
Noname manuscript No.
(will be inserted by the editor)

Non-Clairvoyantly Scheduling to Minimize Convex
Functions

Kyle Fox · Sungjin Im · Janardhan
Kulkarni · Benjamin Moseley

Received: date / Accepted: date

Abstract This paper considers scheduling jobs online to minimize the objec-
tive

∑
i∈[n] wig(Ci−ri), where wi is the weight of job i, ri is its release time, Ci

is its completion time and g is any non-decreasing convex function. It is known
that the clairvoyant algorithm Highest-Density-First (HDF) is (2 + ε)-speed
O(1)-competitive for this objective on a single machine for any fixed 0 < ε < 1
[22]. This paper shows the first non-trivial results for this problem when g is
a non-decreasing convex function and the algorithm must be non-clairvoyant.
More specifically, our results include:

• A (2 + ε)-speed O(1)-competitive non-clairovyant algorithm on a single
machine for all non-decreasing convex g, matching the performance of HDF
for any fixed 0 < ε < 1.
• A (3 + ε)-speed O(1)-competitive non-clairovyant algorithm on multiple
identical machines for all non-decreasing convex g for any fixed 0 < ε < 1.

K. Fox was supported in part by the Department of Energy Office of Science Graduate
Fellowship Program (DOE SCGF), made possible in part by the American Recovery and
Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-
06OR23100.
S. Im was supported in part by NSF grant CCF 1409130.
J. Kulkarni was supported by NSF awards CCF-0745761, CCF-1008065, and CCF-1348696.

Kyle Fox
University of Texas at Dallas
E-mail: kyle.fox@utdallas.edu

Sungjin Im
University of California-Merced
E-mail: sim3@ucmerced.edu

Janardhan Kulkarni
University of Minnesota at Twin Cities
E-mail: janardhan.kulkarni@gmail.com

Benjamin Moseley
Carnegie Mellon University
E-mail: moseleyb@andrew.cmu.edu

2 Kyle Fox et al.

This paper gives the first non-trivial upper-bound on multiple machines
even if the algorithm is allowed to be clairvoyant. All performance guarantees
above hold for all non-decreasing convex functions g simultaneously. The pos-
itive results are supplemented in this paper by lower bounds. The first shows
that any algorithm that is oblivious to g is not O(1)-competitive with speed
less than 2 on a single machine. Further, any non-clairvoyent algorithm that
knows the function g cannot be O(1)-competitive with speed less than

√
2 on

a single machine or speed less than 2− 1
m on m identical machines.

1 Introduction

Scheduling a set of jobs that arrive over time on a single machine is perhaps
the most basic setting considered in scheduling theory. A considerable amount
of work has focused on this fundamental problem. For examples, see [27]. In
this setting, there are n jobs that arrive over time, and each job i requires some
processing time pi to be completed on the machine. In the online setting, the
scheduler first becomes aware of job i at time ri when job i is released. This
paper assumes jobs can be preempted ; that is, they can be stopped at any time
and later resumed from the previous point of execution. Time is continuous;
jobs may have non-integral processing times, and the scheduler may work for
a non-integral amount of time on a job before it is preempted or completed.

Generally, a client that submits a job i would like to minimize the flow time
of the job which is defined as Fi := Ci − ri, where Ci denotes the completion
time of job i. The flow time of a job measures the amount of time the job
waits to be satisfied in the system. When there are multiple jobs competing
for service, the scheduler needs to make scheduling decisions to optimize a
global objective. One of the most popular objectives is to minimize the total
(or equivalently average) flow time of all the jobs, i.e.,

∑
i∈[n] Fi. It is well

known that the algorithm Shortest-Remaining-Processing-Time (SRPT) is
optimal for this objective in the single machine setting. The algorithm SRPT
always schedules the job that has the shortest remaining processing time at
each point in time. Another well known result is that the algorithm First-
In-First-Out (FIFO) is optimal for minimizing the maximum flow time, i.e.,
maxi∈[n] Fi on a single machine. The algorithm FIFO schedules the jobs in the
order they arrive.

These classic results have been extended to the case where jobs have pri-
orities. In this extension, each job i is associated with a weight wi denoting its
priority; large weight implies higher priority. The generalization of the total
flow time problem is to minimize the total weighted flow time,

∑
i∈[n] wiFi.

For this problem it is known that no online algorithm can be O(1)-competitive
[5]. A generalization of the maximum flow time problem is to minimize the
maximum weighted flow time maxi∈[n] wiFi. It is also known for this problem
that no online algorithm can be O(1)-competitive [11,15].

Due to these strong lower bounds, previous work considering these objec-
tives has appealed to the relaxed analysis model called resource augmentation

Non-Clairvoyantly Scheduling to Minimize Convex Functions 3

[23]. In this relaxation, an algorithm A is said to be s-speed c-competitive if
A has a competitive ratio of c when processing jobs s times faster than the
adversary. The primary goal of a resource augmentation analysis is to find the
minimum speed an algorithm requires to be O(1)-competitive. An algorithm
is said to be scalable for an objective if it is (1 + ε)-speed O(f(ε))-competitive
for all constant ε > 0 where f is some function only dependent of ε. For the
total weighted flow time objective, it is known that the algorithm Highest-
Density-First (HDF) is scalable; that is, it is (1 + ε)-speed O(1

ε)-competitive
for any fixed ε > 0 [26,10]. The algorithm HDF always schedules the job i of
highest density, wi

pi
. For the maximum weighted flow objective, the algorithm

Biggest-Weight-First (BFW) is known to be (1 + ε)-speed O(1
ε)-competitive

[15]. BFW always schedules the job with the largest weight.

Another widely considered objective is minimizing the `k-norms of flow

time,
(∑

i∈[n] F
k
i

)1/k
[7,17,20,1,4,24]. The `k-norm objective is most useful

for k ∈ {1, 2, 3,∞}. Observe that total flow time is the `1-norm of flow time,
and the maximum flow time is the `∞-norm. The `2 and `3 norms are natural
balances between the `1 and `∞ norms. These objectives can be used to de-
crease the variance of flow time, thereby yielding a schedule that is fair to jobs.
It is known that no algorithm can be nΩ(1)-competitive for minimizing the `2-
norm [7]. On the positive side, for ε > 0, HDF was shown to be (1 + ε)-speed
O(1

ε2)-competitive for any `k-norm objective, k ≥ 1 [7].

