsatisfied in a schedule A at time t. The age
of a job j at time t is t − rj . The `2-norm objective of A, ignoring the outer square
root, is

∫∞
t=1

2LA(t). The goal is to ensure the algorithm has small aggregate age of
jobs that are unsatisfied at each time step on average in the schedule.

The similarity in the objectives is that the ages act much like weights. Due to
this, algorithms for one objective tend to lead to the discovery of an algorithm for
the other objective. Even the NP-Hardness reduction for the `k-norm of flow time
essentially releases jobs in a very careful way to ensure that they simulate having
weights, effectively simulating the reduction used to show weighted flow is NP-Hard.

While both objectives are similar, they are obviously not the same. In particular,
the ages of jobs change over time, which can make them more challenging algorith-
mically than weights. Alternatively, the weights for jobs can be arbitrary and need
not depend on when jobs arrive, whereas the ages of jobs depend on the jobs’ ar-
rival times. This fact makes the ages of the jobs less algorithmically challenging than
weights. Due to this, the problems are mathematically incomparable.

In the research that has tried to answer whether or not these two problems admit
O(1)-approximation algorithms, one pervasive question is whether or not one of these
problems is easier than the other.

Results: This paper considers the `k-norms of flow time objective on a single ma-
chine. We show the following theorem.

Theorem 1. There is a randomized polynomial time O(1)-approximation algo-
rithm for the `k-norm of flow time for all k ≥ 1 in the single machine setting.

To show the previous theorem, the analysis strongly uses a key property of the
`k-norms of flow time, which does not hold in the case of average weighted flow time
even for the `1 norm. The property is the following: for any two jobs i and j such
that ri ≤ rj and pi < pj , one can assume w.l.o.g. that i is completed before j in an
optimal schedule. This is because if j completes earlier, then one could have finished
i by j’s completion time since it has smaller processing time. Further, since i arrives
earlier, it only costs the scheduler more for the `k-norms objective by making i wait
longer than j to be satisfied (i’s age is more than j’s at any time). The proof of this
follows by this intuition and an elementary swapping argument. While this property
is simple, it is the key underlying property that allows us to apply our algorithm and
analysis framework.

We note that this property, however, does not hold in the weighted case even for
the `1-norm. In particular, even if ri ≤ rj and pi < pj , one may need to complete j
before i if j’s weight is much larger than i’s weight. Perhaps this property makes the
`k-norms of flow time an easier problem than weighted flow time.

1.1. An Overview of the Analysis Techniques. This section discusses the
core techniques used at a high level. The most relevant work to ours is that of [7].
The work of [7] reduces the `k-norm problem to a geometric set cover problem so that
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their algorithm can leverage known techniques for geometric set cover. Unlike this
previous work, this paper’s approach is to consider the `k-norm problem directly.

We begin by using an integer program for the `k-norm problem, which was in-
troduced in [7].2 The integer program has a variable xi,t that is 1 if job i remains
unsatisfied at time t and 0 otherwise. Thus, the last time t where xi,t = 1 is the time
job i is completed. Effectively, this sets ‘deadlines’ for the jobs. The constraints of
the program ensure that there is a feasible schedule that finishes the jobs by their
deadlines by enforcing that the amount of work that must be done during every time
interval does not exceed the length of the interval. The algorithm introduced in this
work relaxes the program to a linear program and solves this LP. Then the algorithm
rounds it to an integral solution whose expected cost is bounded by a O(1) factor of
the optimal LP cost.

To round the LP, the algorithm sets integral completion times of jobs to ensure all
the constraints of the LP are satisfied. To do this, the algorithm samples completion
times for jobs via randomized rounding, oversampling a completion time by an O(1)
factor more than the fractional LP value. By oversampling by an O(1) factor, the
algorithm ensures the completion times sampled only cost O(1) more than the optimal
LP cost. This procedure may leave some constraints unsatisfied. In particular, there
could be no way for a scheduler to meet the sampled completion times for all the jobs.
The algorithm needs to push back the completion times of some jobs to later times
to obtain a feasible schedule.

At this point, the most natural strategy is to recurse and use iterative rounding to
ensure the remaining constraints are satisfied. However, an algorithm cannot recurse
too many times using standard iterative rounding while keeping the cost to be at most
a O(1) factor larger than the LP’s cost. In the end, the algorithm needs to ensure
each job’s completion time is only oversampled by an O(1) factor so the objective is
bounded in the analysis.

To circumvent this hurdle the algorithm defines for each unsatisfied constraint,
corresponding to an overloaded time interval I, a set of jobs NI that are critical
for satisfying this constraint. This set may not be all jobs being used to satisfy
the constraint for I in the LP, but only the critical ones. The set is defined in
such a way to take advantage of the property of optimal solutions to the `k-norm
problem mentioned above. Intuitively, jobs in NI are the most important jobs the
LP used to satisfy the constraint for I. The algorithm recurses and utilizes iterative
rounding; however, the algorithm only considers jobs that are in NI for some interval
I whose constraint is not satisfied. The analysis establishes that the probability
that a fixed job is included in any set NI over all intervals I that are unsatisfied
is a small constant. Thus, in each iteration, the probability a completion time for
a job is sampled decreases geometrically because the probability a job remains in
the LP decreases geometrically.3 This ensures that overall any completion time is
still sampled with O(1) extra boosting over the fractional amount in the LP, as if
only one iteration of randomized rounding occurred. For this reason, the approach is
called iterative quasi-uniform sampling. After recursing O(log n) times, the analysis
establishes that all intervals are satisfied, even though the recursion only considered

2In their paper, they conjecture that the linear program relaxation induced from the integer
program have an O(1)-integrality gap for the general objective they consider, which encompasses
total weighted flow time and `k-norms of flow time both.

3More precisely, if a job j is almost complete at time t, then we show that j’s completion time
can be safely upper bounded by time t with a constant probability in each iteration, making the LP
solution more integral by decreasing the LP cost due to fractional xj,t by a constant factor.

4



min
∑
j

∑
t>rj

(
(t− rj)k−(t− 1− rj)k

)
xj,t(LPmain)

s.t. xj,t ≤ xj,t−1 ∀j, t > rj(1) ∑
j∈R(I)\S

xj,t min{pj , V (I)− |I| − P (S)} ≥ V (I)− |I| − P (S)

∀I = [s, t],∀S ⊆ R(I) where V (I)− |I| − P (S) ≥ 0(2)

xj,rj = 1 ∀j
xj,t ≥ 0 ∀j, t ≥ rj

Fig. 1. A linear program relaxation for the kth power flow time objective.

jobs in NI to satisfy the constraint for I.
The rounding technique is in similar spirit as the quasi-uniform sampling tech-

nique of [35, 13] for geometric set cover; however, quasi-uniform sampling is not used
for LP rounding and is a different algorithmic technique.

2. Preliminaries.

2.1. Formal Problem Definition and Notation. There is a set of n jobs
that arrive over time. Each job j has an integer processing time/size pj and arrives at
some time rj ≥ 0. Both quantities pj ≥ 1 and rj are assumed to be integers. Times
are slotted. During each time slot [t, t+1] for an integer t ≥ 0, the machine can either
process one job exactly by one unit or process no jobs. The goal is to schedule all jobs
preemptively offline to minimize the `k norm of flow time. A preemptive scheduler
can process a job a disjoint times. A job j completes at the earliest time when it is
processed by pj units after the jobs arrival.

If job j is completed at time Cj , the objective is (
∑
j(Cj − rj)k)1/k. Define each

job j’s flow time to be Cj−rj . Note that each job has flow time at least 1. Throughout
the paper, the analysis will focus on minimizing the kth power flow time objective∑
j(Cj − rj)k. This is equivalent to the `k-norms of flow time without the outer kth

root. If a schedule is ck-approximate for the kth power flow time objective, then it
is a c-approximation for the kth norm of flow time objective for any c ≥ 1. For an
interval I = [s, t] with integers 0 ≤ s ≤ t, |I| is defined as t − s, i.e., the number
of time slots in the interval. Let a(I) and b(I) denote the interval I’s starting and
ending times, respectively. So, a(I) = s and b(I) = t if I = [s, t].

