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Abstract14

We consider the matroid coflow scheduling problem, where each job is comprised of a set of flows15

and the family of sets that can be scheduled at any time form a matroid. Our main result is a16

polynomial-time algorithm that yields a 2-approximation for the objective of minimizing the weighted17

completion time. This result is tight assuming P 6= NP . As a by-product we also obtain the first18

(2 + ε)-approximation algorithm for the preemptive concurrent open shop scheduling problem.19
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1 Introduction30

Coflows were introduced in [5] as: “We propose coflows, a networking abstraction to express31

the communication requirements of prevalent data parallel programming paradigms. Coflows32

make it easier for the applications to convey their communication semantics to the network,33

which in turn enables the network to better optimize common communication patterns.”34

Data parallel application frameworks such as MapReduce [9] and Spark [31] have a unique35

processing pattern that interleaves local computation with communication across machines.36

Due to the size of the large data sets processed, communication often tends to be a bottleneck37

in the performance of these platforms and the coflow model abstracts out this bottleneck.38

Theoretical work on coflow scheduling has primarily focused on the switch model (also called39

matching model) where the underlying network is assumed to have full-bisection bandwidth40

and the set of flows that can be scheduled at any time step is restricted to be form a matching.41

While there are several reasonable formulations/models of scheduling coflows, the following42

will be convenient for our purposes. The input consists of a collection J of jobs, where each43

job j ∈ J is comprised of a set Uj of tasks (also called flows), a non-negative integer wj44
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140:2 Matroid Coflow Scheduling

and a release time rj . Each task e ∈ Uj has a processing requirement pe. For example,45

in the setting of a network supporting MapReduce [9] computations, each job could be a46

MapReduce job, and a task/flow could represent a required communication within a shuffle47

phase of a job. Let U = ∪j∈JUj be the collection of all tasks. Further the input contains48

a downward-closed set systemM = (U, I). Here I ⊆ 2U and elements of I are called the49

independent sets ofM. Conceptually a collection of tasks is independent (and in I) if they50

can be simultaneously scheduled by the network. A feasible output is a schedule σ that51

schedules all the flows. That is for each integer time t, σ specifies a collection σt of tasks52

processed/scheduled at time t. In order to be feasible, σ must satisfy the conditions that:53

every task e ∈ U is scheduled for pe time steps, and54

at each time t, the scheduled tasks/flows σt are in I.55

A job j completes at the first time Cj such that every task in Uj has been scheduled fully.56

The objective is to minimize the total weighted completion time of the jobs. That is, to57

minimize
∑
j wjCj .58

In this paper, we consider coflow scheduling when the set systemM forms a matroid.59

The starting point for our investigations is the question whether there is an algorithm to60

effectively schedule coflows that involve aggregating information, stored at various locations61

in a network, to a common sink location. Such gathering communication patterns were62

identified as common in [5]. We model aggregation communications by assuming that for63

each job j, Uj is a collection of locations in the network where the units of information64

needed for job j are stored. It is natural to define the independent sets to be locations that65

can simultaneously be routed to the sink without violating any capacity constraint of the66

network. In this case, M is a matroid, and more specifically, a gammoid. Note that the67

symmetric problem, of disseminating data from a fixed location to various locations in the68

network, is also common, and essentially equivalent to the aggregation problem.69

The matroid coflow scheduling problem as defined here also naturally captures a number70

of well-studied scheduling problems.71

Parallel Identical Machines Scheduling: Each job j has a single task. The matroid72

M = (U, I) is the uniform matroid of rank m, i.e., any set of m jobs can be scheduled in73

parallel.74

(Preemptive) Concurrent Open Shop Scheduling: In the concurrent open shop scheduling75

problem, each job j comprises of m tasks, one on each machine, i.e. Uj = {tij}mi=1. Task76

tij needs to be scheduled for time pij and the job is completed when all its tasks are77

completed. To model this setting, consider Ti = {tij}nj=1 to be set of all tasks that need78

to be scheduled on machine i. M is a partition matroid that ensures that a set S of tasks79

is independent if and only if |S ∩ Ti| ≤ 1 for each machine i.80

1.1 Our Contributions81

We first consider coflow scheduling on unit length tasks whenM is a matroid. Our main82

result is:83

I Theorem 1. There is a deterministic polynomial-time algorithm for coflow scheduling with84

unit length tasks, whenM is a matroid, that is 2-approximate with respect to the objective of85

minimizing total weighted completion time.86

We note that Theorem 1 can be extended to the case that tasks may have arbitrary87

processing times, albeit at a slight loss in the approximation factor.88
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I Theorem 2. There is a deterministic polynomial-time algorithm for coflow scheduling with89

arbitrary length tasks, whenM is a matroid, that is (2 + ε)-approximate with respect to the90

objective of minimizing total weighted completion time, for any constant ε > 0.91