These objectives have also been considered in the identical machine
scheduling setting [25,14,3,2,9,16,13,19]. In this setting, there are m machines
that the jobs can be scheduled on. Each job can be scheduled on any machine,
and job i requires processing time pi no matter which machine it is assigned
to. In the identical machine setting it is known that any randomized online
algorithm has competitive ratio Ω(min{ nm , logP}), where P denotes the ratio
between the maximum and minimum processing time of a job [25]. HDF as
well as several other algorithms are known to be scalable for weighted flow
time [10,14,19,13]. For the `k-norms objective the multiple machine version of
HDF is known to be scalable [13] as well as other algorithms [14,19]. For the
maximum unweighted flow it is known that FIFO is (3 − 2/m)-competitive,
and for weighted maximum flow time a scalable algorithm is known [11,15].

The algorithms HDF and SRPT use the processing time of a job to make
scheduling decisions. An algorithm which learns the processing time of a job
upon its arrival is called clairvoyant. An algorithm that does not know the pro-
cessing time of a job before completing the job is said to be non-clairvoyant.
Among the aforementioned algorithms, FIFO and BFW are non-clairvoyant.
Non-clairvoyant schedulers are highly desirable in many real world settings.
For example, an operating system typically does not know a job’s processing
time. Thus, there has been extensive work done on designing non-clairvoyant
schedulers for the problems discussed above. Scalable non-clairvoyant algo-
rithms are known for the maximum weighted flow time, average weighted flow
time, and `k-norms of flow time objectives even on identical machines [15,14].

4 Kyle Fox et al.

It is common in scheduling theory that algorithms are tailored for specific
scheduling settings and objective functions. For instance, FIFO is consid-
ered the best algorithm for non-clairvoyantly minimizing the maximum flow
time, while HDF is considered one of the best algorithms for minimizing total
weighted flow time. One natural question that arises is what to do if a system
designer wants to minimize several objective functions simultaneously. For in-
stance, a system designer may want to optimize average quality of service,
while minimizing the maximum waiting time of a job. Different algorithms
have been considered for minimizing average flow time and maximum flow
time, but the system designer would like to have a single algorithm that per-
forms well for both objectives.

Motivated by this question, the general cost function objective was con-
sidered in [22]. In the general cost function problem, a function g : R+ → R+

is given, and the goal of the scheduler is to minimize
∑
i∈[n] wig(Fi). One can

think of g(Fi) as the penalty of making job i wait Fi time steps. The weight
wi represents job i’s priority. This objective captures most scheduling met-
rics. For example, this objective function captures total weighted flow time by
setting g(x) = x. By setting g(x) = xk, the objective also captures minimiz-
ing

∑
i∈[n] F

k
i which is essentially the same as the `k-norm objective except

the outer kth root is not taken. Finally, by making g grow very quickly the
objective can be designed to capture minimizing the maximum weighted flow
time. As stated, one of the reasons this objective was introduced was to find
an algorithm that can optimize several objectives simultaneously. If one were
to design an algorithm that optimizes the general cost function g while being
oblivious to g, then this algorithm would optimize all objective functions in
this framework simultaneously.

In [22], the general cost function objective was considered only assuming
that g is non-decreasing. This is a natural assumption since there should be no
incentive for a job to wait longer. It was shown that in this case, no algorithm
that is oblivious to the cost function g can be O(1)-competitive with speed
2 − ε for any fixed ε > 0. It was also shown that HDF, an algorithm that is
oblivious to g, is (2 + ε)-speed O(1/ε)-competitive. This result shows that it is
indeed possible to design an algorithm that optimizes most of the reasonable
scheduling objectives simultaneously on a single machine. Recall that HDF
is clairvoyant. Ideally, there is a non-clairvoyant algorithm that optimizes the
general cost function objective. Partially addressing this ideal, Im et al. [22]
showed Weighted Latest Arrival Processor Sharing (WLAPS) is scalable for
concave functions g; however, concave g have the intuitive behavior that each
additional unit of time spent waiting on a job is somehow less important than
the ones before it. Another open question is that there are currently no non-
trivial results known in the multiple identical machines setting or other more
general machine environments.

Results: This paper considers non-clairvoyant online scheduling to minimize
the general cost function on a single machine as well as on multiple identical
machines. In both the settings, this paper gives the first nontrivial positive

Non-Clairvoyantly Scheduling to Minimize Convex Functions 5

results when the online scheduler is required to be non-clairvoyant. We concen-
trate on cost functions g which are differentiable, non-decreasing, and convex.
We assume without loss of generality that g(0) = 0. Note that all of the objec-
tives discussed previously have these properties. We show the following result,
proving that a non-clairvoyant algorithm can simultaneously optimize most
reasonable objectives on a single machine (Section 4).

Theorem 1 There exists a non-clairvoyant algorithm that is (2 + ε)-speed
O(1/ε)-competitive for minimizing

∑
i∈[n] wig(Ci − ri) on a single machine

for any ε > 0, when the given cost function g : R+ → R+ is differentiable,
non-decreasing, and convex (g′ is non-decreasing). Further, this algorithm is
oblivious to g.

After establishing this result, this paper considers the general cost function
objective on multiple machines for the first time.

Theorem 2 There exists a non-clairvoyant algorithm that is (3 + ε)-speed
O(1/ε)-competitive for minimizing

∑
i∈[n] wig(Ci − ri) on multiple identical

machines for any ε > 0, when the given cost function g : R+ → R+ is dif-
ferentiable, non-decreasing, and convex (g′ is non-decreasing). Further, this
algorithm is oblivious to g.

Note that it is not know if there exists a constant competitive non-
clairvoyant algorithm even for a single machine with any constant speed when
the cost function is neither convex nor concave. The authors leave this gap as
an open problem.

These positive results are complemented by extending the lower bound
presented in [22]. They showed that for any ε > 0, no oblivious algorithm can
be (2− ε)-speed O(1)-competitive on a single machine when the cost function
g is non-decreasing, but perhaps discontinuous. This paper shows the same
lower bound even if g is differentiable, non-decreasing, and convex. Thus, on
a single machine, our positive result is essentially tight up to constant factors
in the competitive ratio, and our algorithm achieves the same performance
guarantee while being non-clairvoyant.

Theorem 3 No randomized clairvoyant algorithm that is oblivious to g can
be (2− ε)-speed O(1)-competitive for minimizing

∑
i∈[n] wig(Ci− ri) on a sin-

gle machine even if all jobs have unit weights and g is differentiable, non-
decreasing, and convex.

We further show that even if a non-clairvoyant algorithm knows the cost
function g, the algorithm cannot have a bounded competitive ratio when given
speed less than

√
2. This establishes that more than 1 + ε speed is required for

an algorithm to be O(1) competitive.

Theorem 4 Any deterministic non-clairvoyant (possibly aware of g) algo-
rithm for minimizing

∑
i∈[n] wig(Ci − ri) on a single machine has an un-

bounded competitive ratio when given speed
√

2− ε for any fixed ε > 0 where g
is differentiable, non-decreasing, and convex.

