
Minimizing Maximum Flow Time on Related
Machines via Dynamic Posted Pricing∗

Sungjin Im†1, Benjamin Moseley‡2, Kirk Pruhs§3, and
Clifford Stein¶4

1 Electrical Engineering and Computer Science, University of California at
Merced, CA, USA
sim3@ucmerced.edu

2 Washington University in St. Louis, MO, USA
bmoseley@wustl.edu

3 Dept. of Computer Science, University of Pittsburgh, PA, USA
kirk@cs.pitt.edu

4 Department of Industrial Engineering and Operations Research, Columbia
University, New York, NY, USA
cliff@ieor.columbia.edu

Abstract
We consider a setting where selfish agents want to schedule jobs on related machines. The agent
submitting a job picks a server that minimizes a linear combination of the server price and the
resulting response time for that job on the selected server. The manager’s task is to maintain
server prices to (approximately) optimize the maximum response time, which is a measure of
social good. We show that the existence of a pricing scheme with certain competitiveness is
equivalent to the existence of a monotone immediate-dispatch algorithm. Our main result is a
monotone immediate-dispatch algorithm that is O(1)-competitive with respect to the maximum
response time.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problem]: Sequencing
and scheduling

Keywords and phrases Posted pricing scheme, online scheduling, related machines, maximum
flow time, competitiveness analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.51

1 Introduction

1.1 Motivation and Background
Many large companies foster a competitive internal environment to create flexibility, challenge
the status quo, and motivate employees. However, it is recognized that internal competition
has to be managed so that the costs do not outweigh the benefits [9, 6]. In this paper, we
consider one such management task. Namely, we consider managing compute servers, used

∗ This work was partially done while the authors were participating in the Algorithms and Uncertainty
program at the Simons Institute for the Theory of Computing at the University of California at Berkeley.

† Supported in part by NSF grants CCF-1409130 and CCF-1617653.
‡ Supported in part by a Google Research Award, a Yahoo Research Award and NSF Grant CCF-1617724.
§ Supported in part by NSF grants CCF-1421508 and CCF-1535755, and an IBM Faculty Award.
¶ Supported in part by NSF grant CCF-1421161.

© Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 51; pp. 51:1–51:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


51:2 Minimizing Maximum Flow Time on Related Machines via Dynamic Posted Pricing

by competing self-interested agents, to optimize social good. As agents are self-interested,
you would expect them to greedily choose the server that will finish their task first. In the
setting that we consider, this can lead to schedules with highly suboptimal social good. Thus
the manager might reasonably want to implement some mechanism that will incentivize the
agents to produce a schedule with high social good. Following the lead of [10] we consider a
dynamic posted price mechanism; that is, the manager maintains a dynamically changing
price for each server (like Amazon’s EC2). Thus a self-interested agent would take into
account both response time and price when selecting a server.

In [10] various common models of compute servers are considered, and it is assumed that:
all agents sequentially select servers at the same moment of time,
jobs on one machine are scheduled in a First-Come-First-Served manner,
agents greedily pick the server that minimizes a linear combination of the resulting
response time of the agent’s job and the current price for that server, and
the social good is measured by (technically the inverse of) the makespan of the schedule.

The main result in [10] is a pricing scheme that guarantees that selfish agents construct a
schedule that is O(1)-competitive with respect to makespan on related machines. In this
scheme the prices are essentially set so that the resulting schedule is identical to the schedule
produced by the (non-pricing based) online algorithm, called Slow-Fit in [4], that was shown
to be O(1)-competitive in [3]. Slow-Fit assigns each job to the slowest machine that would
not result in a response time greater than some constant times the current estimate of the
optimal makespan (and doubles the estimate if this isn’t possible).

[11] posed the question of whether this O(1)-approximation result could be extended to
the (arguably more natural) setting where agents may submit jobs over time, and the social
good is the natural generalization of makespan, namely the maximum response time of any
job. The maximum response time is the maximum time a job waits in the system after its
arrival to be completed.