As with all the approximation results for coflow scheduling in the literature, our algorithm92

is based on rounding a natural time-indexed linear program. Intuitively the rounding extracts93

a deadline C∗j for each job j. This time is roughly 1/λ times later than the first time when94

every task in Uj has been scheduled at least to the extent λ in the solution to LP. Here the95

value of λ is randomly chosen. The expected value of C∗j is shown to be at most twice the96

fractional completion time for j in the solution to LP; this ‘stretching’ (also called slow-motion)97

idea has been used in other scheduling contexts [12, 22, 27]. This can be viewed as deriving98

from the LP a fractional schedule where each job j is fully completed by time C∗j . Then, we99

observe that the problem of scheduling tasks to meet the C∗j deadlines can be expressed as a100

matroid intersection problem. As the matroid intersection polytope is integral [26], one can101

find an integral schedule meeting these deadlines. Finally, by derandomizing the random102

choice of λ, we derive our main theorem.103

The approximation guarantee in Theorem 1 is tight assuming P 6= NP . This is because104

it is NP-hard to approximate the total weighted completion time for concurrent open shop105

(even with unit sized tasks) within a factor of 2− ε [23], and this problem is a special case of106

matroid coflow scheduling, where the matroid is a partition matroid. Somewhat surprisingly,107

even for the concurrent open shop scheduling with release times, the previous best known108

approximation factor was 3 [10, 17]. (See also additional discussion in [2].) Thus, Theorem 2109

immediately yields an improved approximation algorithm for preemptive concurrent open110

shop with arbitrary release times.111

I Corollary 3. There is a deterministic, polynomial-time (2 + ε) approximation algorithm112

for the preemptive concurrent open shop scheduling problem when jobs have arbitrary release113

times, for any constant ε > 0. If all the release times and processing requirements are114

polynomially bounded, then the approximation guarantee improves to 2.115

We believe our primary technical contribution is the high-level approach to reduce a116

weighted completion time scheduling problem to a deadline-constrained scheduling problem.117

Our approach to first extract a deadline for each job from the LP solution and then finding118

an integer schedule that meets those deadlines can be viewed as a strict generalization of119

processing jobs in increasing order of their completion time derived from the LP, which120

has been a very common rounding tool in scheduling literature; e.g. [21, 28, 2]. Our novel121

approach allows us to handle the matroid constraint, which we believe is natural and quite122

general.123

1.2 Related Results124

Most of the theoretical/algorithmic work on coflows has been on matching coflows [20, 16,125

15, 2, 1]. These results essentially abstract out the network by modeling the network as126

an n-by-n switch, or equivalently a complete bipartite graph, and by modeling supportable127

flows by matchings in the graph. This is well motivated in practice as the networks in many128

data centers are hierarchical, with higher network elements having higher capacities. Thus a129

matching between servers at leaves of the network is a not unreasonable approximation of130

a communication supportable by the network. We note that matching coflows correspond131

to coflows in our framework when the set system M is an intersection of two partition132

matroids. The first constant (16.54) approximation for coflow scheduling in this model was133
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140:4 Matroid Coflow Scheduling

given in [20]. Currently the best known approximation ratios are 5 for when jobs may have134

variable release times, and 4 when all jobs arrive at time 0 [2, 29], respectively. Note that135

the 2-approximation algorithms claimed in [18] and [11] are both flawed; see [2] and [11] for136

the discussion of the flaws.137

Jahanjou et al. [14] consider several problems where there is an underlying network with138

capacities on the edges. If the tasks are paths in the network, and I consists of collections of139

paths that don’t collectively violate any edge capacity, then their work gives a algorithm140

for producing a fractional schedule (which is equivalent to time being continuous) that is141

O(1)-approximate with respect to total weighted completion time. If the tasks are (source,142

sink) pairs in the network, and I consists of collections of (source, sink) pairs that can be143

simultaneously routed without violating any edge capacity, then their work gives a algorithm144

for producing a fractional unsplittable schedule that is O(logE/ log logE)-approximate with145

respect to total weighted completion time, together with a matching hardness result; here, E146

is the number of edges. Our work is not comparable to theirs since different constraints are147

addressed and our focus is on integer schedules in contrast to theirs on fractional schedules.148

Coflow scheduling is a generalization of the classical concurrent open shop scheduling149

problem [3, 4, 10, 17, 19, 23, 30]. Several 2-approximation algorithms were shown [4, 10, 17]150

via LP rounding. Matching hardness results were shown in [3, 23]. When jobs have different151

release times, the same LP relaxations yielded 3-approximations [10, 17]. Later, [19] gave a152

simple greedy algorithm that matches the best approximation ratio when all jobs arrive at153

time 0. Recently, [2] gave a combinatorial 3-approximation via a primal-dual analysis when154

jobs have non-uniform release times.155

Coflow scheduling has been actively studied within the networking community; some156

examples include [5, 6, 7, 18, 32].157

1.3 Organization158

The rest of the paper is organized as follows. In Section 2 we give some basic definitions and159

notation. In Section 3 we give the linear programming formulation. In Section 4 we explain160

how to round a solution to the linear program. In Section 5 we discuss the derandomization.161

