
Tight Bounds for Online Vector Scheduling

Sungjin Im∗ Nathaniel Kell† Janardhan Kulkarni‡ Debmalya Panigrahi†

∗Electrical Engineering and Computer Science, University of California at Merced, Merced, CA, USA.
Email: sim3@ucmerced.edu

†Department of Computer Science, Duke University, Durham, NC, USA.
Email: {kell,debmalya}@cs.duke.edu
‡Microsoft Research, Redmond, WA, USA.
Email: jakul@microsoft.com

Abstract

Modern data centers face a key challenge of effectively serving user requests that arrive online. Such requests are inherently
multi-dimensional and characterized by demand vectors over multiple resources such as processor cycles, storage space, and
network bandwidth. Typically, different resources require different objectives to be optimized, and Lr norms of loads are among
the most popular objectives considered. Furthermore, the server clusters are also often heterogeneous making the scheduling
problem more challenging.

To address these problems, we consider the online vector scheduling problem in this paper. Introduced by Chekuri and
Khanna (SIAM J. of Comp. 2006), vector scheduling is a generalization of classical load balancing, where every job has a
vector load instead of a scalar load. The scalar problem, introduced by Graham in 1966, and its many variants (identical and
unrelated machines, makespan and Lr-norm optimization, offline and online jobs, etc.) have been extensively studied over the
last 50 years. In this paper, we resolve the online complexity of the vector scheduling problem and its important generalizations
— for all Lr norms and in both the identical and unrelated machines settings. Our main results are:
• For identical machines, we show that the optimal competitive ratio is Θ(log d/ log log d) by giving an online lower bound

and an algorithm with an asymptotically matching competitive ratio. The lower bound is technically challenging, and is
obtained via an online lower bound for the minimum mono-chromatic clique problem using a novel online coloring game
and randomized coding scheme. Our techniques also extend to asymptotically tight upper and lower bounds for general
Lr norms.

• For unrelated machines, we show that the optimal competitive ratio is Θ(logm+log d) by giving an online lower bound
that matches a previously known upper bound. Unlike identical machines, however, extending these results, particularly
the upper bound, to general Lr norms requires new ideas. In particular, we use a carefully constructed potential function
that balances the individual Lr objectives with the overall (convexified) min-max objective to guide the online algorithm
and track the changes in potential to bound the competitive ratio.

Keywords

Online algorithms, scheduling, load balancing.

I. INTRODUCTION

A key algorithmic challenge in modern data centers is the scheduling of online resource requests on the available hardware.
Such requests are inherently multi-dimensional and simultaneously ask for multiple resources such as processor cycles,
network bandwidth, and storage space [1]–[3] (see also multi-dimensional load balancing in virtualization [4], [5]). In
addition to the multi-dimensionality of resource requests, another challenge is the heterogeneity of server clusters because
of incremental hardware deployment and the use of dedicated specialized hardware for particular tasks [6]–[8]. As a third
source of non-uniformity, the objective of the load balancing exercise is often defined by the application at hand and the
resource being allocated. In addition to the traditional goals of minimizing maximum (L∞ norm) and total (L1 norm)
machine loads, various intermediate Lr norms1 are also important for specific applications. For example, the L2 norm of
machine loads is suitable for disk storage [9], [10] while the Lr norm for r between 2 and 3 is used for modeling energy
consumption [11]–[13].

In the algorithmic literature, the (single dimensional) load balancing problem, also called list scheduling, has a long history
since the pioneering work of Graham in 1966 [14]. However, the multi-dimensional problem, introduced by Chekuri and
Khanna [15] and called vector scheduling (VS), remains less understood. In the simplest version of this problem, each job
has a vector load and the goal is to assign the jobs to machines so as to minimize the maximum machine load over all
dimensions. As an example of our limited understanding of this problem, we note that the approximation complexity of this

1Our Lr-norms are typically referred to as p-norms or Lp-norms. We use Lr-norms to reserve the letter p for job processing times.

most basic version is not resolved yet — the current best approximation factor is O(log d/ log log d) (e.g., [16]), where d
is the number of dimensions, while only an ω(1) lower bound is known [15]. In this paper, we consider the online version
of this problem, i.e., where the jobs appear in a sequence and have to be assigned irrevocably to a machine on arrival.
Note that this is the most common scenario in the data center applications that we described earlier, and in other real world
settings. In addition to the basic setting described above, we also consider more general scenarios to capture the practical
challenges that we outlined. In particular, we consider this problem in both the identical and unrelated machines settings,
the latter capturing the non-uniformity of servers. Furthermore, we also consider all Lr norm objectives of machine loads
in addition to the makespan (L∞) objective. In this paper, we completely resolve the online complexity of all these variants
of the vector scheduling problem.

Formally, there are n jobs (denoted J) that arrive online and must be immediately and irrevocably assigned on arrival to
one among a fixed set of m machines (denoted M). We denote the d-dimensional load vector of job j on machine i by
pi,j = 〈pi,j(k) : k ∈ [d]〉, which is revealed on its online arrival. For identical machines, the load of job j in dimension
k is identical for all machines i, and we denote it pj(k). Let us denote the assignment function of jobs to machines by
f : J → M . An assignment f produces a load of Λi(k) =

∑
j:f(j)=i pi,j(k) in dimension k of machine i; we succinctly

denote the machine loads in dimension k by an m-dimensional vector Λ(k). (Note that for the scalar problem, there is only
one such machine load vector.)