2.2. Linear Programming Relaxation. A linear programming relaxation,
LPmain, is now introduced for the kth power of flow time objective. See Figure 1
which was first established in [7]. To make our presentation more transparent, we as-
sume that each job’s processing time is polynomially bounded by n. This assumption
allows us to ensure that the number of time steps considered in the linear program-
ming is polynomially bounded by n. This simplifying assumption will be removed in
Section 5.

For completeness, the validity of LPmain is discussed. To see why the LP is valid,
restrict the values of xj,t to 0 or 1. Then, the variable xj,t becomes an indicator
variable that is one if and only if j is alive at time t (more precisely, during time slot
[t − 1, t]). In other words, the latest time t where xj,t = 1 after rj is the completion
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time of j. The objective follows since a job j alive at time t ≥ rj + 1 increases its kth
power of flow time by

∆t−rj := (t− rj)k − (t− rj − 1)k

during time slot [t−1, t]. Let P (S) =
∑
j∈S pj denote the total processing time of jobs

in a set S. Let R(I) denote the set of jobs that arrive during time interval I = [t1, t2].
For a time interval I, define V (I) := P (R(I)) =

∑
j,rj∈I pj as the total size/volume

of jobs arriving during I.
We only discuss Constraints (2) since other constraints are obvious. To gain an

intuition, consider a simpler constraint
∑
j∈R(I) pjxj,t ≥ V (I)− |I| by setting S = ∅

and ignoring the min. Then, during any time interval I = [s, t], at most |I| units
of work can be processed. Hence the total size of jobs that arrive during I and
are still alive at the end of I (the left-hand-side) must be no smaller than the total
size of jobs arriving during I minus |I| (the right-hand-side). Constraints (2) are
standard knapsack covering inequalities [10] for this covering constraint and requires
the demand V (I)− |I| to be covered by jobs not in S by at least V (I)− |I| − P (S),
which is clearly true for all integer solutions. The min truncates each job’s size from
pj to V (I)−|I|−P (S), and it has no effect on the feasibility of integer solutions. We
obtain the LP relaxation by extending xj,t ∈ {0, 1} to xj,t ≥ 0. So for each interval
I, we have a collection of knapsack covering inequalities. The LP can be solved using
the Ellipsoid method to obtain a solution arbitrarily close to the optimum; only the
objective achieved is approximate and all constraints are satisfied exactly. It is shown
in [7] that the LP can be solved in polynomial time as stated in the following theorem

Theorem 2 ([7]). There is a polynomial time algorithm that constructs a solution
to the linear program (1) that is (1+ε) approximate in the objective and satisfies every
constraint exactly.

2.3. Linear Programing Rounding. The algorithm introduced in this work
solves LPmain and rounds the fractional solution to an integral solution. Once we
have a feasible integral solution, it is easy to transform this into a feasible schedule of
cost no more than the objective of the LP for this solution. The idea is to schedule
each job no later than its completion time in the LP solution, by treating each job’s
completion time as its deadline. It is known that the Earliest-Deadline-First (EDF)
algorithm will schedule all jobs by their deadline if there exists such a schedule. The
proof is not difficult and follows by definition of EDF and constraints (2). The proof
follows from [7] and is in the appendix for completeness.

Lemma 3 ([7]). For any feasible integral solution x to LPmain, there is a polyno-
mial time algorithm that constructs a schedule of cost no more than the LP cost of
the LP solution x.

Given the previous lemma, our goal is to round a feasible fractional solution to
LPmain to a feasible integral solution. If we can show that the integral solution has cost
at most an O(1)k factor larger than the fractional solution to LPmain and is feasible
then this will complete the proof of our main theorem. The goal of our algorithm is
to discover a completion time C∗j for each job j such that the cost of these completion
times for the jobs is not too large. Once the completion times are discovered, the
corresponding LP solution sets xj,t = 1 for all t ∈ [rj , C

∗
j ] and 0 otherwise.

Our algorithm works by using several procedures to set the completion time of
the jobs. In particular, in each step, we will set the completion time of some jobs j
to be at least some time. Then at the end we set C∗j to be the maximum of all lower
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bounds on job j’s completion time we set in all steps. Since completion times are only
pushed back in each step, this ensures that a constraint in (2) satisfied by completion
times in one step of the algorithm will remain satisfied at the end of the algorithm.

The algorithm begins by using threshold rounding. Let c ≤ 1
16·2k be a constant.

Let Cj,c be the latest time t where xj,t ≥ c. For every job j, we set the completion
time of j to be at least Cj,c. Note that this ensures that xj,t′ = 1 for all rj ≤ t′ ≤ Cj,c
owing to Constraints (1) — this remains the case regardless of the remaining rounding
steps. After the threshold rounding, we will have a feasible solution to the LP still
due to the knapsack cover inequalities. We note that the increase of the objective due
to this rounding can easily be bounded by the cost of the LP. Let OPT(LP) denote
the optimum for the LP. The proof of the following proposition is straightforward.

Proposition 4. After the threshold rounding, the LP cost is at most 1
c ·

OPT(LPmain).

Proof of [Proposition 4] Fix a job j. Note that we changed xj,t only for times t ∈
[rj , Cj,c]. The contribution of job j to the fractional LP objective during [rj , Cj,c] is at

least c(Cj,c−rj)k. That is
∑Cj,c

t=rj+1 xj,t((t−rj)k−(t−1−rj)k) ≥ c(Cj,c−rj)k because

xj,t > c for t ∈ [rj , Cj,c]. By setting j’s completion time to Cj,c, j’s contribution to the
objective for times during [rj , Cj,c] increases to (Cj,c − rj)k, proving the proposition.

�
For each interval I, let Sc,I be the set of jobs that arrive during I that are given a

deadline no earlier than the end of the interval I by the threshold rounding, i.e. Sc,I :=
{j | rj ∈ I and Cj,c ≥ b(I)}. The threshold rounding may satisfy all constraints (2)
for some intervals I. In particular, for any interval I where P (Sc,I) ≥ V (I)− |I|.

Consider the remaining set of intervals. Let HI be the set of jobs in R(I) \ Sc,I
where pj ≥ V (I) − |I| − P (Sc,I) and let LI be the remaining jobs in R(I) \ Sc,I .
Call an interval I = [t1, t2] that is not satisfied by the threshold rounding heavy
if
∑
j∈HI

xj,t2 ≥ 1
2 and call the interval light otherwise; note that

∑
j∈LI

pjxj,t2 ≥
1
2 (V (I) − |I| − P (Sc,I)) if I is a light interval. Let H be the set of heavy intervals
and L be the set of light intervals. We note that the idea of partitioning intervals is
inspired by a similar partition done in [7] as well as for the related problem on column
restricted covering [12].

In the remaining sections, we set the completion times of jobs separately to satisfy
light intervals and heavy intervals. By taking the maximum completion time from
both cases for each job, we can ensure all constraints corresponding to intervals are
satisfied. The main technical challenge arises in the heavy case. The proof for the
light case is similar to [7] and is given in Section 4.

To round both the heavy and light cases, we will bound the cost of the completion
times chosen by at most a 1

cO(1)k factor larger than the optimum LP cost. This will
show that our algorithm is an 1

cO(1)k approximation for minimizing the kth power of
flow time. By taking the outer kth root for the `k norm objective, we obtain an O(1)
approximation for the `k norm by fixing c to be 1

2k+4 .