In Section 6, we discuss the extension to tasks with variable processing times.162

2 Definitions and Notations163

We first consider the matroid coflow scheduling problem with unit length tasks. We will164

discuss three types of schedules, and two types of objectives. In a discrete-time schedule,165

we consider that time is divided into unit length intervals (also called time slots), and the166

schedule specifies the set of jobs processed during each time slot. We let time slot t refer167

to the interval of time (t − 1, t]. In an integer discrete-time schedule, at each time slot t,168

an independent set in the matroid is scheduled. In a fractional discrete-time schedule, at169

each time slot t, a convex combination of independent sets from the matroid are scheduled.170

In other words, in such a fractional schedule, the set of tasks scheduled at time slot t171

can be expressed as
∑
S∈I αS1S , where

∑
S∈I αS = 1, and 1S is the characteristic vector172

corresponding to independent set S ∈ I. A valid feasible solution is restricted to be an173

integer discrete-time schedule. On the other hand, during our analysis, we will also consider174

continuous schedules. A continuous schedule specifies an independent set of tasks to be175

scheduled at each instantaneous time τ (as opposed to during a unit-length time slot).176

The completion time Cj of a job j is the first time when all tasks in Uj have been177

completed. We let qe(t) : [0, T ]→ {0, 1} denote an indicator function defined for each task178
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e ∈ U , where qe(t) = 1 if and only if task e (more precisely an independent set including e)179

is scheduled at time t in σ. We let Qe(t) =
∫ t
τ=0 qe(τ)dτ denote the extent to which task e is180

scheduled by time t. Let C̃j(v) denote the first time when every task in Uj has been scheduled181

by extent at least v. The fractional completion time of job j is then C̃j =
∫∞
v=0 C̃j(v)dv. We182

will use cost(LP) to denote the optimum objective of the LP, which we will describe soon.183

3 Linear Program184

In this section we give a linear programming formulation LP of our matroid coflow problem185

when tasks have unit lengths. Let xj,t be an indicator variable that specifies whether job j186

completes at time t. For a task e ∈ Uj , let ye,t be an indicator variable that specifies whether187

task e is assigned to time slot t. Let ρ(S) be the rank function of the matroid.1 Let T = |U |188

be an upper bound on the time by which all tasks can be completed. The formulation of LP189

is then:190

LP : min
∑
j∈J

wj
∑
t∈[T ]

t · xj,t191

s.t. ∀j ∈ J,
∑
t

xj,t = 1 (1)192

∀j ∈ J and ∀e ∈ Uj and ∀t ∈ [T ],
∑
s≤t

ye,s ≥
∑
s≤t

xj,s (2)193

∀S ⊆ U and ∀t ∈ [T ],
∑
e∈S

ye,t ≤ ρ(S) (3)194

∀j ∈ J and ∀e ∈ Uj and ∀t ∈ [rj − 1], ye,t = 0 (4)195

x,y ≥ 0 (5)196
197

Constraint (1) ensures that every job is scheduled. Constraint (2) ensures that all tasks198

of a job j are scheduled to at least the extent that j is completed by time t. Constraint (3)199

ensures that at any time step t, the set of tasks assigned to t form an independent set in the200

given matroid. Constraint (3) is the only constraint set that can potentially have a super-201

polynomial size. However, for each fixed time t, the constraint is just a polymatroid, and202

therefore, admits an efficient separation oracle [8, 24, 13]. In case that there are arrival/release203

times, constraint (4) ensures that no tasks in Uj are processed before j’s release time rj . The204

objective of LP is fractional weighted completion time.205

Note that a solution to LP can be viewed as a fractional discrete schedule. We will use206

Xj,t :=
∑
s≤t xj,s to denote the extent to which job j has been processed by time t, and use207

Ye,t :=
∑
s≤t ye,s to denote the extent to which task e has been processed by time t.208

4 Rounding209

In this section, we show how to round an optimal solution to LP to obtain a 2-approximate210

integral (discrete) schedule. For each job j and v ∈ (0, 1], define C̄j(v) = 1
xj,t

(v −Xj,t−1) +211

(t− 1) if v ∈ (Xj,t−1, Xj,t], t ∈ [T ]. Intuitively, C̄j(v) is a linear interpolation of the discrete212

times when job j is partially completed. We set a deadline C∗j = d 1
λ C̄j(λ)e for each job j,213

where λ ∈ (0, 1] is randomly drawn according to the probability density function f(v) = 2v.214

1 ρ(S) is defined as maxS′⊆S:S′∈I |S′|.