The makespan norm. We assume (by scaling) that the optimal makespan norm on each dimension is 1. Then, the VS
problem for the makespan norm (denoted VSMAX) is defined as follows.

Definition 1. VSMAX: For any dimension k, the objective is the maximum load over all machines, i.e.,

‖Λ(k)‖∞ = max
i∈M

Λi(k).

An algorithm is said to be α-competitive if ‖Λ(k)‖∞ ≤ α for every dimension k. We consider this problem in both the
identical machines (denoted VSMAX-I) and the unrelated machines (denoted VSMAX-U) settings. First, we state our result
for identical machines.

Theorem 1. There is a lower bound of Ω
(

log d
log log d

)
on the competitive ratio of online algorithms for the VSMAX-I problem.

Moreover, there is an online algorithm whose competitive ratio asymptotically matches this lower bound.

The upper bound is a slight improvement over the previous best O(log d) [17], [18], but the only lower bound known
previously was NP-hardness of obtaining an O(1)-approximation for the offline problem [15]. We remark that while the
offline approximability remains unresolved, the best offline algorithms currently known ([17], [18], this paper) are in fact
online. Also, our lower bound is information-theoretic, i.e., relies on the online model instead of computational limitations.

For unrelated machines (VSMAX-U), an O(logm+ log d)-competitive algorithm was given by Meyerson et al. [18]. We
show that this is the best possible.

Theorem 2. There is a lower bound of Ω(logm + log d) on the competitive ratio of online algorithms for the VSMAX-U
problem.

Extensions to other Lr norms. As we briefly discussed above, there are many applications where an Lr norm (for some
r ≥ 1) is more suitable than the makespan norm. First, we consider identical machines, and aim to simultaneously optimize
all norms on all dimensions (denoted VSALL-I).

Definition 2. VSALL-I: For dimension k and norm Lr, r ≥ 1, the objective is

‖Λ(k)‖r =
(∑

i∈M
Λri (k)

)1/r

.

An algorithm is said to αr-competitive for the Lr norm if ‖Λ(k)‖r ≤ αr for every dimension k and every Lr norm, r ≥ 1.
The next theorem extends Theorem 1 to an all norms optimization.

Theorem 3. There is an online algorithm for the VSALL-I problem that obtains a competitive ratio of O
((

log d
log log d

) r−1
r
)

,
simultaneously for all Lr norms. Moreover, these competitive ratios are tight, i.e., there is a matching lower bound for every
individual Lr norm.

For unrelated machines, there is a polynomial lower bound for simultaneously optimizing multiple Lr norms, even with
scalar loads. This rules out an all norms approximation. Therefore, we focus on an any norm approximation, where the

algorithm is given norms r1, r2, . . . , rd (where 1 ≤ rk ≤ logm),2 and the goal is to minimize the Lrk norm for dimension
k. The same lower bound also rules out the possibility of the algorithm being competitive against the optimal value of each
individual norm in their respective dimensions. We use a standard trick in multi-objective optimization to circumvent this
impossibility: we only require the algorithm to be competitive against any given feasible target vector T = 〈T1, . . . , Td〉.
For ease of notation, we assume wlog (by scaling) that Tk = 1 for all dimensions k.3 Now, we are ready to define the VS
problem with arbitrary Lr norms for unrelated machines — we call this problem VSANY-U.

Definition 3. VSANY-U: For dimension k, the objective is

‖Λ(k)‖rk =
(∑

i∈M
Λrki (k)

)1/rk
.

An algorithm is said to αrk -competitive in the Lrk norm if ‖Λ(k)‖rk ≤ αrk for every dimension k. Note the (necessary)
difference between the definitions of VSALL-I and VSANY-U: in the former, the algorithm must be competitive in all norms
in all dimensions simultaneously, whereas in VSANY-U, the algorithm only needs to be competitive against a single norm
in each dimension that is specified in the problem input. We obtain the following result for the any norm problem.

Theorem 4. There is an online algorithm for the VSANY-U problem that simultaneously obtains a competitive ratio of
O(rk + log d) for each dimension k, where the goal is to optimize the Lrk norm in the kth dimension. Moreover, these
competitive ratios are tight, i.e., there is a matching lower bound for every Lr norm.

A. Our Techniques

First, we outline the main techniques used for the identical machines setting. A natural starting point for lower bounds is
the online vertex coloring (VC) lower bound of Halldórsson and Szegedy [19], for which connections to VSMAX-I [15] have
previously been exploited. The basic idea is to encode a VC instance as a VSMAX-I instance where the number of dimensions
d is (roughly) nB and show that an approximation factor of (roughly) B for VSMAX-I implies an approximation factor of
(roughly) n1−1/B for VC. One may want to try to combine this reduction and the online lower bound of Ω(n/ log2 n) for
VC [19] to get a better lower bound for VSMAX-I. However, the reduction crucially relies on the fact that a graph with the
largest clique size of at most k has a chromatic number of (roughly) O(n1−1/k), and this does not imply that the graph can
be colored online with a similar number of colors.