3. Heavy Intervals. In this section, our goal is to set the completion times
of jobs so that Constraints (2) for all intervals in H are satisfied. To do this, we
solve a second linear program, which is more relaxed than the original LP, LPmain.
This is necessary as our rounding will crucially use the priority-preserving property
(see Definition 6), which can be assumed w.l.o.g. when considering the relaxed LP.
Hence the new LP, LPheavy will have an optimal solution cheaper than LPmain. The
LP will be strong enough to give a solution that satisfies all constraints corresponding
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to heavy intervals. Further, using a more relaxed LP will help iteratively construct
feasible solutions to the LP. Here we rename variables to distinguish this new LP
from LPmain, but they have the same interpretation: yj,t = 1 if job j is alive during
time slot [t− 1, t] and 0 otherwise. Recall that ∆t−rj := (t− rj)k − (t− rj − 1)k.

min
∑
j

∑
t>rj

∆t−rjyj,t(LPheavy)

s.t. yj,t ≤ yj,t−1 ∀j, t > rj(3) ∑
j∈HI

yj,t ≥ 1 ∀I = [s, t] ∈ H(4)

yj,rj = 1 ∀j
yj,t ≥ 0 ∀j, t ≥ rj

LPheavy is a relaxation of LPmain. There are several changes. First we simplify
Constraints (2) to only consider the heavy intervals; as mentioned, the constraints
regarding light intervals are addressed in Section 4. Further, to satisfy the constraint
for a heavy interval I, we will only use jobs in HI . Next we discuss Constraints
(4). Recall that every job j in HI has a size no smaller than the residual demand,
V (I) − |I| − P (Sc,I). In other words, we would have

∑
j∈HI

yj,t ≥ 1 for a heavy
interval I = [s, t] ∈ H if and only if the completion time of at least one job in HI is
set to be at least t.

Proposition 5. OPT(LPheavy) ≤ 2
cOPT(LPmain) where OPT(LPheavy) is the op-

timal solution value of LPheavy and OPT(LPmain) is the optimal solution value of
LPmain.

Proof. Consider the fractional solution {xj,t} obtained in Section 2 after applying
the threshold rounding. Proposition 4 observed that the solution has cost at most
1
cOPT(LPmain). Set yj,t = xj,t. Note that the objective of LPheavy for y is exactly the
same as that of LPmain for x. Then consider setting yj,t to be 2xj,t for all t > Cj,c for
all jobs j, which increases the LP cost by a factor of at most two. This results in a
feasible solution since for such times t, xj,t < c ≤ 1/2. This satisfies all constraints in
LPheavy by definition of heavy intervals.

We now give a crucial definition of a property that is true for any optimal solution
to LPheavy. This definition captures a key structural property of the `k norm of flow
time.

Definition 6. We say that a solution y to LPheavy is priority-preserving if the
following property is satisfied: for any two jobs j and i such that rj ≤ ri and pj < pi,
and any time t ≥ ri, if yj,t > 0, then yi,t = 1. (In other words, if j is still alive at
time t, then i has not been fractionally processed at all at time t.)

We are now ready to introduce our key lemma, but, before we do, we need
to define several notations. For a solution y′ to LPheavy, define LPheavy(y

′) to be

LPheavy’s objective for y′. We decompose the cost into two parts, LPint
heavy(y

′) :=∑
j

∑
t>rj ,y′j,t=1 ∆t−rj and LPfrac

heavy(y
′) :=

∑
j

∑
t>rj ,y′j,t<1 ∆t−rjy

′
j,t. In words,

LPint
heavy(y

′) [LPfrac
heavy(y

′), resp.] denotes the total contribution to the LP’s objective
from jobs on time steps where they are alive integrally [fractionally, resp.]. Clearly,
LPheavy(y

′) = LPint
heavy(y

′) + LPfrac
heavy(y

′).
We will show the following key lemma.

8



Lemma 7. There exists a randomized polynomial time algorithm that constructs
a feasible priority-preserving solution y∗ to LPheavy such that

1. E[LPint
heavy(y

∗)]− LPint
heavy(y) ≤ 23k+3

c LPfrac
heavy(y) = O(1)kLPfrac

heavy(y).

2. E[LPfrac
heavy(y

∗)] ≤ 2 exp(−( 2
5c ))LP

frac
heavy(y) ≤ 1

2LP
frac
heavy(y).

given any feasible priority-preserving solution y to LPheavy as input.

By repeatedly applying Lemma 7, we will convert a fractional solution to LPheavy to
an integral solution without increasing the cost too much. After taking the expectation
on both sides over Property (1) upper bounds the increase of the integral LP cost by
O(1)k times the fractional LP cost of the current solution. Property (2) states the
fractional LP cost decreases by a constant factor in each iteration, thus making the
LP solution more integral and the fractional objective decrease geometrically each
time the lemma is applied. To repeatedly apply the lemma, we ensure the invariant
that the LP solution always remains priority-preserving and crucially use it for our
analysis.

To apply Lemma 7 the first time, we need to have an initial solution to LPheavy

that is priority-preserving. This is shown in the following lemma.

Lemma 8. There is a feasible priority-preserving solution y to LPheavy with cost
at most 2

cOPT(LPmain).

Proof. We show that there is an optimal solution that is priority-preserving and
has cost at most 2

cOPT(LPmain). For the sake of contradiction, suppose that this
claim is false. Consider an optimal solution y to LPheavy. Proposition 5 ensures that
this solution has the desired cost. The rest of the proof focuses on showing that it is
priority-preserving.

Let t′ be the first time that the LP is not priority-preserving. That is, it is the
first time where there are two jobs i and j where rj ≤ ri and pj < pi and it is the
case that yj,t′ > 0, but yi,t′ < 1 and yi,t′−1 = 1. Let T ′ be the set of times t ≥ t′

such that yj,t > 0. Let α = mint∈T ′ min{yj,t, 1 − yi,t}. For each time t ∈ T ′, we
decrease yj,t by α and increase yi,t by α. Note that this can only reduce the LP
objective since we know that rj ≤ ri, implying that ∆t−rj ≥ ∆t−ri . If rj < ri, then
clearly this operation strictly reduces the LP objective. Otherwise, by changing ∆j,t

infinitesimally, we can still ensure the LP objective strictly decreases.4 Hence we only
need to show that the new LP solution y remains feasible.

We show that Constraints (4) remain satisfied. It is straightforward to see that
the other constraints are satisfied. To see that Constraints (4) are satisfied, consider
any time t ∈ T ′. Consider any interval I such that j ∈ HI and b(I) = t. Since we
decreased yj,t by α, the reader may wonder if Constraint (4) is violated. First note
that that for i and j to be in HI , it must be the case that j and i are not in Sc,I . This
is true since both yj,t and yi,t are less than 1 and therefore less than c. Now note that
j ∈ HI implies that a(I) ≤ rj ≤ b(I) = t. Since rj ≤ ri, we have a(I) ≤ ri. Further,
since ri ≤ t′ ≤ t = b(I), we have that a(I) ≤ ri ≤ b(I). Knowing that pi > pj and
pj ≥ V (I)−|I|−P (Sc,I) since j ∈ HI , we conclude that i ∈ HI . Hence the decrease of
yj,t value is offset by the increase of yi,t in the left-hand-side of the constraint and the
constraint remains satisfied. This is a contradiction to the fact that y is an optimal
solution to LPheavy.

4For example, we can use the following procedure. Let M be the total number of time steps we
need to consider. Rank jobs based on their sizes breaking ties arbitrarily: the smallest job has rank
1 and the largest job has rank n. Then, we decrease each ∆j,t, t > rj by 1/(nM)2k times job j’s
rank.
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Thus, we have shown that there is an optimal LP solution y to LPheavy that is
priority-preserving, and the cost must be at most 2

cOPT(LPmain) by Proposition 5.

Using Lemma 7 and the previous lemma, we can find an integral solution to
LPheavy with low cost.

Corollary 9. There exists a polynomial time algorithm that produces w.h.p.
a feasible integral solution to LPheavy whose expected cost is at most 1

c ·
O(1)kOPT(LPmain).

Proof. We first show that we only need to apply Lemma 7 a logarithmic number
of times to arrive at an integral solution to LPheavy with high probability. To do this,
note that by Property (2) the cost of the fractional portion of the LP decreases by a
constant factor each iteration. Thus, we only need show that the procedure terminates
once the objective value is less than 1/poly(n). Consider any interval I ∈ H that is
not satisfied by the current LP solution, y. Then there must be a job j ∈ HI such
that 1 > yj,b(I) ≥ 1/n due to Constraint (4) and the fact that |HI | ≤ n. Hence job j

contributes to the fractional LP cost by at least (1/n)1k = 1/n. What this implies is
that if the objective is smaller than 1/n, then every interval must be satisfied. The
number of iterations we need to apply Lemma 7 is polynomially bounded by the input
size with high probability because the fractional LP cost decreases geometrically in
expectation each application.

