
00

Competitively Scheduling Tasks with Intermediate Parallelizability

Sungjin Im, University of California, Merced
Benjamin Moseley, Washington University in St. Louis
Kirk Pruhs, University of Pittsburgh
Eric Torng, Michigan State University

We introduce a scheduling algorithm Intermediate-SRPT, and show that it is O(logP)-competitive with
respect to average flow time when scheduling jobs whose parallelizability is intermediate between being
fully parallelizable and sequential. Here the parameter P denotes the ratio between the maximum job size
to the minimum. We also show a general matching lower bound on the competitive ratio. Our analysis builds
on an interesting combination of potential function and local competitiveness arguments.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problem]: Sequencing and
scheduling

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Scheduling, Parallelization, Speedup curves

ACM Reference Format:
Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Eric Torng, 2014. Competitively Scheduling Tasks with
Intermediate Parallelizability. ACM Trans. Parallel Computing 0, 0, Article 00 (2000), 18 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Due to the effects of Moore’s law, around a decade ago chip makers such as Intel hit a
thermal wall, where the cost of cooling became prohibitive if all switches were devoted
to a single high speed processor. In response the chip makers abruptly switched to
predominantly producing multiprocessor chips [Markoff 2004]. The advantage of mul-
tiprocessor chips is that k processors with speed s/k would use only about 1/k2 fraction
of the dynamic power of a single speed s processor (assuming the standard cube-root
rule relationship between dynamic power and speed), but potentially would have the
same processing capability; of course, fully utilizing the processing capability of a mul-
tiprocessor is a grand challenge. Our focus here is on one of these challenges, namely
the scheduling of tasks.

A preliminary version of this paper appeared in the 26th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2014).
Part of this work was done when Im was at Duke University, and Moseley was at the Toyota Technological
Institute at Chicago. Im is supported in part by NSF grants CCF-1008065 and CCF-1409130. Pruhs is sup-
ported in part by NSF grants CCF-1115575, CNS-1253218, and an IBM Faculty Award.
Author’s addresses: S. Im, Electrical Engineering and Computer Science, University of California, Merced,
CA 95344; B. Moseley, Department of Computer Science and Engineering, Washington University in St.
Louis, St. Louis, MO 63130; K. Pruhs, Department of Computer Science, University of Pittsburgh, Pitts-
burgh, PA 15260; E. Torng, Department of Computer Science and Engineering, Michigan State University,
East Lansing, MI 48824.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2000 ACM 1539-9087/2000/-ART00 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:2 S. Im et al.

One (not universally accepted) vision of the future is articulated by Anant Agarwal,
CEO of Tilera [Merritt 2008]:

“I would like to call it a corollary of Moore’s Law that the number of cores
will double every 18 months.”

Tilera currently produces products with order of 102 processors [Til], and products with
order of 103 processors are in research and development [ANG]. In such settings, there
will likely often be more processors than tasks, and thus a scheduler would have to
partition the processors among the tasks. To achieve optimal performance, the sched-
uler must consider the parellizability of tasks when partitioning and scheduling. For
example, whereas some highly parallel tasks might be sped up almost linearly when
assigned additional processors and thus benefit greatly from being given more pro-
cessors, other highly sequential tasks might not be sped up at all when assigned ad-
ditional processors. In between these two extremes lie perhaps the majority of tasks
which have intermediate levels of parallelizability.

The initial motivating questions for the research that we report on here are:

What is the best algorithm to schedule jobs with intermediate paralleliz-
ability, and what worst-case relative error guarantee does this algorithm
give?

In this work, we focus on the objective of total (average) flow time. Each job j has a
release/arrival time rj when it is sent to the system. Under some fixed schedule S the
job is completed at time CSj and the flow time of the job is FSj = CSj − rj , which is the
total time the job waits from when it arrives until it is completed. For the average flow
time objective, the goal is to minimize

∑
j F

S
j , the total flow time of the jobs. Average

flow time is perhaps the most popular objective considered in scheduling theory, but
several other objectives are also of importance such as minimizing the maximum flow
time or the variance in the flow times.

Under standard assumptions (which we will elaborate on momentarily) it is clear
how to optimally schedule n fully parallelizable tasks on m processors for the objec-
tive of average flow time: all m processors are allocated to the task with the least
amount of unprocessed work. By fully parallel, this implies that the jobs are processed
at a rate of k when assigned k processors. Let us call this algorithm Parallel-SRPT,
which is the parallel generalization of the well known Shortest-Remaining-Processing-
Time-First (SRPT) algorithm. It is folklore that this algorithm is optimal for the ob-
jective of average flow time [Pruhs et al. 2004]. Further it is known how to schedule
n fully sequential tasks on m processors in an optimally competitive way: the up to m
tasks with the least unprocessed work are each allocated one processor. By sequential,
the tasks are processed at a rate of 1 when given one or more processors. Let us call
this algorithm Sequential-SRPT. For sequential jobs with sizes are between 1 and P ,
Sequential-SRPT is O(logP)-competitive, with respect to the objective of average flow
time [Leonardi and Raz 2007]. Further, this competitive ratio is best possible for online
algorithms [Leonardi and Raz 2007].

It was previously not known1 how to schedule jobs of intermediate parallelizability
in an optimally competitive way, and it was not clear a priori what the best scheduling
policy would be. Presumably the “right” algorithm should agree with Parallel-SRPT
when jobs are fully parallelizable, and agree with Sequential-SRPT when the jobs are
sequential. After a moment’s reflection, the most obvious property that both Parallel-

1Edmond’s previous work [Edmonds 2000] does not give answers to our main question since it makes unre-
alistic assumptions on the jobs parallelizability. This will be discussed in Section 1.2 in detail.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:3

SRPT and Sequential-SRPT share is that they schedule jobs in such a way as to max-
imize the rate of reduction of the fractional number of unfinished jobs, under the as-
sumption that the original size of each job was its current size. So perhaps the most
natural candidate for the best algorithm to schedule tasks with intermediate paral-
lelizability would again be to assume that the remaining unfinished work of each job
was its original work, and then greedily maximize the rate that the fractional number
of unfinished jobs is being reduced by. Quite surprisingly (at least to us) we show in
Section 3 that the competitive ratio of this natural hybrid algorithm is large.

