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Abstract

This paper considers scheduling parallelizable jobs in the non-clairvoyant
speed scaling setting to minimize the objective of weighted flow time plus
energy. Previously, strong lower bounds were shown on this model in the
unweighted setting even when the algorithm is given a constant amount of re-
source augmentation over the optimal solution. However, these lower bounds
were given only for certain families of algorithms that do not recognize the
parallelizability of alive jobs. In this work, we circumvent previous lower
bounds shown and give a scalable algorithm under the natural assumption
that the algorithm can know the current parallelizability of a job. When a
general power function is considered, this is also the first algorithm that has
a constant competitive ratio for the problem using any amount of resource

IA preliminary version of this paper appeared in the proceeding of the 24th ACM-SIAM
Symposium on Discrete Algorithms, 2013 [27].

Email addresses: kyle.fox@utdallas.edu (Kyle Fox ), sim3@ucmerced.edu
(Sungjin Im), moseleyb@andrew.cmu.edu (Benjamin Moseley )

1K. Fox was supported in part by the Department of Energy Office of Science Graduate
Fellowship Program (DOE SCGF), made possible in part by the American Recovery and
Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-
06OR23100.

2S. Im was supported in part by NSF grants CCF-1016684, 1409130 and 1617653.
3B. Moseley was partially supported by NSF grants CCF-1617724, CCF-1733873 and

CCF-1725661, a Google Research Award, and a Yahoo Research Award.

Preprint submitted to Elsevier February 23, 2018



augmentation.

Keywords: Scheduling, Online, Energy, Speed Scaling, Parallelism,
Speed-up Curved

1. Introduction

Energy aware job scheduling has recently received a significant amount of
attention in scheduling theory literature [8, 9, 12, 5, 10, 30, 16, 38, 15, 19, 32,
37, 14, 7, 39, 4, 18, 20, 3, 31, 48, 22, 33, 49]. In a typical system. the scheduler
decides how resources (for example, machines or processors) are allocated to
jobs over time. In an energy aware scheduling environment, the scheduler
decides how to use resources in order to balance the energy consumed by the
system with system performance. For example, the scheduler may turn off
machines over time or the scheduler may dynamically scale the speed of a
processor. The scheduler’s goal is to minimize the energy consumption while
optimizing the quality of service for the jobs (or the clients who submitted the
jobs). These two objectives are naturally competing. By using less energy
the scheduler will have less resources available to process the jobs.

An energy aware scheduling model considered in previous literature is the
online speed scaling setting. In an online setting, the scheduler only becomes
aware of a job once it arrives to the system, and the scheduler makes deci-
sions over time without knowing the jobs that are to arrive in the future.
Online models accurately capture most of the scheduling problems faced in
the real world, because generally the scheduler will not be aware of a job
until it arrives to the system. The model can be made even more realistic by
assuming the scheduler is non-clairvoyant ; it does not know the processing
time of the jobs. In the speed scaling model, the processors available to the
scheduler can dynamically change their speed over time. This model captures
the fact that many systems today have the ability to change the processor
frequency over time such as the technology used in AMD’s PowerNow! and
Intel’s SpeedStep. Such technology has become ever more important in mo-
bile computing where battery power consumption is a high priority [42] and
in large scale server farms that use a costly amount of energy [42].

Perhaps the most popular online scheduling objective without considering
energy is minimizing the total flow time. The flow time of a job is the
amount of time that passes between the job’s release and its completion. By
minimizing the total flow time, the server focuses on optimizing the average
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quality of service delivered to the jobs. In the online speed scaling setting,
most previous literature considered minimizing the total flow time plus the
energy consumed in the system. This has a natural interpretation; a system
designer may decide that it is worth spending one unit of energy to save β
units of flow time. In this case, the system designer would want to minimize
the total flow time plus β multiplied by the energy. By scaling the units of
time and energy, we may assume that β = 1 and consider minimizing the
total flow time plus energy. Work on this objective was initiated by studying
processors whose power consumption obeys a generalization of the cube root
rule observed in standard CMOS based processors [42, 13]. For example,
if the processor runs at speed s then the power consumed is sα for some
constant α ≥ 1; the cubed root rule is observed when α = 3. This model
has been rigorously studied [9, 12, 5, 16, 37, 14, 7, 39], until a generalization
was introduced by Bansal et al. [8]. In the generalization, there is a convex
function P where P (s) is the power consumed when running the processor
at speed s. Essential no assumptions are made on P except that it is convex
and positive. This generalization is known as the arbitrary power function
model. In either model, the total energy consumed by the system is the
integral of power over all time.

1.1. Old and new scheduling models

In the online speed scaling setting the scheduler has two policies:

Job selection: The scheduler must decide which job should be sched-
uled at each moment in time.

Energy policy: The scheduler must decide how fast to run the pro-
cessor(s) at each moment in time.