6 Kyle Fox et al.

Finally, we show that at least 2− 1
m speed is needed for any non-clairvoyant

algorithm to be constant competitive on m identical machines. This is the first
lower bound for the general cost function specifically designed for the multiple
machine case.

Theorem 5 Any randomized non-clairvoyant (possibly aware of g) algorithm
on m identical machines has an unbounded competitive ratio when given speed
less than 2− 1

m −ε for any fixed ε > 0 when g is differentiable, non-decreasing,
and convex.

Comparing to Previous Work: To show Theorem 1, we consider the well-
known algorithm Weighted-Shortest-Elapsed-Time-First (WSETF) on a singe
machine and first show that it is 2-speed O(1)-competitive for minimizing the
fractional version of the general cost function objective. Then with a small
extra amount of speed augmentation, we convert WSETF’s schedule into
the one that is (2 + ε)-speed O(1)-competitive for the integral general cost
function. This conversion is now a fairly standard technique, and will be further
discussed in Section 2. This conversion was also used in [22] when analyzing
HDF. One can think of the fractional objective as converting each job i to a set
of pi unit processing time jobs of weight wi/pi. That is, the weight of the job is
distributed among all unit pieces of the job. Notice that the resulting weight of
the unit time jobs as well as the number of them depends on the job’s original
processing time. Thus, to analyze a non-clairvoyant algorithm for the fractional
instance one must consider the algorithm’s decisions on the original instance
and argue about the algorithm’s cost on the fractional instance. This differs
from the analysis of [22], where the clairvoyant algorithm HDF can assume
full knowledge of the conversion. Due to this, in [22] they can argue directly
about HDF’s decisions for the fractional instance of the problem. Since a non-
clairvoyant algorithm does not know the fractional instance, it seems difficult
to adapt the techniques of [22] when analyzing a non-clairvoyant algorithm.

If the instance consists of a set of unweighted jobs, WSETF always pro-
cesses the job which has been processed the least. Let qAi (t) be the amount
WSETF has processed job i by time t. When jobs have weights, WSETF
processes the job i such that wi

qAi (t)
is maximized where wi is the weight in the

integral instance. One can see that WSETF will not necessarily process the
jobs with the highest weight at each time, which is what the algorithm HDF
will do if all jobs are unit sized. Further, WSETF may round robin among
multiple jobs of the same priority.

Technique - A New Lower Bound: The positive results in this paper rely
on a new lower bound developed on the optimal solution. This lower bound
holds for any objective that is differentiable, non-decreasing, and convex. The
lower bound gives a way to relate the final objective of the optimal solution
to the volume of unsatisfied work the optimal solution has at each moment in
time.

Non-Clairvoyantly Scheduling to Minimize Convex Functions 7

The upper-bounds follow by this lower bound and by bounding the volume
of unsatisfied jobs in the optimal schedule at each moment in time. Together,
this allows us to relate the optimal solution’s objective to WSETF’s objective.

The lower bound will likely be useful in further research on scheduling
algorithms since it can used for many scheduling objectives. The lower bound
is technical and details are given in the main body of the paper.

Other Related Work: For minimizing average flow time on a single ma-
chine, the non-clairvoyant algorithms Shortest Elapsed Time First (SETF)
and Latest Arrival Processor Sharing (LAPS) are known to be scalable [23,
18]. Their weighted versions Weighted Shortest Elapsed Time First (WSETF)
and Weighted Latest Arrival Processor Sharing (WLAPS) are scalable for av-
erage weighted flow time [7,6], and also for (weighted) `k norms of flow time
[7,17].

Im et al. [22] showed that no online randomized algorithm, even with any
constant speed-up, can have a constant competitive ratio, when each job i
has its own cost function gi, and the goal is to minimize

∑
i∈[n] gi(Fi). This

more general problem was studied in the offline setting by Bansal and Pruhs
[8]. They gave an O(log logP)-approximation (without speed augmentation),
where P is the ratio of the maximum to minimum processing time of a job.
This is the best known approximation for minimizing average weighted flow
time offline, and a central open question in scheduling theory is whether or not
a O(1)-approximation exists for weighted flow time offline. It is known that
an O(1)-approximation exists for the `k-norms of flow time offline [21]

2 Preliminaries

In this section, we define the algorithm WSETF, define the fractional general
cost objective, and introduce some notation used in our analysis. Let g be a
positive differentiable, non-decreasing, and convex function where g(0) = 0.
Let g′ denote the derivative of g.

The Algorithm WSETF: First consider the case where there is a single
machine. Let qAi (t) be the amount WSETF has processed job i by time t.
Recall, wi is the weight of job i. The algorithm WSETF processes the job
i such that wi

qAi (t)
is maximized. If there are ties, they are broken arbitrarily.

In the case that the number of machines m > 1, WSETF chooses a set S
of at most m jobs that maximizes

∑
i∈S

wi

qAi (t)
and schedules each job on an

individual machine. If there are ties, the algorithm breaks them arbitrarily.
Throughout our analysis, it is assumed that WSETF works on at most one
job at a time on each machine.

The Fractional Objective: We will refer to the non-fractional general cost
objective as the integral objective. When the schedule is fixed, let pi(t) denote
the remaining processing time of job i at time t. Let βi(p) be the latest time t
such that pi(t) = p for any p where 0 ≤ p ≤ pi.

8 Kyle Fox et al.

The fractional objective penalizes jobs by charging a job in proportion to
how much of the job remains to be processed. Formally, the fractional objective
is defined as:

∑
i∈[n]

∫ Ci

t=ri

wipi(t)

pi
g′(t− ri)dt (1)

Generally when the fractional objective is considered, it is stated in the
form (1). For our analysis it will be useful to note that this objective is equiv-
alent to: ∑

i∈[n]

wi
pi

∫ pi

p=0

g(βi(p)− ri)dp (2)

Intuitively, the fractional objective interprets each job as consisting of in-
finitesimal pieces of equal weight. The first definition measures how much
the remaining pieces contribute to the objective at each point in time, while
the second measures how much each infinitesimal piece contributes when it is
completed.

As noted earlier, considering the fractional objective has proven to be useful
for the analysis of algorithms in scheduling theory, because arguing about the
fractional objective is usually easier. A schedule which optimizes the fractional
objective can then be used to get a good schedule for the integral objective as
stated in the following theorems. In the first theorem (6), the algorithm’s frac-
tional cost is compared against the optimal solution for the fractional objective.
The second theorem (7) follows immediately from the first and compares the
algorithm’s fractional cost with the optimal solution for the integral objective.