Our main result is a less obvious algorithm (though still simple and natural), which
we call Intermediate-SRPT, that we show is optimally competitive for all intermediate
levels of parallelizability. We now describe the Intermediate-SRPT algorithm, intro-
duce our natural model for intermediate parallelizability, state our upper bound on
the competitive ratio of the Intermediate-SRPT algorithm, and finally state our gen-
eral matching lower bound on the competitive ratio of any algorithm.
Intermediate-SRPT Algorithm Description: If there are at least m tasks, the m
tasks with the least unprocessed work are each allocated one processor (this is like
Sequential-SRPT). If there are strictly fewer than m tasks, the processors are evenly
partitioned among the tasks (this is essentially the Round Robin or Processor Sharing
Algorithm).
Modeling Intermediate Parallelizability: We assume that for each job j there ex-
ists an αj ∈ (0, 1) such that the speedup curve for job j is Γj(x) = x for x ≤ 1, and
Γj(x) = xαj for x ≥ 1. The speedup curve gives the rate that work is processed if the
job is allocated x processors. For example, if αj = 1/2 then when job j is given k proces-
sors, it is processed at a rate of k1/2 when k ≥ 1 and otherwise at a rate of k. Note that
αj = 0 corresponds to a sequential job and αj = 1 corresponds to a fully parallelizable
job. We believe speed-up curves of the form xαj give a natural way of interpolating in-
termediate degrees of parallelizability without being grounded in any specific machine
model.

THEOREM 1.1. For jobs of intermediate parallelizability, the algorithm
Intermediate-SRPT has competitive ratio O(1) · 41/(1−α) logP with respect to aver-
age flow time, where α = maxj αj . In particular, this holds for the special case that each
αj = α.

THEOREM 1.2. For all α ∈ [0, 1), the competitive ratio of every algorithm with re-
spect to average flow time, restricted to instances with tasks with speedup curves of the
form Γj(x) = x for x ≤ 1, and Γj(x) = xα for x ≥ 1, is Ω(logP).

Taken together, these results show (again somewhat surprisingly to us) that schedul-
ing jobs that are even slightly less than fully parallelizable is more like scheduling
sequential jobs than like scheduling fully parallelizable jobs. The lower bound for the
natural hybrid algorithm shows that its “error” is that it will sometimes allocate too
many processors to one job. This is the right strategy if the jobs are fully paralleliable,
but can lead to a large relative error if the jobs are even a bit less than fully paralleliz-
able. The algorithm Intermediate-SRPT corrects this error by sharing the processors
equally when the system is underloaded, and functioning as Sequential-SRPT when
the system is overloaded. Theorem 1.1 and Theorem 1.2 together establish that the
optimal competitive ratio jumps from 1 to Θ(logP) the instant α < 1.

Theorem 1.1 is proved in Section 2. Theorem 1.1 can be extended to the case where
each job has varying parallelizability in different phases. This extension is discussed
in Section 2.6. Theorem 1.2 is proved in Section 4. But first, we review standard mod-
eling assumptions and notation, and we review the most closely related papers in the
literature.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:4 S. Im et al.

1.1. Standard Modeling Assumptions and Notation
There are m identical unit-speed processors. Each task/job j has three characteristics:
a release time rj when it arrives in the system, a size or work amount pj ∈ [1, P]
specifying the amount of processing that has to be performed on job j to finish it, and a
speed-up curve Γj(x) specifying the rate at which work on job j is processed if assigned
x processors. A job is fully parallelizable if Γj(x) = x, and is sequential if Γj(x) = x
for x ≤ 1, and Γj(x) = 1 for x ≥ 1. A job j has intermediate parallelizability if there
exists an αj ∈ (0, 1) such that the speed-up curve for j is Γj(x) = x for x ≤ 1, and
Γj(x) = xαj for x ≥ 1. If pj(t) is the amount of unprocessed work on job j at time t, then
the fractional number of jobs at time t is

∑
j
pj(t)
pj

.
The flow/waiting/response time for job j in a schedule S is FSj = CSj − rj which is

the length of time between when the job is released and when the job is completed in
schedule S, and the average flow/waiting/response time of the schedule is

∑
j F

S
j /n.

Within the context of this paper, the competitive (approximation/worst-case) ratio of
an online scheduling algorithm A is the maximum over all inputs I with job sizes in
the range [1, P], of the ratio between total flow time for the schedule produced by A
on I and the optimal flow time for instance I (this is essentially just a measure of
worst-case relative error).

1.2. Related Literature
Speedup curves were introduced into the literature in [Edmonds et al. 2003], who
showed that equally partitioning the processors among the jobs is 2-competitive for
total flow time if jobs have arbitrary speedup curves and all jobs are released at the
same time.

The other standard way to measure the quality of an online scheduling algorithm,
beside competitive ratio, is resource/speed augmentation analysis [Kalyanasundaram
and Pruhs 2000; Phillips et al. 2002]. An online algorithm A is s-speed c-competitive
if for all inputs I, the cost for A on I with s-speed processors is at most c times the
optimal cost for I on speed 1 processors. An algorithm is scalable if it is (1 + ε)-speed
O(1)-competitive for all fixed constant ε > 0.

[Edmonds 2000] showed that partitioning the processors equally amongst the jobs
is (2 + ε)-speed O(1)-competitive with respect to average flow time for jobs with arbi-
trary speedup curves. [Edmonds 2000] also showed that the same algorithm is O(1)-
competitive when all speed-up curves are strictly-sublinear, i.e. for all x2 ≥ x1 ≥ 0,
Γj(x2)/Γj(x1) ≤ (x2/x1)α for some 0 < α < 1. Unfortunately, this assumption does not
seem to be realistic. To see this, consider n jobs with the same speed-up curve Γj = xα

that share a single processor uniformly. Each job is processed at a rate of (1/n)α which
means the n jobs are processed at a rate of n1−α in total; this implies that the single
processor can achieve greater throughput as the number of jobs grows. This anomaly
disappears if we assume that jobs are fully parallelizable up to one machine, which in
turn results in the algorithmic question we are seeking to answer in this paper.

Later, [Edmonds and Pruhs 2012] showed that the algorithm that partitions the
processors equally amongst the latest arriving jobs is scalable.

[Chan et al. 2011] gives essentially optimally competitive algorithms for schedul-
ing jobs with arbitrary speedup curves in a setting of identical speed scalable proces-
sors where the objective is total flow time plus energy (in this setting one essentially
gets speed augmentation for free). As [Chan et al. 2011] focused on non-clairvoyant
scheduling algorithms, the competitive ratios were super-constant. [Fox et al. 2013]
shows a scalable algorithm is achievable when the scheduler has access to a job’s par-
allelizability. [Robert and Schabanel 2007; Pruhs et al. 2010] give essentially optimally

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:5

competitive algorithms for scheduling jobs with arbitrary speedup curves for the ob-
jective of maximum flow time. [Robert and Schabanel 2008] considers scheduling jobs
with arbitrary speedup curves and with precedence constraints.

[Leonardi and Raz 2007] also shows that the competitive ratio with respect to av-
erage flow time of Sequential-SRPT is O(log n

m), and give a general matching lower
bound for all online algorithms.

