Energy Efficient Scheduling of Parallelizable Jobs[☆] Kyle Fox^{1,} The University of Texas at Dallas, Richardson, TX 75080 Sungjin Im^{2,} University of California at Merced, Merced, CA 95344 Benjamin Moseley^{3,} Carnegie Mellon University, Pittsburgh, PA 15213 #### Abstract This paper considers scheduling parallelizable jobs in the non-clairvoyant speed scaling setting to minimize the objective of weighted flow time plus energy. Previously, strong lower bounds were shown on this model in the unweighted setting even when the algorithm is given a constant amount of resource augmentation over the optimal solution. However, these lower bounds were given only for certain families of algorithms that do not recognize the parallelizability of alive jobs. In this work, we circumvent previous lower bounds shown and give a *scalable* algorithm under the natural assumption that the algorithm can know the current parallelizability of a job. When a general power function is considered, this is also the first algorithm that has a constant competitive ratio for the problem using any amount of resource $^{^{\}ddagger}$ A preliminary version of this paper appeared in the proceeding of the 24th ACM-SIAM Symposium on Discrete Algorithms, 2013 [27]. $[\]label{eq:mail_addresses:} $$ kyle.fox@utdallas.edu (Kyle Fox), sim3@ucmerced.edu (Sungjin Im), moseleyb@andrew.cmu.edu (Benjamin Moseley)$ ¹K. Fox was supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. ²S. Im was supported in part by NSF grants CCF-1016684, 1409130 and 1617653. ³B. Moseley was partially supported by NSF grants CCF-1617724, CCF-1733873 and CCF-1725661, a Google Research Award, and a Yahoo Research Award. augmentation. Keywords: Scheduling, Online, Energy, Speed Scaling, Parallelism, Speed-up Curved #### 1. Introduction Energy aware job scheduling has recently received a significant amount of attention in scheduling theory literature [8, 9, 12, 5, 10, 30, 16, 38, 15, 19, 32, 37, 14, 7, 39, 4, 18, 20, 3, 31, 48, 22, 33, 49]. In a typical system, the scheduler decides how resources (for example, machines or processors) are allocated to jobs over time. In an energy aware scheduling environment, the scheduler decides how to use resources in order to balance the energy consumed by the system with system performance. For example, the scheduler may turn off machines over time or the scheduler may dynamically scale the speed of a processor. The scheduler's goal is to minimize the energy consumption while optimizing the quality of service for the jobs (or the clients who submitted the jobs). These two objectives are naturally competing. By using less energy the scheduler will have less resources available to process the jobs. An energy aware scheduling model considered in previous literature is the online speed scaling setting. In an *online* setting, the scheduler only becomes aware of a job once it arrives to the system, and the scheduler makes decisions over time without knowing the jobs that are to arrive in the future. Online models accurately capture most of the scheduling problems faced in the real world, because generally the scheduler will not be aware of a job until it arrives to the system. The model can be made even more realistic by assuming the scheduler is *non-clairvoyant*; it does not know the processing time of the jobs. In the *speed scaling* model, the processors available to the scheduler can dynamically change their speed over time. This model captures the fact that many systems today have the ability to change the processor frequency over time such as the technology used in AMD's PowerNow! and Intel's SpeedStep. Such technology has become ever more important in mobile computing where battery power consumption is a high priority [42] and in large scale server farms that use a costly amount of energy [42]. Perhaps the most popular online scheduling objective without considering energy is minimizing the total flow time. The *flow time* of a job is the amount of time that passes between the job's release and its completion. By minimizing the total flow time, the server focuses on optimizing the average quality of service delivered to the jobs. In the online speed scaling setting, most previous literature considered minimizing the total flow time plus the energy consumed in the system. This has a natural interpretation; a system designer may decide that it is worth spending one unit of energy to save β units of flow time. In this case, the system designer would want to minimize the total flow time plus β multiplied by the energy. By scaling the units of time and energy, we may assume that $\beta = 1$ and consider minimizing the total flow time plus energy. Work on this objective was initiated by studying processors whose power consumption obeys a generalization of the cube root rule observed in standard CMOS based processors [42, 13]. For example, if the processor runs at speed s then the power consumed is s^{α} for some constant $\alpha > 1$; the cubed root rule is observed when $\alpha = 3$. This model has been rigorously studied [9, 12, 5, 16, 37, 14, 7, 39], until a generalization was introduced by Bansal et al. [8]. In the generalization, there is a convex function P where P(s) is the power consumed when running the processor at speed s. Essential no assumptions are made on P except that it is convex and positive. This generalization is known as the arbitrary power function model. In either model, the total energy consumed by the system is the integral of power over all time. #### 1.1. Old and new scheduling models In the online speed scaling setting the scheduler has two policies: **Job selection:** The scheduler must decide which job should be scheduled at each moment in time. **Energy policy:** The scheduler must decide how fast to run the processor(s) at each moment in time. When considering scheduling jobs on a single machine with speed scaling, the general approach is to use a known algorithm that performs well on a single machine without speed scaling and couple the algorithm with a natural speed scaling policy introduced in [2]. Essentially, this speed scaling policy runs the machine at speed s such that P(s) is proportional to the number of unsatisfied jobs. This policy creates a natural balance between the energy objective and the flow time objective, because the increase in the flow time objective at each moment in time is equal to the number of unsatisfied jobs. At each point in time, the two objectives will increase roughly at the same rate. Recently, scheduling speed scaling jobs online on multiple processors or machines was addressed. When addressing a multiple processor setting there are two models which one can consider. The first is when each job can be assigned to at most one machine at each moment in time. This model naturally captures the settings faced in multiple machine environments such as server farms. It is known that when