When considering scheduling jobs on a single machine with speed scaling,
the general approach is to use a known algorithm that performs well on a
single machine without speed scaling and couple the algorithm with a natural
speed scaling policy introduced in [2]. Essentially, this speed scaling policy
runs the machine at speed s such that P (s) is proportional to the number
of unsatisfied jobs. This policy creates a natural balance between the energy
objective and the flow time objective, because the increase in the flow time
objective at each moment in time is equal to the number of unsatisfied jobs.
At each point in time, the two objectives will increase roughly at the same
rate.
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Recently, scheduling speed scaling jobs online on multiple processors or
machines was addressed. When addressing a multiple processor setting there
are two models which one can consider. The first is when each job can be
assigned to at most one machine at each moment in time. This model nat-
urally captures the settings faced in multiple machine environments such as
server farms. It is known that when processors have fixed speeds and energy
is not a part of the objective that no algorithm can be O(1)-competitive for
the objective of total flow time, even if we do not assume non-clairvoyance
[41, 6]. This lower bound carries over to the speed scaling setting with ar-
bitrary power functions. Due to this lower bound, most previous work has
turned to using a resource augmentation analysis [35]. Here the algorithm
is given extra resources over the adversary and then the competitive ratio is
bounded. We say that an algorithm is b-speed c-competitive if the algorithm
with b-speed achieves an objective value at most c times the optimal value
with unit speed. In the fixed speed setting, we mean each of the processors
runs b times faster than the optimal solution’s processors. In the speed scal-
ing setting, when the algorithm runs a processor at power P (s) the algorithm
can process jobs at speed b · s. The goal of this form of analysis is to find a
(1 + ε)-speed O(f(ε))-competitive algorithm for any constant ε > 0 where f
is some function of only ε. That is, an algorithm which is O(1)-competitive
while using a minimum amount of extra resources over the adversary. Such
an algorithm is called scalable. For problems with strong lower bounds on
the competitive ratio, a scalable algorithm is the best result that one can
show using worst case analysis.

The works of Lam et al. [40, 39] consider the case where each machine is
identical. When machines are not identical, the problem becomes more algo-
rithmically challenging. Scalable clairvoyant and non-clairvoyant algorithms
were found for heterogeneous machine settings [30, 29].

Another possible parallel scheduling model is when jobs can be scheduled
on more than one processor at each moment in time. That is, jobs can run
in parallel on multiple processors. The challenge in this setting is that there
can be different degrees of parallelizability, even within phases of a single
job. That is, each job consists of a set of phases that are to be processed
sequentially. According to the phase a job is in, the job may be considerably
sped-up when assigned to multiple processors, might not get sped-up, or
something in between. The phases of a job can lead to different amounts
of parallelism because one phase may require a lot of computation that can
be easily parallelized, while another phase may require I/O that cannot be
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sped-up with extra computational power.
This setting can be formalized into a model known as the arbitrary speed-

up curves model, so named because each phase of a job will have its own ar-
bitrary speed-up curve/function that specifies its parallizability. Scheduling
in this model was originally studied when energy was not taken into consid-
eration and the processor ran at a fixed speed. In the arbitrary speed-up
curves model, all previous work has focused on non-clairvoyant algorithms.
In [23] Edmonds gave a (2 + ε)-speed O(1)-competitive algorithm for any
fixed ε > 0. The algorithm considered was a round robin like algorithm
known as Equipartition. In a breakthrough result, Edmonds and Pruhs [26]
introduced the algorithm LAPS and showed that it is scalable. Since its in-
troduction, the algorithm LAPS has proven to be very useful in many other
scheduling settings [16, 19, 11, 29, 25, 28, 17].

Prior work shows that scheduling in the speed-up curves model becomes
considerably more challenging when speed scaling is introduced. Specifically,
Chan et al. [17] show that no non-clairvoyant algorithm can have a small
competitive ratio even when P (s) = sα. To get around the strong lower
bound, they make the crucial assumption that multiple copies of a single
job can be run in parallel, each using a different speed and with no side
effects between the job copies, so that the job is processed as quickly as
its fastest copy. Under this assumption, they propose an algorithm that
processes multiple copies of the same job simultaneously to hedge against
possible parallelizabilities of each job. They show that their algorithm is
O(logm)-competitive. Unfortunately, the assumption that multiple copies of
a job can be run without side effects is not valid in many systems. Further,
they show that an Ω(log1/αm) lower bound exists on the competitive ratio
even when jobs do not have side effects [17]. Thus, their assumption doesn’t
allow for an algorithm that scales with no dependency on the number of
processors, m.

Their work suggests that scheduling with speed scalable processors when
jobs are parallizable is essentially closed. No algorithm can have a small
competitive ratio even with resource augmentation in the arbitrary power
function case. In the case where P (s) = sα and jobs do not have side effects,
there is an algorithm that achieves roughly the best possible competitive ra-
tio. In the case where jobs have side effects, no algorithm can have a small
competitive ratio even when P (s) = sα. It appears that adding both par-
allelism and the ability to speed scale processors makes the problem much
harder and there is no hope for an online algorithm with a constant compet-
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itive ratio using a small amount of resource augmentation.
Previous work on the arbitrary speed-up curves problem such as [17] rely

on a crucial assumption; the scheduler is never aware of the parallizability
of a phase of a job. That is, the online algorithm is in the ‘dark’ about
how parallel a phase is, yet an optimal solution being compared against
may rely on this information. In this paper, it is argued that that this
assumption is perhaps too strong. Indeed, if some phase of a job uses multiple
threads or processes, then one can determine how many there are. There
is a vast amount of literature on how to measure the parallel performance
during runtime [43, 36, 1, 21, 47]. Further, there are many systems where
the parallelism of incoming jobs is given a priori to the scheduler either
specified by the user or based on estimates calculated from previous job
traces [44, 45, 46]. We suggest that giving the scheduler knowledge about
the parallizability of job phases still accurately models many real world cases
while allowing for the existence of competitive scheduling algorithms.