There is a large literature on online scheduling. One good survey for providing back-
ground on related results is [Pruhs et al. 2004].

2. ANALYSIS OF INTERMEDIATE-SRPT
Our goal in this section is to prove Theorem 1.1, which upper bounds the competitive
ratio for the Intermediate-SRPT algorithm.

2.1. Analysis Overview
Our analysis will be based on a somewhat novel combination of potential function and
local competitiveness arguments. The potential function we use is a variant of the
standard potential function. See the survey [Im et al. 2011] for more details. Let A(t)
and OPT (t) be the unfinished jobs at time t in the algorithm’s and optimal solution’s
schedules, respectively. In Subsection 2.3, we will define a potential function Φ(t) that
satisfies the following standard properties:

— Boundary Condition: Φ(0) = Φ(∞) = 0.
— Discontinuous Changes Condition: the potential function can only decrease when a

job arrives, or is completed by our algorithm or the optimal solution.
— Continuous Changes Condition: at any time t when no job arrives or completes,
|A(t)|+ d

dtΦ(t) ≤ c|OPT (t)|.
By integrating over time, one can see that the existence of such a potential function

suffices to show that the algorithm is c-competitive for the total flow time objective. We
refer the reader to [Im et al. 2011] for details.

The novelty in our analysis lies in proving the Continuous Changes Condition. Most
analyses based on potential functions rely on resource (speed) augmentation to prove
this condition. We will partition time into overloaded and underloaded times. Let O
denote the set of overloaded times t when A(t) ≥ m, and U denote the set of under-
loaded times when A(t) < m. Theorem 1.1 then follows easily from the following three
lemmas. Intuitively Lemma 2.1 shows that during the overloaded times, the unfin-
ished jobs for the algorithm can be charged to the unfinished jobs for optimal at that
time (a local competitiveness argument). Intuitively Lemma 2.2 shows that during the
overloaded times, the increase in the potential function can be charged to the unfin-
ished jobs for optimal at that time. Together Lemma 2.1 and Lemma 2.2 show that the
Continuous Changes Condition holds at overloaded times. Lemma 2.3 then shows that
the Continuous Change Condition holds at underloaded times.

LEMMA 2.1. At all times t ∈ O,

|A(t)| ≤ m(3 + logP) + 2|OPT (t)|
LEMMA 2.2. At all times t ∈ O,

d

dt
Φ(t) ≤ O(1)41/(1−α) logP |OPT (t)|

LEMMA 2.3. At all times t ∈ U ,

|A(t)|+ d

dt
Φ(t) ≤ O(1)21/(1−α) |OPT (t)|

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:6 S. Im et al.

In Subsection 2.2, we prove Lemma 2.1. In Subsection 2.3, we define the potential
function Φ and prove the Boundary Condition, and the Discontinuous Changes Condi-
tion. In subsection 2.4 we prove Lemma 2.2. In subsection 2.5 we prove Lemma 2.3.

2.2. Local Competitiveness During Overloaded Times
This section is devoted to proving Lemma 2.1 and is an adaptation of a similar re-
sult from [Leonardi and Raz 2007]. We will need to define additional notation. At any
time, we classify jobs based on remaining length. A job whose remaining length is in
[2k, 2k+1) is in class k for integer 0 ≤ k ≤ kmax = blogP c. Note that the number of initial
job classes is dlogP e. We define one special class −1 to denote jobs whose remaining
length is strictly less than 1.

For scheduling algorithm S, let δS(t) denote the number of jobs that are alive at
time t in schedule S and V S(t) denote the total volume of this schedule, where the
volume is defined to be the sum of remaining lengths of jobs that are still alive. Note
that δA(t) = |A(t)| and δOPT (t) = |OPT (t)|. We define the volume difference ∆V (t) =
V A(t) − V OPT (t). For function f ∈ {V,∆V, δ}, we define f≥h,≤k(t) to be the function f
restricted to jobs in class at least h and at most k. We similarly define f=k(t). In Lemma
2.4 we bound the volume by which our algorithm can be behind optimal, and then use
this Lemma in the proof of Lemma 2.5, which bounds the number of jobs by which our
algorithm can be behind optimal. It is easy to see that Lemma 2.1 immediately follows
from Lemma 2.5 and the observation that the number of jobs in class −1 is at most m.

LEMMA 2.4. For any time t ∈ O,

∆V≤k(t) ≤ m2k+1

PROOF. First, for time t, we define time t′ to be the earliest time such that [t′, t) ∈ O.
Next, we define tk to be the latest time in [t′, t) prior to time t in which a job of class
strictly higher than k was processed by some machine. If there is no such time tk, then
we set tk = t′.

We first observe that ∆V≤k(tk) ≤ m2k+1. By the definition of tk, it follows that for
any time tk−ε for any ε > 0, δA≤k(tk−ε) ≤ m−1. It may be the case that some job enters
class k at time tk by the algorithm’s processing, but this only means that δA≤k(tk) ≤ m

when restricted to jobs that arrived strictly prior to time tk. The volume of such jobs is
restricted to at most m2k+1 because each such job has a maximum remaining length of
2k+1. Finally, jobs that arrive at time tk do not affect ∆V≤k(tk) since such jobs increase
both V OPT≤k (t) and V A≤k(t).

We next observe that ∆V≤k(t) ≤ ∆V≤k(tk). This follows because by the definition of
O, each machine is processing one job during [tk, t] and by the definition of tk, each job
processed cannot be in a class larger than k. Thus, our algorithm completes at least as
much work on jobs in classes at most k during this time period as OPT and the result
follows.

LEMMA 2.5. For any time t ∈ O,

δA≥0,≤kmax(t) ≤ m(kmax + 2) + 2δOPT≤kmax(t)

PROOF. We formulate δA≥0,≤kmax(t) as follows:

kmax∑
k=0

δA=k(t) ≤
kmax∑
k=0

V A=k(t)

2k

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:7

=

kmax∑
k=0

∆V=k(t) + V OPT=k (t)

2k

=

kmax∑
k=0

∆V≤k(t)−∆V≤k−1(t)

2k
+
V OPT=k (t)

2k

≤ ∆V≤kmax(t)

2kmax
+

kmax−1∑
k=0

∆V≤k(t)

2k+1

−∆V≤−1(t)

20
+ 2δOPT≥0,≤kmax(t)

≤ 2m+

kmax−1∑
k=0

m+ δOPT≤−1 (t) + 2δOPT≥0,≤kmax(t)

≤ m(kmax + 2) + 2δOPT≤kmax(t).

The first inequality follows since 2k is the minimum remaining length of any job in
class k. The fourth inequality follows by assuming the jobs in δOPTk have remaining
length 2k+1. The fifth inequality follows from the previous lemma, observing that we
can eliminate the negative term and add a positive term δOPT≤−1 (t).