To upper bound the cost of the integral solution, note that the increase of the
integral cost of the LP solution in each iteration is upper bounded by 1

c ·O(1)k times
the fractional cost of the current LP solution (Property (1)), and the fractional cost
decreases by a factor of more than 1/2 in each iteration (Property (2)) since c = 1

2k+4 .
Combining this with Lemma 8, we obtain the claimed upper bound on the expected
LP cost.

Formally, by applying Lemma 8 initially and Lemma 7 iteratively, we can con-
struct a sequence of feasible solutions y0, y1, ..., yL to LPheavy, where the final solution
yL is completely integral. By Lemma 8, we have,

LPfrac
heavy(y

0) ≤ LPheavy(y
0) ≤ 2

c
OPT(LPmain) = O(1)kOPT(LPmain)

By taking the expectation over y of both sides in the second claim of Lemma 7, for
any l ≥ 1, we have E[LPfrac

heavy(y
l)] ≤ 1

2E[LPfrac
heavy(y

l−1)]. This immediately yields,

E[LPfrac
heavy(y

l)] ≤ 1

2l
E[LPheavy(y

0)] =
1

2l
LPheavy(y

0)

Finally, from the first claim of Lemma 7 (after taking the expectation over y), we
have,

E[LPint
heavy(y

L)] = E[LPint
heavy(y

0)] +

L∑
l=1

(
E[LPint

heavy(y
l)]− E[LPint

heavy(y
l−1)]

)
≤ E[LPheavy(y

0)] +

L∑
l=1

O(1)k · E[LPfrac
heavy(y

l−1)]

≤ LPheavy(y
0) +

L∑
l=1

O(1)k · 1

2l
LPheavy(y

0)

= O(1)kLPheavy(y
0) =

1

c
O(1)kOPT(LPmain)
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Thus, we have constructed a feasible integer solution to LPheavy whose objective is at
most 1

cO(1)kOPT(LPmain) in expectation, as desired.

Thus, it only remains to prove Lemma 7.

3.1. Iterative Quasi-Uniform Sampling (Proof of Lemma 7). Our re-
maining goal is to construct a new LP solution y∗ that satisfies the properties claimed
in Lemma 7. To prove Lemma 7, fix a feasible priority-preserving solution y to LPheavy,
which we can assume exists inductively due to Lemma 8. We now describe the ran-
domized rounding procedure. After each iteration of the randomized rounding, we
will observe that the current fractional solution is priority-preserving.

First set y∗j,t = 1 if yj,t = 1 – this will ensure that the rounding is ‘integrally’
monotone, meaning that if yj,t = 1 at some point, it remains so throughout the
iterations. Next, we use a randomized rounding which consists of the following two
steps.

Step (i). Sampling Completion Times. For each job j and i ≥ 0, let βj,i :=
2i+rj . We sample the completion time βj,i independently with probability min{1, 1c ·
yj,βj,i} for each j and i ≥ 0. This sampling is done independent of sampling of other
βj,i′ , i

′ 6= i as well as other jobs. Note that the probability that time βj,i is sampled
is 1

c multiplied by yj,βj,i
, exactly the amount job j is fractionally incomplete at the

time βj,i. When βj,i is sampled, we make j’s completion time to be at least βj,i by
setting y∗j,t = 1 for all rj ≤ t ≤ βj,i. If multiple completion times are sampled for a
job, then the job’s completion time is set to be the maximum of all completion times
sampled for the job.

Step (ii). Constructing a Less Fractional LP Solution. After step (i), some
interval constraints (Constraints (4)) may be satisfied. In particular, an interval
I = [a(I), b(I)] ∈ H is satisfied if y∗j,b(I) = 1 for some job j in HI . For convenience,
we remove such intervals from H and focus on satisfying constraints for the remaining
intervals in H. This is without loss of generality, as the randomized rounding is
integrally monotone as observed above. Additionally, we remove every interval I
from H if there is a job j ∈ HI such that βj,i was sampled in Step (i) and βj,i+2 =
ri + 4 · 2i > b(I). Intuitively, quadrupling every job’s flow time at the end of the
rounding will satisfy such intervals.

Note that for any (remaining) interval I ∈ H, we have yj,b(I) ≤ c for all j ∈ HI .
We define a set NI of jobs for each interval I ∈ H, which we call critical jobs for
interval I. The set NI for an interval I in H is defined by removing the set EI of jobs
in HI with earliest arrival times until

∑
j∈HI\EI

yj,b(I) ≤ 3
5 . For each (remaining)

interval I ∈ H and for every job j ∈ NI , we set y∗j,b(I) = max{y∗j,b(I), 2yj,b(I)}.5 Also

to ensure that Constraints (3) are satisfied, we minimally increase y∗j,t if necessary for
all rj ≤ t ≤ b(I) so that y∗j,t ≥ 2yj,b(I).

We repeat the above until H is non-empty. Observe that the size of H never
increases over iterations. In particular, an interval removed from H will never be
added back to H. Once H is empty, we quadruple every job j’s flow time: if t′ is the
largest time such that yj,t′ = 1, then let yj,t = 1 for all t ∈ (rj , rj + (t′ − rj) · 4].

Proposition 10. At the end of the rounding algorithm, the constructed y is a
feasible solution to LPheavy (with no Constraints (4) deleted).

5This is well-defined because c < 1/2, and if yj,b(I) ≥ c, then we would have y∗
j,b(I)

= 1.
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Proof. When a heavy interval I is removed from H, there must exist a job j ∈ HI

and some i such that y∗j,βj,i
= 1 (so, after renaming y∗ by y, we have yj,βj,i

= 1)

and βj,i+2 = ri + 4 · 2i > b(I). Recall that the algorithm is integrally monotone,
meaning that once yj,t = 1 then it remains so until the end of the algorithm. Thus,
thanks to the final step of quadrupling every job’s flow time, y satisfies the constraint
corresponding to I at the end.

Since the last step only increases the LP objective by a factor of 4k and our final
goal is to find an integer schedule that is O(1)k-approximate for minimizing the total
kth power of flow time, we will henceforth ignore the step.

Intuition for the Randomized Rounding Algorithm. The iterative randomized
rounding makes the solution more integral in each iteration. Here the procedure keeps
the current solution feasible while decreasing the cost of the fractional part of the LP
solution by a constant factor in each iteration. In Step (i), the algorithm samples a
completion time for each job. For ease of analysis, the algorithm only distinguishes
completion times for a job when they differ by more than a constant factor in length
from the job’s arrival. This is why we sample j’s completion time to be one of the
βj,i times for some i. Intuitively, by using the threshold rounding and ‘boosted-up’
randomized rounding, we ‘oversample’ the completion time of a job by up to a constant
factor over the LP solution.

Step (ii) is concerned with intervals that are not satisfied by Step (i), and this
is the more interesting step of the algorithm. Recall that our goal is to decrease the
fractional cost of the solution by a constant factor. The cost is measured by when
jobs complete. Each constraint is defined by a heavy interval I and a constraint can
be satisfied by setting a job j’s completion times to later than b(I), the end of the
interval for some job j that arrives during the interval I. To safely remove a job from
the current LP solution (more precisely, remove fractional completion times for a job),
we should find other jobs that still satisfy the intervals (constraints) that the job was
used to satisfy. This is why we define critical jobs for each interval. Critical jobs are
sufficient to satisfy intervals if their contributions to the constraints are increased by
a constant factor over the LP solution at the beginning of the iteration. Using the
fact that a job is used for intervals only when the job is critical for them, we show
that a job is needed after Step (i) with small probability, which will be more than
enough to cancel the effect of increasing critical jobs contributions. Finally, we also
remove additional intervals from H if quadrupling a job’s flow time at the end would
satisfy the corresponding constraint. This trick is to fix the issues occurring due to
only sampling βj,i times which are time points that are power of two away from the
job arrival times.

We begin the analysis by showing y∗ is feasible and priority-preserving. First
consider showing that it is priority-preserving.

Lemma 11. At the end of the Step (ii), the solution y∗ is priority-preserving if y
is priority-preserving.

