
Title: Min Sum Set Cover and its Generalizations
Name: Sungjin Im1

Affil./Addr. Electrical Engineering and Computer Science, Uni-
versity of California, Merced, CA, USA

Keywords: Approximation; Greedy algorithm; Randomized round-
ing; Latency; Covering problems; Set cover; Submod-
ular

SumOriWork: 2004; Feige, Lovász, Tetali
2009; Azar, Gamzu, Yin
2010; Bansal, Gupta, Krishnaswamy
2011; Azar, Gamzu
2011; Skutella, Williamson
2012; Im, Nagarajan, Zwaan
2013; Im, Sviridenko, Zwaan

Min Sum Set Cover and its
Generalizations
Sungjin Im1

Electrical Engineering and Computer Science, University of California, Merced, CA,
USA

Years aud Authors of Summarized Original Work

2004; Feige, Lovász, Tetali
2009; Azar, Gamzu, Yin
2010; Bansal, Gupta, Krishnaswamy
2011; Azar, Gamzu
2011; Skutella, Williamson
2012; Im, Nagarajan, Zwaan
2013; Im, Sviridenko, Zwaan

Keywords

Approximation; Greedy algorithm; Randomized rounding; Latency; Covering problems;
Set cover; Submodular

Problem Definition

The Min Sum Set Cover Problem (MSSC), which was introduced in [4], is a latency
version of the Set Cover Problem. The input to MSSC consists of a collection of sets
{Si}i∈[m] over a universe of elements [n] := {1, 2, 3, ..., n}. The goal is to schedule
elements, one at a time, to hit all sets as early on average as possible. Formally, we
would like to find a permutation (one-to-one mapping) π : [n]→ [n] of the elements [n]

2

(π(i) is the ith left-most element in the ordering) such that the average (or equivalently
total) cover time of the sets {Si}i∈[m] is minimized. The cover time of a set Si is
defined as the earliest time t such that π(t) ∈ Si. For convenience, we will say that we
schedule/process element π(i) at time i.

Since MSSC problem was introduced in [4], its several generalizations have been
studied. Here we discuss two of them. In the Generalized Min Sum Set Cover problem
(GMSSC) [2], each set Si has a requirement κi. In this generalization, a set Si is covered
at the first time t when κi elements are scheduled from Si, i.e. |{π(1), π(2), ..., π(t)} ∩
Si| ≥ κi. Note that MSSC is a special case of GMSSC when κi = 1 for all i ∈ [n].

Another interesting generalization is the Submodular Ranking (SR) [1]. In SR,
each set Si is replaced with a non-negative and monotone submodualr function fi :
2[n] → [0, 1] with fi([n]) = 1; function f is said to be submodular if f(A ∪ B) +
f(A ∩ B) ≤ f(A) + f(B) for all A,B ⊆ [n], and monotone if f(A) ≤ f(B) for all
A ⊆ B. The cover time of each function fi is now defined as the earliest time t such
that fi({π(1), π(2), ..., π(t)}) = 1. Note that GMSSC is a special case of SR when
fi(A) = min{|Si ∩A|/κi, 1}. Also it is worth noting that SR generalizes the Set Cover.

Key Results

There is a 4-approximation for MSSC, and there is a matching lower bound 4 − ε
unless P = NP [4]. Interestingly, the tight 4-approximation is achieved by a very
simple greedy algorithm that schedules an element at each time that covers the largest
number of uncovered sets. The analysis in [4] uses histograms very cleverly. Inspired by
this analysis, Azar and Gamzu gave a greedy O(log maxi κi) approximation for GMSSC
[2].

Bansal et al. show that the analysis of the greedy algorithm in [2] is essentially
tight, and uses a Linear Programming relaxation and randomized rounding to give the
first O(1)-approximation for GMSSC; the precise approximation factor obtained was
485. The LP used in [3] is a time-indexed LP strengthened with Knapsack Covering
inequalities. The rounding procedure combines threshold rounding and randomized
“boosted-up” independent rounding. The approximation was later improved to 28 by
[7], subsequently to 12.4 by [6]. The key idea for these improvements was to use α-
point rounding to resolve conflicts between elements – α-point rounding is popular in
scheduling literature.

There is a greedy O(log(1/ε))-approximation known for SR where ε is the min-
imum marginal positive increase of any function fi [1]. Note that this immediately
implies an O(log maxi κi)-approximation for GMSSC. The algorithm in [1] is an el-
egant greedy algorithm which schedules an element e at time t with the maximum∑

i(fi(A ∪ {e})− fi(A))/(1− fi(A)) – here A denotes all elements scheduled by time
t−1, and if fi(A) = 1, then fi is excluded. Note that this algorithm becomes the greedy
algorithm in [4] for the special case of MSSC. The analysis is also based on histograms.
Later, Im et al. [5] gives an alternative analysis of this greedy algorithm which is in-
spired by the analysis of other latency problems. We also note that the algorithm that
schedules element e that gives the maximum total marginal increase of {fi} has a very
poor performance.

As we discussed above, there are largely three analysis techniques used in this
line of work: histogram based analysis, latency argument based analysis, and LP round-
ing. We will sketch these techniques closely following [4; 5; 3]. We chose these papers
since they present the techniques in a simpler manner, not necessarily they give the
best approximation guarantees or more general results. We first set up some additional

3

notation which will be used throughout the illustration. Let Rt denote the uncovered
sets at time t, and Nt the sets that are first covered at time t. It is easy to see that∑

t∈[n] |Rt| is the algorithm’s total cover time. We begin with the analysis tools devel-
oped for greedy algorithms. To present the key ideas more transparently, we will focus
on MSSC.