2.3. Potential Function Analysis
In this section, we define the potential function Φ, and then we prove the Boundary
Condition and the Discontinuous Changes Condition.
Definition of the Potential Function: Let pAi (t) and pOPTi (t) denote the remaining
processing time of job i in the algorithm’s and optimal solution’s schedules at time t,
respectively. Let zi(t) = max{pAi (t) − pOPTi (t), 0}. Recall that A(t) and OPT (t) denote
the unfinished jobs in the algorithm’s and optimal solution’s schedules, respectively.
Let rank(i, t) = min{m,

∑
j∈A(t),rj≤ri 1} where without loss of generality we assume

that each job arrives at a unique time. Note that rank(i, t) ≤ m for all i and t. We
define the potential function as follows:

Φ(t) = 16
∑
i∈A(t)

zi(t)

Γi(m/rank(i, t))

As mentioned earlier, our potential function is a variant of the standard potential
function for similar online problems. We note that the main difference here is that
each job’s rank is capped at the number of machines. This is because the algorithm
behaves like Round Robin only until there are less jobs than machines. The potential,
without this capping, estimates the remaining total flow time by Round Robin too large
and the analysis breaks down.

Throughout the analysis, the following simple lemma will be useful.

PROPOSITION 2.6. For any B and C where B ≥ C and any job j, it is the case that
Γj(B)
Γj(C) ≤

B
C .

PROOF. The proposition follows immediately by the assumption that Γj is a concave
function and Γj(0) = 0.

Boundary Condition: It is easy to see that Φ(0) = Φ(∞) = 0 from the definition of
the potential function Φ.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:8 S. Im et al.

Discontinuous Changes Condition: First consider when a job arrives at time t.
In this case there is no change in the potential function. This is because the rank
remains the same for all jobs that arrive before time t. Further, for the job i that
arrives at this time, zi(t) = 0. Thus, there is no change in the potential. Next observe
that optimal completing a job has no effect on the potential. Now consider the case
where the algorithm completes some job i at time t. In this case, the potential function
can only decrease. To see that this is the case, consider any job j ∈ A(t). If rj < ri, then
there is no change in job j’s term in the potential function. However, if rj > ri then
rank(j, t) may decrease by at most one. Since Γj is non-decreasing, Γj(m/rank(j, t))
can only increase for a job j where rj ≥ ri. Since this is in the denominator of the term
in the potential function corresponding to job j and zj(t) is non-negative, the potential
function can only decrease. Finally, notice that the optimal solution completing a job
has no effect on the potential.

2.4. Potential Function Change During Overloaded Times
In this subsection we prove Lemma 2.2. If |A(t)| ≥ 10m logP , then Lemma 2.2 im-
mediately follows from Lemmas 2.7 and 2.8. If 40 · 41/(1−α) logP |OPT (t)| ≥ |A(t)|,
then Lemma 2.2 immediately follows from Lemma 2.8. If m ≤ |A(t)| ≤ 10m logP and
40 ·41/(1−α) logP |OPT (t)| ≤ |A(t)| (which in turn implies that |OPT (t)| ≤ 1

4 ·
1

41/(1−α)m),
then Lemma 2.2 immediately follows from Lemmas 2.9 and 2.10.

In the following, we bound the continuous changes in the potential function. The
continuous changes occur due to the algorithm and the optimal solution processing
jobs. Thus the optimal solution can only change the potential function at time t by
changing the terms corresponding to jobs in OPT (t). Likewise, for the algorithm and
jobs in A(t).

First we consider the case where the algorithm has a large number of jobs compared
to m.

LEMMA 2.7. If |A(t)| ≥ 10m logP , then |OPT (t)| ≥ |A(t)|/2− 2m logP ≥ |A(t)|/4.

PROOF. The lemma immediately follows from Lemma 2.1 by noticing that t ∈ O.

LEMMA 2.8. At all times t, the rate of increase in the potential due to optimal pro-
cessing the jobs is at most 16(|A(t)|+ |OPT (t)|).

PROOF. Let qOPTi (t) be the number of machines assigned to job i by OPT at time t.
The change in the potential due to optimal processing the jobs can then be bounded as
follows:

16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/|A(t)|)
[Since Γi is non-decreasing]

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t)

qOPTi (t)

m/|A(t)|
[By Proposition 2.6]

= 16|OPT (t)|+ 16|A(t)|
∑

i∈OPT (t)

qOPTi (t)

m

≤ 16(|A(t)|+ |OPT (t)|)

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:9

The second inequality holds since for each job i with qOPTi (t)
m/|A(t)| ≤ 1, it is the case that

Γi(q
OPT
i (t))

Γi(m/|A(t)|) ≤ 1.

LEMMA 2.9. At any time t where |OPT (t)| ≤ m, the rate of increase in the potential
due to optimal processing the jobs is at most 16mα|OPT (t)|1−α.

PROOF. As before, let qOPTi (t) be the number of machines assigned to job i by OPT
at time t. Let Γ be a function such that Γ(x) = x for 0 ≤ x ≤ 1 and Γ(x) = xα for x ≥ 1.
Recall that rank(i, t) ≤ m for all i and t from the definition of rank. The change in the
potential due to optimal processing the jobs can then be bounded as follows:

16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/m)
[Since Γi is non-decreasing]

= 16
∑

i∈OPT (t)

Γi(q
OPT
i (t)) [Since Γi(1) = 1]

≤ 16
∑

i∈OPT (t)

Γ(qOPTi (t))

≤ 16|OPT (t)|(m/|OPT (t)|)α [Due to the concavity of Γ]
= 16mα|OPT (t)|1−α

LEMMA 2.10. At any time t where m ≤ |A(t)| ≤ 10m logP and |OPT (t)| ≤ 1
4 ·

1
41/(1−α)m, the rate of increase in the potential due to the algorithm processing jobs is at
most −4m.

PROOF. When |A(t)| ≥ m the algorithm assigns the shortestm jobs each on a unique
machine. Let A′(t) denote these m jobs. Notice that zi(t) decreases at a rate of one for
each job in A′(t) \ OPT (t). Thus, we have that the change in the potential due to the
algorithm is at most:

−16
∑

i∈A′(t)\OPT (t)

1

Γi(m/rank(i, t))

≤ −16
∑

i∈A′(t)\OPT (t)

rank(i, t)

m

≤ −16

m

|A′(t)\OPT (t)|∑
i=1

i

≤ −16

m

(3m/4)2

2
≤ −4m

The first inequality easily follows by observing that Γi(x) ≤ x for all x ≥ 0. The
second to last inequality holds since |OPT (t)| ≤ (1/4)m and |A′(t)| = m.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:10 S. Im et al.