1.2. Our results and contributions

In this paper we consider a non-clairvoyant arbitrary speed-up curves
model where processors can be dynamically speed scaled. Unlike previous
work, we assume that each algorithm knows how parallel each phase of any
job is. This information need not be given to the algorithm initially; al-
though, it could be. The algorithm only requires knowledge of the paral-
lizability of a job phase at the point in time where the algorithm decides
to process that phase. The algorithm does not learn the total number of
phases in any job or the total processing needed for a job until the job’s
completion. Thus, the algorithm is non-clairvoyant. In this model, this pa-
per shows the following result, circumventing the strong lower bounds in the
more restrictive model mentioned above.

Theorem 1.1. In the arbitrary speed-up curves setting where processors can
be speed scaled with an arbitrary convex power function, there is a (1 + ε)-
speed O(1/ε2)-competitive algorithm for minimizing weighted flow time plus
energy for any ε > 0.

This theorem also gives rise to the following corollary.

Corollary 1.2. In the arbitrary speed-up curves setting where processors
can be speed scaled with a power function of the form P (s) = sα, there is a
O((1 + ε)α/ε2)-competitive algorithm for minimizing weighted flow time plus
energy for any ε > 0.
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Note that no resource augmentation is needed in the above corollary.
The corollary immediately follows because when P (s) = sα, we can simulate
resource augmentation by running the processors a factor of (1 + ε) faster.
This process increases the energy cost by a factor of (1 + ε)α.

Our results apply to the more general weighted case, where each job is
given a non-negative weight and the total flow time is calculated by summing
the flow time of individual jobs multiplied by their weights. This is essentially
the best positive result one can hope for, because this problem generalizes
minimizing total flow time in the identical machine setting where each job
can be scheduled on at most one machine at once and, as mentioned, there
are strong lower bounds for any online algorithm for this problem. This
result is also the first positive one in the speed-up curves setting with power
for the cases where the power function P is an arbitrary convex function.

This paper suggests that scheduling with speed scalable processors with
parallelizable jobs is not as hard as previous research indicates. Another
contribution is in our analysis. All previous works considering the speed-up
curves model and the speed scaling model use a potential function analysis
to bound the performance of an online algorithm. The works on the speed-
up curves model first use a reduction from the general parallel setting to a
setting where each phase of a job is either fully parallelizable or sequential.
We cannot use this reduction for our model as our algorithm’s behavior
changes when the parallelizability of jobs change. Instead, we directly analyze
the general setting and develop a new potential function that captures the
parallelizability of different job phases. Our potential function shows how to
circumvent the reductions used in previous work.

2. Preliminaries

2.1. Formal problem definition

We first describe the arbitrary speed-up curves model [24] and then extend
the model to the speed-scaling setting.

Arbitrary speed-up curves: In the model there are m uniform parallel
machines/processors. A job i may consist of multiple phases. Let µ̂i denote
the number of phases of job i. In the µth phase (1 ≤ µ ≤ µ̂i), job i has
work pµi that that needs to be completed, and is associated with a speed-
up curve Γµi that specifies the parallelizability of job i in the phase. The
phases of job i are processed sequentially. In other words, job i’s (µ + 1)th
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phase immediately starts when the pµi amount of work is done for job i in
its µth phase. Job i is considered complete when pµ̂ii work is done in its µ̂ith
phase. A speed-up curve Γ : R+ → R+ is a non-decreasing and continuous
function where R+ denotes the set of non-negative real numbers. If a job is
in a phase with speed-up curve Γ, then it can be processed (have work done)
at a rate of Γ(h) when using h machines. It is assumed that Γ(h)/h is non-
increasing, so that the processing efficiency per machine does not increase
as more machine are used. All properties of job i can be described in a
compact way as 〈((Γ1

i , p
1
i ), (Γ

2
i , p

2
i ), ...., (Γ

µ̂i
i , p

µ̂i
i )〉 along with its release time

ri and weight wi.
At each point in time t, a feasible schedule in the arbitrary speed-up curve

model allocates the m available machines to the currently alive/unsatisfied
jobs. To formally describe a feasible schedule and its scheduling objective,
we need to define more notation. Let n denote the number of jobs that are
released over time. Consider any schedule A and let qA(t) denote the set
of alive jobs at time t (the jobs that are released no later than time t and
are not completed by time t). The schedule can be formally described as n
functions xAi (t) : [0,∞)→ [0,m]; we will not include A in the notation when
it is clear in the context. Here xi(t) denotes the number of machines that
are used for job i at time t. It must be that

∑
i∈qA(t) xi(t) ≤ m, so that no

more than m machines are used. Note that a fractional number of processors
can be assigned to each job. If we wish to work in a model where only an
integral number of processors can be assigned to a job, we can reduce to the
fractional case. Details about the reduction including commentary on other
assumptions in the model can be found in Section 5.