Theorem 6 ([22]) If a (non-clairvoyant) algorithm A is s-speed c-competitive
for minimizing the fractional general cost function, then there exists a (1+ε)s-

speed (1+ε)c
ε -competitive (non-clairvoyant) algorithm for the integral general

cost function objective for any 0 ≤ ε ≤ 1.

Theorem 7 ([22]) If a (non-clairvoyant) algorithm A with s-speed has frac-
tional cost at most a factor c larger than the optimal solution for the integral

objective then there exists a (1+ε)s-speed (1+ε)c
ε -competitive (non-clairvoyant)

algorithm for the integral general cost function objective for any 0 ≤ ε ≤ 1.

These two theorems follow from the analysis given in [22]. Theorem 7 in
fact follows from Theorem 6 since a schedule’s fractional objective is always
no greater than its integral objective. We note that the resulting algorithm
that performs well for the integral objective is not necessarily the algorithm
A. Interestingly, [22] shows that if A is HDF then the resulting algorithm is
still HDF. However, if A is WSETF, the resulting integral algorithm need
not be WSETF. Both of these theorems hold for multiple machines, which
could be heterogeneous.

Non-Clairvoyantly Scheduling to Minimize Convex Functions 9

2.1 Notation

We now introduce some more notation that will be used throughout the paper.
There are n jobs that arrive over time and each job i has a release time ri,
weight wi and processing time pi. For a schedule B, let CBi be the completion
time of job i. Let pBi (t) denote the remaining processing time for job i at time
t. Let qBi (t) = pi − pBi (t) be the amount job i has been processed by time t.
We say a job i is alive or unsatisfied at time t in schedule B if ri ≤ t ≤ CBi or
pBi (t) > 0. Let QB(t) be the set of jobs released but unsatisfied by B at time
t. In words, QB(t) is B’s queue of jobs at time t.

Let pi,j = min{wj

wi
pi, pj}. The value of pi,j is the amount WSETF will

processes job j before completing i if i and j are both alive at time max{ri, rj}.
That is, they are both alive at the same time. The value of pi,j can be thought
of as the amount of time i will wait while WSETF processes j if i and j arrive
at the same time. Let (·)+ denote max{·, 0}. Extending the definition of pi,j ,
let pBi,j(t) = (pi,j − qBj (t))+. Notice that pBi,j(rj) = pi,j as qBj (rj) = 0. If both
jobs are alive at time max{ri, rj}, the schedule B is that produced by WSETF,
and t ∈ [ri, C

B
i], then pBi,j(t) is exactly the amount of processing time WSETF

will devote to job j during the interval [t, CBi]. This is because B will process
job j by pi,j amount before completing job i, and it processes qBj (t) units of
job j by time t. Another interpretation is that pi,j is the remaining time job
i waits due to WSETF processing job j.

Let ZBi (t) =
∑
j∈QB(t) p

B
i,j(t). In words, the quantity ZBi (t) is the remain-

ing amount of time after t that job i will wait to be satisfied assuming that B
uses WSETF’s scheduling policy and no more jobs arrive. The value of ZBi (t)
is a lower bound on job i’s remaining waiting time, irrespective of later job
arrivals, if B uses WSETF’s scheduling policy. This is because adding new
jobs does not change the relative order of the completion times of existing
jobs. Therefore, it cannot change pBi,j for existing jobs i and j.

When the schedule B is the optimal schedule, we set B to be O and if the
schedule is that given by WSETF, we set B to be A. For example QA(t) is the
set of released and unsatisfied jobs for WSETF at time t. While most of the
quantities refer to quantities that correspond to WSETF’s scheduling policy,
by setting B to be O these quantities allow us to mathematically compare the
two schedules.

We let OPT denote the optimal objective. For notational convenience, we
also let OPT to denote the optimal scheduler. Finally, for a set of possibly
overlapping time intervals I, let |I| denote the total length of their union.

3 Analysis tools

In this section, tools are introduced that are used in the analysis. First, we
present our lower bound on the optimal solution. Given a set of partially
processed jobs and a time t, the lemma relates the amount of time a fixed
job will wait to complete under WSETF’s schedule to some amount of the

10 Kyle Fox et al.

fractional cost incurred in any schedule, including the optimal schedule. This
lower bound is a generalization of a lower bound presented in [20] for the
norms of flow time. The assumption in the lemma that g is convex is crucial;
the lemma is not true otherwise.

Lemma 1 Let σ be a set of jobs. Let B be any feasible s′-speed schedule of
the jobs in σ. Let B(σ) be the total weighted fractional cost of B with objective
function g that is differentiable and convex (g′ is non-decreasing), with g(0) =
0. Let x(t) : R+ → σ be any function of t to jobs such that rx(t) ≤ t. Then,∫ ∞

t=0

wx(t)

px(t)
g(ZBx(t)(t)/s

′)dt ≤ 1

s′
B(σ).

We first give intuition behind this lemma. As a warm-up, assume that
all jobs have unit sizes and weights and set x(t) to the last job in σ that
is completed by B. Then, ZBx(t)(t) is simply the volume of work left in the
schedule B at time t assuming that no more jobs arrive; call the quantity Z
for notational convenience. (JK: I changed this from OPT schedule to schedule
B.) Thus, jobs are completed for the next Z/s time steps. If the schedule B
(think of it as the optimal schedule) is non-idling then the left-hand-side is
exactly B’s fractional cost over s′.

More generally, the lemma measures a certain volume of work that has
to be done from time t, that is, ZBx(t). The fact that this schedule B has

ZBx(t) volume of work implies that some job waits ZBx(t)/s
′ time steps to be

completed. Further, the schedule will at best complete the fractional pieces of
each job contributing to ZBx(t) during the next ZBx(t)/s

′ time steps after time t.
The integral is capturing the minimum cost of completing these jobs assuming
each such job has density the same as the job x(t). Note this this may not be
true, but this is an underestimate for jobs with higher density. For jobs with
lower density, the lemma is still true because they actually have much larger
size than is contributing to ZBx(t) and thus are completed even later costing
much more since the function g is convex.

Interestingly, the lemma allows us to pick any job x(t) at each time t.
Particularly, we can set x(t) to the job our algorithm works on at time t.
Hence, even if the optimal scheduler works on a different job at the time, the
lemma enables the comparison of our algorithm’s cost to the optimal schedule’s
cost by identifying a volume of work that will incur a comparable cost.

The proof of this lemma is in Section 6. In short, our proof breaks down
the jobs contributing to each ZBx(t)(t) into several infinitesimal job ‘slices’. We

distribute ZBx(t)(t) over these slices. Then we integrate over the cost incurred
before each slice is completed, and show the result to be an upper bound
on ZBx(t)(t). In turn, we show that the total amount charged to each slice

across all ZBx(t)(t) is at most that slice’s contribution to the fractional cost of
schedule B.