ICALP 2019



140:6 Matroid Coflow Scheduling

A key portion of the analysis is to show that the expected value of each wjC∗j is at most215

twice the contribution of job j to the LP objective.216

To analyze the expected value of C∗j , we construct several schedules from the LP solution.217

In Subsection 4.1, we will show how to convert a solution of LP to a continuous schedule σ.218

In Subsection 4.2 we show how to convert σ into a stretched schedule σλ, which is another219

continuous schedule parameterized by λ ∈ (0, 1]. Finally, in Subsection 4.3 we will show how220

to convert this continuous schedule into (discrete-time) integer schedule with the same cost.221

We note that we construct schedules in Subsection 4.1 and 4.2 only for the sake of analysis.222

That is, we can obtain a 2-approximate integral discrete schedule only using the rounding223

algorithm in Subsection 4.3 with the deadlines {C∗j }j .224

4.1 Constructing the Continuous Schedule σ225

We construct a continuous schedule σ from the solution to LP. For each time t, we first226

decompose {ye,t}e∈U into a convex combination
∑
S∈I αS1S of independent sets.2 To create227

σ this convex combination is ‘smeared’ across all instantaneous times during (t−1, t]. That is,228

in σ each independent set S is scheduled for αi(τ2 − τ1) time units during each infinitesimal229

time interval (τ1, τ2] ∈ (t− 1, t]. This is formalized in Proposition 4. In Lemma 5 we show230

that the first time when a job j is scheduled to extent v in σ is at most C̄j(v). In Lemma 6231

we show that the fractional weighted completion time of σ is a bit less than the objective232

value of the solution to LP. This is because any processing of job j done during (t − 1, t]233

has no effect until time t on the LP objective, whereas it can have effect on j’s fractional234

weighted completion time of σ during (t− 1, t], before time t.235

I Proposition 4. Consider the schedule σ. For any integer t ∈ [T ] and (τ1, τ2] ∈ (t− 1, t],236

we have,
∫ τ2
τ=τ1

qe(τ)dτ = ye,t(τ2 − τ1).237

I Lemma 5. Consider the schedule σ. For any j and v ∈ (0, 1],238

C̃j(v) ≤ C̄j(v) =: 1
xj,t

(v −Xj,t−1) + (t− 1) if v ∈ (Xj,t−1, Xj,t], t ∈ [T ],239

240

and C̃j(0) = 0.241

Proof. By definition, we have C̃j(0) = 0, so let us assume that v > 0. We first show that242

C̃j(Xj,t) = t. Due to constraint (2), Ye,t ≥ Xj,t for all e ∈ Uj . Thus, by construction243

of σ, all tasks in Uj are processed by at least Xj,t by time t, i.e., Qe(t) ≥ Xj,t, meaning244

that C̃j(Xj,t) ≤ t. We also have that C̃j(Xj,t) ≥ t since we know by the optimality of245

the LP solution that Ye,t = Xj,t for some e ∈ Uj , therefore, Qe(t) = Xj,t. Thus, we have246

C̃j(Xj,t) = t = C̄j(Xj,t).247

Now consider an arbitrary v ∈ (0, 1]. Let t ∈ [T ] be such that v ∈ (Xj,t−1, Xj,t]. Then, it248

follows that xj,t 6= 0. Thus, from the above argument, we have C̃j(Xj,t) = t. Let tv := C̄j(v)249

for notational convenience. We want to show C̃j(v) ≤ tv. By Proposition 4 and construction250

of σ, we know that the extend to which e is processed by time tv,251

Qe(tv) = Ye,t−1 + ye,t(tv − (t− 1)) = Ye,t−1 + ye,t
xj,t

(v −Xj,t−1)252

253

2 This is possible because {ye,t}e lies in the polymatroid associated with the matroid rank function ρ due
to constraint (3). It is well-known that this polymatroid is equivalent to the independence set polytope
of the matroid, meaning that {ye,t}e can be expressed as a convex combination of characteristic vectors
of some independent sets. For more details, see Chapter 44 of [25].



S. Im and B. Moseley and K. Pruhs and M. Purohit 140:7

First, if ye,t ≥ xj,t, we immediately have Qe(tv) ≥ v + Ye,t−1 −Xj,t−1 ≥ v due to constraint254

(2). Otherwise, since 1
xj,t

(v − Xj,t−1) ≤ 1, fixing the value of Ye,t = Ye,t−1 + ye,t, the255

right-hand-side decreases when we increase ye,t. Therefore, we have, Qe(t) ≥ Ye,t−1 − (xj,t −256

ye,t) + xj,t
xj,t

(v −Xj,t−1) = v + Ye,t −Xe,t ≥ v, again due to constraint (2). Hence, we have257

Qe(tv) ≥ v for all e ∈ Uj , which immediately yields C̃j(v) ≤ tv. J258

I Lemma 6.
∑
j∈J wj

∫ 1
v=0 C̄j(v)dv = cost(LP)−

∑
j∈J wj/2259

Proof. It suffices to show that
∫ 1
v=0 C̄j(v)dv =

∑
t∈[T ] t · xj,t − 1/2, since summing this260

equation over all j ∈ J multiplied by their weight wj yields the lemma.261 ∫ 1

v=0
C̄j(v)dv =

∑
t∈[T ]