2.5. Underloaded Times
Our goal in this subsection is to prove Lemma 2.3. Let t be a time such that |A(t)| ≤ m.
If |OPT (t)| ≥ 1

16 |A(t)|, then Lemma 2.3 immediately follows from Lemma 2.8; the
potential can only decrease when the algorithm processes jobs. Hence we assume that
|OPT (t)| ≤ 1

16 |A(t)|.
First we bound the increase in the potential function due to the processing of opti-

mal. Again, let qOPTi (t) be the number of processors assigned to job i at time t by OPT .
The increase in the potential is at most the following.

16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/|A(t)|)
[Since Γi is non-decreasing]

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t),qOPT
i

(t)≥m/|A(t)|

(qOPTi (t))αi

(m/|A(t)|)αi

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t)

(qOPTi (t))α

(m/|A(t)|)α

The second to last inequality holds for the following reason. Consider any job i such
that qOPTi (t)

(m/|A(t)|) ≤ 1. Then we have (qOPTi (t))αi

(m/|A(t)|)αi ≤ 1. Hence the total contribution of such
jobs is at most 16|OPT (t)|. Since our goal is to bound the total change of the poten-
tial plus |A(t)| by |OPT (t)|, we will ignore 16|OPT (t)|, and proceed with our string of
inequalities.

16
∑

i∈OPT (t)

(qOPTi (t))α

(m/|A(t)|)α
≤ 16

∑
i∈OPT (t)

(m/|OPT (t)|)α

(m/|A(t)|)α

= 16|OPT (t)| (m/|OPT (t)|)α

(m/|A(t)|)α

= 16|OPT (t)|1−α|A(t)|α

≤ 16
(1

2α+2
|A(t)|+ 2

α+2
1−αα|OPT (t)|

)
The first inequality is immediate from the fact that 0 ≤ α < 1. The last
inequality can be easily shown by considering two cases whether |A(t)| ≥
2
α+2
1−α |OPT (t)| or not. If |A(t)| ≥ 2

α+2
1−α |OPT (t)|, we have that 16|OPT (t)|1−α|A(t)|α ≤

16|(1

2
α+2
1−α
|A(t)|)1−α|A(t)|α ≤ 16 1

2α+2 |A(t)|. Alternatively, if |A(t)| < 2
α+2
1−α |OPT (t)|, we

have that 16|OPT (t)|1−α|A(t)|α ≤ 16(2
α+2
1−α |OPT (t)|)1−α|A(t)|α ≤ 16 · 2

α+2
1−αα|OPT (t)|.

Now we consider the decrease in the potential function due to the algorithm pro-
cessing jobs. When |A(t)| < m then the algorithm gives each job equal share of every
processor. Thus, for all i ∈ A(t) \ OPT (t) it is the case that zi(t) decreases at a rate of
Γi(m/|A(t)|). Thus, we have that the decrease due to the algorithm is as follows.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:11

−16
∑

i∈A(t)\OPT (t)

Γi(m/|A(t)|)
Γi(m/rank(i, t))

≤ −16
∑

i∈A(t)\OPT (t),rank(i,t)≥|A(t)|/2

Γi(m/|A(t)|)
Γi(2m/|A(t)|)

≤ −16
∑

i∈A(t)\OPT (t),rank(i,t)≥|A(t)|/2

(m/|A(t)|)α

(2m/|A(t)|)α

≤ −16(|A(t) \OPT (t)| − |A(t)|/2)(1/2)α

≤ −16(1− 1

2
− 1

16
)|A(t)|(1/2)α

≤ −6|A(t)|(1/2)α

So far we have shown that
d

dt
Φ(t) ≤ 16

(1

2α+2
|A(t)|+ 2

α+2
1−αα|OPT (t)|+ |OPT (t)|

)
− 6|A(t)|(1/2)α

≤ −|A(t)|+O(1)21/(1−α)|OPT (t)|
This completes the proof.

2.6. Extension to Varying Parallelizability of Each Job
In this section, we discuss how to extend our result to the multiple phases setting,
where each job has varying parallelizability in different phases. Formally, each job j
has a sequence of πj phases. In phase π ∈ [πj], job j has a size or work amount pj,π and
speed-up curve Γj,π. As before, Γj,π(x) = x when 0 ≤ x ≤ 1, and xαj,π when x ≥ 1 for
some αj,π ∈ (0, 1). Note that Γj,π may change between phases. Job j starts with phase
1, and moves to next phase π + 1 when its work amount pj,π in the previous phase π
completes. Job j completes when the work amount in its last phase completes. Job j’s
size pj is naturally defined as

∑
π∈[πj]

pj,π. Recall that 1 ≤ pj ≤ P .
Intermediate SRPT works as before essentially ignoring the existence of multiple

phases. That is, when the system is overloaded, it schedules the m jobs with the small-
est remaining sizes pj . When the system is underloaded, it shares the m processors
equally among the remaining jobs.

We will show in this extension that we can derive the same key lemmas 2.1, 2.2, 2.3,
which will imply Theorem 1.1. The basic structure of the proof is identical. We omit
some proofs which are either identical or require only trivial extensions. For example,
we omit the proof of Lemma 2.1 because it is unchanged since it only uses the remain-
ing volume of jobs, and does not rely on specific parallelizability functions. We focus
on proving Lemmas 2.2 and 2.3. Towards this end, we need to extend our potential
function.

Let pAi,π(t) and pOPTi,π (t) denote the remaining processing time of job i’s phase π in
the algorithm’s and optimal solution’s schedules at time t, respectively. Let zi,π(t) =
max{pAi,π(t) − pOPTi,π (t), 0}. Recall that A(t) and OPT (t) denote the unfinished jobs in
the algorithm’s and optimal solution’s schedules, respectively. As before, rank(i, t) :=
min{m,

∑
j∈A(t),rj≤ri 1}. The new potential function is as follows:

Φ(t) = 16
∑
i∈A(t)

∑
π∈[πi]

zi,π(t)

Γi,π(m/rank(i, t))

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:12 S. Im et al.

The following proposition is essentially a restatement of Proposition 2.6 in the mul-
tiple phases setting.

PROPOSITION 2.11. For any B and C where B ≥ C and any job j and any phase
π ∈ [πj], it is the case that Γj,π(B)

Γj,π(C) ≤
B
C .

It is straightforward to show that the boundary and discontinuous changes condi-
tions are satisfied via a simple extension of the previous arguments. Hence we will
focus on the continuous changes condition. We first consider the continuous changes
at overloaded times. The overall flow of the proof is the same, hence it will be sufficent
to re-prove each individual lemma. The proof of Lemma 2.7 needs no changes. We now
prove Lemmas 2.8, 2.9, and 2.10 in the multiple phases setting. In the remainder of
the analysis, let qOPTi (t) be the number of machines assigned to job i by OPT at time
t. Let π∗(i, t) [π(i, t), resp.] denote the phase that job i is in at time t in the optimal
schedule [in the algorithm’s schedule, resp.].