A second approach is to explore the connection of VSMAX-I with online vector bin packing (VBP), where multi-dimensional
items arriving online must be packed into a minimum number of identical multi-dimensional bins. Recently, Azar et al. [17]
obtained strong lower bounds of Ω(d1/B) where B ≥ 1 is the capacity of each bin in every dimension (the items have a
maximum size of 1 on any dimension). It would be tempting to conjecture that the inability to obtain a constant approximation
algorithm for the VBP problem unless B = Ω(log d) should yield a lower bound of Ω(log d) for the VSMAX-I problem.
Unfortunately, this is false. The difference between the two problems is in the capacity of the bins/machines that the optimal
solution is allowed to use: in VSMAX-I, this capacity is 1 whereas in VBP, this capacity is B, and using bins with larger
capacity can decrease the number of bins needed super-linearly in the increased capacity. Therefore, a lower bound for VBP
does not imply any lower bound for VSMAX-I. On the other hand, an upper bound of O(d1/(B−1) log d) for the VBP problem
is obtained in [17] via an O(log d)-competitive algorithm for VSMAX-I. Improving this ratio considerably for VSMAX-I would
have been a natural approach for closing the gap for VBP; unfortunately, our lower bound of Ω(log d/ log log d) rules out
this possibility.

Our lower bound is obtained via a different approach from the ones outlined above. At a high level, we leverage the
connection with coloring, but one to a problem of minimizing the size of the largest monochromatic clique given a fixed set
of colors. Our main technical result is to show that this problem has a lower bound of Ω(

√
t) for online algorithms, where

t is the number of colors. To the best of our knowledge, this problem was not studied before and we believe this result
should be of independent interest.4 As is typical in establishing online lower bounds, the construction of the lower bound
instance is viewed as a game between the online algorithm and the adversary. Our main goal is to force the online algorithm
to grow cliques while guaranteeing that the optimal (offline) solution can color vertices in a way that limits clique sizes to

2For any m-dimensional vector x, ‖x‖∞ = Θ(‖x‖logm). Therefore, for any rk > logm, an algorithm can instead use a Llogm norm to approximate
an Lrk norm objective up to constant distortion. Thus, in both our upper and lower bound results we restrict 1 ≤ rk ≤ logm.

3A target vector is feasible if there is an assignment such that for every dimension k, the value of the Lrk norm in that dimension is at most Tk . Our
results do not rely heavily on the exact feasibility of the target vector; if there is a feasible solution that violates targets in all dimensions by at most a
factor of β, then our results hold with an additional factor of β in the competitive ratio.

4In [20], the problem of coloring vertices without creating certain monochromatic subgraphs was studied, which is different from our goal of minimizing
the largest monochromatic clique size. Furthermore, this previous work was only for random graphs and the focus was on whether the desirable coloring
is achievable online depending on the parameters of the random graph.

a constant. The technical challenge is to show that the optimal solution does not form large cliques across the cliques that
the algorithm has created. For this purpose, we develop a novel randomized code that dictates the choices of the optimal
solution and restricts those of the online algorithm. Using the probabilistic method on this code, we are able to show the
existence of codewords that always lead to a good optimal solution and an expensive algorithmic one. We also show that
the same idea can be used to obtain a lower bound for any Lr norm.

We now turn our attention to our second main result which is in the unrelated machines setting: an upper bound for
the VSANY-U problem. Our algorithm is greedy with respect to a potential function (as are algorithms for all special cases
studied earlier [18], [21]–[23]), and the novelty lies in the choice of the potential function. For each individual dimension
k, we use the Lrkrk norm as the potential (following [22], [23]). The main challenge is to combine these individual potentials
into a single potential. We use a weighted linear combination of the individual potentials for the different dimensions.
This is somewhat counter-intuitive since the combined potential can possibly allow a large potential in one dimension to
be compensated by a small potential in a different one — indeed, a naı̈ve combination only gives a competitive ratio of
O(maxk rk + log d) for all k. However, we observe that we are aiming for a competitive ratio of O(rk + log d) which
allows some slack compared to scalar loads if rk < log d. Suppose qk = rk + log d; then we use weights of q−qkk in the
linear combination after changing the individual potentials to Lqkrk . Note that as one would expect, the weights are larger
for dimensions that allow a smaller slack. We show that this combined potential simultaneously leads to the asymptotically
optimal competitive ratio on every individual dimension.

Finally, we briefly discuss our other results. Our slightly improved upper bound for the VSMAX-I problem follows from a
simple random assignment and redistributing ‘overloaded’ machines. We remark that derandomizing this strategy is relatively
straightforward. Although this improvement is very marginal, we feel that this is somewhat interesting since our algorithm
is simple and perhaps more intuitive yet gives the tight upper bound. For the VSALL-I problem, we give a reduction to
VSMAX-I by structuring the instance by “smoothing” large jobs and then arguing that for structured instances, a VSMAX-I
algorithm is also optimal for other Lr norms.

B. Related Work
Due to the large volume of related work, we will only sample some relevant results in online scheduling and refer the

interested reader to more detailed surveys (e.g., [24]–[27]) and textbooks (e.g., [28]).

Scalar loads. Since the (2 − 1/m)-competitive algorithm by Graham [14] for online (scalar) load balancing on identical
machines, a series of papers [29]–[31] have led to the current best ratio of 1.9201 [32]. On the negative side, this problem
was shown to be NP-hard in the strong sense by Faigle et al. [33] and has since been shown to have a competitive ratio of
at least 1.880 [31], [34]–[36]. For other norms, Avidor et al. [37] obtained competitive ratios of

√
4/3 and 2 − O

(
log r
r

)

for the L2 and general Lr norms respectively.
For unrelated machines, Aspnes et al. [22] obtained a competitive ratio of O(logm) for makespan minimization, which

is asymptotically tight [38]. Scheduling for the L2 norm was considered by [9], [10], and Awerbuch et al. [21] obtained
a competitive ratio of 1 +

√
2, which was shown to be tight [39]. For general Lr norms, Awerbuch et al. [21] (and

Caragiannis [23]) obtained a competitive ratio of O(r), and showed that it is tight up to constants. Various intermediate
settings such as related machines (machines have unequal but job-independent speeds) [22], [40] and restricted assignment
(each job has a machine-independent load but can only be assigned to a subset of machines) [38], [39], [41], [42] have also
been studied for the makespan and Lr norms.