We assume that the online scheduler has access to the speed-up curve
for the phase each alive job is in as well as the job’s weight. As mentioned
in Section 1, this assumption is different from the non-clairvoyant scheduler
that is assumed in [24, 17], and is key to our scalable algorithm. However,
the scheduler does not know job i’s remaining size in its phase, nor does it
know the remaining phases’ speed-up curves. In other words, the scheduler
becomes aware of job i only when it is released at time ri. The scheduler
also becomes aware of job i’s weight wi upon its release. Further, it knows
the speed-up curve Γµ

′

i (t) for all µ′ ≤ µ where µ is job i’s current phase. In

retrospect, it knows pµ
′

i , µ′ ≤ µ− 1, but not pµi .
Let Cµ

i denote the completion time of the µth phase of job i. For notional
convenience, let C0

i := ri. Given xi(t), the time Cµ
i , 1 ≤ µ ≤ µ̂i is formally
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defined as the earliest time τ such that∫ τ

t=Cµ−1
i

Γµi (xi(t))dt ≥ pµi .

The completion time Ci is defined as the earliest time when all phases
of job i are completed, i.e. Ci := C µ̂i

i . The weighted flow time (or response
time) of job i is defined as wi(Ci− ri) and is a weighted measurement of how
long job i waits to be completed since its release time. The total weighted
flow time of schedule A is

∑
i∈[n]wi(Ci − ri).

Extension to dynamic speed scaling: In the speed scaling setting, each
machine can be run faster or slower over time by changing the power it
consumes. In the arbitrary speed up curves setting where all machines are
uniform, we are given a power function P : R+ → R+ where P (s) is the
power used by a machine when running at speed s. The power function
P is assumed to be non-decreasing and convex. It can be further assumed
without loss of generality that P is continuous [8]. Throughout this paper,
we will be concerned with the inverse Q : R+ → R+ of power function P .
In words, Q(E) specifies the speed achieved when the processor is given
power E. We will refer to Q as the speed function. One can assume without
loss of generality that Q is concave, continuous, and Q(0) = 0 [8].

In this extension, a feasible schedule consists of {xi(t)}ni=1, which is de-
fined above, and powers {Ei(t)}ni=1 that specify the power consumed by job
i at time t. Again, we may optionally assume each xi(t) is integral using a
reduction given in Section 5. We require all machines assigned to the same
job i to consume the same amount of power. Given {xi(t)}ni=1 and {Ei(t)}ni=1,

job i is processed at a rate of Γ
µi(t)
i (xi(t)) · Q(Ei(t)/xi(t)) at time t, where

µi(t) is the phase that job i is in at time t. The completion time Cµ
i of µth

phase of job i is redefined accordingly. That is, the time Cµ
i , 1 ≤ µ ≤ µ̂i is

formally defined as the earliest time τ such that∫ τ

t=Cµ−1
i

Γµi (xi(t))Q(Ei(t)/xi(t))dt ≥ pµi ,

and the completion time of job i, Ci := C µ̂i
i .

We focus on the objective of minimizing the total weighted flow time plus
the total energy consumed,

n∑
i=1

wi(Ci − ri) +
n∑
i=1

∫ ∞
t=0

Ei(t)dt.
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In summary, in this paper we are interested in the problem of finding a non-
clairvoyant scheduler, that can be specified by {xi(t)}ni=1 and {Ei(t)}ni=1, that
has access to the speed-up curve of the current phase of each job. The goal
is to minimize the total flow time and total power consumption.

3. Algorithm Definition

We present our algorithm for scheduling in the speedup curve model with
energy which we call Weighted Latest Arrival Processor Sharing with En-
ergy (WLAPS+E). For the definition of WLAPS+E, we make the following
technical yet reasonable assumption regarding Γ and Q.

Assumption 3.1. Consider any speed-up curve Γ : R+ → R+ corresponding
to some phase of a job. Then for the given speed function Q : R+ → R+

and for any positive real numbers h and w, there exists 0 < h∗ ≤ h that
maximizes

Υw(h∗) = Γ(h∗) ·Q(
w

h∗
).

Further, such h∗ can be efficiently computed.

In words, the function Υw(h) is the speed achieved by distributing power
w equally among h processors. Detailed justification of this assumption can
be found in Section 5. We also note that our algorithm may assign a fractional
number of processor to each job. Recall that the case were the algorithm can
assign only assign an integral number of processors to each job can be reduced
to the fractional case. Again, details appear in Section 5.

Given a positive real number h, let yµi (h) be the number of processors
less than h that yield the greatest speed for job i in phase µ when using wi
units of power. In other words,

yµi (h) = argmax
0<h′≤h

Γµi (h′) ·Q
(wi
h′

)
.