PROOF OF LEMMA 2.8. The change in the potential due to optimal processing the
jobs can then be bounded as follows:

16
∑

i∈OPT (t)

Γi,π∗(i,t)(q
OPT
i (t))

Γi,π∗(i,t)(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi,π∗(i,t)(q
OPT
i (t))

Γi,π∗(i,t)(m/|A(t)|)
[Since Γi,π∗(i,t) is non-decreasing]

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t)

qOPTi (t)

m/|A(t)|
[By Proposition 2.11]

= 16|OPT (t)|+ 16|A(t)|
∑

i∈OPT (t)

qOPTi (t)

m

≤ 16(|A(t)|+ |OPT (t)|)

In the first line, we used the fact that when the optimal scheduler works on job i, it can
only decrease pOPTi,π∗(i,t)(t). That is, pOPTi,π (t) for π 6= π∗(i, t) remains the same for every job

i at time t. As before, the second inequality holds since for each job i with qOPTi (t)
m/|A(t)| ≤ 1,

it is the case that Γi,π∗(i,t)(q
OPT
i (t))

Γi,π∗(i,t)(m/|A(t)|) ≤ 1.

PROOF OF LEMMA 2.9. Let Γ be a function such that Γ(x) = x for 0 ≤ x ≤ 1 and
Γ(x) = xα for x ≥ 1. Recall that rank(i, t) ≤ m for all i and t from the definition of rank.
The change in the potential due to optimal processing the jobs can then be bounded as
follows:

16
∑

i∈OPT (t)

Γi,π∗(i,t)(q
OPT
i (t))

Γi,π∗(i,t)(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi,π∗(i,t)(q
OPT
i (t))

Γi,π∗(i,t)(m/m)
[Since Γi,π is non-decreasing]

= 16
∑

i∈OPT (t)

Γi,π∗(i,t)(q
OPT
i (t)) [Since Γi,π(1) = 1]

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:13

≤ 16
∑

i∈OPT (t)

Γ(qOPTi (t))

≤ 16|OPT (t)|(m/|OPT (t)|)α [Due to the concavity of Γ]
= 16mα|OPT (t)|1−α

PROOF OF LEMMA 2.10. When |A(t)| ≥ m the algorithm assigns the shortest m
jobs each on a unique machine. Let A′(t) denote these m jobs. Let π(i, t) be the phase
job i is in at time t in our algorithm’s schedule. Notice that zi,π(i,t)(t) decreases at a rate
of one for each job in A′(t) \ OPT (t). Thus, we have that the change in the potential
due to the algorithm is at most:

−16
∑

i∈A′(t)\OPT (t)

1

Γi,π(i,t)(m/rank(i, t))
≤ −16

∑
i∈A′(t)\OPT (t)

rank(i, t)

m

≤ −16

m

|A′(t)\OPT (t)|∑
i=1

i ≤ −16

m

(3m/4)2

2
≤ −4m

The first inequality easily follows because Γi(x) ≤ x for all i. The second to last
inequality holds since |OPT (t)| ≤ (1/4)m and |A′(t)| = m.

We now shift our attention to the continuous changes at underloaded times t such
that |A(t)| ≤ m. Recall that our goal is to re-prove Lemma 2.3 in the extended case.
If |OPT (t)| ≥ 1

16 |A(t)|, then Lemma 2.3 immediately follows from Lemma 2.8; the
potential can only decrease when the algorithm processes jobs. Hence we assume that
|OPT (t)| ≤ 1

16 |A(t)|.
First we bound the increase in the potential function due to the processing of opti-

mal. The increase in the potential is at most the following.

16
∑

i∈OPT (t)

Γi,π∗(i,t)(q
OPT
i (t))

Γi,π∗(i,t)(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi,π∗(i,t)(q
OPT
i (t))

Γi,π∗(i,t)(m/|A(t)|)
[Since Γi,π is non-decrasing]

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t),qOPT
i

(t)≥m/|A(t)|

(qOPTi (t))αi,π∗(i,t)

(m/|A(t)|)αi,π∗(i,t)

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t)

(qOPTi (t))α

(m/|A(t)|)α

≤ 16|OPT (t)|+ 16
(1

2α+2
|A(t)|+ 2

α+2
1−αα|OPT (t)|

)
Now we consider the decrease in the potential function due to the algorithm pro-

cessing jobs. When |A(t)| < m then the algorithm gives each job equal share of every
processor. Thus, for all i ∈ A(t)\OPT (t) it is the case that zi,π(i,t)(t) decreases at a rate
of Γi,π(i,t)(m/|A(t)|). Thus, we have the decrease due to the algorithm is as follows.

−16
∑

i∈A(t)\OPT (t)

Γi,π(i,t)(m/|A(t)|)
Γi,π(i,t)(m/rank(i, t))

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:14 S. Im et al.

≤ −16
∑

i∈A(t)\OPT (t),rank(i,t)≥|A(t)|/2

Γi,π(i,t)(m/|A(t)|)
Γi,π(i,t)(2m/|A(t)|

≤ −16(|A(t) \OPT (t)| − |A(t)|/2)(1/2)α

≤ −16(1− 1

2
− 1

16
)|A(t)|(1/2)α

≤ −6|A(t)|(1/2)α

As before, we complete the proof by aggregating the above equations.

d

dt
Φ(t) ≤ 16|OPT (t)|+ 16

(1

2α+2
|A(t)|+ 2

α+2
1−αα|OPT (t)|

)
− 6|A(t)|(1/2)α

≤ −|A(t)|+O(1)21/(1−α)|OPT (t)|

3. LOWER BOUND FOR GREEDY ALGORITHM
In this section, we prove that the following natural greedy hybrid of Parallel-SRPT
and Sequential-SRPT has a super-logarithmic lower bound on its competitive ratio.
Description of Greedy Algorithm: At all times allocate processors to jobs in such
a way as to maximize the instantaneous rate at which the fractional number of unfin-
ished jobs would be decreased, if it was the case that the original work of each job was
its remaining unprocessed work. Using a simple exchange argument one can prove
that if each job j has the same speedup curve of the form Γj(x) = xα for α ∈ (0, 1), then
this policy can be implemented in the following greedy way: We arbitrarily number
the processors from 1 to m. At each decision point, the machines schedule jobs in order
from machine 1 to machine m. When it is machine i’s turn to schedule a job, let p(i, j)
be the number of processors from 1 to i− 1 that have been assigned to job j. Processor
i chooses job j that maximizes Γ(p(i,j)+1)−Γ(p(i,j))

pj(t)
.