Vector loads. The VSMAX-I problem was introduced by Chekuri and Khanna [15], who gave an offline approximation of
O(log2 d) and observed that a random assignment has a competitive ratio of O

(
log dm

log log dm

)
. Azar et al. [17] and Meyerson et

al. [18] improved the competitive ratio to O(log d) using deterministic online algorithms. An offline ω(1) lower bound was
also proved in [15], and it remains open as to what the exact dependence of the approximation ratio on d should be. Our
online lower bound asserts that a significantly sub-logarithmic dependence would require a radically different approach from
all the known algorithms for this problem.

For unrelated machines, Meyerson et al. [18] noted that the natural extension of the algorithm of Aspnes et al. [22] to
vector loads has a competitive ratio of O(log dm) for makespan minimization; in fact, for identical machines, they used
exactly the same algorithm but gave a tighter analysis. For the offline VSMAX-U problem, Harris and Srinivasan [16] recently
showed that the dependence on m is not required by giving a randomized O(log d/ log log d) approximation algorithm.

II. IDENTICAL MACHINES

First, we consider the online vector scheduling problem for identical machines. In this section, we obtain tight upper
and lower bounds for this problem, both for the makespan norm (Theorem 1) and for arbitrary Lr norms (Theorem 3).

A. Lower Bounds for VSMAX-I and VSALL-I

In this section, we will prove the lower bound in Theorem 1, i.e., show that any online algorithm for the VSMAX-I problem
can be forced to construct a schedule such that there exists a dimension where one machine has load Ω(log d/ log log d),
whereas the optimal schedule has O(1) load on all dimensions of all machines. This construction will also be extended to
all Lp norms (VSALL-I) in order to establish the lower bound in Theorem 3.

We give our lower bound for VSMAX-I in two parts. First in Section II-A1, we define a lower bound instance for an
online graph coloring problem, which we call MONOCHROMATIC CLIQUE. Next, in Section II-A2, we show how our lower
bound instance for MONOCHROMATIC CLIQUE can be encoded as an instance for VSMAX-I in order to obtain the desired
Ω(log d/ log log d) bound.

1) Lower Bound for MONOCHROMATIC CLIQUE: The MONOCHROMATIC CLIQUE problem is defined as follows:
MONOCHROMATIC CLIQUE: We are given a fixed set of t colors. The input graph is revealed to an algorithm as an online
sequence of n vertices v1, . . . , vn that arrive one at a time. When vertex vj arrives, we are given all edges between vertices
v1, v2, . . . , vj−1 and vertex vj . The algorithm must then assign vj one of the t colors before it sees the next arrival. The
objective is to minimize the size of the largest monochromatic clique in the final coloring.

The goal of the section will be to prove the following lemma, which we will use later in Section II-A2 to establish our
lower bound for VSMAX-I.

Theorem 5. The competitive ratio of any online algorithm for MONOCHROMATIC CLIQUE is Ω(
√
t), where t is the number

of available colors.

More specifically, for any online algorithm A, there is an instance on which A produces a monochromatic clique of size√
t, whereas the optimal solution can color the graph such that the size of the largest monochromatic clique is O(1).
We will frame the lower bound as a game between the adversary and the online algorithm. At a high level, the instance is

designed as follows. For each new arriving vertex v and color c, the adversary connects v to every vertex in some currently
existing monochromatic clique of color c. Since we do this for every color, this ensures that regardless of the algorithm’s
coloring of v, some monochromatic clique grows by 1 in size (or the first vertex in a clique is introduced). Since this growth
happens for every vertex, the adversary is able to quickly force the algorithm to create a monochromatic clique of size

√
t.

The main challenge now is to ensure that the adversary can still obtain a good offline solution. Our choice for this solution
will be naı̈ve: the adversary will simply properly color the monochromatic cliques it attempted to grow in the algorithm’s
solution. Since the game stops once the algorithm has produced a monochromatic clique of size

√
t, and there are t colors,

such a proper coloring of every clique is possible. The risk with this approach is that a large monochromatic clique may now
form in the adversary’s coloring from edges that cross these independently grown cliques (in other words, properly colored
cliques in the algorithm’s solution could now become monochromatic cliques for the adversary). This may seem hard to
avoid since each vertex is connecting to some monochromatic clique for every color. However, in our analysis we show
that if on each step the adversary selects which cliques to grow in a carefully defined random fashion, then with positive
probability, all properly colored cliques in the algorithm’s solution that hurt the adversary’s naı̈ve solution are of size O(1).
Instance Construction: We adopt the standard terminology used in online coloring problems (see, e.g. [19]). Namely, the
algorithm will place each vertex in one of t bins to define its color assignments, whereas we will use colors to refer to the
color assignment in the optimal solution (controlled by the adversary). For each vertex arrival, the game is defined by the
following 3-step process:

1) The adversary issues a vertex vj and defines vj’s adjacencies with vertices v1, . . . , vj−1.
2) The online algorithm places vj in one of the available t bins.
3) The adversary selects a color for the vertex.
We further divide each bin into

√
t slots 1, 2, . . . ,

√
t. These slots will only be used for the adversary’s bookkeeping.