Recall that we assume yµi (h) is well defined and efficiently computable (As-
sumption 3.1). Let gµi (h) be the highest speed achievable for job i in phase µ
when using at most h processors and power wi.

gµi (h) = max
0<h′≤h

Γµi (h′) ·Q
(wi
h′

)
.
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Let ε be an arbitrary real number such that 0 < ε ≤ 1/6. Informally,
WLAPS+E shares processors proportionally by weight among the most re-
cently arriving jobs so that the weight of all scheduled jobs is an ε fraction
of the total weight in the system. Then, for each job i, WLAPS+E scales
back the amount of processors given to i in order to maximize the amount
of processing done with wi units of power.

More formally, let qA(t) be the set of jobs alive for WLAPS+E at time t
and let W (t) =

∑
i∈qA(t)wi. Let qAi (t) be the set of jobs alive for WLAPS+E

at time t that arrive earlier than job i, including job i. Ties in arrival time
broken arbitrarily but consistently. Let Wi(t) =

∑
j∈qAi (t)wj. Let

hi(t) =


wim
εW (t)

if Wi(t)− wi ≥ (1− ε)W (t)

0 if Wi(t) < (1− ε)W (t)
(Wi(t)−(1−ε)W (t))m

εW (t)
otherwise

.

Let µAi (t) be the phase job i is in at time t under WLAPS+E’s schedule.

For each of job i, WLAPS+E processes i on y
µAi (t)
i (hi(t)) processors using wi

units of power.
Our algorithm is similar to LAPS in that it schedules late arriving jobs,

and each of those jobs is allowed to use up to the same number of machines
proportioned by job weight. However, our algorithm actually leaves some
processors inactive in favor of more energy efficiency. It is somewhat sur-
prising that even in the speed scaling setting, a scalable algorithm can be
obtained by putting the same quota on the maximum number of machines
that each late arriving job gets.

We will prove the following theorem.

Theorem 3.2. For any 0 < ε ≤ 1/6, WLAPS+E is (1 + 6ε)-speed, 5
ε2

-
competitive.

4. Analysis of WLAPS+E

Here, we analyze WLAPS+E in order to prove Theorem 3.2. Set an
input instance I, and consider running the optimal schedule for I using unit
speed alongside WLAPS+E using speed 1 + 6ε. For any job i, let CA

i be the
completion time for i under WLAPS+E. For any time t ≥ ri, let FA

i (t) =
wi(min{CA

i , t}− ri) be the accumulated weighted flow time of job i at time t
and let FA

i = FA
i (CA

i ). Let A(t) denote the total energy that WLAPS+E
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has consumed by time t plus the total accumulated weighted flow time in
WLAPS+E’s schedule. Finally, let A = A(∞) be the total weighted flow time
plus energy consumption for WLAPS+E. Let FO(t), FO

i , OPT(t) and OPT
be defined similarly for the optimal schedule.

We use a potential function analysis to prove our theorem. We give a
potential function Φ(t) that is almost everywhere differentiable such that
Φ(0) = Φ(∞) = 0. We will bound the continuous and discrete increases
to A(t) + Φ(t) by a function of OPT. Potential functions are the dominant
form of analysis used for analyzing algorithms in the speed scaling setting.
See [34] for a recent tutorial on potential functions. Our potential function
is somewhat similar to the one used by Edmonds and Pruhs [26] for the
formulation of this problem without energy, but we have modified the terms

in the potential function to account for job weights and our use of y
µAi (t)
i (hi(t))

in selecting how many processors job i should use at time t. A significant
difference between our potential function and those used in the past is that
our potential function takes the functions Γ into consideration. Previous
work on the speed up curve model used a reduction from the general setting
to a setting where there are only two possible speed up functions Γ(h) = h
or Γ(h) = 1. We cannot use this reduction because our algorithm uses the
parallelizability of a job phase to make scheduling decisions. By taking the
speed up functions into consideration, our potential function captures the
full generality of the problem.

Let pAµi (t) and pOµi (t) be the remaining processing time for phase µ of job i
at time t for WLAPS+E and the optimal schedule respectively. Let zµi (t) =
max{pAµi (t)− pOµi (t), 0}. The potential function is composed of one term for
each job-phase pair.

Φµ
i (t) =

wiz
µ
i (t)

gµi (wim/((1 + 2ε)εWi(t)))
.

Our potential function is defined as

Φ(t) =
1

ε2

∑
i∈qA(t),µ

Φµ
i (t).

We now focus on changes made to A(t)+Φ(t) that occur over time. Note
that job arrivals have no effect on A(t) + Φ(t). Further, the completion
of jobs by WLAPS+E or the optimal schedule do not cause any increase
in A(t) + Φ(t). This is because when the optimal solution completes a job
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there is no effect on the potential function. When the algorithm completes
a job i the terms corresponding to job i are removed from the potential, and
since all terms are positive, this removal can only decrease the potential. For
any other job j, the quantity Wj(t) may decrease, but this can only decrease
the potential since gµj is non-decreasing for any µ. Our entire analysis can
focus on the continuous changes to A(t) + Φ(t).

We first summarize simple facts regarding Γui , Q and gui in the following
section. The continuous changes of Φ(t) due to WLAPS+E and the optimal
scheduler’s processing are addressed in Section 4.2 and 4.3. Then all the
changes are aggregated in Section 4.4, yielding Theorem 3.2.

4.1. Simple observations

In this section, we make several simple observations that will be useful in
our analysis. We will implicitly use the following observation.