processors have fixed speeds and energy is not a part of the objective that no algorithm can be O(1)-competitive for the objective of total flow time, even if we do not assume non-clairvoyance [41, 6]. This lower bound carries over to the speed scaling setting with arbitrary power functions. Due to this lower bound, most previous work has turned to using a resource augmentation analysis [35]. Here the algorithm is given extra resources over the adversary and then the competitive ratio is bounded. We say that an algorithm is b-speed c-competitive if the algorithm with b-speed achieves an objective value at most c times the optimal value with unit speed. In the fixed speed setting, we mean each of the processors runs b times faster than the optimal solution's processors. In the speed scaling setting, when the algorithm runs a processor at power P(s) the algorithm can process jobs at speed $b \cdot s$. The goal of this form of analysis is to find a $(1+\varepsilon)$ -speed $O(f(\varepsilon))$ -competitive algorithm for any constant $\varepsilon>0$ where f is some function of only ε . That is, an algorithm which is O(1)-competitive while using a minimum amount of extra resources over the adversary. Such an algorithm is called scalable. For problems with strong lower bounds on the competitive ratio, a scalable algorithm is the best result that one can show using worst case analysis. The works of Lam *et al.* [40, 39] consider the case where each machine is identical. When machines are not identical, the problem becomes more algorithmically challenging. Scalable clairvoyant and non-clairvoyant algorithms were found for heterogeneous machine settings [30, 29]. Another possible parallel scheduling model is when jobs can be scheduled on more than one processor at each moment in time. That is, jobs can run in parallel on multiple processors. The challenge in this setting is that there can be different degrees of parallelizability, even within phases of a single job. That is, each job consists of a set of phases that are to be processed sequentially. According to the phase a job is in, the job may be considerably sped-up when assigned to multiple processors, might not get sped-up, or something in between. The phases of a job can lead to different amounts of parallelism because one phase may require a lot of computation that can be easily parallelized, while another phase may require I/O that cannot be sped-up with extra computational power. This setting can be formalized into a model known as the arbitrary speed-up curves model, so named because each phase of a job will have its own arbitrary speed-up curve/function that specifies its parallizability. Scheduling in this model was originally studied when energy was not taken into consideration and the processor ran at a fixed speed. In
the arbitrary speed-up curves model, all previous work has focused on non-clairvoyant algorithms. In [23] Edmonds gave a $(2 + \varepsilon)$ -speed O(1)-competitive algorithm for any fixed $\varepsilon > 0$. The algorithm considered was a round robin like algorithm known as Equipartition. In a breakthrough result, Edmonds and Pruhs [26] introduced the algorithm LAPS and showed that it is scalable. Since its introduction, the algorithm LAPS has proven to be very useful in many other scheduling settings [16, 19, 11, 29, 25, 28, 17]. Prior work shows that scheduling in the speed-up curves model becomes considerably more challenging when speed scaling is introduced. Specifically, Chan et al. [17] show that no non-clairvoyant algorithm can have a small competitive ratio even when $P(s) = s^{\alpha}$. To get around the strong lower bound, they make the crucial assumption that multiple copies of a single job can be run in parallel, each using a different speed and with no side effects between the job copies, so that the job is processed as quickly as its fastest copy. Under this assumption, they propose an algorithm that processes multiple copies of the same job simultaneously to hedge against possible parallelizabilities of each job. They show that their algorithm is $O(\log m)$ -competitive. Unfortunately, the assumption that multiple copies of a job can be run without side effects is not valid in many systems. Further, they show that an $\Omega(\log^{1/\alpha} m)$ lower bound exists on the competitive ratio even when jobs do not have side effects [17]. Thus, their assumption doesn't allow for an algorithm that scales with no dependency on the number of processors, m. Their work suggests that scheduling with speed scalable processors when jobs are parallizable is essentially closed. No algorithm can have a small competitive ratio even with resource augmentation in the arbitrary power function case. In the case where $P(s) = s^{\alpha}$ and jobs do not have side effects, there is an algorithm that achieves roughly the best possible competitive ratio. In the case where jobs have side effects, no algorithm can have a small competitive ratio even when $P(s) = s^{\alpha}$. It appears that adding both parallelism and the ability to speed scale processors makes the problem much harder and there is no hope for an online algorithm with a constant compet- itive ratio using a small amount of resource augmentation. Previous work on the arbitrary speed-up curves problem such as [17] rely on a crucial assumption; the scheduler is never aware of the parallizability of a phase of a job. That is, the online algorithm is in the 'dark' about how parallel a phase is, yet an optimal solution being compared against may rely on this information. In this paper, it is argued that that this assumption is perhaps too strong. Indeed, if some phase of a job uses multiple threads or processes, then one can determine how many there are. There is a vast amount of literature on how to measure the parallel performance during runtime [43, 36, 1, 21, 47]. Further, there are many systems where the parallelism of incoming jobs is given a priori to the scheduler either specified by the user or based on estimates calculated from previous job traces [44, 45, 46]. We suggest that giving the scheduler knowledge about the parallizability of job phases still accurately models many real world cases while allowing for the existence of competitive scheduling algorithms. #### 1.2. Our results and contributions In this paper we consider a non-clairvoyant arbitrary speed-up curves model where processors can be dynamically speed scaled. Unlike previous work, we assume that each algorithm knows how parallel each phase of any job is. This information need not be given to the algorithm initially; although, it could be. The algorithm only requires knowledge of the parallizability of a job phase at the point in time where the algorithm decides to process that phase. The algorithm does not learn the total number of phases in any job or the total processing needed for a job until the job's completion. Thus, the algorithm is non-clairvoyant. In this model, this paper shows the following result, circumventing the strong lower bounds in the more restrictive model mentioned above. **Theorem 1.1.