Correspondingly, we partition the t colors into
√
t color sets C1, . . . , C√t, each of size

√
t. Each vertex will reside in a

slot inside the bin chosen by the algorithm, and all vertices residing in slot i across all bins will be colored by the optimal
solution using a color from Ci. The high-level goal of the construction will be to produce properly colored cliques inside
each slot of every bin.

Consider the arrival of vertex vj . Inductively assume the previous vertices v1, . . . , vj−1 have been placed in the bins by
the algorithm, and that every vertex within a bin lies in some slot. Further assume that all the vertices in any particular slot
of a bin form a properly colored clique.

To specify the new adjacencies formed by vertex vj for Step 1, we will use a t-length
√
t-ary string sj , where we connect

vj to every vertex in slot sj [k] of bin k, for all k = 1, 2, . . . , t. Next, for Step 2, the algorithm places vj in some bin bj . We

Bin 1 Bin 2 Bin 3 Bin 4

Bin 5 . . .

. . . Bin 16

Slot 1 Slot 2

Slot 3 Slot 4

Slot 1 Slot 2

Slot 3 Slot 4

Slot 1 Slot 2

Slot 3 Slot 4

p
t = 4 slots per bin (adversary’s bookkeeping)

t = 16 (adversary) colors:

t = 16 bins (algorithm’s colors):

Color-to-slot partition
(
p

t colors per slot)

Figure 1. Illustration of the construction set-up for Lemma 5.

Bin 15
{

vj

sj = 1421222134343213

Step 1:

Step 2:

Step 3:

Algo assigns
vj to Bin 15.

Adversary
colors vj black.

Figure 2. Depiction of the three-step lower-bound game for Lemma 5. For simplicity, the only adjacencies shown for vertices issued before vj are those
between vertices in the same bin-slot pair (in reality, other adjacencies also exist). Also for simplicity, the only adjacencies shown for vj are those it has
with vertices in bins 13 through 16 (dictated by the bold substring “3213” in sj). Again note that in reality, vj will also be adjacent to vertices in bins 1
through 12 due to remaining prefix “142122213434”.

say that vj is then placed in slot qj = sj [bj] in bin bj . Finally for Step 3, the adversary chooses an arbitrary color for vj
from the colors in Cqj that have not yet been used for any vertex in slot qj of bin bj . The adversary will end the instance
whenever there exists a slot in some bin that contains

√
t vertices. This ensures that as long as the game is running, there

is always an unused color in every slot of every bin. Also observe that after this placement, the clique in slot qj in bin bj
has grown in size by 1 but is still properly colored. So, this induction is well defined. This completes description of the
instance (barring our choice for each adjacency string sj). See Figures 1 and 2 for illustrations of the construction.
Instance Analysis: The following lemma follows directly from the construction.

Lemma 6. For any online algorithm there is a monochromatic clique of size
√
t.

Proof: After t2 vertices are issued, there will some bin b containing at least t vertices, and therefore some slot in bin
b containing at least

√
t vertices forming a clique of size

√
t. Since all the vertices in the clique are in the same bin, there

exists a monochromatic clique of size
√
t in the algorithm’s solution.

Thus, it remains to show that there exists a sequence of
√
t-ary strings of length t2 (recall that these strings define the

adjacencies for each new vertex) such that the size of the largest monochromatic clique in the optimal coloring is O(1). For
brevity, we call such a sequence a good sequence.

First observe that monochromatic edges (i.e., edges between vertices of the same color) cannot form between vertices
in slots s and s′ 6= s (in the same or in different bins) since the color sets used for the slots are disjoint. Moreover,
monochromatic edges cannot form within the same slot in the same bin since these vertices always form a properly colored
clique. Therefore, monochromatic edges can only form between two adjacent vertices vj and vj′ such that qj = qj′ and
bj 6= bj′ , i.e., vertices in the same slot but in different bins. Relating back to our earlier discussion, these are exactly the edges
that are properly colored in the algorithm’s solution that could potentially form monochromatic cliques in the adversary’s
solution; we will refer to such edges as bad edges.

Thus, in order to define a good sequence of t2 strings, we need ensure our adjacency strings do not induce large cliques
of bad edges. To do this, we first need a handle on what structure must exist across the sequence in order for bad-edge
cliques to form. This undesired structure is characterized by the following lemma.

Lemma 7. Suppose K = {uφ(1), . . . , uφ(w)} is a w-sized monochromatic clique of color c ∈ C` that forms during the
instance, where φ : [w]→ [t2] maps k ∈ [w] to the index of the kth vertex to join K (note, from the above discussion, that
bφ(j) are different for all i ∈ [w]). Then

sφ(j)[bφ(i)] = ` ∀j ∈ {1, . . . , w},∀i ∈ {1, . . . , j − 1}.
Proof: Consider vertex uφ(j) (the jth vertex to join K). Since K is a clique, uφ(j) must be adjacent to vertices

uφ(1), . . . , uφ(j−1). Since all these vertices are colored with c ∈ C`, they must have been placed in slot ` in their respective
bins. Therefore, the positions in sφ(j) that correspond to these bins must also be `, i.e., sφ(j)[bφ(i)] = ` for all previous
vertices uφ(i).

In the remainder of the proof, we show that the structure in Lemma 7 can be avoided with non-zero probability for constant
sized cliques if we generate our strings uniformly at random, thus implying the existence of a good set of t2 strings.