Next we show a property of WSETF that will be useful in relating the
volume of work of unsatisfied jobs in WSETF’s schedule to that of the optimal

Non-Clairvoyantly Scheduling to Minimize Convex Functions 11

solution’s schedule. Using this lemma, we can bound the volume of jobs in the
optimal solution’s schedule and then appeal to the lower bound shown in the
previous lemma. This lemma is somewhat similar to one used for the algorithm
Shortest-Remaining-Processing-Time (SRPT) [27,19].

Lemma 2 Consider running WSETF using s-speed for some s ≥ 2 on m
identical machines and the optimal schedule at unit speed on m identical ma-
chines. For any job i ∈ QA(t) and time t, it is the case that ZAi (t)−ZOi (t) ≤ 0.

Proof For the sake of contradiction, let t be the earliest time such that ZAi (t)−
ZOi (t) > 0. Let j be a job where pAi,j(t) > pOi,j(t); such a job must exist by the

assumption that ZAi (t)−ZOi (t) > 0. Consider the interval I = [rj , t]. Let Ij be
the set of intervals where WSETF works on job j during I and let I ′j be the

rest of the interval I. Knowing that pAi,j(t) > pOi,j(t), we have that |Ij | < 1
s |I|.

To see this, suppose this fact were not true. We have qAj (t) = s|Ij | ≥ |I|. Since

the optimal schedule has 1 speed, qOj (t) ≤ |I|, and therefore qAj (t) ≥ qOj (t), a

contradiction of the definition of time t and job j. Hence, |I ′j | ≥ (1− 1
s)|I|.

Now we upper bound ZAi (t) by taking a close look at how it changes from
time rj . At each time t′ during I either WSETF is scheduling job j or all m ma-
chines in WSETF’s schedule are busy scheduling other jobs which contribute
to ZAi (t′) – since job i is alive at time t′, any alive job at the time contributes
to ZAi (t′). These jobs are those contributing to ZAi (rj) (except j), or those
arriving during I. Let S denote those latter jobs arriving during I. Note that
when a new job k arrives at time t′ during I, it adds pi,k to ZAi (t′). Thus the
value of ZAi (t) is ZAi (rj) at time rj and increases by

∑
k∈S pi,k as new jobs

arrive, and decreases by at least qAj (t) +ms|I ′j | ≥ ms(1− 1
s)|I| = m(s− 1)|I|.

Hence we have ZAi (t) ≤ ZAi (rj) +
∑
k∈S pi,k−m(s− 1)|I|. Similarly, the value

of ZOi is ZOi (rj) at time rj , increases by
∑
k∈S pi,k, and decreases by at most

m|I| since m|I| is the maximum amount of work OPT can do during I. Hence
we have ZOi (t) ≥ ZOi (rj) +

∑
k∈S pi,k −m|I|.

The facts above imply that

ZAi (t)− ZOi (t)

≤ (ZAi (rj) +
∑
k∈S

pi,k −m(s− 1)|I|)− (ZOi (rj) +
∑
k∈S

pi,k −m|I|)

≤ ZAi (rj)− ZOi (rj) [s ≥ 2]

≤ 0 [t is the first time ZAi (t)− ZOi (t) > 0 and rj < t].

�

4 Single machine

We now show WSETF is 2-speed O(1)-competitive on a single processor for
the fractional objective. Then, Theorem 1 follows from Theorem 6. In Sec-
tion 5, we extend our analysis to bound the performance of WSETF on iden-
tical machines.

12 Kyle Fox et al.

Assume that WSETF is given a speed s ≥ 2. Notice that ZAi (t) always
decreases at a rate of s for all jobs i ∈ QA(t) when t ∈ [ri, Ci]. This is because
ZAi (t) is exactly the amount of remaining processing WSETF will do before
job i is completed amongst jobs that have arrived by time t. Further, knowing
that OPT has 1 speed, we see ZOi (t) decreases at a rate of at most 1 at any
time t. We know that by Lemma 2, ZAi (ri) − ZOi (ri) ≤ 0. Using these facts,
we derive for any time t ∈ [ri, C

A
i],

ZAi (t)− ZOi (t) ≤ −(s− 1) · (t− ri).

Therefore,
ZO

i (t)
s−1 ≥ (t−ri) for any t ∈ [ri, C

A
i]. Let x(t) denote the job that

WSETF works on at time t. By the second definition, WSETF’s fractional
cost is

∫ ∞
t=0

s ·
wx(t)

px(t)
g(t− rx(t))dt

≤ s
∫ ∞
t=0

wx(t)

px(t)
g
(ZOx(t)(t)
s− 1

)
dt

≤ s

s− 1

∫ ∞
t=0

wx(t)

px(t)
g(ZOx(t)(t))dt

The last inequality follows since g(·) is convex, g(0) = 0, and 1
s−1 ≤ 1.

By applying Lemma 1 with s′ = 1 and B being OPT’s schedule, we have the
following theorem.

Theorem 8 WSETF is s-speed (1 + 1
s−1)-competitive for the fractional gen-

eral cost function when s ≥ 2.

This theorem combined with Theorem 6 proves Theorem 1.

5 Multiple identical machines

In this section, the proof of Theorem 2 is presented. In the analysis of WSETF
on a single machine, we bounded the cost of WSETF’s schedule for the frac-
tional objective by the cost of the optimal solution for the fractional objective.
In the multiple machines case, we will compare WSETF to the optimal solu-
tion for the integral objective. We then invoke Theorem 7 to derive Theorem
2. We first consider an obvious lower bound on the optimal solution for the
integral objective. For each job i, the best the optimal solution can do is to pro-
cess job i immediately upon its arrival using one of its m unit speed machines.
Therefore, the total integral cost of the optimal solution is at least∑

i∈[n]

wig(pi). (3)

Non-Clairvoyantly Scheduling to Minimize Convex Functions 13

Similar to the single machine analysis, when a job is processed we charge
the cost to the optimal solution. However, if a job i is processed at time t where
t−ri ≤ pi we charge to the integral lower bound on the optimal solution above.
If t − ri > pi, then we will invoke the lower bound on the optimal solution
shown in Lemma 1 and use the fact that the an algorithm’s fractional objective
is always smaller than its integral objective.