** In the arbitrary speed-up curves setting where processors can be speed scaled with an arbitrary convex power function, there is a $(1 + \varepsilon)$ -speed $O(1/\varepsilon^2)$ -competitive algorithm for minimizing weighted flow time plus energy for any $\varepsilon > 0$. This theorem also gives rise to the following corollary. **Corollary 1.2.** In the arbitrary speed-up curves setting where processors can be speed scaled with a power function of the form $P(s) = s^{\alpha}$, there is a $O((1+\varepsilon)^{\alpha}/\varepsilon^2)$ -competitive algorithm for minimizing weighted flow time plus energy for any $\varepsilon > 0$. Note that no resource augmentation is needed in the above corollary. The corollary immediately follows because when $P(s) = s^{\alpha}$, we can simulate resource augmentation by running the processors a factor of $(1 + \varepsilon)$ faster. This process increases the energy cost by a factor of $(1 + \varepsilon)^{\alpha}$. Our results apply to the more general weighted case, where each job is given a non-negative weight and the total flow time is calculated by summing the flow time of individual jobs multiplied by their weights. This is essentially the best positive result one can hope for, because this problem generalizes minimizing total flow time in the identical machine setting where each job can be scheduled on at most one machine at once and, as mentioned, there are strong lower bounds for any online algorithm for this problem. This result is also the first positive one in the speed-up curves setting with power for the cases where the power function P is an arbitrary convex function. This paper suggests that scheduling with speed scalable processors with parallelizable jobs is not as hard as previous research indicates. Another contribution is in our analysis. All previous works considering the speed-up curves model and the speed scaling model use a potential function analysis to bound the performance of an online algorithm. The works on the speed-up curves model first use a reduction from the general parallel setting to a setting where each phase of a job is either fully parallelizable or sequential. We cannot use this reduction for our model as our algorithm's behavior changes when the parallelizability of jobs change. Instead, we directly analyze the general setting and develop a new potential function that captures the parallelizability of different job phases. Our potential function shows how to circumvent the reductions used in previous work. ### 2. Preliminaries #### 2.1. Formal problem definition We first describe the arbitrary speed-up curves model [24] and then extend the model to the speed-scaling setting. Arbitrary speed-up curves: In the model there are m uniform parallel machines/processors. A job i may consist of multiple phases. Let $\hat{\mu}_i$ denote the number of phases of job i. In the μ_{th} phase $(1 \leq \mu \leq \hat{\mu}_i)$, job i has work p_i^{μ} that that needs to be completed, and is associated with a speed-up curve Γ_i^{μ} that specifies the parallelizability of job i in the phase. The phases of job i are processed sequentially. In other words, job i's $(\mu + 1)_{th}$ phase immediately starts when the p_i^{μ} amount of work is done for job i in its μ_{th} phase. Job i is considered complete when $p_i^{\hat{\mu}_i}$ work is done in its $\hat{\mu}_i$ th phase. A speed-up curve $\Gamma: \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing and continuous function where \mathbb{R}^+ denotes the set of non-negative real numbers. If a job is in a phase with speed-up curve Γ , then it can be processed (have work done) at a rate of $\Gamma(h)$ when using h machines. It is assumed that $\Gamma(h)/h$ is non-increasing, so that the processing efficiency per machine does not increase as more machine are used. All properties of job i can be described in a compact way as $\langle ((\Gamma_i^1, p_i^1), (\Gamma_i^2, p_i^2),, (\Gamma_i^{\hat{\mu}_i}, p_i^{\hat{\mu}_i}) \rangle$ along with its release time r_i and weight w_i . At each point in time t, a feasible schedule in the arbitrary speed-up curve model allocates the m available machines to the currently alive/unsatisfied jobs. To formally describe a feasible schedule and its scheduling objective, we need to define more notation. Let n denote the number of jobs that are released over time. Consider any schedule A and let $q^A(t)$ denote the set of alive jobs at time t (the jobs that are released no later than time t and are not completed by time t). The schedule can be formally described as n functions $x_i^A(t):[0,\infty)\to[0,m]$; we will not include A in the notation when it is clear in the context. Here $x_i(t)$ denotes the number of machines that are used for job i at time t. It must be that $\sum_{i\in q^A(t)} x_i(t) \leq m$, so that no more than m machines are used. Note that a fractional number of processors can be assigned to each job. If we wish to work in a model where only an integral number of processors can be assigned to a job, we can reduce to the fractional case. Details about the reduction including commentary on other assumptions in the model can be found in Section 5. We assume that the online scheduler has access to the speed-up curve for the phase each alive job is in as well as the job's weight. As mentioned in Section 1, this assumption is different from the non-clairvoyant scheduler that is assumed in [24, 17], and is key to our scalable algorithm. However, the scheduler does not know job i's remaining size in its phase, nor does it know the remaining phases' speed-up curves. In other words, the scheduler
becomes aware of job i only when it is released at time r_i . The scheduler also becomes aware of job i's weight w_i upon its release. Further, it knows the speed-up curve $\Gamma_i^{\mu'}(t)$ for all $\mu' \leq \mu$ where μ is job i's current phase. In retrospect, it knows $p_i^{\mu'}$, $\mu' \leq \mu - 1$, but not p_i^{μ} . Let C_i^{μ} denote the completion time of the μ_{th} phase of job *i*. For notional convenience, let $C_i^0 := r_i$. Given $x_i(t)$, the time C_i^{μ} , $1 \le \mu \le \hat{\mu_i}$ is formally defined as the earliest time τ such that $$\int_{t=C_i^{\mu-1}}^{\tau} \Gamma_i^{\mu}(x_i(t)) \mathrm{d} \mathbf{t} \geq p_i^{\mu}.