Specifically, suppose the adversary picks each sj uniformly at random, i.e., for each character in sj we pick w ∈ [
√
t]

with probability t−1/2. We define the following notation:
• Let K20 be the event that the adversary creates a monochromatic clique of size 20 or greater.5

• Let K20(S, c) be the event that a monochromatic clique K of color c and size 20 or greater forms such that the first
10 vertices to join K are placed in the bins specified by the set of 10 indices S.

• Let Pj(S, q) be a random variable that is 1 if sj [i] = q ∀i ∈ S and 0 otherwise. Let P (S, q) =
∑t2

j=1 Pj(S, q).
• Let q(c) ∈ [

√
t] to be the index of the color set to which color c belongs (i.e., c ∈ Cq(c)).

• Let [n]k :=
(

[n]
k

)
denote the set of all size-k subsets of [n].

The next lemma follows from standard Chernoff-Hoeffding bounds, which we state first for completeness.

Theorem 8. (Chernoff-Hoeffding Bounds (e.g., [43])) Let X1, X2, ..., Xn be independent binary random variables and let
a1, a2, ..., an be coefficients in [0, 1] . Let X =

∑
i aiXi. Then,

• For any µ ≥ E[X] and any δ > 0, Pr[X > (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

• For any µ ≤ E[X] and δ > 0, Pr[X < (1− δ)µ] ≤ e−µδ2/2.

We are now ready to state and prove the lemma.

Lemma 9. If the adversary picks each sj uniformly at random, then Pr[P (S, q) ≥ 10] < t−30.

Proof: First, we observe that for any set S ∈ [t]10 and any r ∈ [
√
t], we have Pr[Pi(S, r) = 1] = (1/

√
t)10 = t−5.

Therefore by linearity of expectation, we have

E[P (S, r)] = E



t2∑

i=1

Pi(S, r)


 = t2 · t−5 = t−3. (1)

520 is an arbitrarily chosen large enough constant.

Applying Theorem 8 to P (S, r) with Xi = Pi(S, r), ai = 1, δ = 10t3 − 1 and µ = t−3 from Eqn. (1), we get

Pr[P (S, r) ≥ 10] ≤
(

e10t3−1

(10t3)10t3

)t−3

≤
(
e10

1010

)
·
(

1

t30

)
< t−30.

Using Lemmas 7 and 9, we argue that there exist an offline solution with no monochromatic clique of super constant
size.

Lemma 10. There exists an offline solution where every monochromatic clique is of size O(1).

Proof: To show the existence of a good set of t2 strings, it is sufficient to show that Pr[K20] < 1. Using Lemma 9,
we in fact show this event occurs with low probability. Observe that

Pr[K20] ≤
∑

c∈[
√
t]

∑

S∈[t]10

Pr[K20(S, c)] ≤
∑

c∈[
√
t]

∑

S∈[t]10

Pr[P (S, q(c)) ≥ 10]. (2)

The first inequality is a straightforward union bound. The second inequality follows by Lemma 7. If the event K20(S, c)
occurs, then Lemma 7 implies sj [bi] = q(c) for j = 11, . . . , 20, i ∈ S.

Since there are
√
t possible colors and |[t]10| < t10, applying both (2) and Lemma 9 we get

Pr[K20] ≤
∑

c∈[
√
t]

∑

S∈[t]10

Pr[P (S, q(c)) ≥ 10] ≤
∑

c∈[
√
t]

∑

S∈[t]10

t−30 ≤ t1/2 · t10 · t−30 = t−39/2 < 1,

for all t > 1. Therefore, there is an optimal coloring such that there is no monochromatic clique of size more than 20.
Theorem 5 now follows directly from Lemmas 6 and 10.

2) Lower Bound for VSMAX-I and VSALL-I from MONOCHROMATIC CLIQUE: We are now ready to use Theorem 5
to show an Ω(log d/ log log d) lower bound for VSMAX-I. We will describe a lower bound instance for VSMAX-I whose
structure is based on an instance of MONOCHROMATIC CLIQUE. This will allow us to use the lower bound instance from
Theorem 5 as a black box to produce the desired lower bound for VSMAX-I.

We first set the problem definition of MONOCHROMATIC CLIQUE to be for m colors where m is also the number of
machines used in the VSMAX-I instance. Let IC be the lower-bound instance for this problem given by Theorem 5. This
produces a graph G of m2 vertices such that the algorithm forms a monochromatic clique of size

√
m, whereas the largest

monochromatic clique in the optimal solution is of size O(1). Let Gj = (Vj , Ej) be the graph in IC after vertices v1, . . . , vj
have been issued (and so Gn = G). We define the corresponding lower bound instance for VSMAX-I as follows (see Figures
3 and 4 for an illustration):
• There are m2 jobs, which correspond to vertices v1, . . . , vm2 from IC .
• Each job has d =

(
m2
√
m

)
dimensions, where each dimension corresponds to a specific

√
m-sized vertex subset of the

m2 vertices. Let S1, . . . , Sd be an arbitrary ordering of these subsets.
• Job vectors will be binary. Namely, the kth vector entry for job j is 1 if vj ∈ Sk and the vertices in {v1, · · · , vj}∩Sk

form a clique in Gj (if {v1, · · · , vj} ∩ Sk = {vj}, then it is considered a 1-clique); otherwise, the kth entry is 0.
• Let c1, . . . , cm define an ordering on the available colors from IC . We match each color from IC to a machine in our

scheduling instance. Therefore, when the VSMAX-I algorithm makes an assignment for a job, we translate this machine
assignment as the corresponding color assignment in IC . Formally, if job j is placed on machine i in the scheduling
instance, then vertex vj is assigned color ci in IC .