∫ Xj,t

v=Xj,t−1

C̄j(v)dv =
∑

t∈[T ]:xj,t 6=0

∫ Xj,t

v=Xj,t−1

C̄j(v)dv262

=
∑

t∈[T ]:xj,t 6=0

∫ Xj,t

v=Xj,t−1

(
1
xj,t

(v −Xj,t−1) + (t− 1)
)
dv263

=
∑

t∈[T ]:xj,t 6=0

[
1
2xj,t + (t− 1)xj,t

]
= −1

2 +
∑

t∈[T ]:xj,t 6=0

t · xj,t,264

265

where the last equality follows from constraint (1). J266

4.2 Constructing the Stretched Schedule σλ
267

To construct σλ from σ we “stretch” the schedule σ by a factor of 1/λ. More precisely, if268

an independent set S is scheduled in σ during an infinitesimal interval (τ1, τ2], the same269

independent set is scheduled in σλ during (τ1/λ, τ2/λ]. In Lemma 7 we show that σλ270

completes job j by time C∗j = d C̄j(λ)
λ e. In Lemma 8 we upper bound the expected cost of271 ∑

j wjC
∗
j by twice cost(LP).272

I Lemma 7. The schedule σλ completes every job j by time C∗j .273

Proof. Lemma 5 shows that C̃j(v) ≤ C̄j(v) for all v ∈ (0, 1], meaning that every task in Uj274

is completed by v units by time C̄j(v) in σ. Thus, in the stretched schedule σλ, every job j275

completes by time C̄j(λ)/λ, for any value of λ ∈ (0, 1]. J276

I Lemma 8. E[
∑
j∈J wjC

∗
j ] ≤ 2 cost(LP).277

Proof. First note that278 ∑
j∈J

wjE[C̄j(λ)/λ] =
∑
j∈J

wj

∫ 1

v=0
C̄j(v)/v · (2v)dv = 2

∑
j∈J

wj

∫ 1

v=0
C̄j(v)dv (6)279

Thus, we have,280

E
[∑
j∈J

wjC
∗
j

]
= E

[∑
j∈J

wjd
1
λ
C̄j(λ)e

]
≤
(
E
[∑

j

wj
1
λ
C̄j(λ)

])
+
∑
j

wj281

= 2
∑
j

wj

∫ 1

v=0
C̄j(v)dv +

∑
j

wj [Eqn. (6)]282

= 2
(

cost(LP)−
∑
j

wj/2
)

+
∑
j

wj [Lemma 6]283

= 2 cost(LP)284
285

J286
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140:8 Matroid Coflow Scheduling

4.3 Constructing a Discrete Integer Schedule287

Let y∗e,t denote how much task e is processed during time interval (t− 1, t]. In other words,288

task e appears in y∗e,t units of independents sets scheduled in σλ during the time interval.289

Then, {y∗e,t}e∈U,t∈[T ] satisfies the following:290

1. For all j ∈ J and e ∈ Uj ,
∑
t∈[C∗

j
]\[rj−1] y

∗
e,t = 1; and .291

2. For all S ⊆ U and for all t ∈ [T ],
∑
e∈S y

∗
e,t ≤ ρ(S),292

where the second holds true since {y∗e,t}e∈U can be expressed as a convex combination of293

independent sets scheduled during time interval (t− 1, t], and therefore, lies in the matroid294

polytope. We now interpret {y∗e,t} as a fractional point in the intersection of two matroid295

polytopes. We create the following two matroids. The new universe U ′ is defined as296

U ′ := {(e, t) | t ∈ [T ], j ∈ J, e ∈ Uj s.t. rj ≤ t ≤ C∗j }. The first matroid M1 is a partition297

matroid that forces to choose at most one element out of {(e, t)}t, for each e ∈ U . Intuitively,298

this ensures that no task is scheduled more than once across times. The second matroid299

ensures that elements scheduled at each time t forms an independent set in I. The following300

lemma formally defines the second matroid and shows that it is indeed a matroid.301

I Lemma 9. Define I2 ⊆ 2U ′ such that S′ ⊆ U ′ is in I2 if and only if for any t ∈ [T ],302

{e | (e, t) ∈ S′} ∈ I. Then, M2 = (U ′, I2) is a matroid.303

Proof. Let I2 denote the family of independent sets of M2. It is straightforward to see304

that I2 is downward closed. Thus, it suffices to show that for any A′, B′ ∈ I2 such305

that |A′| < |B′|, there exists (e, t) ∈ B′ \ A′ such that A′ ∪ {(e, t)} ∈ I2. Let U ′t :=306

{(e, t) | j ∈ J, e ∈ Uj s.t. rj ≤ t ≤ C∗j } denote the subset of U ′ restricted to time t. Consider307

any fixed A′, B′ ∈ I2 such that |A′| < |B′|. Then, consider any fixed time t∗ such that308

|A′ ∩ U ′t∗ | < |B′ ∩ U ′t∗ |; such a time t∗ must exist since {U ′t}t partitions U ′. Then, for some309