Proposition 4.1. Consider any continuous and concave function f : R+ →
R+ with f(0) ≥ 0. Then for any b ≥ a > 0, we have that f(a)/a ≥ f(b)/b.

Proof. By definition of concave functions, it follows that f(tx+ (1− t)y) ≥
tf(x) + (1 − t)f(y) for any real x, y and t ∈ [0, 1]. Consider setting x = 0,
y = b and t = 1− a

b
. Then we have f(a) ≥ (1− a

b
)f(0) + a

b
f(b) ≥ a

b
f(b).

The above proposition immediately gives the following property regarding
Q, Γ, and y.

Proposition 4.2. Let a, b be any reals such that b ≥ a > 0. Then
Q(b)/Q(a) ≤ b/a. Further for any job i and phase µ, it holds that
Γµi (b)/Γµi (a) ≤ b/a and gµi (b)/gµi (a) ≤ b/a.

Proof. We only show gµi (b)/gµi (a) ≤ b/a. The other inequalities follow by Q
being concave, Proposition 4.1, and by the assumptions on functions Γ. Let
b′ be such that 0 < b′ ≤ b and gµi (b) = Γµi (b′)Q(wi/b

′); such b′ exists from the
definition of gµi . If b′ ≤ a, then gµi (b)/gµi (a) = 1 ≤ b/a. Otherwise, we have,

gµi (a)

gµi (b)
≥ Γµi (a)Q(wi/a)

Γµi (b′)Q(wi/b′)
[From the definition of gµi ]

≥ Γµi (a)

Γµi (b′)
[Q is non-decreasing]

≥ a

b′
≥ a

b
,

as desired.
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4.2. Changes in Φ(t) due to the optimal solution

Fix a time t. We begin by considering the optimal schedule’s contribution
to d

dt
Φ(t). For each job i, let µOi (t) be the current phase of job i for the optimal

schedule at time t. Let Pi be the number of processors the optimal schedule
assigns to i and let Ei be the total power used by the optimal schedule to
process i. We will place each job i into one of four categories and then bound
the contribution to d

dt
Φ(t) by jobs in each category. The types of jobs that

fit into each category are as follows:

Job Categories

A: Pi >
wim

(1+2ε)εWi(t)
and Ei/Pi >

(1+2ε)εWi(t)
m

B: Pi >
wim

(1+2ε)εWi(t)
and Ei/Pi ≤ (1+2ε)εWi(t)

m

C: Pi ≤ wim
(1+2ε)εWi(t)

and Ei > wi
D: Pi ≤ wim

(1+2ε)εWi(t)
and Ei ≤ wi

As stated in the Section 2, a valid scheduler gives all processors assigned
to a fixed job the same power. In particular, the optimal schedule gives each
processor assigned to job i an equal amount of power (Ei/Pi). The optimal

schedule’s contribution to d
dt

Φ
µOi (t)
i (t) is at most

wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

.

Category A and B: Suppose job i is in category A or B. By definition of

the function g
µOi (t)
i (·), first we observe that,

Γ
µOi (t)
i (wim/((1 + 2ε)εWi(t)))Q ((1 + 2ε)εWi(t)/m)

≤ g
µOi (t)
i (wim/((1 + 2ε)εWi(t))) .

Using this fact we have the following. The second inequality follows by
Proposition 4.2 and the assumption that Pi > wim/((1 + 2ε)εWi(t)).

14



wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

≤ wi ·
Γ
µOi (t)
i (Pi)

Γ
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

≤ (1 + 2ε)εWi(t)Pi
m

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

If job i is in category A, then we have the following. The first in-
equality follows from Proposition 4.2 and the assumption that Ei/Pi >
(1 + 2ε)εWi(t)/m.

(1 + 2ε)εWi(t)Pi
m

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

≤ (1 + 2ε)εWi(t)Pi
m

· Eim

(1 + 2ε)εWi(t)Pi

= Ei.

The total contribution to d
dt

Φ(t) by category A jobs is at most 1
ε2

d
dt

OPT(t).
This fact is because

∑
i∈qO(t)Ei is the total power used by the optimal

solution at time t.

Now suppose i is in category B, so Ei/Pi ≤ (1 + 2ε)εWi(t)/m. FunctionQ
is increasing, so we observe that Q (Ei/Pi) ≤ Q ((1 + 2ε)εWi(t)/m). Hence,

(1 + 2ε)εWi(t)Pi
m

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

≤ (1 + 2ε)εWi(t)Pi
m

≤ (1 + 2ε)εW (t)Pi
m

.

The optimal schedule has a total of m processors to work with, so the
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total contribution to d
dt

Φ(t) by category B jobs is at most

1

ε2

∑
i∈qO(t)

(1 + 2ε)εW (t)Pi
m

=
(1 + 2ε)W (t)

ε

∑
i∈qO(t)

Pi
m

≤ (1 + 2ε)W (t)

ε
.

Here qO(t) denotes the set of alive jobs at time t in the optimal schedule.