The combinatorics of the scheduling of related machines with the objective of maximum
flow are a bit tricky, and it wasn’t until recently that any O(1)-competitive online algorithm
(or even any polynomial-time O(1)-approximation offline algorithm) was known [5]. [5] called
this online algorithm Double-Fit. Double-Fit delays assigning jobs, and collects them into
batches. Periodically the jobs in a batch are assigned to machines. In assigning a batch of
jobs, the jobs are considered in decreasing order of size. Each job is then assigned to a server
using essentially a two level generalization of Slow-Fit. The conclusion of [5] states that:

Note that our algorithm Double-Fit is not immediate dispatch, i.e., it does not
dispatch a job to a machine immediately upon arrival. We are unable to extend the
ideas here to obtain an O(1)-competitive immediate dispatch algorithm, and it is not
clear to us whether such an algorithm exists.

Immediate dispatch algorithms have some practical advantages, most notably, they do not
require the maintenance of a global queue of unprocessed work, which could be a potential
bottleneck to scalability.

1.2 Our Results
We start by observing that the open questions from [11] and [5] are related. More precisely,
we observe that a monotone immediate-dispatch algorithm can be converted into a dynamic
posted price algorithm, preserving the competitive ratio. Similarly, we observe that a posted
price algorithm can be converted into a monotone immediate-dispatch algorithm, preserving
the competitive ratio. An algorithm is monotone if the speed of the server that an agent



S. Im, B. Moseley, K. Pruhs, and C. Stein 51:3

would pick is monotonically increasing in the size of a job. Monotonicity is a natural property
in that the bigger a job is, the more critical it is that it be assigned to a fast server (in the
extreme, an infinite sized job must be assigned to the fastest server if one is to achieve a
competitive ratio independent of server speeds).

Using this equivalence, we establish the existence of an O(1)-competitive posted price
scheme by giving a monotone immediate-dispatch O(1)-competitive algorithm, which we call
Immediate-Double-Fit (IDF). Thus we affirmatively answer both the open question from [11]
and the open question from [5].

The algorithm IDF immediately assigns jobs using the same strategy as Double-Fit does.
After observing that IDF is monotone, we turn to analyzing IDF’s competitiveness. The
fact that Double-Fit assigns jobs within a batch in size order was critical to the analysis
of Double-Fit in [5]. Intuitively the main difficulty of analyzing IDF is that there may be
no relationship between the size of a job and when it is assigned a server, thus making the
analysis of Double-Fit in [5] inapplicable. Not surprisingly, the key to our being able to
analyze IDF was finding the “right” inductive hypothesis, which is substantially different
than the inductive hypothesis used in [5]. Perhaps somewhat surprisingly, our inductive
hypothesis is actually simpler than the one used in [5], and as a consequence, we also get a
slightly better bound on the competitive ratio of IDF, namely 25/2, than the bound of 27/2
on the competitive ratio of Double-Fit obtained in [5].

One intuitive take away point from these results is that dynamic posted prices gives
management essentially the same power as being able to impose arbitrary job to server
assignments, when the setting is related machines and the objective is maximum flow time.

1.3 Other Related Work
[10] showed that for unrelated machines, every pricing scheme can lead to schedules that are
Ω(m)-competitive with respect to makespan. In the unrelated machine setting the processing
time of a job is machine dependent. They also showed that static pricing schemes (where
server prices do not change over time) are in some sense equivalent to the natural greedy
algorithm.

Intuitively prices are necessary to achieve O(1)-competitiveness for maximum response
time on related machine. To understand why, note that it is well-known that FIFO is optimal
on a single machine for the objective of maximum response time. In addition to being
optimal, FIFO is the unique scheduling policy that allows each agent to know with certainty
the response time of its job on each server. However, [5] showed that the natural greedy
algorithm is Ω(m)-competitive for maximum response time on related machines.

There is a significant literature on mechanism design for scheduling, starting with the
paper [14] that instigated the study of mechanism design within the algorithmic community.
Much of this work focuses on finding and/or analyzing coordination mechanisms with respect
to the price of anarchy, which compares the social good of some equilibrium to the optimal
social good. We mention a few such results that seem most closely related to the results in
this paper. A coordination mechanism for identical machines with constant price of anarchy
with respect to makespan can be found in [7]. [13] studies coordination mechanisms for
four classes of multiprocessor machine scheduling problems and derive upper and lower
bounds for the price of anarchy with respect to makespan of these mechanisms. [1] considers
coordination mechanisms for unrelated machines in which agents control subsets of jobs, and
each player’s objective is to minimize the weighted sum of completion time of her jobs.