(e∗, t∗) ∈ (B′ ∩ U ′t∗) \ (A′ ∩ U ′t∗), it must be the case that {e∗} ∪ {e | (e, t∗) ∈ A′ ∩ U ′t∗} ∈ I.310

This is because B′ has more elements than A′ that are paired up with the fixed time t∗, and311

therefore, the set of elements appearing in A′ ∩U ′t∗ remains independent with some e∗ added.312

Further, for any other time t, the elements appearing in the pairs of A′ associated with t313

remain unchanged, and therefore, is in I. J314

Then, it is easy to see that {y∗e,t} is a point that lies in the intersection of the polymatroids315

that are defined by M1 and M2. Further, {y∗e,t} belongs to the base polymatroid of M1; so316

we have
∑

(e,t)∈U ′ y
∗
e,t = |U |. Since the matroid intersection polytope is well-known to be317

integral [26], meaning that every vertex is an integer point, a maximum independent set in318

the intersection ofM1 andM2 must have |U | elements. Further, we can find such a maximum319

independent set in polynomial time. To recap, we have found S′ ∈ U ′ that is a base of M1320

and is independent in M2. This set S′ immediately gives the desired integer schedule where321

{e | (e, t) ∈ S′} is scheduled at each time t. Indeed, due to S′ being a base of M1, every task322

in Uj is scheduled exactly once during time interval [rj , C∗j ]. Further, S′ being independent323

in M2 ensures that the set of tasks scheduled at each time forms an independent set in I.324

5 Derandomization325

In this section, we discuss how to derandomize the choice of λ ∈ (0, 1], which was used to326

compute the deadlines for the jobs. This will complete the proof of Theorem 1. Let us first327

define step values. We say that v ∈ (0, 1] is a step value if
∑
s≤t xj,s = v for some j ∈ J328

and integer t ∈ [T ] – in other words, exactly v fraction of some job j is completed by some329

integer time in the LP solution. Let V denote the set of all step values; 1 ∈ V by definition.330
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Note that that |V | is polynomially bounded in the input size, as the number of variables xj,t331

we consider in LP is at most |J | · |U |.332

Recall that in Lemma 8 we showed E[
∑
j wjC

∗
j ] ≤ 2 cost(LP) when C∗j := d 1

λ C̄j(λ)e. This333

implies there exists a certain value of λ ∈ (0, 1] such that
∑
j wjC

∗
j ≤ 2cost(LP). For the pur-334

pose of derandomization, it suffices to find λ such that
∑
j wjC̄j(λ)/λ ≤ 2

∑
j wj

∫ 1
v=0 C̄j(v)dv;335

the equality is shown in equation (6) in expectation.336

Towards this end, we aim to find λ ∈ (0, 1] that minimizes
∑
j wjC̄j(λ)/λ. Suppose λ337

was set to a value v ∈ (v1, v2], where v1 and v2 are two adjacent step values in V . Consider338

any fixed job j. Let t ∈ [T ] be such that v ∈ (Xj,t−1, Xj,t]. By definition of step values, we339

have (v1, v2] ⊆ (Xj,t−1, Xj,t]. Thus, we have C̄j(v)/v = 1
xj,t

(1− Xj,t−1
v ) + t−1

v . This becomes340

a linear function in z over [1/v2, 1/v1) if we set z = 1/v. Therefore, we get a piece-wise linear341

function g(z) by summing over all jobs multiplied by their weight and considering all pairs342

of two adjacent step values in V . We set λ to the the inverse of z’s value that achieves the343

global minimum, which can be found in polynomial time.344

6 Arbitrary Processing Times345

In this section we show how to extend Theorem 1 to allow tasks with arbitrary processing346

times with a loss of (1 + ε) factor in the approximation ratio for any arbitrary constant ε > 0.347

In this setting, each task e has an arbitrary integer size pe and the task e completes when348

pe independent sets including e are scheduled. As before, at each time we can schedule a349

set of tasks that is independent in the given matroid and a job completes when all its tasks350

complete.351

6.1 Compact Linear Program352

We first describe our new compact LP relaxation. Let T :=
∑
e pe + maxj rj , which is clearly353

an upper bound on the maximum time we need to consider. We define a set of times T354

that consists of polynomially many time steps. First, let T include every job’s arrival time.355

Next, let T include all times appearing in {b(1 + ε)ic}0≤i≤dlog1+ε Te+1. In words, T includes356

exponentially increasing time steps by a factor of (1 + ε) starting from 1 but includes no357

times greater than (1 + ε)2T . Let t1 = 1, t2, . . . , tk, . . . , tK+1 denote the (integer) times in T358

in increasing order. Let Ii := [ti, ti+1) where i ∈ [K]. The idea is to rewrite LP compactly as359

follows by replacing time-indexed variables with interval-indexed variables.360

min
∑
j∈J

wj
∑
i∈[K]