Category C and D: Suppose job i is in category C or D. By definition of

the function g
µOi (t)
i (·) and the assumption that Pi ≤ wim/((1 + 2ε)εWi(t)),

we have that,

Γ
µOi (t)
i (Pi)Q (wi/Pi) ≤ g

µOi (t)
i (wim/((1 + 2ε)εWi(t))) .

Suppose i is in category C. We see the following. The first inequal-
ity follows from the above observation. The second inequality follows from
Proposition 4.2 and the assumption that Ei > wi.

wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

≤ wi ·
Γ
µOi (t)
i (Pi)

Γ
µOi (t)
i (Pi)

· Q (Ei/Pi)

Q (wi/Pi)
≤ wi ·

Ei
wi

= Ei.

The total contribution to d
dt

Φ(t) by category C jobs is at most 1
ε2

d
dt

OPT(t).
Again, this fact is because

∑
i∈qO(t)Ei is the total power used by the optimal

solution at time t.

Finally, suppose job i is in category D, then knowing that Q is increasing
and Ei ≤ wi we have

wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

≤ wi ·
Γ
µOi (t)
i (Pi)

Γ
µOi (t)
i (Pi)

· Q (Ei/Pi)

Q (wi/Pi)
≤ wi.

The total contribution to d
dt

Φ(t) by category D jobs is at most 1
ε2

d
dt

OPT(t).
This is because

∑
i∈qO(t)wi is the increase in the weighted flow objective for

the optimal solution at time t.

In sum, the optimal scheduler’s contribution to d
dt

Φ(t) is at most

(2 +
1

ε
)W (t) +

3

ε2
d

dt
OPT(t). (1)
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4.3. Change in Φ(t) due to the algorithm

Now we discuss the contributions to d
dt

Φ(t) from WLAPS+E. Recall
that qO(t) is the set of jobs alive for the optimal schedule at time t. For

each job i ∈ qA(t), we note z
µAi (t)
i (t) is positive if i /∈ qO(t). Hence z

µAi (t)
i (t)

decreases for all jobs i /∈ qO(t) that WLAPS+E processes at time t. Recall
we are running WLAPS+E at speed 1 + 6ε.

Let qA
′
(t) be the set of jobs i where hi(t) = wim/(εW (t)). For every

job i ∈ qA′(t), we have Wi(t) ≥ (1− ε)W (t).
Let ∆q be the contribution to d

dt
Φ(t) from WLAPS+E processing jobs

in qA
′
(t). We see that ∆q is less than,

− (1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wig
µAi (t)
i (wim/(εWi(t)))

g
µAi (t)
i (wim/((1 + 2ε)εWi(t)))

≤ −(1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wig
µAi (t)
i (wim/(εWi(t)))

g
µAi (t)
i (wim/((1 + 2ε)ε(1− ε)W (t)))

≤ −(1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wig
µAi (t)
i (wim/(εWi(t)))

g
µAi (t)
i (wim/(εW (t)))

≤ −(1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wi

= −1 + 6ε

ε
·W (t)

∑
i∈qA′ (t)\qO(t)

hi(t)

m

[Since hi(t) = wim/(εW (t)) for i ∈ qA′(t)]

The second line holds since g
µAi (t)
i is an non-decreasing function. The

third line follows from the assumption that 0 < ε ≤ 1/6 in addition to g
µAi (t)
i

being non-decreasing.
There may be a single job j with 0 < hj(t) < wjm/(εW (t)).

Let ∆j be the contribution to d
dt

Φ(t) due to WLAPS+E processing such
a job j. Let 1j be an indicator variable that is one if j /∈ qO(t) and

zero otherwise. We show that ∆j ≤ −1j · 1+6ε
ε
· W (t)

hj(t)

m
. Assume that

j /∈ O(t), since the inequality trivially holds otherwise. Let k > 1
be such that hj(t) = (1/k)wjm/(εW (t)). Observe by Proposition 4.2
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that g
µAj (t)

j ((1/k)wjm/(εW (t))) ≥ (1/k)g
µAj (t)

j (wjm/(εW (t))). A similar al-

gebra to that just shown gives ∆j ≤ − 1
k
· 1+6ε

ε2
· wj = −1+6ε

ε
· W (t) · hj(t)

m
.

Hence the total contribution to d
dt

Φ(t) from WLAPS+E’s processing is

∆q + ∆j ≤ −
1 + 6ε

ε
·W (t)

∑
i∈qA(t)\qO(t)

hi(t)

m

≤ −1 + 6ε

ε
·W (t)

[ ∑
i∈qA(t)

hi(t)

m
−
∑

i∈qO(t)

hi(t)

m

]
≤ −1 + 6ε

ε
·W (t)

(
1−

∑
i∈qO(t)

wi
εW (t)

)
≤ −1 + 6ε

ε
W (t) +

1 + 6ε

ε2
d

dt
OPT(t) (2)

The third inequality holds since WLAPS+E distributes machines among jobs
in such a way that

∑
i∈qA(t)

hi(t)
m

= 1 and hi(t) ≤ wim
εW (t)

. The last line follows,

because
∑

i∈qO(t)wi is the increase in the weighted flow time portion of the
optimal solution’s objective at time t.