There is a significant literature on mechanism design using posted prices, most of it
focused on auctions and markets (see [15] for an overview). [8] focuses on server problems,
motivated in part by the SFPark system (SF-park.org), which sets parking prices in San

ESA 2017



51:4 Minimizing Maximum Flow Time on Related Machines via Dynamic Posted Pricing

Francisco based on parking congestion. [8] gives pricing schemes for the classical problems of
k-server, metrical task systems, and metrical matching that in some cases achieve competitive
ratios that are close to the optimal competitive ratios for general online algorithms.

There is significant literature on online scheduling. Good starting points into this literature
are [16] and [12]. Probably the most relevant results come from [2], which gave scalable
algorithms for minimizing maximum flow time on unrelated machines, and for minimizing
weighted maximum flow time on related machines. Resource augmentation is required for
both problems in order to achieve constant approximation.

2 Notation and Definitions

In the standard related machines environment the m servers/machines have associated speeds,
s1, . . . , sm. We assume without loss of generality that s1 ≤ s2 ≤ . . . ≤ sm. A collection of n
jobs arrive over time. The release time rj of job j is when it is submitted to be scheduled.
Further, each job j has a size pj . A (nonpreemptive) schedule specifies for each job j, a
starting time λj and an assigned server ij , with the restriction the time intervals [λj , Cj ]
should be disjoint for all jobs assigned to the same machine. Here Cj = λj + pj/sij

is the
time that job j completes. If j has been run on server i for τ ≤ pj/si units of time, then its
unprocessed volume is pj − siτ . The flow/response time of the job is defined as Fj := Cj − rj ,
and the objective we consider is to minimize the maximum flow time Fmax = maxj Fj . The
makespan of a schedule is the maximum completion time.

In this paper, we assume that an online scheduler learns job j’s size pj at time rj when it
is released. An online scheduler is called immediate dispatch if it always assigns a job to a
machine at the job’s release time. The scheduler need not start job j at time rj , but the
scheduler must make an irrevocable decision about which machine the job will eventually
run on. Let At(p) be the speed of the machine that an algorithm A would assign a job of
size p to if it was released at the current time t; here it is assumed that job identity plays no
role in A’s assignment decision. Then algorithm A is monotone if for all possible instances,
and for all possible t, At(p) is non-decreasing in p.

A dynamic posted pricing scheme is a special type of online scheduler. Jobs assigned
to a server are processed in First-Come-First-Served order. So every processor is always
processing the earliest released, uncompleted job assigned to it. The online schedule maintains
a dynamically changing price for each server. Let ci(t) denote the price/cost for server i
at time t. Let Li(t) denote the unprocessed volume of jobs previously assigned to server
i at time t, divided by machine i’s speed. In other words, it takes Li(t) units of time for
machine i to complete its unprocessed workload assuming that no more jobs arrive. Then
job j is assigned to the server i that minimizes Li(rj) + pj/si + ci(t). Intuitively the job
selfishly assigns itself to the machine that minimizes its flow time plus the machine cost. It is
important that the prices ci(rj) are posted prior to job j’arrival; that is, they cannot depend
on the value of pj , and may only depend on past events. For notational convenience we may
drop the current time from the notation if it is clear from the context. For example, we may
simply use ci in place of ci(t).

One take away point from [10], as well as earlier work on posted price mechanisms, is
that dealing with ties can be annoying. The issue of ties manifests itself in two ways in our
setting. Firstly, in order to show that our pricing scheme is monotone, we need that the
machine speeds are distinct, that is that s1 < s2 < . . . < sm. This can be achieved with
probability one by decreasing each machine speed by some random infinitesimal amount,
at the cost of raising the competitive ratio by an infinitesimal amount. The mechanism



S. Im, B. Moseley, K. Pruhs, and C. Stein 51:5

can simulate a slower machine by delaying the start date of each job appropriately. Thus
technically our mechanism involves both pricing and slightly delaying some jobs.

The second way in which the issue of ties manifests itself is when there are two different
servers that simultaneously minimize Li(rj) + pj/si + ci(t). But this is also handled by
the random decrement of the processor speeds, as this sort of tie will then arise with
probability zero. Thus we assume in our analysis that there is a unique server i that
minimizes Li(rj) + pj/si + ci(t).

[10] takes a different approach to this second issue of ties. They assume that in the case of
ties, the job may be adversarially assigned to any minimizing server. This has the advantage
of imposing minimal assumptions on the actions of the agent, but it has the disadvantage of
cluttering/complicating the algorithmic design/analysis process. The majority of the effort
in [10] is related to handling ties.