$$ The completion time C_i is defined as the earliest time when all phases of job i are completed, i.e. $C_i := C_i^{\hat{\mu}_i}$. The weighted flow time (or response time) of job i is defined as $w_i(C_i - r_i)$ and is a weighted measurement of how long job i waits to be completed since its release time. The total weighted flow time of schedule A is $\sum_{i \in [n]} w_i(C_i - r_i)$. Extension to dynamic speed scaling: In the speed scaling setting, each machine can be run faster or slower over time by changing the power it consumes. In the arbitrary speed up curves setting where all machines are uniform, we are given a power function $P: \mathbb{R}^+ \to \mathbb{R}^+$ where P(s) is the power used by a machine when running at speed s. The power function P is assumed to be non-decreasing and convex. It can be further assumed without loss of generality that P is continuous [8]. Throughout this paper, we will be concerned with the inverse $Q: \mathbb{R}^+ \to \mathbb{R}^+$ of power function P. In words, Q(E) specifies the speed achieved when the processor is given power E. We will refer to Q as the speed function. One can assume without loss of generality that Q is concave, continuous, and Q(0) = 0 [8]. In this extension, a feasible schedule consists of $\{x_i(t)\}_{i=1}^n$, which is defined above, and powers $\{E_i(t)\}_{i=1}^n$ that specify the power consumed by job i at time t. Again, we may optionally assume each $x_i(t)$ is integral using a reduction given in Section 5. We require all machines assigned to the same job i to consume the same amount of power. Given $\{x_i(t)\}_{i=1}^n$ and $\{E_i(t)\}_{i=1}^n$, job i is processed at a rate of $\Gamma_i^{\mu_i(t)}(x_i(t)) \cdot Q(E_i(t)/x_i(t))$ at time t, where $\mu_i(t)$ is the phase that job i is in at time t. The completion time C_i^{μ} of μ_{th} phase of job i is redefined accordingly. That is, the time C_i^{μ} , $1 \leq \mu \leq \hat{\mu_i}$ is formally defined as the earliest time τ such that $$\int_{t=C_i^{\mu-1}}^{\tau} \Gamma_i^{\mu}(x_i(t)) Q(E_i(t)/x_i(t)) \mathrm{d}t \ge p_i^{\mu},$$ and the completion time of job $i, C_i := C_i^{\hat{\mu}_i}$. We focus on the objective of minimizing the total weighted flow time plus the total energy consumed, $$\sum_{i=1}^{n} w_i (C_i - r_i) + \sum_{i=1}^{n} \int_{t=0}^{\infty} E_i(t) dt.$$ In summary, in this paper we are interested in the problem of finding a non-clairvoyant scheduler, that can be specified by $\{x_i(t)\}_{i=1}^n$ and $\{E_i(t)\}_{i=1}^n$, that has access to the speed-up curve of the current phase of each job. The goal is to minimize the total flow time and total power consumption. ## 3. Algorithm Definition We present our algorithm for scheduling in the speedup curve model with energy which we call Weighted Latest Arrival Processor Sharing with Energy (WLAPS+E). For the definition of WLAPS+E, we make the following technical yet reasonable assumption regarding Γ and Q. **Assumption 3.1.** Consider any speed-up curve $\Gamma : \mathbb{R}^+ \to \mathbb{R}^+$ corresponding to some phase of a job. Then for the given speed function $Q : \mathbb{R}^+ \to \mathbb{R}^+$ and for any positive real numbers h and w, there exists $0 < h^* \le h$ that maximizes $$\Upsilon_w(h^*) = \Gamma(h^*) \cdot Q(\frac{w}{h^*}).$$ Further, such h^* can be efficiently computed. In words, the function $\Upsilon_w(h)$ is the speed achieved by distributing power w equally among h processors. Detailed justification of this assumption can be found in Section 5. We also note that our algorithm may assign a fractional number of processor to each job. Recall that the case were the algorithm can assign only assign an integral number of processors to each job can be reduced to the fractional case. Again, details appear in Section 5. Given a positive real number h, let $y_i^{\mu}(h)$ be the number of processors less than h that yield the greatest speed for job i in phase μ when using w_i units of power. In other words, $$y_i^{\mu}(h) = \underset{0 < h' \le h}{\operatorname{argmax}} \Gamma_i^{\mu}(h') \cdot Q\left(\frac{w_i}{h'}\right).$$ Recall that we assume $y_i^{\mu}(h)$ is well defined and efficiently computable (Assumption 3.1). Let $g_i^{\mu}(h)$ be the highest speed achievable for job i in phase μ when using at most h processors and power w_i . $$g_{i}^{\mu}\left(h\right) = \max_{0 < h' \le h} \Gamma_{i}^{\mu}\left(h'\right) \cdot Q\left(\frac{w_{i}}{h'}\right).$$ Let ε be an arbitrary real number such that $0 < \varepsilon \le 1/6$. Informally, WLAPS+E shares processors proportionally by weight among the most recently arriving jobs so that the weight of all scheduled jobs is an ε fraction of the total weight in the system. Then, for each job i, WLAPS+E scales back the amount of processors given to i in order to maximize the amount of processing done with w_i units of power. More formally, let $q^A(t)$ be the set of jobs alive for WLAPS+E at time t and let $W(t) = \sum_{i \in q^A(t)} w_i$. Let $q_i^A(t)$ be the set of jobs alive for WLAPS+E at time t that arrive earlier than job i, including job i. Ties in arrival time broken arbitrarily but consistently. Let $W_i(t) = \sum_{i \in q^A(t)} w_i$. Let $$h_i(t) = \begin{cases} \frac{w_i m}{\varepsilon W(t)} & \text{if } W_i(t) - w_i \ge (1 - \varepsilon) W(t) \\ 0 & \text{if } W_i(t) < (1 - \varepsilon) W(t) \\ \frac{(W_i(t) - (1 - \varepsilon) W(t)) m}{\varepsilon W(t)} & \text{otherwise} \end{cases}.$$ Let $\mu_i^A(t)$ be the phase job i is in at time t under WLAPS+E's schedule. For each of job i, WLAPS+E processes i on $y_i^{\mu_i^A(t)}(h_i(t))$ processors using w_i units of power. Our algorithm is similar to LAPS in that it schedules late arriving jobs, and each of those jobs is allowed to use up to the same number of machines proportioned by job weight. However, our algorithm actually leaves some processors inactive in favor of more energy efficiency. It is somewhat surprising that even in the speed scaling setting, a scalable algorithm can be obtained by putting the same quota on the maximum number of machines that each late arriving job gets. We will prove the following theorem. **Theorem 3.2.** For any $0 < \varepsilon \le 1/6$, WLAPS+E is $(1 + 6\varepsilon)$ -speed, $\frac{5}{\varepsilon^2}$ -competitive. #### 4. Analysis of WLAPS+E Here, we analyze WLAPS+E in order to prove Theorem 3.2. Set an input instance I, and consider running the optimal schedule for I using unit speed alongside WLAPS+E using speed $1+6\varepsilon$. For any job i, let C_i^A be the completion time for i under WLAPS+E. For any time $t \geq r_i$, let $F_i^A(t) = w_i(\min\{C_i^A, t\} - r_i)$ be the accumulated weighted flow time of job i at time t and let $F_i^A = F_i^A(C_i^A)$. Let A(t) denote the total energy that WLAPS+E has consumed by time t plus the total accumulated weighted flow time in WLAPS+E's schedule. Finally, let $A = A(\infty)$ be the total weighted flow time plus energy consumption for WLAPS+E. Let $F^O(t)$, F_i^O , OPT(t) and OPT be defined similarly for the optimal schedule. We use a potential function analysis to prove our theorem. We give a potential function $\Phi(t)$ that is almost everywhere differentiable such that $\Phi(0) = \Phi(\infty) = 0$. We will bound the continuous and discrete increases to $A(t) + \Phi(t)$ by a function of OPT. Potential functions are the dominant form of analysis used for analyzing algorithms in the speed scaling setting. See [34] for a