4.4. Final analysis: putting the pieces all together

In this section, we complete the analysis by aggregating all changes of
A(t) and Φ(t). Recall that when jobs arrive or are completed, Φ(t) does
not increase. Hence, there are no positive discontinuous changes in Φ(t).
Observe d

dt
A(t) ≤ 2W (t) because the increase in WLAPS+E’s weighted flow

objective is W (t) and the most energy the algorithm uses at this time is W (t).
By integrating over time the sum of d

dt
A(t) and (1) and (2), the contributions

to d
dt

Φ(t) from WLAPS+E and the optimal scheduler’s processing, we have

A ≤
∫ ∞
t=0

d

dt
A(t) +

d

dt
Φ(t)dt ≤

∫ ∞
t=0

2W (t) + (1) + (2)dt

≤
∫ ∞
t=0

2W (t) + (2 +
1

ε
)W (t) +

3

ε2
d

dt
OPT(t)

− 1 + 6ε

ε
W (t) +

1 + 6ε

ε2
d

dt
OPT(t)dt

≤ (
6

ε
+

4

ε2
)OPT ≤ 5

ε2
OPT [Since 0 < ε ≤ 1/6].
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Here the first inequality follows, since Φ(0) = Φ(∞) = 0, and there
is no positive discontinuous change of Φ(t). This completes the proof of
Theorem 3.2. By scaling ε appropriately, we obtain Theorem 1.1.

5. Integral Processor Assignments and an Assumption on Γ and Q

Consider Assumption 3.1. To see why the assumption is necessary,
consider Γ(h) = hα and Q(h) = hβ where 0 < α < β ≤ 1. Then
Υw(h) = (1/h)β−α and there exists no 0 < h∗ ≤ h that maximizes Υw(h∗).
In this case, the phase of speedup curve Γ can be finished instantaneously
by using an infinitesimal number of processors!

We now discuss why such a degenerate case does not occur in practice.
Although a speedup curve Γ is defined over R+, assigning a fractional number
of machines to a job is not permitted when there are only finite number of
machines in practice. In fact, it would better capture reality to assume
that Γ is defined only over non-negative integers. Then one can extend the
domain to R+ by making Γ(h) a piecewise linear function as follows. For a
non-integer positive number h = h′+λ, where h′ is an integer and 0 < λ < 1,

Γ(h) = (1− λ)Γ(h′) + λΓ(h′ + 1).

This extension implies that during an infinitesimal interval of length dt,
the job in consideration is processed on h′ processors for (1 − λ)dt units
of time and on h′ + 1 machines for λdt units of time. Observe that the
average number of machines used during the interval is exactly h. Then we
say that the job can be scheduled integrally compatible. It is not difficult
to see that one can find a schedule where all alive jobs can be scheduled
integrally compatible: Initially give bxi(t)c processors to each job i. Consider
an infinitesimal interval [t, t + dt). Consider jobs in any order, and the
remaining machines one by one. Each of the remaining machines is available
during [t, t+ dt). Think of job i as having size xi(t)− bxi(t)c. Schedule job
i on the machine in consideration, and if necessary on the next remaining
machine. Each machine is used by at most one job from time t to t + dt.
Also, the fractional part of each job is assigned to at most one machine at
each point in time.

Then Υw(·) can be naturally defined over a fractional value h = h′+λ as
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follows:

Υw(h) ={
λΓ(1)Q(w

λ
) if 0 < h < 1

(1− λ)Γ(h′)Q(wh
′

h
· 1
h′

) + λΓ(h′ + 1)Q(w(h
′+1)
h
· 1
h′+1

) if h ≥ 1

In words, during an interval [t, t + dt), for 0 < h < 1, we run the job on
a single machine with power w

λ
for λdt time steps. Observe that the average

power dedicated to the job per a unit time is exactly λw
λ

= w. For h ≥ 1, we
run the job on h′ machines, each with power w

h
for (1− λ)dt time steps, and

on h′+1 machines, each with the same power w
h

for λdt time steps. Likewise,
the average power usage per a unit time is (1 − λ)h′w

h
+ λ(h′ + 1)w

h
= w.

Hence the schedule suggested by the above extension of Γ and Υ preserves
the power and the number of machines used in addition to being feasible.

Further, observe that the above semantics gives the same definition of
Υw(h) = Γ(h) · Q(w

h
). This implies that our algorithm is well-defined even

when speed up curves Γµi have the domain of non-negative integers. 4 Indeed,
when 0 < h < 1,

Γ(h) ·Q(
w

h
) = Γ(λ) ·Q(

w

λ
) = λΓ(1) ·Q(

w

λ
).

Also when h ≥ 1,

Γ(h) ·Q(
w

h
) =

(
(1− λ)Γ(h′) + λΓ(h′ + 1)

)
Q(
w

h
).

Now when considering the extension of Γ defined only over non-negative
integers, note that for h ∈ (0, 1], Υw(h) = hΓ(1)Q(w

h
) is maximized when

h = 1, since Q is concave and Q(0) = 0; see Proposition 4.2. Further, for all
reasonably-behaving functions Q (e.g., differentiable), Υw has a maximum
value over any compact set in R+. Hence we conclude that there always
exists 0 < h∗ ≤ h such that Υw(h∗) is maximized.
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