3 Algorithm and Analysis

In Subsection 3.1 we establish the equivalence of posted price algorithms and monotone
immediate-dispatch algorithms. In Subsection 3.2 we describe the Immediate-Double-Fit
algorithm. In Subsection 3.3 we first note that the Immediate-Double-Fit algorithm is
monotone, and then give an inductive argument bounding its competitiveness.

3.1 Equivalence between Monotonicity and Post-pricing Scheme
I Lemma 1. An immediate-dispatch, monotone algorithm A can be converted into a posted
pricing algorithm/scheme B. In particular, there is a pricing algorithm B where each job is
assigned to the same machines in both A and B. Thus, both algorithms produce exactly the
same schedule.

Proof. We explain how to convert A into B. Assume that a job j is released at time t.
Price any machine on which A would never run j no matter what its processing time is
at infinite. For notational convenience, drop them from our ordering and assume that m
machines remain. Assume according to algorithm A that at size pi the speed of the selected
processor changes from si to si+1 for i ∈ [1,m− 1]; more precisely, A(p) ≤ si for all p < pi

and A(p) ≥ si+1 for all p > pi. Define gc(p) as the cost function that takes a job size p and
returns the minimum cost the job has to pay under the pricing c. Let Li denote the load
on machine i just before j is assigned. By setting the price vector c so that the following is
satisfied for all 1 ≤ i ≤ m− 1:

Li + ci + pi/si = Li+1 + ci+1 + pi/si+1,

we get a cost function gc(p) where the cost for a job of size p ∈ (pi−1, pi) is minimized on
machine i. Hence under this post-pricing scheme, each job is assigned exactly to the same
machine as it were by the given algorithm A. Also by setting c1 to be sufficiently large and
using the fact that s1 < s2 < ... < sm, we can ensure that all prices are positive. J

Although it is not needed to establish our main results, we now prove the converse of
Lemma 1.

I Lemma 2. A pricing algorithm A is an immediate dispatch, monotone algorithm.

Proof. It it obvious that it is an immediate dispatch algorithm. To establish monotonicity,
consider the arrival of a job. Let ci be the price for machine i. Note that job of size p pays
Li + ci + p/si if it chooses machine i. Let g(p) denote the minimum cost a job of size p has to

ESA 2017



51:6 Minimizing Maximum Flow Time on Related Machines via Dynamic Posted Pricing

pay on any machine. Due to the greedy nature of clients, we have g(p) := mini(Li +ci +p/si),
which is a piece-wise linear function. This implies that if there is a value of p for which
machine i minimizes the cost, the set of such values must form an interval. Let pi be the
size of a job where a greedy client would change from a machine with speed si to a machine
with speed sk when we increase p. Note that the uniqueness of pi follows from the above
observation. Knowing that Li +ci +pi/si = Lk +ck +pi/sk and Li +ci +p/si > Lk +ck +p/sk

for p > pi, we conclude that si < sk, thus proving monotonicity of the algorithm. J

3.2 Description of the Immediate-Double-Fit Algorithm
We start by making some simplifying assumptions, and defining some concepts and notation.
Assume for the moment that the algorithm knows Opt, the objective value of the optimal
solution. If not, we show at the end of the analysis how to remove this assumption using the
standard doubling trick. For simplicity, we assume that jobs arrive at distinct times. We
can easily extend our analysis to remove this assumption by considering jobs released at the
same time from the largest to smallest, but this would complicate the analysis.

Time is broken into epochs. The length of a epoch depends on when jobs are released.
Define epochs to be of length εOpt, where ε is an arbitrarily small parameter such that at
most one job arrives in each epoch. The first epoch begins at time 0 before any job arrives.
At the start of an epoch we assign the job that arrived in the last epoch. We now describe
how to assign an arriving job j. Let [ij ,m] be the machines i on which pj/si is at most Opt.
The algorithm is parameterized by constants α, β ≥ 1 which will be fixed later.

We are now ready to describe the Immediate-Double-Fit (IDF) Algorithm. When a new
job j arrives, IDF does the following:
1. If there is a machine in [ij ,m] with load less than αOpt, then schedule j on the slowest

such machine. We say in this case that j was placed in the saturation phase.
2. Else if there is a machine in [ij ,m] with load less than βOpt then schedule j on the

slowest such machine. We say in this case that j was placed in the slow fit phase.
3. Else the algorithm admits failure.