Proof. For the sake of contradiction, suppose y∗ is not priority-preserving. Con-
sider a pair of jobs j and j′ that violates the priority-preservation property in y∗:
rj ≤ rj′ , pj < pj′ , yet for some time t ≥ rj′ , we have y∗j,t > 0 and y∗j′,t < 1. In
words, j′ has been partially processed at time t while the job j of higher priority
hasn’t completed. Recalling that our rounding is integrally monotone, it must be
the case that yj′,t < 1. Then, it must be the case that yj,t = 0 due to y being
priority-preserving. However, our rounding doesn’t increase a variable if its value is

12



0, meaning that y∗j,t = 0. This is a contradiction.

Next we show the solution y∗ is feasible.

Proposition 12. For all I = [a(I), b(I)] ∈ H, we have
∑
j∈NI

yj,b(I) ≥ 1
2 .

Proof. Jobs are added to the set EI until
∑
j∈HI\EI

yj,b(I) ≤ 3
5 . Thus∑

j∈EI
yj,b(I) ≤ 3

5 + c ≤ 3
5 + 1

10 ≤ 1
2 . Here we use the fact that for any job j in

HI , yj,b(I) ≤ c ≤ 1
10 which follows from the definition of c and the threshold rounding.

The lemma follows from definition of NI .

The following lemma shows that LPheavy is satisfied. Note this this lemma only
considers remaining intervals in H and every deleted interval is guaranteed to be sat-
isfied at the end by quadrupling every job’s flow time as observed in Proposition 10.

Lemma 13. At the end of the Step (ii), y∗ satisfies Constraint (4) for every (re-
maining) interval I ∈ H.

Proof. It is easy to see that y∗ satisfies Constraints (3) after both steps (i) and
(ii). We only need to show that if Constraint (4) for an interval I is not satisfied by
step (i), then it is fractionally satisfied by jobs in NI . By Proposition 12, we have∑
j∈NI

yj,b(I) ≥ 1
2 . Our algorithm sets y∗j,b(I) ≥ 2yj,b(I), thus satisfies Constraint (4)

for I.

Next we upper bound the cost of the new LP solution y∗ we constructed following
steps (i) and (ii). We first bound the cost for times set integrally by step (i). We
will upper bound E[LPint

heavy(y
∗)] − LPint

heavy(y) and E[LPfrac
heavy(y

∗)], respectively. The
following inequality is useful for our analysis and follows from an elementary algebra.
This inequality shows that the cost of completing a job j at time βj,i is at most 2k

larger than the cost of completing the job at time βj,i−1.

Proposition 14. For all j and i ≥ 0, ∆βj,i+1−rj ≤ 2k∆βj,i−rj . Also ∆l is
increasing in l.

The following is a restatement of the first inequality stated in Lemma 7 for easy
reference.

Lemma 15. E[LPint
heavy(y

∗)]− LPint
heavy(y) ≤ 2k+1

c LPfrac
heavy(y).

Proof. Fix a job j and an integer i ≥ 0. Assume that yj,βj,i < 1 since otherwise
in the current iteration, there is no increase in the integral cost for job j at times in
(rj , βj,i]. Note that if yj,t < 1, then we set the value of y∗j,t to 1 only in step (i). If time
βj,i is sampled to be j’s completion time in step (i), then y∗j,t is set to 1 for all rj < t ≤
βj,i. The incurred cost is upper bounded by

∑
rj<t≤βj,i

∆t−rj ≤
∑
rj<t≤βj,i

∆βj,i−rj =

(βj,i−rj)∆βj,i−rj = 2i∆βj,i−rj , where the first inequality follows from Proposition 14.
The probability of βj,i being sampled is at most 1

cyj,βj,i . Thus the expected increase
in the integral LP cost due to βj,i being sampled as j’s completion time is at most

(5)
1

c
yj,βj,i

2i∆βj,i−rj .

On the other hand, because y∗j,t is set to 1 only in step (i) when yj,t < 1, and j’s
completion times are sampled only at time βj,i′ , i

′ ≥ 0, it follows that yj,t′ < 1 for all
t′ ∈ (βj,i−1, βj,i]. Thus j’s fractional LP cost during (βj,i−1, βj,i] is at least,

βj,i∑
t=βj,i−1+1

∆t−rjyj,t ≥ 2i−1∆βj,i−1−rjyj,βj,i ≥
1

2k+1
2i∆βj,i−rjyj,βj,i ,(6)
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Time

βj,iβj,i−1βj,i−2rj

I ′

Intervals in Gi,j

a(I ′) is later than a(I) for all I ∈ Gi,j

a(I ′) b(I ′)

Arrival of jobs in EI′

Arrival of jobs in NI′

Fig. 2. Intervals in Gi,j . Note that all jobs in EI′ arrive during every interval in Gi,j . Due to
this, if a job in EI′ is given a completion time later than βj,i then all intervals in Gi,j are satisfied.

where the inequalities follow by Proposition 14 and Constraints (3). By charging Eqn.
(5) to Eqn. (6), we have the lemma.

To show that the fractional LP cost decreases significantly in each iteration, for
each fixed job j, we would like to bound the probability that some interval for which j
is critical is unsatisfied after step (i). If we show that the probability is significantly
small, then we will be able to obtain a new solution whose objective is much smaller
than that of the original LP solution. This is done separately for intervals ending
between (βj,i−1, βj,i]. Let Gi,j be the set of intervals I ending during (βj,i−1, βj,i]
such that j ∈ NI . Note that I ∈ Gi,j only if rj′ + 4(r′j′ − rj) ≤ b(I) where r′j′ is the
largest time t such that yj′,t = 1 since otherwise I would have been removed from H
in the previous iterations.

Lemma 16. Fix any job j and any integer i ≥ 1. The probability that there exists
an interval in I ∈ Gi,j that is not satisfied (therefore still in H) after step (i) of the
algorithm is at most exp(− 2

5c ).

Proof. Fix an interval I ′ = [a(I ′), b(I ′)] in Gi,j that has the latest starting time.
Note that this implies that I ′ is the interval with the latest starting time such that
j ∈ NI′ and βj,i−1 < b(I ′) ≤ βj,i. We know that by definition of NI′ there is a set
EI′ of jobs that arrive during I ′ and no later than j such that

(7)
∑
j′∈EI′

yj′,b(I′) ≥ 2/5.

Further, by Lemma 8 and 11 we know that y is priority-preserving which implies that
any job j′ ∈ EI′ with yj′,b(I′) > 0 has pj′ ≥ pj . This is because yj,b(I′) < 1 since
otherwise I ′ is satisfied by job j, but then since rj′ ≤ rj it must be that pj′ ≥ pj due
to the fact that y is priority-preserving.

For a job j′ ∈ EI′ let ij′ be the largest integer such that βj′,ij′ = rj′ + 2ij′ is
smaller than or equal to βj,i−1. Using the above properties, we want to show that
if any job j′ ∈ EI′ with yj′,b(I′) > 0 is given a completion time later βj′,ij′ or later
by step (i) then every interval in Gi,j is removed from H. If we can show this and
additionally show that some job j′ ∈ EI′ is given a completion time later than βj′,ij′
with a good probability then the lemma will follow.

To show this, we first need to show that every job j′ ∈ EI′ with yj′,b(I′) > 0 has
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rj′ ∈ I = [a(I), b(I)] for every interval I in Gi,j . Fix any I ∈ Gi,j . We know that
rj ≤ b(I) since I ∈ Gi,j , thus j ∈ NI , and rj′ ≤ rj by definition of EI′ . Hence we
have rj′ ≤ b(I). Now we show a(I) ≤ rj′ . By definition of I ′, we know that I ′ starts
no earlier than I by definition of I ′, i.e. a(I) ≤ a(I ′). Further, since j′ ∈ EI′ , by
definition of EI′ , j

′ must arrive during I ′, so we have a(I ′) ≤ rj′ . Thus we have shown
that rj′ ∈ I = [a(I), b(I)] as desired.