(ti+1 − 1) · xj,i361

362

363

s.t. ∀e ∈ U,
∑
i∈[K]

(ti+1 − ti)ye,i = pe (7)364

∀j ∈ J ∀e ∈ Uj ∀i ∈ [K],
∑
i′≤i

ye,i′/pe ≥
∑
i′≤i

xj,i′ (8)365

∀S ⊆ U ∀i ∈ [K],
∑
e∈S

ye,i ≤ ρ(S) (9)366

∀j ∈ J ∀e ∈ Uj ∀i ∈ [K] s.t. ti+1 ≤ rj , ye,i = 0 (10)367

x,y ≥ 0 (11)368
369

Here, variable xj,i can be viewed as the average fraction of job j that completes per370

unit time during Ii; so, when the job j completes during Ii for the first time, we have371
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∑
i′≤i xj,i′ = 1. Likewise, ye,i has an analogous meaning for each task e but it denotes the372

average unit of task e that is processed per unit time during Ii. Constraint (7) ensures that373

all tasks complete eventually. Constraint (9) ensures that the average vector representing how374

much each task is processed per unit time during It lies in the polymatroid. Constraint (10)375

enforces that no tasks in Uj are processed before j’s arrival time; this is possible since T376

includes all jobs arrival times. Before explaining constraint (8), we explain the objective. If all377

intervals, {Ii} were of unit length, the objective would be exactly the fractional total weighted378

completion time. However, to make the LP compact, when job j completes by xj,i fraction379

during interval Ii, we pretend that the fraction completes at the end of Ii, i.e., ti+1−1. Thus,380

we overestimate the fractional objective; but since times in Ii differ by at most (1 + ε) factor,381

our overestimate is by a factor of at most (1 + ε). Finally, we discuss constraint (8), which382

caps each job’s (cumulative) processed fraction at the analogous quantity of each task of the383

job, which is measured as how much the task has been processed divided by its processing384

time. We also note that this compact LP admits the same separation oracle as the one for385

LP.386

6.2 Rounding387

As before, we seek to round the optimal LP solution. Recall that we first obtained C∗j :=388

d 1
λ C̄je and found an integer schedule that completes every job j before C∗j . We observe that389

the first procedure is no issue. This is because we can interpret the solution to our compact390

LP as a solution to LP. To see this, when a task e is processed by δ amount, pretend that391

there exist pe different tasks of unit size and they are processed equally by δ/pe amount.392

Thus, we can compute C̄j(v) efficiently for any value of v ∈ (0, 1]. The derandomization can393

be done similarly.394

6.3 Finding An Integer Schedule395

It now remains to find an integer schedule meeting the discovered deadlines, {C∗j }j∈J . We396

use essentially the same idea of reducing the problem to finding an integer solution to the397

intersection of two matroids. However, this reduction requires some careful modifications to398

be implemented in polynomial time. Also, we will aim to complete every job j by (1+O(ε))C∗j399

meeting the deadline slightly loosely.400

The main idea is to use the fact that the continuous schedule σλ meeting the deadlines {C∗j }401

only changes polynomially many times. This is because the continuous schedule σ before the402

stretching is identical at all times during each of the intervals (0, t1−1], (t1−1, t2], . . . , (tK−1−403

1, tK ] – these intervals are stretched into (0, (t1 − 1)/λ], ((t1 − 1)/λ, t2/λ], . . . , ((tK−1 −404

1)/λ, tK/λ], respectively. We split the interval including the time T ′ = |U |2/ε2 into two, the405

left one ending at |U |2/ε2 and the right one starting at |U |2/ε2. Here, assume that 1/ε is406

an integer. We also add time C̄j(λ)/λ for every j ∈ J and split the intervals accordingly.407

To simplify the notation, we recycle the notations Ii. By reindexing the resulting intervals408

and merging some initial intervals, we have I0 := (0, T ′], I1, I2, ..., IK′ . We say that an409

interval is small if its starting time or ending time is not a power of (1 + ε) divided by λ;410

more precisely, ((ti−1 − 1)/λ, ti/λ] is small if ti−1 or ti is not a power of (1 + ε) divided by λ.411

Note that there are at most 4|J |+ 4 ≤ 8|J | ≤ 8|U | small intervals since each job’s arrival412

time and deadline together can create at most 4 small intervals; the extra four come from413

time 0, the final time, and T ′.414

For each interval Ii, let Qe(Ii) denote the amount of task e processed during Ii, which415

can be easily computed in polynomial time. For each interval, we will construct an integer416
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schedule that schedules each task as much as the continuous schedule σλ does without using417

too many time steps compared to the interval’s length; more precisely, the integer schedule418

will process at least dQe(Ii)e units of task e. We categorize the intervals into three groups.419