LEMMA 3.1. This Greedy algorithm has a competitive ratio that is Ω(max{P, n1/3}).

PROOF. Consider an input instance wherem−mα jobs of sizem are released at time
0. Throughout the proof we assume m is sufficiently large so that mα − (m − 1)α > 1
and m1−α > 2. From time 0 to time m− 1

mα , one job of size 1 is released every 1
mα time

units. Finally, at time m+ 1, we release a job of size 1 every 1
mα time units for X = m2

time units (a total of Xmα jobs are released in this final phase). Refer to Figure 1 for
an illustration of the greedy schedule on this input instance as well as an alternative
schedule with much smaller flow time.

This greedy algorithm will devote all m machines to the 1 job of size 1 and complete
it just as the next size 1 job arrives. This follows by considering the last processor m.
It balances the choice of mα−(m−1)α

1 versus 1
m . Given that α < 1, it will always choose

to assign the machine to the size 1 job.
At time m, this greedy algorithm will still have all m−mα jobs of size m remaining.

In this next unit of time, it will equally partition the m processors among these m−mα

jobs. This means it will complete less than 2 units of processing on each job. Thus, after
timem+1, it will assign allm processors to the newly arrived job until the stream ends.
The total flow time incurred will thus be m for the jobs of size 1 released prior to time
m, X for the jobs of size 1 released after time m+ 1, and (m−mα)(X +m+ 1) for the
jobs of size m up to the end of the long stream. We ignore the flow time incurred to
complete these long jobs after the end of the stream. The dominant term is (m−mα)X
for the size m jobs during the long stream.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:15

m2m2

1

m

mm‐m

Alternate Schedule Greedy Schedule

Fig. 1. Graphical illustration of alternative algorithm and greedy algorithm on lower bound input instance

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:16 S. Im et al.

On the other hand, an alternative algorithm (not necessarily optimal but simple to
conceptualize) will assign m −mα machines to the size m jobs from time 0 to time m
completing them by time m. On the remaining mα machines, it assigns one machine to
each job of size 1 as that job arrives. Because it operates efficiently, each such machine
will complete its assigned size 1 job exactly 1 time unit later. During this time, each
job will complete just as its machine is needed to schedule the next arriving size 1 job
because the number of jobs that arrive during 1 unit of time is exactly mα. By time
m + 1, this algorithm will have completed all of these jobs and will now devote all m
machines to the stream of size 1 jobs that arrive completing each one just as the next
arrives. Before time m + 1, this algorithm incurs a total time of m1+α for the size 1
jobs since each of these jobs is scheduled immediately on one processor. The large jobs
each complete within m time units of arrival for a total flow time of m2−m1+α. Finally,
during the stream of length X, each job incurs a flow time of 1

mα for a total flow time
of X.

The Ω(P) bound follows from the observation that P = m. The Ω(n1/3) bound follows
from the observation that n = Θ(m2+α).

4. GENERAL LOWER BOUND
Our goal in this section is to prove Theorem 1.2, which gives a logarithmic lower bound
on the competitive ratio of any algorithm. This lower bound is an adaptation of the
lower bound proof from [Leonardi and Raz 2007]. The proof is slightly more complex
because online algorithms can exploit the fact that the jobs have intermediate paral-
lelizability to catch up on jobs that they should have finished earlier.

We construct a family of input instances parameterized by α where each instance is
composed of two parts. In the first part, jobs are released in phases. Each phase has
long jobs and short jobs that force the online algorithm to choose between completing
almost all of the short jobs before the halfway point of a phase or completing all the jobs
in the phase by the end of the phase. The family of input instances is structured such
that any deterministic online algorithm on at least one instance in the family must
face a time T where it has at least Ω(m logP) unfinished jobs whereas the optimal
algorithm at the same moment in time will have at most m/2 unfinished jobs. The
second part of the input instance starts at time T and presents a stream of m jobs of
size 1 for P 2 consecutive starting times.

We formally define the family of input instances as follows. First, we need to define
the following terms. Let ε = 1− α. We define a length reduction factor r = 1/2(1− 1

2ε);
the length of the long jobs will be multiplied by r (equivalently divided by a factor of
1/r) in each phase of the input instance. We choose the number of machines m such
that 1

2
2ε−1
2ε+1

m
2 is an integer. We choose the longest job length P such that the maximum

number of phases L = 1/2 log 1
r
P is an integer and log2

1
r
P < 1

4
2ε−1
2ε+1P

1/2.
The first part has at most L = 1/2 log 1

r
P phases numbered from 0 to L − 1. Each

phase 0 ≤ i ≤ L− 1 has a phase length pi = Pri and a start time si =
∑i−1
j=0 pj . During

phase i, m/2 long jobs of length pi are released at time si, and m short jobs of length 1
are released at times si + j for 0 ≤ j ≤ pi/2− 1.

The adversary begins by releasing the jobs in phase 0 starting at time s0 = 0. In
general, suppose the adversary has released the jobs in phase i starting at time si
where i ≤ L− 1. The adversary decides at time si + pi/2 whether or not to (i) begin the
second part of the input instance at time si + pi/2 or (ii) to release the next set of jobs
starting at time si+1 as follows. If the online algorithm has at least m log 1

r
P remaining

work from length 1 jobs released in phase i at time si+pi/2, then the adversary begins
the second part of the input instance at time si + pi/2. Otherwise, if i < L− 1, then the

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

Competitively Scheduling Tasks with Intermediate Parallelizability 00:17

adversary releases the jobs in phase i + 1 starting at time si+1. If i = L − 1, then the
adversary starts the second part of the input instance at time si + pi. This leaves us
with two possible cases. In the first case, the adversary starts the second part of the
input instance at some time T = si + pi/2 where 0 ≤ i ≤ L− 1. In the second case, the
adversary starts the second part of the input instance at time T = sL−1 + pL−1.

We now argue that for both cases, the optimal flow time is bounded by O(mP 2). As
in [Leonardi and Raz 2007], we define a notion of a standard schedule for phase i that
has the goal of completing all jobs released in phase i by time si + pi. Each of the m/2
long jobs are processed non-preemptively by one machine for the entire phase. For
the m length 1 jobs released at time si + k where 0 ≤ k ≤ pi/2 − 1, m/2 of them are
completed by using m/2 machines at time si+k and the other m/2 are completed using
m/2 machines at time si + k + pi/2. The total flow time of this standard schedule for
phase i is m/2(pi + (2 + pi/2)pi/2).