We noted above that pj′ ≥ pj . Hence job j′ can be used to satisfy Constraint (4)
for I since job j is large enough to satisfy the constraint, and pj′ ≥ pj . Therefore,
if any job j′ in EI′ is given a completion time later than βj′,ij′ by Step (i) then the
constraint for I is removed from H. This follows from knowing that every interval
I ∈ Gi,j ends no later than βj,i, rj′ ∈ I = [a(I), b(I)] and j′ is large enough so
that it is in HI and can satisfy Constraint (4) for I. The algorithm removes all such
constraints I where rj′ + 4(βj′,ij′ − rj′) ≥ b(I). Notice that rj′ + 4(βj′,ij′ − rj′) ≥ b(I)
because ij′ ≥ i− 1 since rj′ < rj .

It only remains to bound the probability of the bad event that no job j′ in EI′ is
given a deadline at βj′,ij′ or later. We know that completion time βj′,ij′ is sampled for

job j′ with probability 1
cyj′,βj′,i

j′
, which is greater than 1

cyj′,b(I′) due to Constraint

(3). Note that yj′,b(I′) ≤ yj′,i′j < c. Otherwise, I would have been already removed

by the above argument. Thus, the probability that no job j′ in EI′ has a completion
time sampled at βj′,ij′ or later is at most∏
j′∈EI′

(1− yj′,b(I′)/c) ≤
∏

j′∈EI′

exp(−yj′,b(I′)/c) ≤ exp(
∑
j′∈EI′

−yj′,b(I′)/c) ≤ exp(− 2

5c
),

where the last inequality follows due to Eqn. (7).

The previous lemma will allow us to bound the fractional LP cost in the new LP
solution y∗ as follows. Note that this is a restatement of the second inequality stated
in Lemma 7 using that exp(−x) is approximately 1 − x when x is less than a small
constant.

Lemma 17. E[LPfrac
heavy(y

∗)] ≤ 2 exp(−( 2
5c ))LP

frac
heavy(y).

Proof. For a fixed job j and i ≥ 1, in the worst case yj,t can double at times
t ∈ (βj,i−1, βj,i], i.e. y∗j,t ≤ 2yj,t. We know that this can happen only when some
interval in I ∈ Gi,j is not satisfied after step (i), which occurs with probability at
most exp(− 2

5c ) due to Lemma 16. Thus, we have the claimed inequality for j’s
fractional cost during (βj,i−1, βj,i]. Summing over all jobs and i, we have the lemma
thanks to the linearity of expectation.

4. Light Intervals. In this section, an algorithm is defined that sets comple-
tion times for the jobs to satisfy all of the constraints for light intervals. Recall that
after the threshold rounding, intervals that correspond to unsatisfied constraints are
partitioned into two groups, H and L. This section shows how to set job completion
times to satisfy Constraints (2) for all light intervals, L. The total cost of the com-

pletion times set in this section will be at most O(1)k

c OPT(LPmain) in expectation. As
mentioned, this rounding closely follows [7]. For completeness the rounding procedure
along with the analysis is given in this section.

4.1. Preprocessing the LP Solution. The algorithm takes as input the solu-
tion x̃ to LPmain after the the threshold rounding in Section 2. The algorithm begins
by preprocessing the solution.
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The input is a solution x̃j,t such that
∑
j∈LI

pj x̃j,b(I) ≥ 1
2 (V (I) − |I| − P (Sc,I))

for all I ∈ L. Further, for every j ∈ LI , pj < V (I)− |I| − P (Sc,I) and x̃j,b(I) < c.
The algorithm begins by first increasing all x̃j,t where x̃j,t < c by a factor of 16.

For each job j and i ≥ 0, define βj,i := rj + 2i; also define βj,−1 = rj . For each
j, i ≥ 1 and all times t ∈ (βj,i−1, βj,i], set x̃j,t = x̃j,βj,i−1 . This only can increase
the value of a variable x̃j,t because x̃ satisfies Constraints (1). All Constraints (1)
remain satisfied: Those in Constraints (2) remain satisfied since variables only increase
and the remaining constraints are trivially satisfied. Further, using the fact that
(βj,i+1 − rj)k ≤ 2k(βj,i − rj)k, it can be established that the LP cost only slightly
increases. These facts are shown in the following lemma.

Lemma 18. After the above rounding, the LP solution remains feasible and the
cost increases by a factor of at most 23k+4.

Proof. The proof focuses on the second claim as the first claim has been already
proved above. The first step increases the objective by a factor of at most 16. We
bound the change in the objective by considering each job j’s contribution to the
objective individually. Before the second step, the j’s contribution to the objective is
at least

∆βj,0−rj x̃j,βj,0 +
∑
i≥1

βj,i∑
t=βj,i−1+1

∆t−rj x̃j,βj,i

≥ ∆βj,0−rj x̃j,βj,0 +
∑
i≥1

(2ik − 2(i−1)k)∆βj,i−1−rj x̃j,βj,i .

Similarly, one can see that the objective increases to at most the following in the
second step.

∑
i≥1

βj,i∑
t=βj,i−1+1

∆t−rj x̃j,βj,i−1

≤
∑
i≥1

(2ik − 2(i−1)k)∆βj,i−rj x̃j,βj,i−1

≤ 4k∆βj,0−rj x̃j,βj,0 +
∑
i≥2

(2ik − 2(i−1)k)∆βj,i−rj x̃j,βj,i−1

≤ 4k∆βj,0−rj x̃j,βj,0
+ 2k

∑
i≥1

(2ik − 2(i−1)k)∆βj,i+1−rj x̃j,βj,i

Using the fact that ∆βj,i+1−rj ≤ 4k∆βj,i−1−rj and including in the factor 16 increase
due to the first step, the lemma follows.

Let DI = (V (I) − |I| − P (Sc,I)) be the residual demand for interval I. After
the above modification the fractional solution x̃ ensures that for every light interval
I ∈ L,

∑
j∈LI

pj x̃j,b(I) ≥ 8DI because if j ∈ LI then x̃j,b(I) increased by a factor 16.

Further, it was initially the case that
∑
j∈LI

pj x̃j,b(I) ≥ 1
2 (V (I)−|I|−P (Sc,I)) before

the modification.
For the remainder of the analysis, for ease of analysis, it is assumed that every

job has a size equal to a power of two. This can be done by rounding up each job size
to the nearest power of two. Due to this modification of the job sizes, the analysis
will guarantee that a solution is found that satisfies Constraint (2) for each interval
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I in L with the demand doubled to 2DI . This will ensure that when job sizes are
scaled back to their original size, the constraints are still satisfied.

It will be convenient to simplify the LP, similarly as was done for the case of
heavy intervals. The following LP uses variables z. Let zj,i denote whether job j is
completed at time rj + 2i. Let i0(j) be the smallest i such that x̃j,βj,i < 1. Let i(j, I)
denote the smallest i′ such that βj,i′ ≥ b(I) for any interval I.

The new LP is the following. The variables z act like the variables x, except zj,i is
index by jobs and times βj,i and xj,t is indexed by jobs and all times. The z variables
only consider restricted times because x̃j,t has the same value for all t ∈ (βj,i, βj,i+1]
by definition of the modification to x̃. It is assumed that all jobs have size equal to a
power to two and for notational convenience set there is a variable zj,i0(j)−1.

min
∑
j

∑
i≥i0(j)

∆′j,izj,i(LPlight)

s.t.
∑

j:rj∈I,pj<DI

pj · zj,i(j,I) ≥ 2DI ∀I ∈ L(8)

zj,i ≤ zj,i−1 ∀j, i ≥ i0(j)(9)

zj,i0(j)−1 = 1 ∀j(10)

zj,i ≥ 0 ∀j, i ≥ i0(j),

In the LP, ∆′j,i = (βj,i − rj)k − (βj,i−1 − rj)k. Set z̃j,i = x̃j,βj,i
. This solution is

feasible and has cost at most O(1)k

c OPT(LPmain) (see Proposition 4 and Lemma 18).
Further, it is the case that for all intervals I ∈ L,

(11)
∑

j:rj∈I,pj<DI

pj z̃j,i(j,I) ≥ 8DI .