Since assigning jobs to machines corresponds to colorings in IC , it follows that the largest load in dimension k is the size
of the largest monochromatic sub-clique in Sk. IC is given by the construction in Theorem 5; therefore at the end of the
instance, there will exist a dimension k′ such that the online algorithm colored every vertex in Sk′ with some color ci. Thus,
machine i will have

√
m load in dimension k′. In contrast, Theorem 5 ensures that all the monochromatic cliques in the

optimal solution are of size O(1), and therefore the load on every machine in dimension k′ is O(1).
The relationship between m and d is given as follows.

Fact 11. If d =
(
m2
√
m

)
, then

√
m = Ω(log d/ log log d).

{1, 2, 3}
Dimension 1

.

{2, 3, 6} {2, 4, 6}
Dimension

�
81
3

�{79, 80, 81}

Machine 1

Machine 2

...

Machine 9

Color-to-machine
correspondence

1 3

2

Dimension 2
{1, 2, 4}

1

2 2 2

{1, 2, 5}

1

2

5
1

2

3

5

4

6
Job 6 vector:

(0), , , . . . , , , . . . ,0 0 01 0

Algorithm’s Monochromatic
Clique Solution

Figure 3. Illustration of the lower bound construction for VSMAX-I using the MONOCHROMATIC CLIQUE lower bound (Theorem 5) for
an instance where m = 9 (and thus d =

(
92√
9

)
=
(
81
3

)
for the VSMAX-I instance and t = 9 for the MONOCHROMATIC CLIQUE instance).

Currently job 6 is being issued; its binary load vector, which is based on the current edge structure in the MONOCHROMATIC CLIQUE
instance, is given above the machines/dimensions. Observe that job 6 has 0 load in the first three dimensions and the last dimension since
6 is not contained in any of the these dimensions’ Sk sets (indicated below). It does have load 1 in the dimension corresponding to set
{2, 3, 6} since vertex 6 forms a clique with vertices 2 and 3 in the MONOCHROMATIC CLIQUE instance; however, it still has load 0 in
dimension {2, 4, 6} since vertex 6 does not form a clique with vertices 2 and 4.

{1, 2, 3}

.

{2, 3, 6} {2, 4, 6} {79, 80, 81}

Machine 1

Machine 2

...

Machine 9

1 3

2

{1, 2, 4}

1

2 2 2

{1, 2, 5}

1

2

5
1

2

3

5

4

6

6

Figure 4. State of the construction after job 6 is assigned to machine 3. Since black is the color we associated with machine 3, this job
assignment by the VSMAX-I algorithm is translated as coloring vertex 6 black in the MONOCHROMATIC CLIQUE instance.

Proof: We will use the following well-known bounds on
(
n
k

)
: for integers 0 ≤ k ≤ n,

(
n
k

)k ≤
(
n
k

)
≤
(
en
k

)k
. First, we

observe that

log d = log

(
m2

√
m

)
≤ log

(
em2

√
m

)√m
= log(e

√
m ·m(3/2)

√
m) =

√
m · (1 + (3/2) logm). (3)

We also have

log log d = log log

(
m2

√
m

)
≥ log log

(
m2

√
m

)√m
≥ log((3/2)

√
m logm) ≥ (1/2) logm. (4)

Hence, combining Eqns. (3) and (4), we obtain
√
m ≥ log d

1 + (3/2) logm
≥ log d

1 + 3 log log d
,

which implies that
√
m = Ω(log d/ log log d), as desired.

To end the section, we show that our lower bound for VSMAX-I extends to general Lr norms (Theorem 3). As before,
our lower bound construction forces any algorithm to schedule jobs so that there exists a dimension k′ where at least one
machine has load at least

√
m, whereas the load on every dimension of every machine in the optimal solution is bounded

by some constant C. Since any dimension has at most
√
m jobs with load 1, any assignment ensures that there are at most

√
m machines with non-zero load in a given dimension. Therefore, in the optimal solution, the Lr-norm of the load vector

for dimension k′ is at most (Cr · √m)1/r = C ·m1/(2r).
Thus, the ratio between the objective of the solution produced by the online algorithm and the optimal solution is at least

m1/2/(C ·m1/2r) = (1/C) ·m(r−1)/(2r). Using Fact 11, we conclude the lower bound.

B. Upper Bounds for VSMAX-I and VSALL-I

In this section we prove the upper bounds in Theorem 1 (VSMAX-I) and Theorem 3 (VSALL-I). First, we give a randomized
O(log d/ log log d)-competitive online algorithm for VSMAX-I (Section II-B1) and then show how to derandomize it (Section
II-B2). Next, we give an O((log d/ log log d)

r−1
r)-competitive algorithm for VSALL-I (Section II-B3), i.e., for each dimension

k and 1 ≤ r ≤ logm, ‖Λ(k)‖r is competitive with the optimal schedule for dimension k under the Lr norm objective.
Throughout the section we assume that a priori, the online algorithm is aware of both the final volume of all jobs on

each dimension and the largest load over all dimensions and jobs. We note that the lower bounds claimed in Theorems 1
and 3 are robust against this assumption since the optimal makespan is always a constant and this knowledge does not help
the online algorithm. Furthermore, these assumptions can be completely removed for our VSMAX-I algorithm by updating a
threshold on the maximum job load on any dimension and the total volume of jobs that the algorithm has observed so far.
However, in order to make our presentation more transparent and our notation simple, we present our results under these
assumptions.