Depending on the category where each interval belongs, we construct an integer schedule420

differently or give a different upper bound on the length of the integer schedule. At the end,421

we will concatenate the constructed integer intervals in increasing order of times. In the422

following, |I| denotes I’s length.423

The first interval, I0 = (0, T ′]. Using the same idea we used for handling unit-sized tasks,424

we find an integer schedule that processes at least bQe(Ii)c, meeting all job deadlines no425

greater than T ′. Note that I0 has a polynomial length; thus, the desired integer schedule426

can be computed in polynomial time. Then, we can greedily schedule each task e per unit427

time such that Qe(Ii) is not an integer. Note that such a task e hasn’t completed by time428

T ′, so the task (more precisely, the job to which the task belongs) has deadline at least T ′.429

Therefore, we will be able to charge the extra delay of at most |U | to the corresponding job’s430

deadline directly.431

Ii that is not small, for i ≥ 1. We seek to construct an integer schedule of length432

(1 +O(ε))|Ii|. Towards this end, we do the following. Suppose we divide the interval into433

d |Ii||U |/εe subintervals of length |U |/ε; there can be at most one subinterval of a smaller length434

and we will handle it later. Next, for each subinterval of length |U |/ε, we try to schedule435

d |U |/ε|Ii| Qe(Ii)e units of each task e. Since the length is polynomial in |U |, we can find an436

integer schedule of length |U |/ε + 1 that schedules b |U |/ε|Ii| Qe(Ii)c units of each task e. By437

scheduling one task per unit time, we can schedule d |U |/ε|Ii| Qe(Ii)e units of each task e for438

|U |/ε + 1 + |U | ≤ (|U |/ε) · (1 + 2ε) time steps. Here, our integer schedule’s length is at439

most (1 + 2ε) times the subinterval’s length, |U |/ε. This integer schedule is repeated b |Ii||U |/εc440

times. We now handle the smaller subinterval of length less than |U |/ε. Using a similar441

argument, we can process more units of each task than the continuous schedule, using at442

most |U |/ε+ 1 + |U | ≤ 2|U |/ε time steps. Here we use the fact that Ii has length significantly443

greater than |U |. To see this, suppose we had not added jobs arrival times, deadlines or T ′444

in the process of creating the intervals. Then the intervals preceding Ii have exponentially445

decreasing lengths by a factor of (1 + ε). Using this observation, we can argue that Ii’s length446

is at least ε/2 times Ii’s starting time. Since Ii’s starting time is greater than T ′, we have447

that Ii’s length is at least (ε/2) · T ′ = (ε/2) · (|U |2/ε2) = |U |2/(2ε). So, we can charge the448

number of time steps spent to handle the smaller subinterval, which is at most 2|U |/ε, to the449

length of Ii. From all these arguments, we can construct an integer schedule of length at450

most (1 + 6ε)|Ii|.451

Ii that is small, for i ≥ 1. We seek to construct an integer schedule of length (1+O(ε))|Ii|+452

2|U |/ε. The whole idea is the same for the intervals that are not small. The only difference453

is that we cannot charge the extra time steps we spend to handle the smaller subinterval,454

which is at most 2|U |/ε, to the length of Ii. Thus, we just use the upper bound on the length455

of our integer schedule.456

As mentioned before, we concatenate the integer schedules originating from I0, I1, . . . , IK457

in this order to obtain the final schedule. It now remains to show that each job completes by458

time (1 +O(ε))C∗j . We already showed that our integer schedule completes every job j before459

its deadline C∗j if it is smaller than T ′. For any other job j, it must be the case that C̄j(λ)/λ460
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is greater than T ′. Let Ii be the interval including C̄j(λ)/λ. Due to the way the intervals are461

constructed, C̄j(λ)/λ must be equal to Ii’s finish time. Our goal is to show that we complete462

j not too late compared to Ii’s finish time. That is, we want to show that the total length of463

the integer schedules originating from I0, I1, . . . , Ii is at most (1 +O(ε))
∑
i′≤i |Ii′ |. Indeed,464

the total length is at most,465

|I0|+ |U |+
∑

i′=[i]:Ii′ is small
((1 +O(ε))|Ii|+ 2|U |/ε) +

∑
i′=[i]:Ii′ is not small

(1 +O(ε))|Ii|466

≤
i∑

i′=0
(1 +O(ε))|Ii′ |+ |U |+ (2|U |/ε) · (8|U |) ≤

i∑
i′=0

(1 +O(ε))|Ii′ |+O(ε)|I0|467

468

Here, the first inequality follows from the fact that there are at most 8|U | small intervals, as469

argued above. The second inequality is immediate from |I0| = T ′ = |U |2/ε2. Therefore, we470

have shown that each job completes by time (1 +O(ε))C∗j , which establishes that our final471

schedule’s objective is at most (1 +O(ε)) times the compact LP’s optimum. Since we showed472

the compact LP lower bounds the optimum times (1 + ε), we obtain a 2(1 + ε)-approximate473

schedule for arbitrary ε > 0 by scaling ε appropriately.474
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