Assume that WSETF is given speed s ≥ 3. If job i ∈ QA(t) is not processed
by WSETF at time t, then there must exist at least m jobs in QA(t) processed
instead by WSETF at this time and these jobs contribute a positive amount
to ZOi (t). For all jobs i ∈ QA(t), the quantity pAi (t) + ZAi (t)/m decreases at
a rate of s during [ri, C

A
i]. In contrast, the quantity ZOi (t)/m decreases at a

rate of at most 1 since OPT has m unit speed machines.
By Lemma 2, we know that ZAi (ri) − ZOi (ri) ≤ 0, and pAi (ri) + ZAi (ri) −

ZOi (ri) ≤ pi . Using these facts, we know for any job i and t ∈ [ri, C
A
i] that

pAi (t)+(ZAi (t)−ZOi (t))/m ≤ pi−(s−1)(t−ri). Notice that if t−ri ≥ pi, we have

that pAi (t) + (ZAi (t)−ZOi (t))/m ≤ −(s− 2)(t− ri). Therefore, t− ri ≤ ZO
i (t)

m(s−2)
when t− ri ≥ pi.

Let W (t) be the set of jobs that WSETF processes at time t. By definition,
the value of WSETF’s fractional objective is

s
∫∞
t=0

∑
i∈W (t)

wi

pi
g(t− ri)dt.

We divide the set of jobs in W (t) into two sets. The first is the set of
‘young’ jobs Wy(t) which are the set of jobs i ∈ W (t) where t − ri ≤ pi. The
other set is Wo(t) = W (t) \ Wy(t) which is the set of ‘old’ jobs. Let OPT
denote the optimal solution’s integral cost. We see that WSETF’s cost is at
most the following:

s

∫ ∞
t=0

∑
i∈W (t)

wi
pi
g(t− ri)dt

≤ s
∫ ∞
t=0

∑
i∈Wy(t)

wi
pi
g(t− ri)dt + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(t− ri)dt

≤
∫ ∞
t=0

∑
i∈Wy(t)

wi
s

pi
g(pi)dt + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(t− ri)dt

≤
∑
i∈[n]

wig(pi) + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(t− ri)dt

≤ OPT + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g
(ZOi (t)

m(s− 2)

)
dt

[by the lower bound of (3) on OPT]

≤ OPT +
s

s− 2

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(ZOi (t)/m)dt

14 Kyle Fox et al.

The third inequality holds since a job i can be in Wy(t) only if i is processed
by WSETF at time t, and job i can be processed at most pi units before it
is completed. More precisely, if i is in Wy(t), then it is processed s · dt units
during time [t, t+ dt). Hence,

∫∞
t=0

1[i ∈Wy(t)] · s ·dt ≤ pi, where 1[i ∈Wy(t)]
denotes the 0-1 indicator variable such that 1[i ∈ Wy(t)] = 1 if and only
if i ∈ Wy(t). The last inequality follows since g(·) is convex, g(0) = 0, and
1
s−2 ≤ 1.

We know that a single m-speed machine is always as powerful as m unit
speed machines, because an m-speed machine can simulate m unit speed
machines. Thus, we can assume OPT has a single m-speed machine. Let
OPTf denote the factional cost of the optimal schedule with a m-speed
machine. We apply Lemma 1 once for each of the machines that is pro-
cessing a job in Wo(t). Formally, fix a machine k and let xk(t) to be the
job processed by WSETF on that machine at time t; if the machine is idle
at time t, xk(t) can denote any job that has arrived. Set x(t) = xk(t),
s′ = m and B as OPT’s schedule in the application of the lemma. Then,
Lemma 1 gives that

∫∞
t=0

wxk(t)

pxk(t)
g(ZOxk(t)

(t)/m)dt ≤ OPTf/m. Therefore, by

summing over all machines k, we have
∫∞
t=0

∑
i∈Wo(t)

wi

pi
g(ZOi (t)/m)dt ≤∑

k

∫∞
t=0

wxk(t)

pxk(t)
g(ZOxk(t)

(t)/m)dt ≤ m · OPTf/m = OPTf . Knowing that

any algorithm’s fractional cost is at most its integral cost, we conclude that
WSETF’s fractional cost with s-speed is at most (2 + 2

s−2) times the integral
cost of the optimal solution when s ≥ 3. Using Theorem 7, we derive Theorem
2.

6 Proof of the Main Lemma

In this section the proof of Lemma 1 is presented.

Proof Recall βBi (p) denotes the latest time t at which pBi (t) = p. For any
time t ≥ ri, let

Λi(t) =
wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dp,

and let Λ(t) =
∑
i∈QB(t) Λi(t).

The proof of the lemma proceeds as follows. We first show a lower bound on
Λ(t) in terms of

wx(t)

px(t)
g(ZBx(t)(t)/s

′) by integrating over the cost of completing

slices of jobs contributing to ZBx(t)(t). Then we show an upper bound on Λ(t)
in terms of the fractional cost of B’s schedule. This strategy allows us to relate
wx(t)

px(t)
g(ZBx(t)(t)/s

′) and B’s cost.

For the first part of the strategy, we prove that
wx(t)s

′

px(t)
g(ZBx(t)(t)/s

′) ≤ Λ(t)

at all times t. Consider any job j ∈ QB(t) with pBx(t),j(t) > 0. Suppose pj ≤

Non-Clairvoyantly Scheduling to Minimize Convex Functions 15

wj

wx(t)
px(t). Then,

Λj(t) =
wj
pj

∫ pBj (t)

p=0

g′(βBj (p)− t)dp ≥
wx(t)

px(t)

∫ pBj (t)

p=pBj (t)−pB
x(t),j

(t)

g′(βBj (p)− t)dp.

If pj >
wj

wx(t)
px(t), then by definition of pBx(t),j(t),

pBj (t)

pBx(t),j(t)
≥

pBj (t) + qBj (t)

pBx(t),j(t) + qBj (t)
[Since pBj (t) ≥ pBx(t),j(t)]

=
pj

(
wj

wx(t)
px(t) − qBj (t)) + qBj (t)

=
pjwx(t)

wjpx(t)
.

In this case,

Λj(t) =
wj
pj

∫ pBj (t)

p=0

g′(βBj (p)− t)dp

≥
pBj (t)wj

pBx(t),j(t)pj

∫ pBj (t)

p=pBj (t)−pB
x(t),j

(t)

g′(βBj (p)− t)dp

[Since g is non-decreasing, convex]

≥
wx(t)

px(t)

∫ pBj (t)

p=pBj (t)−pB
x(t),j

(t)

g′(βBj (p)− t)dp (4)

[Since pBj (t)/pBx(t),j(t) ≥ pjwx(t)/(wjpx(t))].