Notice that in the summation of Constraint (8), we omit the condition j 6∈ Sc,I .
Recall that j ∈ LI if and only if j arrives during I, pj < Dj , and j 6∈ Sc,I . However,
no job j in the summation is in Sc,I . This is because j ∈ Sc,I only when x̃j,βj,i(j,I)

= 1,
and there is no variable zj,i(j,I) since i(j, I) < i0(j) by definition of i0(j).

Let LPlight(z̃) denote the objective of LPlight for the solution z̃. In the following
section, an integral solution z̄i,j will be constructed to LPlight whose cost is bounded
by LPlight(z̃). This will be sufficient to derive a solution to LPmain satisfying all of
the light constraints. To see this, set xj,t = 1 for all rj ≤ t ≤ βj,i if z̄j,i = 1. Fix
a job j and let i′ be the largest i such that z̄j,i = 1. This implies that z̄j,i0(j)−1 =

z̄j,i0(j) = ... = z̄j,i′ = 1. So job j’s kth power of flow time will be (βj,i′ − rj)k. Part
of this job’s cost, its kth power flow time up to i0(j), was already bounded in the
analysis of the threshold rounding in Section 2 and Lemma 18. The remaining part
of the job’s cost, (βj,i′ − rj)k − (βj,i0(j) − rj)k, is exactly the contribution of job j to
the objective of LPlight under the solution z̄. With the above arguments in place, an
integral solution z̄i,j to LPlight will imply an integral solution to LPmain with cost of at

most O(1)k

c OPT(LPmain) that satisfies all constraints for light intervals.

4.2. Reduction to a Geometric Covering Problem. The analysis now
makes a connection between LPlight and the following geometric covering problem in
the plane. In this problem, there is a collection of axis-parallel aligned rectangles.
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Denote [x′1, x
′
2] × [y′1, y

′
2] as a rectangle with (x′1, y

′
1), (x′1, y

′
2), (x′2, y

′
1) and (x′2, y

′
2) as

its four corners.

The R2M Problem. The input is a collection Q of points q in 2D Euclidean space,
each with an integer demand Dq, and a collection of axis-parallel rectangles B of the
form [0, xB ]× [y1B , y

2
B ], each with cost wB . The goal is to find a minimum cost subset

S of rectangles such that each point q ∈ Q is covered by at least Dq rectangles in S.

It will be established that finding an integral solution to LPlight can be reduced
to the R2M problem. To do so, log2 maxj pj instances of the R2M problem will be
created. Index an instance by ` ∈ {0, 1, 2, . . . , log2 maxj pj}. Each instance I` has
rectangles corresponding to jobs of size 2`.

Create the instance I` as follows. For each interval I = [a(I), b(I)] ∈ L, create
a point qI = (a(I), b(I)). Its demand DI,` will be defined shortly. For each job j of
size 2`, create a collection of rectangles {Bj,i}i≥i0(j) where Bj,i denotes a rectangle,

[0, rj ]× [βj,i−1 + 1, βj,i], of cost ∆′j,i := (βj,i − rj)k − (βj,i−1 − rj)k. Set the demand
of interval I to be DI,` = b∑j,i:pj=2`,qI∈Bj,i

z̃j,ic. This completes the description of

R2M instances, {I`}.
It was shown that the R2M problem has a randomized polynomial time constant

approximation algorithm [7]. Further, the approximation is based on rounding a
solution to a standard LP. The following IP exactly captures the R2M problem for
instance I` where variable z′j,i = 1 if and only if Bj,i is chosen.

min
∑

j:pj=2`

∑
i≥i0(j)

∆′j,iz
′
j,i(IP`)

s.t
∑

j,i:qI∈Bj,i,pj=2`

z′j,i ≥ DI,` ∀I ∈ L(12)

z′j,i ∈ {0, 1}

From this IP, a LP relaxation LP` is obtained by allowing z′j,i ∈ [0, 1]. Observe
that z̃j,i is a feasible LP solution to this LP`. This is because qI ∈ Bj,i if and only
if a(I) ≤ rj and βj,i−1 < b(I) ≤ βj,i. By definition of DI,`, it is the case that
DI,` ≤

∑
j,i:pj=2`,qI∈Bj,i

z̃j,i, which implies that z̃j,i satisfies Constraints (12).

The algorithm in [7] rounds any feasible solution to LP` to an integral solution
and ensures the objective increases by at most a O(1) factor. Let {z̄′j,i}j:pj=2` be the
integral solution to LP` obtained using the constant approximation from [7] based on
rounding the solution z̃j,i to LP`. The rounding ensures that LP`(z̄

′) = O(1)LP`(z̃).
To construct an integral solution z̄ to LPlight initially set z̄j,i = 0. Then if z̄′j,i = 1,

set z̄j,i0(j) = z̄j,i0(j)+1 = ... = z̄j,i = 1. In the remaining proof, it is established that
the cost of z̄ is bounded and this is a feasible solution to LPlight.

Lemma 19. LPlight(z̄) = O(1)
c OPT(LPmain).

Proof. Knowing that ∆′j,i ≤ 1
2∆′j,i+1, we have LP`(z̄) = O(1)LP`(z̄

′). Also,

since the variables of LP` are only defined over jobs of size 2`, we have
LPlight(z̄) =

∑
` LP`(z̄) = O(1)

∑
` LP`(z̄

′) = O(1)
∑
` LP`(z̃) = O(1)LPlight(z̃) =

O(1)
c OPT(LPmain).

Finally, we show that z̄ is a feasible solution to LPlight. It is easy to see that z̄
satisfies Constraints (9) and (10). It only remains to show that z̄ satisfies Constraint
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(8) for each interval I ∈ L.∑
j:rj∈I,pj<DI

pj · z̄j,i(j,I)

≥
∑

`:2`<DI

2`
∑

j:rj∈I,pj=2`

z̄′j,i(j,I)

=
∑

`:2`<DI

2`
∑

i,j:qI∈Bj,i,pj=2`

z̄′j,i

≥
∑

`:2`<DI

2`DI,` [z̄′ is feasible to LP`]

=
∑

`:2`<DI

2`b
∑

j,i:qI∈Bj,i,pj=2`

z̃j,ic

≥
∑

`:2`<DI

2`
∑

j,i:qI∈Bi,j ,pj=2`

z̃j,i −
∑

`:2`<DI

2`

≥
∑

j:rj∈I,pj<DI

pj z̃j,i(j,I) − 2DI ≥ 6DI [Due to (11)],

as desired. We used the fact that rj ∈ I and βj,i−1 < b(I) = βj,i if and only if
qI ∈ Bj,i, and the definition that i(j, I) is i′ such that βj,i′−1 < b(I) ≤ βj,i′ . To
summarize, we have obtained a feasible integral solution z̄ to LPlight and bounded its
cost by the optimal objective of LPmain in Lemma 19.

5. When Jobs’ Sizes or Release Times are Not Polynomially Bounded
by n. In this section, we reduce, losing only 1 + ε factor in the approximation ratio,
any instance to one where all job sizes and arrival times are polynomially bounded
by n, for which we already showed a O(1)-approximation.

Let pmax = maxj pj . Let ε > 0 be an arbitrarily small constant such that 1/ε is
an integer. We first consider jobs’ arrival times. We say that two jobs are adjacent if
no other jobs arrive between the two. We observe that we can assume w.l.o.g. that
no two adjacent jobs j and j′ have arrival times that differ by more than npmax. This
is because no preemptive scheduler has incentives to idle the machine when there
are jobs ready for processing. Therefore, if there exist such a pair of jobs j and j′,
rj < rj′ , all jobs arriving before j′ complete before j′ arrives, which implies that the
instance can be decomposed into jobs arriving before j′ and those arriving no later
than j′. This observation allows us to assume w.l.o.g. that no two jobs have arrival
times that differ by more than n2pmax.

For the remainder of the section it is assumed w.l.o.g. that minj rj = 0 and
maxj rj is polynomially bounded by pmax and n. Assume that pmax ≥ n2/ε2 since
otherwise jobs sizes and arrival times are polynomially bounded by n. Define δ :=

b ε2pmax

n2 c. Let I be the given instance. We modify I so that job arrival times and
sizes become integer multiples of δ. More precisely, for each job j, let p̄j be an integer
multiple of δ such that pj − 3δ < p̄j ≤ pj − 2δ; if pj ≤ 3δ, then p̄j = 0. Also let r̄j be
an integer multiple of δ such that rj ≤ r̄j < rj +δ. Let Ī denote the problem instance
where r̄j is the arrival of job j and p̄j is the processing time of job j.