3.3 Analysis
We begin by establishing in Lemma 3 that the IDF algorithm is monotone. We then turn to
analyzing IDF’s competitiveness. We show that IDF never admits failure for proper choice
of α and β, under the assumption that its estimation of Opt is correct. Noting that the
algorithm is immediate dispatch for sufficiently small ε the algorithm can be converted to
a pricing algorithm as shown in Lemma 3. We then finish by showing how to apply the
standard doubling trick to remove the assumption that the algorithm knows Opt.

I Lemma 3. Algorithm A is a monotone algorithm.

Proof. Let p < q be two possible job sizes. Let [ip,m] be the machines on which a job of
size p would run less than Opt time units. That is, p/sk ≤ Opt for k ∈ [ip,m]. Similarly
define [iq,m]. Note that ip ≤ iq. If a job of size q was placed on a machine i during the
saturation phase, then this machine has load less than αOptsi. By definition of the algorithm,
a job of size p would also be assigned during the saturation phase to a machine no faster
than machine i, since machine i’s load is less than αOptsi, and p can run on machine i. If
instead a job of size q was placed on machine i during the slow fit phase, then all machines
in the range [iq,m] have load at least αOpt. Thus a job of size p could either be placed on a
machine slower than iq during the saturation phase, or on a machine no faster than i in the
slow fit phase by definition of the algorithm. J



S. Im, B. Moseley, K. Pruhs, and C. Stein 51:7

We now turn to analyzing IDF’s competitiveness. For notational compactness, we will
now starting using A to denote the algorithm IDF. We will show that the following statements
hold by induction on epochs:

A(i, k) is the statement Ai(k) ≤ A∗i (k) + cOptSi

and

B(i, k) is the statement Bi(k) ≤ B∗i (k) + cOptSi

where
Si =

∑m
k=i sk is the total speed of machines [i,m].

Ai(k) is the total load on machines [i,m] under the algorithm A just before jobs are
assigned at the start of epoch k.
Bi(k) is the total load on machines [i,m] under the algorithm A just after all jobs are
assigned by the algorithm at the start of epoch k.
Define restricted opt to be the optimum under the restriction that jobs can only be
assigned to machines at the start of the epoch. Note that by making ε sufficiently small,
this is does not change the optimal solution.
A∗i (k) is the total load on machines [i,m] for the restricted opt just before jobs are
assigned by restricted opt at the start of epoch k.
B∗i (k) is the total load on machines [i,m] for the restricted opt just after all jobs are
assigned by restricted opt at the start of epoch k.

In order for our induction to go through, we will need the various parameters to satisfy the
following inequalities:

α ≥ β − c+ 1
c ≥ α+ 1
1 + c+ ε ≤ β

We observe in Lemma 4 that these inductive statements imply that IDF/A is β + 1
competitive. We then show in Lemma 5 that B(i, k) implies A(i, k + ε). We then complete
the inductive proof by showing in Lemma 6 that A(i, k) implies B(i, k).

I Lemma 4. If ∀i∀k [A(i, k) and B(i, k)] then A is (β + 1)-competitive.

I Lemma 5. ∀i B(i, k) implies ∀i A(i, k + ε).

Proof. The proof is by reverse induction on i. For a base case, i = m + 1, the claim is
vacuously true. For the inductive case, assume that A(i+ 1, k + ε) holds and our goal is to
prove A(i, k + ε).

For the first case, say that machine i at epoch k + ε has at most cOptsi work assigned
to it. This implies that Ai(k + ε) ≤ Ai+1(k + ε) + cOptsi. Knowing that Ai+1(k + ε) ≤
A∗i+1(k + ε) + cOptSi+1 is true (that is, A(i+ 1, k + ε) holds), we have the following.