recent tutorial on potential functions. Our potential function is somewhat similar to the one used by Edmonds and Pruhs [26] for the formulation of this problem without energy, but we have modified the terms in the potential function to account for job weights and our use of $y_i^{\mu_i^A(t)}(h_i(t))$ in selecting how many processors job i should use at time t. A significant difference between our potential function and those used in the past is that our potential function takes the functions Γ into consideration. Previous work on the speed up curve model used a reduction from the general setting to a setting where there are only two possible speed up functions $\Gamma(h) = h$ or $\Gamma(h) = 1$. We cannot use this reduction because our algorithm uses the parallelizability of a job phase to make scheduling decisions. By taking the speed up functions into consideration, our potential function captures the full generality of the problem. Let $p_i^{A\mu}(t)$ and $p_i^{O\mu}(t)$ be the remaining processing time for phase μ of job i at time t for WLAPS+E and the optimal schedule respectively. Let $z_i^{\mu}(t) = \max\{p_i^{A\mu}(t) - p_i^{O\mu}(t), 0\}$. The potential function is composed of one term for each job-phase pair. $$\Phi_i^{\mu}(t) = \frac{w_i z_i^{\mu}(t)}{g_i^{\mu} \left(w_i m / ((1 + 2\varepsilon)\varepsilon W_i(t)) \right)}.$$ Our potential function is defined as $$\Phi(t) = \frac{1}{\varepsilon^2} \sum_{i \in q^A(t), \mu} \Phi_i^{\mu}(t).$$ We now focus on changes made to $A(t) + \Phi(t)$ that occur over time. Note that job arrivals have no effect on $A(t) + \Phi(t)$. Further, the completion of jobs by WLAPS+E or the optimal schedule do not cause any increase in $A(t) + \Phi(t)$. This is because when the optimal solution completes a
job there is no effect on the potential function. When the algorithm completes a job i the terms corresponding to job i are removed from the potential, and since all terms are positive, this removal can only decrease the potential. For any other job j, the quantity $W_j(t)$ may decrease, but this can only decrease the potential since g_j^{μ} is non-decreasing for any μ . Our entire analysis can focus on the continuous changes to $A(t) + \Phi(t)$. We first summarize simple facts regarding Γ_i^u , Q and g_i^u in the following section. The continuous changes of $\Phi(t)$ due to WLAPS+E and the optimal scheduler's processing are addressed in Section 4.2 and 4.3. Then all the changes are aggregated in Section 4.4, yielding Theorem 3.2. ## 4.1. Simple observations In this section, we make several simple observations that will be useful in our analysis. We will implicitly use the following observation. **Proposition 4.1.** Consider any continuous and concave function $f : \mathbb{R}^+ \to \mathbb{R}^+$ with $f(0) \geq 0$. Then for any $b \geq a > 0$, we have that $f(a)/a \geq f(b)/b$. **Proof.** By definition of concave functions, it follows that $f(tx+(1-t)y) \ge tf(x) + (1-t)f(y)$ for any real x, y and $t \in [0, 1]$. Consider setting x = 0, y = b and $t = 1 - \frac{a}{b}$. Then we have $f(a) \ge (1 - \frac{a}{b})f(0) + \frac{a}{b}f(b) \ge \frac{a}{b}f(b)$. \square The above proposition immediately gives the following property regarding Q, Γ , and y. **Proposition 4.2.** Let a,b be any reals such that $b \geq a > 0$. Then $Q(b)/Q(a) \leq b/a$. Further for any job i and phase μ , it holds that $\Gamma_i^{\mu}(b)/\Gamma_i^{\mu}(a) \leq b/a$ and $g_i^{\mu}(b)/g_i^{\mu}(a) \leq b/a$. **Proof.** We only show $g_i^{\mu}(b)/g_i^{\mu}(a) \leq b/a$. The other inequalities follow by Q being concave, Proposition 4.1, and by the assumptions on functions Γ . Let b' be such that $0 < b' \leq b$ and $g_i^{\mu}(b) = \Gamma_i^{\mu}(b')Q(w_i/b')$; such b' exists from the definition of g_i^{μ} . If $b' \leq a$, then $g_i^{\mu}(b)/g_i^{\mu}(a) = 1 \leq b/a$. Otherwise, we have, $$\frac{g_i^{\mu}(a)}{g_i^{\mu}(b)} \ge \frac{\Gamma_i^{\mu}(a)Q(w_i/a)}{\Gamma_i^{\mu}(b')Q(w_i/b')} \qquad [From the definition of $g_i^{\mu}]$ $$\ge \frac{\Gamma_i^{\mu}(a)}{\Gamma_i^{\mu}(b')} \qquad [Q \text{ is non-decreasing}]$$ $$\ge \frac{a}{b'} \ge \frac{a}{b},$$$$ as desired. #### 4.2. Changes in $\Phi(t)$ due to the optimal solution Fix a time t. We begin by considering the optimal schedule's contribution to $\frac{d}{dt}\Phi(t)$. For each job i, let $\mu_i^O(t)$ be the current phase of job i for the optimal schedule at time t. Let P_i be the number of processors the optimal schedule assigns to i and let E_i be the total power used by the optimal schedule to process i. We will place each job i into one of four categories and then bound the contribution to $\frac{d}{dt}\Phi(t)$ by jobs in each category. The types of jobs that fit into each category are as follows: | Job Categories | |--| | A: $P_i > \frac{w_i m}{(1+2\varepsilon)\varepsilon W_i(t)}$ and $E_i/P_i > \frac{(1+2\varepsilon)\varepsilon W_i(t)}{m}$ | | B: $P_i > \frac{w_i m}{(1+2\varepsilon)\varepsilon W_i(t)}$ and $E_i/P_i \leq \frac{(1+2\varepsilon)\varepsilon W_i(t)}{m}$ | | C: $P_i \leq \frac{w_i m}{(1+2\varepsilon)\varepsilon W_i(t)}$ and $E_i > w_i$ | | D: $P_i \leq \frac{w_i m}{(1+2\varepsilon)\varepsilon W_i(t)}$ and $E_i \leq w_i$ | As stated in the Section 2, a valid scheduler gives all processors assigned to a fixed job the same power. In particular, the optimal schedule gives each processor assigned to job i an equal amount of power (E_i/P_i) . The optimal schedule's contribution to $\frac{d}{dt}\Phi_i^{\mu_i^O(t)}(t)$ is at most $$\frac{w_{i}\Gamma_{i}^{\mu_{i}^{O}\left(t\right)}\left(P_{i}\right)Q\left(E_{i}/P_{i}\right)}{g_{i}^{\mu_{i}^{O}\left(t\right)}\left(w_{i}m/\left((1+2\varepsilon)\varepsilon W_{i}(t)\right)\right)}.$$ **Category A and B:** Suppose job *i* is in category A or B. By definition of the function $g_i^{\mu_i^O(t)}(\cdot)$, first we observe that, $$\Gamma_{i}^{\mu_{i}^{O}(t)}\left(w_{i}m/((1+2\varepsilon)\varepsilon W_{i}(t))\right)Q\left((1+2\varepsilon)\varepsilon W_{i}(t)/m\right) \leq g_{i}^{\mu_{i}^{O}(t)}\left(w_{i}m/((1+2\varepsilon)\varepsilon W_{i}(t))\right).$$ Using this fact we have the following. The second inequality follows by Proposition 4.2 and the assumption that $P_i > w_i m/((1+2\varepsilon)\varepsilon W_i(t))$. $$\frac{w_{i}\Gamma_{i}^{\mu_{i}^{O}(t)}\left(P_{i}\right)Q\left(E_{i}/P_{i}\right)}{g_{i}^{\mu_{i}^{O}(t)}\left(w_{i}m/\left((1+2\varepsilon)\varepsilon W_{i}(t)\right)\right)} \leq w_{i} \cdot \frac{\Gamma_{i}^{\mu_{i}^{O}(t)}\left(P_{i}\right)}{\Gamma_{i}^{\mu_{i}^{O}(t)}\left(w_{i}m/\left((1+2\varepsilon)\varepsilon W_{i}(t)\right)\right)} \cdot \frac{Q\left(E_{i}/P_{i}\right)}{Q\left((1+2\varepsilon)\varepsilon W_{i}(t)/m\right)} \leq \frac{(1+2\varepsilon)\varepsilon W_{i}(t)P_{i}}{m} \cdot \frac{Q\left(E_{i}/P_{i}\right)}{Q\left((1+2\varepsilon)\varepsilon W_{i}(t)/m\right)}$$ If job i is in category A, then we have the following. The first inequality follows from Proposition 4.2 and the assumption that $E_i/P_i > (1+2\varepsilon)\varepsilon W_i(t)/m$. $$\frac{(1+2\varepsilon)\varepsilon W_i(t)P_i}{m} \cdot \frac{Q\left(E_i/P_i\right)}{Q\left((1+2\varepsilon)\varepsilon W_i(t)/m\right)}$$ $$\leq \frac{(1+2\varepsilon)\varepsilon W_i(t)P_i}{m} \cdot \frac{E_i m}{(1+2\varepsilon)\varepsilon W_i(t)P_i}$$ $$= E_i.