Lemma 20. Consider an optimal schedule σ∗ for I where each job j completes at
time C∗j . There exists a schedule σ̄∗ for Ī where (i) each job j is processed by p̄j units

during [r̄j , C̄
∗
j ], where C̄∗j ≤ C∗j is an integer multiple of δ, and (ii) at most one job

is processed during each interval in R = {[iδ, (i+ 1)δ] : i is an integer}.
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Proof. We construct σ̄∗ for Ī, from σ∗ for I, where each job completes earlier than
in schedule σ∗. To see this, notice that one can process job j during time intervals
[rj , r̄j ] and [C̄∗j := bC∗j /δc · δ, C∗j ] by at most 2δ units. Job j’s size in Ī is smaller than

in I by at least 2δ; we may update C̄∗j later. If σ̄ is created to match σ, except that

it ignores the work that was done for job j during [rj , r̄j ] and [C̄∗j , C
∗
j ] in σ∗, each

job j is processed completely or by more than needed during [r̄j , C
∗
j ]. By dropping

unnecessary processing, we make σ̄∗ feasible.
We now interpret the schedule σ̄∗ as a fractional flow between jobs and intervals

in R. More precisely, consider a bipartite graph between jobs and intervals in R. If
job j is processed during an interval V ∈ R, then there is an edge from the job to
the interval and the edge sends a flow of value equal to the number of time units
of processing done on j during V , divided by δ. Thus, each job j sends to intervals
in R a total of flow of value p̄j/δ, which is an integer, and each interval receives a
flow of value at most 1. Because of the integrality of network flow, it means that
there is an integral flow where each interval V is matched with at most one job. If
an interval V ∈ R is matched with a job j, then the whole interval V is dedicated
to j’s processing. In this schedule, because of the way the graph is constructed, j’s
completion time can be only smaller than bC∗j /δc·δ and is an integer multiple of δ. We

set C̄∗j to be j’s completion time. This schedule satisfies all the desired properties.

Lemma 20 shows that there exists a schedule σ̄∗ for Ī where each job j is processed
alone during each interval or not at all, and completes no later than in the optimal
schedule for the original instance I. Since every job has a size p̄j that is an integer
multiple of δ in the modified instance Ī, and every interval in R has a length that
is an integer multiple of δ, this means that in the schedule σ̄∗, there are exactly
p̄j/δ intervals in R dedicated to processing each job j. This allows us to scale down
all parameters of Ī, jobs arrival time and sizes, uniformly by a factor of δ. Note
that all parameters in the resulting instance are polynomially bounded by n, and
we have already shown a O(1)-approximation for such instances. Using our O(1)-
approximation algorithm, we can obtain a schedule for the scaled-down instance Ī
and scale back it. Let C̄j denote j’s completion time in the resulting schedule σ̄.

Corollary 21. (
∑
j(C̄j− r̄j)k)1/k ≤ O(1)·(∑j(C̄

∗
j − r̄j)k)1/k ≤ O(1)·(∑j(C

∗
j −

rj)
k)1/k.

Proof. The first inequality follows, as we obtained σ̄ for Ī using our O(1)-
approximation. The second inequality is due to Lemma 20 and the fact that rj ≤ r̄j
for all j.

Finally, we convert the schedule σ̄ for Ī into our final schedule σ for I without
increasing the objective too much.

Lemma 22. There exists a feasible schedule σ for I where each job j’s completion
time Cj is at most C̄j + 3nδ. Further, such a schedule can be found in polynomial
time.

Proof. Note that σ̄ becomes a feasible schedule for I if each job j is processed
by pj − p̄j more units, as it starts getting processed no earlier than r̄j ≥ rj and is
processed by p̄j units in σ̄. For notational simplicity, assume that job are ordered in
increasing order of C̄j . Then, by adding extra processing to jobs in this order while
pushing back later jobs, we can complete job 1 by time C̄1 + p1 − p̄1, job 2 by time
C̄2 + (p1 − p̄1) + (p2 − p̄2), and so on, which immediately yields the lemma since
pj − p̄j ≤ 3δ.
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Lemma 23. Let Fj denote j’s flow time in I, and let F̄j denote the analogous
quantity for instance Ī. Then, we have Fj ≤ max{(1 + 4ε)F̄j , 5ε

pmax

n }.
Proof. To compare Fj to F̄j , we consider two cases. The first case is when F̄j ≥

εpmax

n . In this case, Fj = Cj − rj ≤ C̄j + 3nδ − r̄j + δ ≤ F̄j + 4nδ ≤ (1 + 4ε)F̄j .
Otherwise, Fj ≤ F̄j + 4nδ ≤ εpmax

n + 4ε2 pmax

n ≤ 5εpmax

n . The lemma follows by taking
the maximum of these two upper bounds.

By summing over all jobs, we have∑
j

F kj ≤
(

(1 + 4ε)k
∑
j

F̄ kj

)
+

(5ε)k

nk
pkmax · n ≤ (1 + 9ε)k

∑
j

F̄ kj

The last inequality follows from the fact that the kth power of flow time is at
least pkmax for any schedule. This inequality, together with Corollary 21, implies that
our final schedule σ is an O(1)-approximation for the original instance I, as desired.

6. Conclusion. This paper introduced the first constant approximation for the
`k-norms of flow time on a single machine. After this work, independently the work of
Barta, Garg and Kumar [8] and Feige, Kulkarni and Li [21] have shown an alternative
algorithm for obtaining a constant approximation for the same problem. Their work
further gave the first constant approximation for weighted flow time, resolving a major
open problem in the area. The clear open questions are to determine best possible
approximations for these problems.

It is additionally of interest to determine the best approximation ratio possible
for the `k norms of flow time on identical machines. Currently, the results are known
only with speed augmentation or when jobs arrive at time 0. It is worth mentioning
that the work of Moseley [31] has used similar techniques as this paper for scheduling
in the identical machines environment for generalizations of the `k norms of flow time.
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Appendix A. Omitted Proofs.

Proof of Lemma 3. To show the lemma, we simply need to show an algorithm
that completes each job only earlier than LPmain in the given solution x. We use
the Earliest-Deadline-First algorithm (EDF), which always schedules an unsatisfied
job with the earliest deadline at each time preemptively. Here the deadlines are the
completion times given by the integral LP solution. Let dj be the deadline of job j,
the latest time t where xj,t = 1. Note that xj,rj = xj,rj+1 = ... = xj,dj = 1 and
xj,t = 0 for all t > dj .

For the sake of contradiction, let j be the first job that is not completed by its
deadline dj by the EDF algorithm. Let t1 be the earliest time before dj such that at
every time during the interval [t1, dj ] the EDF algorithm is always scheduling a job
with deadline no later than dj ; we assume w.l.o.g. that jobs have distinct deadlines
by breaking ties in an arbitrary but fixed way. Note that every job the algorithm
schedules during [t1, dj ] arrives during [t1, dj ] since otherwise the value of t1 must be
smaller contradicting the definition of t1. This is because EDF would be scheduling
this job or a job with earlier deadline at time t1 − 1.

Consider Constraint (2) with I = [t1, dj ] and S being the subset of jobs that
arrive during [t1, dj ] but have deadline later than dj . Note that V (I) − P (S) is the
total size of jobs in R(I) \ S, those that arrive during [t1, dj ] and have deadline at or
earlier than time dj . Since EDF was always busy processing jobs in R(I) \ S during
[t1, dj ] but couldn’t finish them by time dj , it must be the case that V (I)−P (S) > |I|,
which makes the right-hand-side of (2) strictly positive. On the other hand, for any
job j ∈ R(I) \ S, we have xj,dj = 0 since the job completes earlier than time dj in
the given LP solution x. Hence the left-hand-side of (2) is 0, which is a contradiction
to the constraint being satisfied. Thus, all jobs are completed by their respective
deadlines by EDF.
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