Ai(k + ε) ≤ Ai+1(k + ε) + cOptsi

≤ A∗i+1(k + ε) + cOptSi+1 + cOptsi

= A∗i+1(k + ε) + cOptSi

For the second case, machine i at epoch k + ε has strictly more than cOptsi assigned to
it. Let a denote the last job assigned to machine i. We know that pa/si ≤ Opt by definition
of the algorithm. Knowing this, it must be the case that machine i was loaded to more than

ESA 2017



51:8 Minimizing Maximum Flow Time on Related Machines via Dynamic Posted Pricing

(c− 1)siOpt when job a was assigned. Knowing that c− 1 ≥ α it is the case that job a was
assigned by the slow-fit phase of the algorithm. Also we know that machine i is not ready
to process job a at epoch k + ε since it hasn’t completed all jobs assigned to it that have
arrived before job a since at the epoch machine i has a strictly positive load excluding the
last job a assigned to it. Since a was assigned by the slow-fit phase, when job a arrived, it
must be the case that all machines i, i+ 1, ... ,m have load at least αOpt. This implies that
at epoch k + ε, all machines i, i+ 1, ... ,m have strictly positive loads.

Thus, we now know that m,m− 1, . . . , i are busy processing some job between epoch k
and k + ε. We know that Bi(k) ≤ B∗i (k) + cOptSi since B(i, k) holds. We further know that
B∗i (k) can decrease by at most εSi to get A∗i (k + ε) as this is the most work Opt can process
on machines m,m− 1, . . . , i between epoch k and k + ε. The above argument implies that
Bi(k) decreases by εSi since all machines i or greater are processing jobs during [k, k + ε].
Thus, in the inequality Bi(k) ≤ B∗i (k) + cOptSi the left hand side decreases by at least as
much as the right, giving the lemma. J

I Lemma 6. ∀iA(i, k) implies ∀iB(i, k).

Proof. Assume that a job j arrives in epoch k − 1. By assumption, only one job arrives in
epoch k− 1. The proof is first by induction on k, and then by reverse induction on i, where i
is the machine to which job j is assigned. We handle at the end the case where job j cannot
be assigned and the algorithm declares failure.

We consider two cases. In the first case, assume that the load on machine i for the
algorithm after jobs have been assigned at the start of epoch k is at most cOptsi. Then
in this case we know by induction that Bi+1(k) ≤ B∗i+1(k) + cOptSi+1. Thus using the
assumption that the load on machine i is at most cOptsi, we know that

Bi(k) ≤ B∗i+1(k) + cOptSi+1 + cOptsi ≤ B∗i (k) + cOptSi

Now consider the case that the load on machine i is strictly more than cOptsi. Thus we
know that the last job put on machine i by the algorithm at the start of epoch k was assigned
in the slow fit phase since c ≥ α+ 1. If pj/si−1 > Opt or i = 1, then optimal cannot run j on
a slower machine than i, and thus A(i, k) implies B(i, k) as Bi(k)−Ai(k) and B∗i (k)−A∗i (k)
both increase by pj . Otherwise let h be minimal such that all machines in the range [h, i− 1]
have load at least βOpt. Then we know that either h = 1 or pj/sh−1 > Opt, otherwise the
algorithm would have put job j on machine h− 1. In either case, optimal cannot put job
j on a machine with index ≤ h − 1. Thus A(h, k) implies B(h, k) as Bh(k) − Ah(k) and
B∗h(k)−A∗h(k) both increase by pj .

Now consider what happens to B(g, k) as g increases from h to i. Assume g ∈ (h, i]. Then
Bg−1(k)− Bg(k) ≥ βOptsg−1. So intuitively Bg(k) decreases at a rate of at least β. Also
B∗g−1(k)−B∗g (k) ≤ (1 + ε)Optsg−1, otherwise the load on machine g − 1 for optimal would
be greater than (1 + ε)Optsg−1, contradicting the definition of Opt. Thus intuitively, B∗g (k)
decreases at a rate of at most ε+ 1. Also cOptSg−1− cOptSg = cOptsg−1. So intuitively this
term decreases at a rate of exactly c. Thus using the fact that 1 + c+ ε ≤ β, B(h, k) implies
B(i, k).

Now consider the case that the algorithm couldn’t assign job j. Then machine m has
load at least βOptsm. Let h be minimal such that all machines in the range [h,m] have load
at least βOpt. Then we know that either h = 1 or pj/sh−1 > Opt, otherwise the algorithm
would have put job j on machine h−1. In either case, optimal cannot put job j on a machine
with index ≤ h − 1. Thus A(h, k) implies B(h, k) as Bh(k) − Ah(k) and B∗h(k) − A∗h(k)
both increase by pj . Now we just repeat the argument in the last paragraph to prove that



S. Im, B. Moseley, K. Pruhs, and C. Stein 51:9

Bm(k) ≤ B∗m(k) + csmOpt. Since Bm(k) ≥ βsmOpt, we have B∗m(k) ≥ (β − c)smOpt, which
is a contradiction to Opt if β − c > ε+ 1. J

I Lemma 7. One can verify that α = 2, c = 3 and β = 4 satisfies the stated inequalities
when ε = 0, and thus IDF with these parameters is 5-competitive, assuming that its estimate
of Opt is correct.