We now show that the optimal flow time is O(mP 2) for the first case by giving a
specific schedule with flow time O(mP 2). The standard schedule is used for all phases
up to but not including phase i. For phase i, the m/2 long jobs are ignored and each
length 1 job is assigned its own machine immediately upon arrival. Thus, by time T =
si+pi/2, only the m/2 long jobs of phase i remain. For time T +k where 0 ≤ k ≤ P 2−1,
the m jobs of length 1 released at time T + k are each assigned their own machine and
completed by time T + k + 1. Finally, at time T + P 2, each of the m/2 long jobs of size
pL−1 are assigned to 2 machines and completed by time T + P 2 + pi/2

α. Clearly, the
overall flow time for this feasible schedule is O(mP 2).

We now show that the optimal flow time is O(mP 2) for the second case by giving a
specific schedule with flow time O(mP 2). The standard schedule is used for all phases.
Thus, by time T = sL−1 + pL−1/2, no jobs remain. For time T + k where 0 ≤ k ≤ P 2− 1,
the m jobs of length 1 released at time T + k are each assigned their own machine and
completed by time T + k + 1. Clearly, the overall flow time for this feasible schedule is
O(mP 2).

We now show that the online flow time for both cases is at least Ω(mP 2 log 1
r
P). By

the definition of the first case, the online algorithm has at least m log 1
r
P remaining

work from the length 1 jobs released in phase i at time T = si + pi/2. Thus, the online
algorithm has at least m log 1

r
P unfinished jobs from time T to time T +P 2. Using only

the flow time from this time interval, we see that the online algorithm incurs a total
flow time of at least mP 2 log 1

r
P and the theorem follows for this case.

We now consider the second case. In our analysis, we opt for simplicity rather than
proving the most accurate bound. The first key observation is that in phase i for 0 ≤
i ≤ L − 1, online completes at least mpi/2 −m log 1

r
P of the total available work from

the length 1 jobs by time si + pi/2, the halfway point of phase i. This means that at
most m log 1

r
P work can be completed on the long jobs, possibly from earlier phases,

during the time interval [si, si + pi/2].
We will prove that at time T , the amount of unfinished work from the m/2 long jobs

from phase i for 0 ≤ i ≤ L−1 is at least 1
2

2ε−1
2ε+1

m
2 pi. This implies that the number of long

jobs with remaining length at least 1 from phase i at time T is at least (1
2

2ε−1
2ε+1

m
2 pi −

m
2)/pi ≥ m

8 when pi is sufficiently large. Given that there are L = 1/2 log 1
r
P phases,

we have that the total number of jobs with remaining length at least 1 at time T is
at least Lm8 = 1

2 (log 1
r
P)m8 which is Ω(m log 1

r
P). Thus, the total flow time incurred in

interval [T, T + P 2] is Ω(mP 2 log 1
r
P).

Consider the m/2 long jobs from phase i. From our previous observation, we can
complete at most (L − i)m log 1

r
P ≤ m

2 log 1
r

log 1
r
P ≤ 1

2
2ε−1
2ε+1

m
2 P

1/2 ≤ 1
2

2ε−1
2ε+1

m
2 p

i work on

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

00:18 S. Im et al.

thesem/2 jobs during the first half of phases i to L−1. During the second half of phases
i to L− 1, the best we can do is devote 2 machines to each job for the entire second half
of these phases; note that we ignore the processing required by any unfinished length
1 jobs from phase i in the second half of phase i. Given that the phase lengths form
a geometric progression with multiplicative factor r, the total time available in these
second halves of phases is strictly less than pi

2
1

1−r . Thus, the total amount of work
that can be completed in the second half of these phases is strictly less than m

2 2α pi2
1

1−r
which is equal to m

2
2

2ε+1pi. Thus, considering only the second half of these phases, there
is strictly more than 2ε−1

2ε+1
m
2 pi unfinished work for these m/2 long jobs from phase i at

time T . Taking into account how much work can be done in the first half of these
phases, we see that the total unfinished work on the m/2 long jobs from phase i at
time T is at least 1

2
2ε−1
2ε+1

m
2 pi, and the theorem follows for the second case.

REFERENCES
http://www.tilera.com/.
http://projects.csail.mit.edu/angstrom/.
Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. 2011. Speed Scaling of Processes with Arbitrary Speedup

Curves on a Multiprocessor. Theory Comput. Syst. 49, 4 (2011), 817–833.
Jeff Edmonds. 2000. Scheduling in the dark. Theor. Comput. Sci. 235, 1 (2000), 109–141.
Jeff Edmonds, Jarek Gryz, Dongming Liang, and Renée J. Miller. 2003. Mining for empty spaces in large

data sets. Theor. Comput. Sci. 296, 3 (2003), 435–452.
Jeff Edmonds and Kirk Pruhs. 2012. Scalably scheduling processes with arbitrary speedup curves. ACM

Transactions on Algorithms 8, 3 (2012), 28.
Kyle Fox, Sungjin Im, and Benjamin Moseley. 2013. Energy Efficient Scheduling of Parallelizable Jobs. In

ACM-SIAM Symposium on Discrete Algorithms, SODA. 948–957.
Sungjin Im, Benjamin Moseley, and Kirk Pruhs. 2011. A tutorial on amortized local competitiveness in

online scheduling. SIGACT News 42, 2 (2011), 83–97.
Bala Kalyanasundaram and Kirk Pruhs. 2000. Speed is as powerful as clairvoyance. J. ACM 47, 4 (2000),

617–643.
Stefano Leonardi and Danny Raz. 2007. Approximating total flow time on parallel machines. Journal of

Computer and Systems Sciences 73, 6 (2007), 875–891.
John Markoff. 2004. Intel’s Big Shift After Hitting Technical Wall. New York Times (17 May 2004).
Rick Merritt. 2008. CPU designers debate multi-core future. EE Times (6 February 2008).
Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. 2002. Optimal Time-Critical Scheduling via

Resource Augmentation. Algorithmica 32, 2 (2002), 163–200.
Kirk Pruhs, Julien Robert, and Nicolas Schabanel. 2010. Minimizing Maximum Flowtime of Jobs with Ar-

bitrary Parallelizability. In Workshop on Approximation and Online Algorithms, WAOA. 237–248.
Kirk Pruhs, Jiri Sgall, and Eric Torng. 2004. Handbook of Scheduling: Algorithms, Models, and Performance

Analysis. Chapter Online Scheduling.
Julien Robert and Nicolas Schabanel. 2007. Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair

Enough. In European Symposium on Algorithms, ESA. 741–753.
Julien Robert and Nicolas Schabanel. 2008. Non-clairvoyant scheduling with precedence constraints. In

ACM-SIAM Symposium on Discrete Algorithms, SODA. 491–500.

ACM Transactions on Parallel Computing, Vol. 0, No. 0, Article 00, Publication date: 2000.