Histogram based analysis. We sketch the analysis of the 4-approximaiton in [4].
In the analysis, we represent the optimal and the algorithm’s solutions using histogram.
First, in the optimal solution’s histogram sets are ordered in increasing order of their
cover times, and set Si has width 1 and height equal to its cover time. In the algorithm’s
solution, as before, sets are ordered in increasing order of their cover times, but set Si

has height equal to it price. That is, we let Si pays price |Rt|/|Nt| where t is Si’s cover
time. In other words, here we are charging the increase in the algorithms objective
at time t to sets Nt uniformly. Note that the areas of both histograms are equal to
the optimal cost and the algorithm’s cost, respectively. Then we can show that after
shrinking the algorithm’s histogram by a factor of 2, both horizontally and vertically,
one can place it completely inside the optimal solution’s histogram. This analysis is
very simple and is based on a clever observation on the greedy solution’s structure.This
type of analysis was also used in [2; 1].

Latency argument based analysis. This analysis does not seem to yield tight
approximation guarantees, but could be more flexible since it does not compare two
histograms directly. We first observe that we only need to focus on geometrically in-
creasing time steps. That is,

∑
j≥0 2j|R2j+1 | ≤ ALG ≤

∑
j≥0 2j|R2j |. Then, it is easy to

see that it suffices to show |R2j | ≤ 1
4
|R2j−1| + O(1)|R∗2j |. Here R∗2j is similarly defined

for the optimal solution as R2j is for the algorithm. What this implies is the follow-
ing: if the algorithm has a large number of uncovered sets compared to the optimal
solution, then it must be the case that the algorithm covers a large fraction of new
sets during time [2j−1, 2j]. Intuitively, (a weak version of) this claim should be true.
The optimal solution could cover sets R2j−1 \ R∗2j till time 2j, and hence at time 2j−1,
the greedy algorithm should be able to cover at least |R2j−1 \ R∗2j |/2j new sets. This
argument can be extended to every time step during [2j−1, 2j], and be modified to prove
|R2j | ≤ 1

4
|R2j−1| + O(1)|R∗2j/100|, which is sufficient for our purpose. This analysis is

easily generalized to GMSSC, SR, and more general metric settings [5].

We now discuss the linear programming based approach. Bansal et el. discuss
why it seems hard to use greedy algorithms to get an O(1)-approximation for GMSSC
[3].

LP and Randomized rounding. The LP is time-indexed. There is a variable xet
which denotes how much element e is processed at time t. Let yet :=

∑
t′≤t xet′ denote

how much element e is processed by time t. Also let zit denote how much set Si is
covered by time t. The objective is

∑
t

∑
i(1− yit); if set Si is not covered at time t, it

has to pay cost 1 at the time. If we use the most natural constraint
∑

e∈Si
yet ≥ κizit,

the LP has a large integrality gap [3]. Hence, [3] strenthens the LP with Knapsack
covering inequalities:

∑
e∈Si\A yet ≥ (κi − |A|)zit for all A ⊆ Si , i, t. Although these

are exponentially many, there is an easy separation oracle for these constraints, hence
we can solve the LP in polynomial time. Note that the LP pays cost at least t/2 for
element i if yet ≥ 1/2. Let he be the latest time such that yet ≥ 1/2. The first step in the
analysis in [3] is to show that each element e is scheduled with a constant probability,
say 7/8, before the linear programming does by half at time he. By repeating this, more
precisely by trying to schedule the element again within 2he, 4he, 8he,· · · , one can show
that the expected cover time of e is O(1)he. The constants need to be carefully chosen

4

and the schedules from different phases in the iteration need to be mixed cleverly, but
this is the high-level idea.

Applications

The MSSC problem and its closely related problems have various applications in adap-
tive query processing, distributed resource allocation problems. Also GMSSC has ap-
plications in web page ranking and broadcast scheduling. For details, see [4; 1]. Min
sum set cover problems are at least loosely connected to all problems where the goal
is to satisfy multiple demands with the overal minimum latency.

Open Problems

One outstanding open problem is to settle down the approximability of GMSSC.
As mentioned before, GMSSC captures MSSC (all κi = 1), for which there is a 4-
approximation known along with a matching lower bound [4]. The other extreme case
is when κi = |Si| for all i. This problem is essentially equivalent to a classic prece-
dence constrained scheduling problem 1|prec|

∑
j wjCj for which there are several 2-

approximations known. See [3] for pointers. However, the best approximation factor
known for GMSSC is 12.4. Im et al. conjecture that GMSSC admit a 4-approximation
[6].

Recommended Reading

1. Azar Y, Gamzu I (2011) Ranking with submodular valuations. In: SODA, pp 1070–1079
2. Azar Y, Gamzu I, Yin X (2009) Multiple intents re-ranking. In: STOC, pp 669–678
3. Bansal N, Gupta A, Krishnaswamy R (2010) A constant factor approximation algorithm for gen-

eralized min-sum set cover. In: SODA, pp 1539–1545
4. Feige U, Lovász L, Tetali P (2004) Approximating min sum set cover. Algorithmica 40(4):219–234
5. Im S, Nagarajan V, van der Zwaan R (2012) Minimum latency submodular cover. In: ICALP (1),

pp 485–497
6. Im S, Sviridenko M, Zwaan R (2013) Preemptive and non-preemptive generalized min sum set

cover. Mathematical Programming pp 1–25
7. Skutella M, Williamson DP (2011) A note on the generalized min-sum set cover problem. Oper

Res Lett 39(6):433–436

	Min Sum Set Cover and its Generalizations