Now consider the case that the algorithm does not know Opt. It is easy to see that the
whole analysis goes through as long as our estimate of Opt is no smaller than the actual Opt.
If our algorithm fails to assign a job, the algorithm sets its new estimate of optimal, Opt′,
to be Opt(β + 1)/α. Then we know that Ai ≤ αSiOpt′ since Ai ≤ (β + 1)SiOpt. Lemma
6 still goes through since all machines have load at most αOpt′. More precisely, the proof
of Lemma 6 does not need to appeal to the slow fit phase to prove the invariants since no
machine is currently saturated. Since our estimate of Opt can be at most (β + 1)/α larger
than the true Opt, we derive a competitive ratio of (β + 1)2/α, which is 25/2 for the above
choice of α and β.

Acknowledgements. We thank Amos Fiat for introducing us to this problem in a talk [11]
under the auspices of the Algorithms and Uncertainty program at the Simons Institute
for the Theory of Computing at the University of California at Berkeley, and for several
subsequent helpful discussions.

References
1 Fidaa Abed, José R. Correa, and Chien-Chung Huang. Optimal coordination mechan-

isms for multi-job scheduling games. In Algorithms - ESA 2014 - 22th Annual European
Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, pages 13–24, 2014.

2 S. Anand, Karl Bringmann, Tobias Friedrich, Naveen Garg, and Amit Kumar. Minimizing
maximum (weighted) flow-time on related and unrelated machines. Algorithmica, 77(2):515–
536, 2017.

3 James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line routing of
virtual circuits with applications to load balancing and machine scheduling. Journal of the
ACM, 44(3), May 1997.

4 Yossi Azar, Bala Kalyanasundaram, Serge A. Plotkin, Kirk Pruhs, and Orli Waarts. On-line
load balancing of temporary tasks. Journal of Algorithms, 22(1):93–110, 1997.

5 Nikhil Bansal and Bouke Cloostermans. Minimizing maximum flow-time on related ma-
chines. Theory of Computing, 12(1):1–14, 2016.

6 Julian Birkinshaw. Strategies for managing internal competition. California Management
Review, 44(1):21–38, 2001.

7 George Christodoulou, Elias Koutsoupias, and Akash Nanavati. Coordination mechanisms.
In International Colloquium on Automata, Languages and Programming, pages 345–357,
2004.

8 Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Lukasz Jez. Pricing online decisions:
Beyond auctions. In ACM-SIAM Symposium on Discrete Algorithms, pages 73–91, 2015.

9 Shelley DuBois. Internal competition at work: Worth the trouble? Fortune, February 25
2012.

10 Michal Feldman, Amos Fiat, and Alan Roytman. Makespan minimization via posted prices.
unpublished, 2017.

11 Amos Fiat. Makespan minimization via posted prices, November 3 2016. talk given under
the auspices of the Algorithms and Uncertainty program at the Simons Institute for the
Theory of Computing at the University of California at Berkeley.

ESA 2017



51:10 Minimizing Maximum Flow Time on Related Machines via Dynamic Posted Pricing

12 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competit-
iveness in online scheduling. SIGACT News, 42(2):83–97, 2011.

13 Nicole Immorlica, Erran L. Li, Vahab S. Mirrokni, and Andreas S. Schulz. Coordination
mechanisms for selfish scheduling. In International Workshop on Internet and Network
Economics, pages 55–69, 2005.

14 Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract). In
Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA, pages 129–140, 1999.

15 Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani. Algorithmic Game The-
ory. Cambridge University Press, New York, NY, USA, 2007.

16 Kirk Pruhs, Jirí Sgall, and Eric Torng. Online scheduling. In Handbook of Scheduling -
Algorithms, Models, and Performance Analysis. 2004.


	Introduction
	Motivation and Background
	Our Results
	Other Related Work

	Notation and Definitions
	Algorithm and Analysis
	Equivalence between Monotonicity and Post-pricing Scheme
	Description of the Immediate-Double-Fit Algorithm
	Analysis