In either case, Λj(t) has a lower bound of quantity (4). By convexity of g,
the lower bounds on Λj(t) are minimized if B completes pBx(t),j(t) units of j

as quickly as possible for each job j. Schedule B runs at speed s′, so we have

Λ(t) ≥
wx(t)

px(t)

∫ ZB
x(t)(t)

p=0

g′(p/s′)dp =
wx(t)s

′

px(t)

∫ ZB
x(t)(t)/s

′

p=0

g′(p)dp

=
wx(t)s

′

px(t)
g(ZBx(t)(t)/s

′).

This proves a lower bound on Λ(t). Now we show an upper bound on Λ(t)
in terms of the B’s fractional cost. We show

∫∞
t=0

Λ(t)dt ≤ B(I). Fix a job i.
We have ∫ ∞

t=ri

Λi(t)dt =

∫ ∞
t=ri

wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dpdt

=
wi
pi

∫ pi

p=0

∫ βB
i (p)−ri

t=0

g′(t)dtdp

=
wi
pi

∫ pi

p=0

g(βBi (p)− ri)dp.

16 Kyle Fox et al.

By summing over all jobs and using the definition of fractional flow
time, we have that

∫∞
t=0

Λ(t)dt ≤ B(I). Further, the given lower bound

and upper bounds on
∫∞
t=0

Λ(t)dt show us that
∫∞
t=0

wx(t)s
′

px(t)
g(ZBx(t)(t)/s

′)dt ≤∫∞
t=0

Λ(t)dt ≤ B(I), which proves the lemma. �

7 Lower bounds

We now present the proof of Theorem 3. This lower bound extends a lower
bound given in [22]. In [22], it was shown that no cost function oblivious algo-
rithm can be O(1)-competitive with speed less than 2− ε for the general cost
function. However, they assume that the cost function was possibly discontin-
uous and not convex. We show that their lower bound can be extended to the
case where g is convex and continuous. This shows that WSETF is essentially
the best oblivious algorithm one can hope for. In all the proofs that follow,
we will consider a general cost function g that is continuous, non-decreasing,
and convex. The function is also differentiable except at a single point. The
function can be easily adapted so that it is differentiable over all points in R+.

Proof of [Theorem 3]: We appeal to Yao’s Min-max Principle [12]. Let A
be any deterministic online algorithm. Consider the cost function g and a
large constant c such that g(F) = 2c(F − D) for F > D and g(F) = 0 for
0 ≤ F ≤ D. It is easy to see that g is continuous, non-decreasing, and convex.
The constant D is hidden to A, and is set to 1 with probability 1

2c(n+1) and to

n+1 with probability 1− 1
2c(n+1) . Let E denote the event that D = 1. At time

0, one big job Jb of size n+ 1 is released. At each integer time 1 ≤ t ≤ n, one
unit sized job Jt is released. Here n is assumed to be sufficiently large. That is
n > 12c

ε2 . Note that the event E has no effect on A’s scheduling decision, since
A is ignorant of the cost function.

Suppose the online algorithm A finishes the big job Jb by time n + 2.
Further, say the event E occurs; that is D = 1. Since 2n + 1 volume of jobs
in total are released and A can process at most (2 − ε)(n + 2) amount of
work during [0, n + 2], A has at least 2n + 1 − (2 − ε)(n + 2) = ε(n + 2) − 3
volume of unit sized jobs unfinished at time n + 2. A has total cost at least
2c(ε(n+ 2)− 3)2/2 > c(εn)2/2. The inequality follows since n > 12c

ε2 . Knowing
that Pr[E] = 1

2c(n+1) , A has an expected cost greater than Ω(n). Now suppose

A did not finish Jb by time n+ 2. Conditioned on ¬E , A has cost at least 2c.
Hence A’s expected cost is at least 2c(1− 1

2c(n+1)) > c.

We now consider the adversary’s schedule. Conditioned on E (D = 1), the
adversary completes each unit sized job within one unit time and hence has
a non-zero cost only for Jb. The total cost is 2c(n + 1). Conditioned on ¬E
(D = n+ 1), the adversary schedules jobs in a first in first out fashion thereby
having cost 0. Hence the adversary’s expected cost is 1

2c(n+1) (2c)(n + 1) = 1.

Knowing that n is sufficiently larger than c, the claim follows since A has cost
greater than c in expectation. �

Non-Clairvoyantly Scheduling to Minimize Convex Functions 17

Next we show a lower bound for any non-clairvoyant algorithm that knows
g. In [22] it was shown that no algorithm can be O(1)-competitive for a general
cost function with speed less than 7/6. However, the cost function g used in the
lower bound was neither continuous nor convex. We show that no algorithm
can have a bounded competitive ratio if it is given a speed less than

√
2 > 7/6

even if the function is continuous and convex but the algorithm is required to
be non-clairvoyant.

Proof of [Theorem 4]: Let A be any non-clairvoyant deterministic online
algorithm with speed s. Let the cost function g be defined as g(F) = F − 10
for F > 10 and g(F) = 0 otherwise. It is easy to verify that g is continuous,
non-decreasing, and convex. At time t = 0, job J1 of processing length 10
units and weight w1 is released. At time t = 10(

√
2 − 1), job J2 of weight

w2 is released. Weights of these jobs will be set later. The processing time of
job J2 is set based on the algorithm’s decisions, which can be done since the
algorithm A is non-clairovyant.

Consider the amount of work done by A on the job J2 by the time t = 10.
Suppose algorithm A worked on J2 for less than 10(

√
2 − 1) units by time

t = 10. In this case, the adversary sets J2’s processing time to 10 units. The
flow time of job J2 in A’s schedule is (10−10(

√
2−1))+(10−10(

√
2−1))/s ≥

10+10(
√

2−1)ε/(
√

2−ε) when s =
√

2−ε. Let ε′ = 10(
√

2−1)ε/(
√

2−ε). Hence,
A incurs a weighted flow time of ε′w2 towards J2. The optimal solution works
on J2 the moment it arrives until its completion, so this job incurs no cost.
The optimal solution processes J1 partially before J2 arrives and processes it
until completion after job J2 is completed. The largest flow time the optimal
solution can have for J1 is 20, so the optimal cost is upper bounded by 10w1.
The competitive ratio of A ε′w2

10w1
can be made arbitrarily large by setting w2

to be much larger than w1.

Now consider the case where A works on J2 for 10(
√

2−1) units by time t =
10. In this case, the adversary sets the processing time of job J2 to 10(

√
2−1).

Therefore, A completes J2 by time t = 10. However, A can not complete J1
with flow time of at most 10 units, if given a speed of at most

√
2− ε. Hence

A incurs a cost of εw1 towards flow time of J1. It is easy to verify that for
this input, the optimal solution first schedules J1 until its completion and then
processes job J2 to completion. Hence, the optimal solution completes both
the jobs with flow time of at most 10 units, incurring a cost of 0. Again, the
competitive ratio is unbounded.