$$ The total contribution to $\frac{d}{dt}\Phi(t)$ by category A jobs is at most $\frac{1}{\varepsilon^2}\frac{d}{dt}\text{OPT}(t)$. This fact is because $\sum_{i\in q^O(t)} E_i$ is the total power used by the optimal solution at time t. Now suppose i is in category B, so $E_i/P_i \leq (1+2\varepsilon)\varepsilon W_i(t)/m$. Function Q is increasing, so we observe that $Q(E_i/P_i) \leq Q((1+2\varepsilon)\varepsilon W_i(t)/m)$. Hence, $$\frac{(1+2\varepsilon)\varepsilon W_i(t)P_i}{m} \cdot \frac{Q\left(E_i/P_i\right)}{Q\left((1+2\varepsilon)\varepsilon W_i(t)/m\right)}$$ $$\leq \frac{(1+2\varepsilon)\varepsilon W_i(t)P_i}{m}$$ $$\leq \frac{(1+2\varepsilon)\varepsilon W(t)P_i}{m}.$$ The optimal schedule has a total of m processors to work with, so the total contribution to $\frac{d}{dt}\Phi(t)$ by category B jobs is at most $$\frac{1}{\varepsilon^2} \sum_{i \in q^O(t)} \frac{(1+2\varepsilon)\varepsilon W(t)P_i}{m} = \frac{(1+2\varepsilon)W(t)}{\varepsilon} \sum_{i \in q^O(t)} \frac{P_i}{m}$$ $$\leq \frac{(1+2\varepsilon)W(t)}{\varepsilon}.$$ Here $q^{O}(t)$ denotes the set of alive jobs at time t in the optimal schedule. Category C and D: Suppose job i is in category C or D. By definition of the function $g_i^{\mu_i^O(t)}(\cdot)$ and the assumption that $P_i \leq w_i m/((1+2\varepsilon)\varepsilon W_i(t))$, we have that, $$\Gamma_i^{\mu_i^O(t)}(P_i) Q(w_i/P_i) \le g_i^{\mu_i^O(t)}(w_i m/((1+2\varepsilon)\varepsilon W_i(t))).$$ Suppose i is in category C. We see the following. The first inequality follows from the above observation. The second inequality follows from Proposition 4.2 and the assumption that $E_i > w_i$. $$\frac{w_{i}\Gamma_{i}^{\mu_{i}^{O}\left(t\right)}\left(P_{i}\right)Q\left(E_{i}/P_{i}\right)}{g_{i}^{\mu_{i}^{O}\left(t\right)}\left(w_{i}m/\left((1+2\varepsilon)\varepsilon W_{i}(t)\right)\right)}\leq w_{i}\cdot\frac{\Gamma_{i}^{\mu_{i}^{O}\left(t\right)}\left(P_{i}\right)}{\Gamma_{i}^{\mu_{i}^{O}\left(t\right)}\left(P_{i}\right)}\cdot\frac{Q\left(E_{i}/P_{i}\right)}{Q\left(w_{i}/P_{i}\right)}\leq w_{i}\cdot\frac{E_{i}}{w_{i}}=E_{i}.$$ The total contribution to $\frac{d}{dt}\Phi(t)$ by category C jobs is at most $\frac{1}{\varepsilon^2}\frac{d}{dt}\mathrm{OPT}(t)$. Again, this fact is because $\sum_{i\in q^O(t)}E_i$ is the total power used by the optimal solution at time t. Finally, suppose job i is in category D, then knowing that Q is increasing and $E_i \leq w_i$ we have $$\frac{w_i \Gamma_i^{\mu_i^O(t)}\left(P_i\right) Q\left(E_i/P_i\right)}{g_i^{\mu_i^O(t)}\left(w_i m/((1+2\varepsilon)\varepsilon W_i(t))\right)} \le w_i \cdot \frac{\Gamma_i^{\mu_i^O(t)}\left(P_i\right)}{\Gamma_i^{\mu_i^O(t)}\left(P_i\right)} \cdot \frac{Q\left(E_i/P_i\right)}{Q\left(w_i/P_i\right)} \le w_i.$$ The total contribution to $\frac{d}{dt}\Phi(t)$ by category D jobs is at most $\frac{1}{\varepsilon^2}\frac{d}{dt}\mathrm{OPT}(t)$. This is because $\sum_{i\in q^O(t)}w_i$ is the increase in the weighted flow objective for the optimal solution at time t. In sum, the optimal scheduler's contribution to $\frac{d}{dt}\Phi(t)$ is at most $$(2 + \frac{1}{\varepsilon})W(t) + \frac{3}{\varepsilon^2} \frac{d}{dt} OPT(t).$$ (1) ## 4.3. Change in $\Phi(t)$ due to the algorithm Now we discuss the contributions to $\frac{d}{dt}\Phi(t)$ from WLAPS+E. Recall that $q^O(t)$ is the set of jobs alive for the optimal schedule at time t. For each job $i \in q^A(t)$, we note $z_i^{\mu_i^A(t)}(t)$ is positive if $i \notin q^O(t)$. Hence $z_i^{\mu_i^A(t)}(t)$ decreases for all jobs $i \notin q^O(t)$ that WLAPS+E processes at time t. Recall we are running WLAPS+E at speed $1+6\varepsilon$. Let $q^{A'}(t)$ be the set of jobs i where $h_i(t) = w_i m/(\varepsilon W(t))$. For every job $i \in q^{A'}(t)$, we have $W_i(t) \geq (1 - \varepsilon)W(t)$. Let Δ_q be the contribution to $\frac{d}{dt}\Phi(t)$ from WLAPS+E processing jobs in $q^{A'}(t)$. We see that Δ_q is less than, $$-\frac{(1+6\varepsilon)}{\varepsilon^{2}} \sum_{i \in q^{A'}(t) \backslash q^{O}(t)} \frac{w_{i} g_{i}^{\mu_{i}^{A}(t)} \left(w_{i} m / (\varepsilon W_{i}(t))\right)}{g_{i}^{\mu_{i}^{A}(t)} \left(w_{i} m / ((1+2\varepsilon)\varepsilon W_{i}(t))\right)}$$ $$\leq -\frac{(1+6\varepsilon)}{\varepsilon^{2}} \sum_{i \in q^{A'}(t) \backslash
q^{O}(t)} \frac{w_{i} g_{i}^{\mu_{i}^{A}(t)} \left(w_{i} m / (\varepsilon W_{i}(t))\right)}{g_{i}^{\mu_{i}^{A}(t)} \left(w_{i} m / ((1+2\varepsilon)\varepsilon (1-\varepsilon)W(t))\right)}$$ $$\leq -\frac{(1+6\varepsilon)}{\varepsilon^{2}} \sum_{i \in q^{A'}(t) \backslash q^{O}(t)} \frac{w_{i} g_{i}^{\mu_{i}^{A}(t)} \left(w_{i} m / (\varepsilon W_{i}(t))\right)}{g_{i}^{\mu_{i}^{A}(t)} \left(w_{i} m / (\varepsilon W(t))\right)}$$ $$\leq -\frac{(1+6\varepsilon)}{\varepsilon^{2}} \sum_{i \in q^{A'}(t) \backslash q^{O}(t)} w_{i}$$ $$= -\frac{1+6\varepsilon}{\varepsilon} \cdot W(t) \sum_{i \in q^{A'}(t) \backslash q^{O}(t)} \frac{h_{i}(t)}{m}$$ [Since $h_{i}(t) = w_{i} m / (\varepsilon W(t))$ for $i \in q^{A'}(t)$] The second line holds since $g_i^{\mu_i^A(t)}$ is an non-decreasing function. The third line follows from the assumption that $0 < \varepsilon \le 1/6$ in addition to $g_i^{\mu_i^A(t)}$ being non-decreasing. There may be a single job j with $0 < h_j(t) < w_j m/(\varepsilon W(t))$. Let Δ_j be the contribution to $\frac{d}{dt}\Phi(t)$ due to WLAPS+E processing such a job j. Let $\mathbf{1}_j$ be an indicator variable that is one if $j \notin q^O(t)$ and zero otherwise. We show that $\Delta_j \leq -\mathbf{1}_j \cdot \frac{1+6\varepsilon}{\varepsilon} \cdot W(t) \frac{h_j(t)}{m}$. Assume that $j \notin O(t)$, since the inequality trivially holds otherwise. Let k > 1 be such that $h_j(t) = (1/k)w_j m/(\varepsilon W(t))$. Observe by Proposition 4.2 that $g_j^{\mu_j^A(t)}\left((1/k)w_jm/(\varepsilon W(t))\right) \geq (1/k)g_j^{\mu_j^A(t)}\left(w_jm/(\varepsilon W(t))\right)$. A similar algebra to that just shown gives $\Delta_j \leq -\frac{1}{k} \cdot \frac{1+6\varepsilon}{\varepsilon^2} \cdot w_j = -\frac{1+6\varepsilon}{\varepsilon} \cdot W(t) \cdot \frac{h_j(t)}{m}$. Hence the total contribution to $\frac{d}{dt}\Phi(t)$ from WLAPS+E's processing is $$\Delta_{q} + \Delta_{j} \leq -\frac{1+6\varepsilon}{\varepsilon} \cdot W(t) \sum_{i \in q^{A}(t) \setminus q^{O}(t)} \frac{h_{i}(t)}{m} \leq -\frac{1+6\varepsilon}{\varepsilon} \cdot W(t) \left[\sum_{i \in q^{A}(t)} \frac{h_{i}(t)}{m} - \sum_{i \in q^{O}(t)} \frac{h_{i}(t)}{m} \right] \leq -\frac{1+6\varepsilon}{\varepsilon} \cdot W(t) \left(1 - \sum_{i \in q^{O}(t)} \frac{w_{i}}{\varepsilon W(t)} \right) \leq -\frac{1+6\varepsilon}{\varepsilon} W(t) + \frac{1+6\varepsilon}{\varepsilon^{2}} \frac{d}{dt} \text{OPT}(t)$$ (2) The third inequality holds since WLAPS+E distributes machines among jobs in such a way that $\sum_{i \in q^A(t)} \frac{h_i(t)}{m} = 1$ and $h_i(t) \leq \frac{w_i m}{\varepsilon W(t)}$. The last line follows, because $\sum_{i \in q^O(t)} w_i$ is the increase in the weighted flow time portion of the optimal solution's objective at time t. ## 4.4. Final analysis: putting the pieces all together In this section, we complete the analysis by aggregating all changes of A(t) and $\Phi(t)$. Recall that when jobs arrive or are completed, $\Phi(t)$ does not increase. Hence, there are no positive discontinuous changes in $\Phi(t)$. Observe $\frac{d}{dt}A(t) \leq 2W(t)$ because the increase in WLAPS+E's weighted flow objective is W(t) and the most energy the algorithm uses at this time is W(t). By integrating over time the sum of $\frac{d}{dt}A(t)$ and (1) and (2), the contributions to $\frac{d}{dt}\Phi(t)$ from WLAPS+E and the optimal scheduler's processing, we have $$\begin{split} A & \leq \int_{t=0}^{\infty} \frac{d}{dt} A(t) + \frac{d}{dt} \Phi(t) dt \leq \int_{t=0}^{\infty} 2W(t) + (1) + (2) dt \\ & \leq \int_{t=0}^{\infty} 2W(t) + (2 + \frac{1}{\varepsilon}) W(t) + \frac{3}{\varepsilon^2} \frac{d}{dt} \mathrm{OPT}(t) \\ & - \frac{1 + 6\varepsilon}{\varepsilon} W(t) + \frac{1 + 6\varepsilon}{\varepsilon^2} \frac{d}{dt} \mathrm{OPT}(t) dt \\ & \leq (\frac{6}{\varepsilon} + \frac{4}{\varepsilon^2}) \mathrm{OPT} \leq \frac{5}{\varepsilon^2} \mathrm{OPT} \quad [\mathrm{Since} \ 0 < \varepsilon \leq 1/6]. \end{split}$$ Here the first inequality follows, since $\Phi(0) = \Phi(\infty) = 0$, and there is no positive discontinuous change of $\Phi(t)$. This completes the proof of Theorem 3.2. By scaling ε appropriately, we obtain Theorem 1.1. ## 5. Integral Processor Assignments and an Assumption on Γ and Q Consider Assumption 3.1. To see why the assumption is necessary, consider $\Gamma(h) = h^{\alpha}$ and $Q(h) = h^{\beta}$ where $0 < \alpha < \beta \leq 1$. Then $\Upsilon_w(h) = (1/h)^{\beta-\alpha}$ and there exists no $0 < h^* \leq h$ that maximizes $\Upsilon_w(h^*)$. In this case, the phase of speedup curve Γ can be finished instantaneously by using an infinitesimal number of processors! We now discuss why such a degenerate case does not occur in practice. Although a speedup curve Γ is defined over \mathbb{R}^+ , assigning a fractional number of machines to a job is not permitted when there are only finite number of machines in practice. In fact, it would better capture reality to assume that Γ is defined only over non-negative integers. Then one can extend the domain to \mathbb{R}^+ by making $\Gamma(h)$ a piecewise linear function as follows. For a non-integer positive number $h = h' + \lambda$, where h' is an integer and $0 < \lambda < 1$, $$\Gamma(h) = (1 - \lambda)\Gamma(h') + \lambda\Gamma(h' + 1).$$ This extension implies that during an infinitesimal interval of length \mathtt{dt} , the job in consideration is processed on h' processors for $(1-\lambda)\mathtt{dt}$ units of time and on h'+1 machines for $\lambda\mathtt{dt}$ units of time. Observe that the average number of machines used during the interval is exactly h. Then we say that the job can be scheduled integrally compatible. It is not difficult to see that one can find a schedule where all alive jobs can be scheduled integrally compatible: Initially give $\lfloor x_i(t) \rfloor$ processors to each job i. Consider an infinitesimal interval $[t,t+\mathtt{dt})$. Consider jobs in any order, and the remaining machines one by one. Each of the remaining machines is available during $[t,t+\mathtt{dt})$. Think of job i as having size $x_i(t)-\lfloor x_i(t)\rfloor$. Schedule job i on the machine in consideration, and if necessary on the next remaining machine. Each machine is used by at most one job from time t to $t+\mathtt{dt}$. Also, the fractional part of each job is assigned to at most one machine at each point in time. Then $\Upsilon_w(\cdot)$ can be naturally defined over a fractional value $h = h' + \lambda$ as follows: $$\begin{split} \Upsilon_w(h) &= \\ \begin{cases} \lambda \Gamma(1) Q(\frac{w}{\lambda}) & \text{if } 0 < h < 1 \\ (1-\lambda) \Gamma(h') Q(\frac{wh'}{h} \cdot \frac{1}{h'}) + \lambda \Gamma(h'+1) Q(\frac{w(h'+1)}{h} \cdot \frac{1}{h'+1}) & \text{if } h \geq 1 \end{cases} \end{split}$$ In words, during an interval $[t,t+\mathtt{dt})$, for 0 < h < 1, we run the job on a single machine with power $\frac{w}{\lambda}$ for $\lambda\mathtt{dt}$ time steps. Observe that the average power dedicated to the job per a unit time is exactly $\lambda \frac{w}{\lambda} = w$. For $h \geq 1$, we run the job on h' machines, each with power $\frac{w}{h}$ for $(1-\lambda)\mathtt{dt}$ time steps, and on h'+1 machines, each with the same power $\frac{w}{h}$ for $\lambda\mathtt{dt}$ time steps. Likewise, the average power usage per a unit time is $(1-\lambda)h'\frac{w}{h} + \lambda(h'+1)\frac{w}{h} = w$. Hence the schedule suggested by the above extension of Γ and Υ preserves the power and the number of machines used in addition to being feasible. Further, observe that the above semantics gives the same definition of $\Upsilon_w(h) = \Gamma(h) \cdot Q(\frac{w}{h})$. This implies that our algorithm is well-defined even when speed up curves Γ_i^{μ} have the domain of non-negative integers. ⁴ Indeed, when 0 < h < 1, $$\Gamma(h) \cdot Q(\frac{w}{h}) = \Gamma(\lambda) \cdot Q(\frac{w}{\lambda}) = \lambda \Gamma(1) \cdot Q(\frac{w}{\lambda}).$$ Also when $h \geq 1$, $$\Gamma(h) \cdot Q(\frac{w}{h}) = \Big((1-\lambda)\Gamma(h') + \lambda \Gamma(h'+1) \Big) Q(\frac{w}{h}).$$ Now when considering the extension of Γ defined only over non-negative integers, note that for $h \in (0,1]$, $\Upsilon_w(h) = h\Gamma(1)Q(\frac{w}{h})$ is maximized when h = 1, since Q is concave and Q(0) = 0; see Proposition 4.2. Further, for all reasonably-behaving functions Q (e.g., differentiable), Υ_w has a maximum value over any compact set in \mathbb{R}^+ . Hence we conclude that there always exists $0 < h^* \le h$ such that $\Upsilon_w(h^*)$ is maximized. #### References [1] K. Agrawal, Y. He, and C. E. Leiserson. Adaptive work stealing with parallelism feedback. In *PPOPP*, pages 112–120, 2007. ⁴We emphasize that our analysis does not assume that the optimal scheduler should follow the definition of $\Upsilon_w(h)$ for fractional values of h, hence it still goes through when the optimal scheduler always assigns an integer number of machines to each job. - [2] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. *ACM Transactions on Algorithms*, 3(4), 2007. - [3] S. Anand, N. Garg, and A. Kumar. Resource augmentation for weighted flow-time explained by dual fitting. In *SODA*, pages 1228–1241, 2012. - [4] L. L. H. Andrew, A. Wierman, and A. Tang. Optimal speed scaling under arbitrary power functions. *SIGMETRICS Performance Evaluation Review*, 37(2):39–41, 2009. - [5] N. Bansal, D. P. Bunde, H.-L. Chan, and K. Pruhs. Average rate speed scaling. In *LATIN*, pages 240–251, 2008. - [6] N. Bansal and H. Chan. Weighted flow time does not admit o(1)-competitive algorithms. In *Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009*, pages 1238–1244, 2009. - [7] N. Bansal, H.-L. Chan, T. W. Lam, and L.-K. Lee. Scheduling for speed bounded processors. In *ICALP* (1), pages 409–420, 2008. - [8] N. Bansal,