�
Finally, we show a lower bound for any non-clairvoyant algorithm that

knows g on m identical machines. We show that no algorithm can have a
bounded competitive ratio when given speed less than 2− 1

m . The only previous
known lower bounds for the problem on identical machines were the lower
bounds that carried over from the single machine setting.

Proof of [Theorem 5]: We use Yao’s min-max principle. Let A be any non-
clairvoyant deterministic online algorithm on m parallel machines with the
speed s = 2− ε, for any 0 < ε ≤ 1. Let L > 1 be a parameter and take m > 1

ε .

18 Kyle Fox et al.

Let the cost function g(F) be defined as follows: g(F) = F − L for F > L and
g(F) = 0 otherwise. It is easy to verify that g is continuous, non-decreasing,
and convex. At time t = 0, (m−1)L+1 jobs are released into the system, out of
which (m−1)L jobs have unit processing time and one job has processing time
L. The adversary sets the job with processing time L uniformaly at random
amongst all the jobs.

Consider the time t = L(m−1)+1
sm . At the time t, the total processing the

algorithm A can do is at most smt which is equal to L(m − 1) + 1, the total
number of jobs. Note that the algorithm needs to process at least one unit
of a job to determine whether the job has processing length L. Since A is
deterministic, we can label the jobs 1 through L(m − 1) + 1 independently
of the randomness so that randomly choosing some job k + 1 as the long
job means A will complete one unit of jobs 1 through k in that order. With
probability 1

L(m−1)+1 , the job with label L(m− 1) + 1 is chosen to be the long

job, meaning A does not have time to complete more than one unit of the job.
Therefore, with probability 1

L(m−1)+1 , the algorithm does not process the long

job more than 1 unit. In this event, the earliest time A can complete the long

job is t+ L−1
s = L(m−1)+1

sm + L−1
s > L when L is sufficiently large and s ≤ 2−ε

(note that m > 1
ε). Hence, the flow time of the long job is greater than L time

units, and in expectation A incurs a positive cost.
Let us now look at the adversary’s schedule. Since the adversary knows

the processing times of jobs, the adversary processes the job j of length L on
a dedicated machine. The rest of the unit length jobs are processed on other
machines. The adversary completes all the jobs by the time L and hence pays
cost of 0. Therefore, the expected competitive ratio of the online algorithm A
is unbounded. �

References

1. S. Anand, N. Garg, and A. Kumar. Resource augmentation for weighted flow-time
explained by dual fitting. In ACM-SIAM Symposium on Discrete Algorithms, pages
1228–1241, 2012.

2. N. Avrahami and Y. Azar. Minimizing total flow time and total completion time with
immediate dispatching. In ACM symposium on Parallel Algorithms and Architectures,
pages 11–18, 2003.

3. B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without
migration. SIAM J. Comput., 31(5):1370–1382, 2002.

4. Y. Azar, L. Epstein, Y. Richter, and G. J. Woeginger. All-norm approximation algo-
rithms. J. Algorithms, 52(2):120–133, 2004.

5. N. Bansal and H.-L. Chan. Weighted flow time does not admit o(1)-competitive algo-
rithms. In ACM-SIAM Symposium on Discrete Algorithms, pages 1238–1244, 2009.

6. N. Bansal, R. Krishnaswamy, and V. Nagarajan. Better scalable algorithms for broad-
cast scheduling. ACM Trans. Algorithms, 11(1):3:1–3:24, 2014.

7. N. Bansal and K. Pruhs. Server scheduling to balance priorities, fairness, and average
quality of service. SIAM J. Comput., 39(7):3311–3335, 2010.

8. N. Bansal and K. Pruhs. The geometry of scheduling. SIAM J. Comput., 43(5):1684–
1698, 2014.

9. L. Becchetti and S. Leonardi. Nonclairvoyant scheduling to minimize the total flow time
on single and parallel machines. Journal of the ACM, 51(4):517–539, 2004.

Non-Clairvoyantly Scheduling to Minimize Convex Functions 19

10. L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted
flow time and deadline scheduling. J. Discrete Algorithms, 4(3):339–352, 2006.

11. M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for
scheduling continuous job streams. In ACM-SIAM Symposium on Discrete Algorithms,
pages 270–279, 1998.

12. A. Borodin and R. El-Yaniv. On ranomization in online computation. In IEEE Con-
ference on Computational Complexity, pages 226–238, 1997.

13. C. Bussema and E. Torng. Greedy multiprocessor server scheduling. Oper. Res. Lett.,
34(4):451–458, 2006.

14. C. Chekuri, A. Goel, S. Khanna, and A. Kumar. Multi-processor scheduling to mini-
mize flow time with epsilon resource augmentation. In ACM Symposium on Theory of
Computing, pages 363–372, 2004.

15. C. Chekuri, S. Im, and B. Moseley. Online scheduling to minimize maximum response
time and maximum delay factor. Theory of Computing, 8(1):165–195, 2012.

16. C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow time. In
ACM Symposium on Theory of Computing, pages 84–93, 2001.

17. J. Edmonds, S. Im, and B. Moseley. Online scalable scheduling for the `k-norms of flow
time without conservation of work. In ACM-SIAM Symposium on Discrete Algorithms,
pages 109–119, 2011.

18. J. Edmonds and K. Pruhs. Scalably scheduling processes with arbitrary speedup curves.
ACM Trans. Algorithms, 8(3):28:1–28:10, 2012.

19. K. Fox and B. Moseley. Online scheduling on identical machines using SRPT. In
ACM-SIAM Symposium on Discrete Algorithms, 2011.

20. S. Im and B. Moseley. An online scalable algorithm for minimizing `k-norms of weighted
flow time on unrelated machines. In ACM-SIAM Symposium on Discrete Algorithms,
2011.

21. S. Im and B. Moseley. Fair scheduling via iterative quasi-uniform sampling. In Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2601–2615,
2017.

22. S. Im, B. Moseley, and K. Pruhs. Online scheduling with general cost functions. In
ACM-SIAM Symposium on Discrete Algorithms, pages 1254–1265, 2012.

23. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of
the ACM, 47(4):617–643, 2000.

24. V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. A unified approach
to scheduling on unrelated parallel machines. Journal of the ACM, 56(5), 2009.

25. S. Leonardi and D. Raz. Approximating total flow time on parallel machines. J. Comput.
Syst. Sci., 73(6):875–891, 2007.

26. C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32(2):163–200, 2002.

27. K. Pruhs, J. Sgall, and E. Torng. Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, chapter Online Scheduling. 2004.