H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In *SODA*, pages 693–701, 2009. - [9] N. Bansal, H.-L. Chan, K. Pruhs, and D. Katz. Improved bounds for speed scaling in devices obeying the cube-root rule. In *ICALP* (1), pages 144–155, 2009. - [10] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature. *J. ACM*, 54(1), 2007. Preliminary version in *FOCS* 2004. - [11] N. Bansal, R. Krishnaswamy, and V. Nagarajan. Better scalable algorithms for broadcast scheduling. In *ICALP*, 2010. - [12] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. SIAM J. Comput., 39(4):1294–1308, 2009. Preliminary version in SODA 2007. - [13] D. Brooks, P. Bose, S. Schuster, H. M. Jacobson, P. Kudva, A. Buyuktosunoglu, J.-D. Wellman, V. V. Zyuban, M. Gupta, and P. W. Cook. - Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. *IEEE Micro*, 20(6):26–44, 2000. - [14] H.-L. Chan, J. W.-T. Chan, T. W. Lam, L.-K. Lee, K.-S. Mak, and P. W. H. Wong. Optimizing throughput and energy in online deadline scheduling. *ACM Transactions on Algorithms*, 6(1), 2009. Preliminary version in *SODA* 2007. - [15] H.-L. Chan, W.-T. Chan, T. W. Lam, L.-K. Lee, K.-S. Mak, and P. W. H. Wong. Energy efficient online deadline scheduling. In SODA, pages 795–804, 2007. - [16] H.-L. Chan, J. Edmonds, T. W. Lam, L.-K. Lee, A. Marchetti-Spaccamela, and K. Pruhs. Nonclairvoyant speed scaling for flow and energy. In *STACS*, pages 255–264, 2009. - [17] H.-L. Chan, J. Edmonds, and K. Pruhs. Speed scaling of processes with arbitrary speedup curves on a multiprocessor. In *SPAA*, pages 1–10, 2009. - [18] H.-L. Chan, T. W. Lam, and R. Li. Tradeoff between energy and throughput for online deadline scheduling. In WAOA, pages 59–70, 2010. - [19] S.-H. Chan, T. W. Lam, and L.-K. Lee. Non-clairvoyant speed scaling for weighted flow time. In ESA (1), pages 23–35, 2010. - [20] S.-H. Chan, T. W. Lam, and L.-K. Lee. Scheduling for weighted flow time and energy with rejection penalty. In *STACS*, 2011. - [21] J. Corbalán and J. Labarta. Improving processor allocation through run-time measured efficiency. In *IPDPS*, page 74, 2001. - [22] N. R. Devanur and Z. Huang. Primal dual gives almost optimal energy efficient online algorithms. In *SODA*, pages 1123–1140, 2014. - [23] J. Edmonds. Scheduling in the dark. *Theor. Comput. Sci.*, 235(1):109–141, 2000. Preliminary version in *STOC* 1999. - [24] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant multiprocessor scheduling of jobs with changing execution characteristics. J. Scheduling, 6(3):231–250, 2003. - [25] J. Edmonds, S. Im, and B. Moseley. Online scalable scheduling for the ℓ_k -norms of flow time without conservation of work. In SODA, 2011. - [26] J. Edmonds and K. Pruhs. Scalably scheduling processes with arbitrary speedup curves. In *SODA*, pages 685–692, 2009. - [27] K. Fox, S. Im, and B. Moseley. Energy efficient scheduling of parallelizable jobs. In *SODA*, pages 948–957, 2013. - [28] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling jobs with varying parallelizability to reduce variance. In SPAA '10: 22nd ACM Symposium on Parallelism in Algorithms and Architectures, 2010. - [29] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling heterogeneous processors isn't as easy as you think. In SODA, pages 1242–1253, 2012. - [30] A. Gupta, R. Krishnaswamy, and K. Pruhs. Scalably scheduling power-heterogeneous processors. In *ICALP* (1), pages 312–323, 2010. - [31] A. Gupta, R. Krishnaswamy, and K. Pruhs. Online primal-dual for non-linear optimization with applications to speed scaling. In *Approximation and Online Algorithms 10th International Workshop*, WAOA, pages 173–186, 2012. - [32] X. Han, T. W. Lam, L.-K. Lee, I. K.-K. To, and P. W. H. Wong. Deadline scheduling and power management for speed bounded processors. *Theor. Comput. Sci.*, 411(40-42):3587–3600, 2010. Preliminary version in *MAPSP* 2009. - [33] S. Im, J. Kulkarni, K. Munagala, and K. Pruhs. Selfishmigrate: A scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 531–540, 2014. - [34] S. Im, B. Moseley, and K. Pruhs. A tutorial on amortized local competitiveness in online scheduling. *SIGACT News*, 42:83–97, June 2011. - [35] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. J. ACM, 47(4):617–643, 2000. Preliminary version in FOCS 1995. - [36] A. H. Karp and H. P. Flatt. Measuring parallel processor performance. Commun. ACM, 33(5):539–543, 1990. - [37] T. W. Lam, L.-K. Lee, H.-F. Ting, I. K.-K. To, and P. W. H. Wong. Sleep with guilt and work faster to minimize flow plus energy. In *ICALP* (1), pages 665–676, 2009. - [38] T. W. Lam, L.-K. Lee, I. K.-K. To, and P. W. H. Wong. Energy efficient deadline scheduling in two processor systems. In *ISAAC*, pages 476–487, 2007. - [39] T. W. Lam, L.-K. Lee, I. K.-K. To, and P. W. H. Wong. Competitive non-migratory scheduling for flow time and energy. In *SPAA*, pages 256–264, 2008. - [40] T. W. Lam, L.-K. Lee, I. K.-K. To, and P. W. H. Wong. Improved multiprocessor scheduling for flow time and energy. *J. Scheduling*, 15(1):105– 116, 2012. - [41] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. *J. Comput. Syst. Sci.*, 73(6):875–891, 2007. Preliminary version in *STOC* 1997. - [42] T. N. Mudge. Power: A first-class architectural design constraint. *IEEE Computer*, 34(4):52–58, 2001. - [43] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Using runtime measured workload characteristics in parallel processor scheduling. In JSSPP, pages 155–174, 1996. - [44] G. Sabin, M. Lang, and P. Sadayappan. Moldable parallel job scheduling using job efficiency: An iterative approach. In *JSSPP*, pages 94–114, 2006. - [45] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan. A robust scheduling strategy for moldable scheduling of parallel jobs. In *CLUSTER*, pages 92–99, 2003. - [46] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, and P. Sadayappan. Effective selection of partition sizes for moldable scheduling of parallel jobs. In *HiPC*, pages 174–183, 2002. - [47] N. R. Tallent and J. M. Mellor-Crummey. Effective performance measurement and analysis of multithreaded applications. In *PPOPP*, pages 229–240, 2009. - [48] N. K. Thang. Lagrangian duality in online scheduling with resource augmentation and speed scaling. In *Algorithms ESA 2013 21st Annual European Symposium*, pages 755–766, 2013. - [49] N. K. Thang. Lagrangian duality based algorithms in online energy-efficient scheduling. In 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT, pages 20:1–20:14, 2016.