For each job j that arrives online, both our VSMAX-I and VSALL-I algorithms will perform the following transformation:
• Transformation 1: Let V = 〈V1, . . . , Vd〉 be the volume vector given to the algorithm a priori, where Vk denotes the

total volume of all jobs for dimension k. For this transformation, we normalize pj(k) by dividing it by Vk/m (for ease of
notation, we will still refer to this normalized value as pj(k)).

Our VSMAX-I and VSALL-I algorithms will also perform subsequent transformations; however, these transformations will
differ slightly for the two algorithms.

1) Randomized Algorithm for VSALL-I: We now present our randomized O(log d/ log log d)-competitive algorithm for
VSMAX-I. Informally, our algorithm works as follows. For each job j, we first attempt to assign it to a machine i chosen
uniformly at random; however, if the resulting assignment would result in a load larger than O(log / log log d) on machine
i, then we dismiss the assignment and instead assign j greedily among other previously dismissed jobs. In general, a greedy
assignment can be as bad as Ω(d)-competitive; however, in our analysis we show that a job is dismissed by the random
assignment with low probability. Therefore in expectation, the total volume of these jobs is low enough to assign greedily
and still remain competitive.
Instance Transformations: Before formally defining our algorithm, we define additional online transformations and outline
the properties that these transformations guarantee. Note that we perform these transformations for both the randomized algo-
rithm presented in this section and the derandomized algorithm presented in Section II-B2. These additional transformations
are defined as follows (which are preformed in sequence after Transformation 1):
• Transformation 2: Let T be the load of the largest job in the instance (given a priori). If for dimension k we have
T ≥ Vk/m, then for each job j we set pj(k) to be (pj(k) ·Vk)/(mT). In other words, we normalize jobs in dimension
k by T instead of m/Vk.

• Transformation 3: For each job j and dimension k, if pj(k) < (1/d) maxk′ pj(k
′), then we increase pj(k) to

(1/d) maxk′ pj(k
′).

Observe that after we apply Transformations 1 and 2 to all jobs, we have
∑
j pj(k) ≤ m for all k ∈ [d] and 0 ≤ pj(k) ≤ 1

for all jobs j and k ∈ [d].
In Lemmas 12 and 13, we prove additional properties that Transformation 3 preserves. Since Transformations 1 and 2 are

simple scaling procedures, an α-competitive algorithm on the resulting scaled instance is also α-competitive on the original
instance, if we only apply the first two transformations. In Lemma 12, we prove that this property is still maintained after
Transformation 3.

Lemma 12. After Transformations 1 and 2 have been applied, Transformation 3 increases the optimal makespan by a factor
of at most 2.

Proof: Fix a machine i and a dimension k. Let OPT denote the optimal assignment before Transformation 3 is applied.
Let J∗(i) denote the jobs assigned to machine i in OPT, Λ∗i (k) be the load of OPT on machine i in dimension k, and
Λ∗ = maxi,k Λ∗i (k) denote the makespan of OPT. We will show that Transformation 3 can increase the load on machine i
in dimension k by at most Λ∗.

Let V ∗i =
∑
j∈J∗(i)

∑
k′∈[d] pj(k

′) denote the total volume of jobs that OPT assigns to machine i. Observe that by a
simple averaging argument, we have Vi/d ≤ maxk′∈[d] Λ∗i (k

′). Since Transformation 3 can increase the load of a job j in
a fixed dimension by at most (1/d) maxk′ pj(k

′), we can upper bound the total increase in load on machine i in dimension
k as follows:

∑

j∈J∗(i)

(1/d) max
k′

pj′(k
′) ≤ V ∗i /d ≤ max

k′∈[d]
Λ∗i (k

′) ≤ Λ∗, (5)

as desired. Note that the first inequality follows from the fact that the sum of maximum loads on a machine is at most the
total volume of its jobs.

Recall that after Transformations 1 and 2,
∑
j pj(k) ≤ m for all k ∈ [d]. In Lemma 13, we show that this property is

preserved within a constant factor after Transformation 3.

Lemma 13. After performing Transformation 3,
∑
j pj(k) ≤ 2m for all k ∈ [d].

Proof: Consider any fixed dimension k ∈ [d]. After Transformation 3, each job j’s load on dimension k increases by
at most (1/d) maxk′ pj(k

′). Hence the total increase in load from jobs in dimension k is at most
∑

j

(1/d) max
k′

pj(k
′) ≤ (1/d)

∑

j

∑

k′∈[d]

pj(k
′) ≤ (1/d)md ≤ m,

where the second inequality and the lemma follow from the fact that
∑
j pj(k) ≤ m before Transformation 3.

In summary, the properties that we collectively obtain from these transformations are as follows:
• Property 1. For all k ∈ [d],

∑
j pj(k) ≤ 2m.

• Property 2. For all j and k ∈ [d], 0 ≤ pj(k) ≤ 1.
• Property 3. For all j and k ∈ [d], (1/d) maxk′ pj(k

′) ≤ pj(k) ≤ maxk′ pj(k
′).

• Property 4. The optimal makespan is at least 1.
Property 1 is a restatement of Lemma 13. Property 2 was true after the first two transformations, and Transformation 3

has no effect on this property. Property 3 is a direct consequence of Transformation 3.
To see why Property 4 is true, let j be the job with the largest load T in the instance, and let k = arg maxk′ pj(k

′)
(i.e., maxk′ pj(k

′) = T). If Transformation 2 is applied to dimension k, then pj(k) = 1 afterwards, which immediately
implies Property 4. Otherwise, only Transformations 1 and 3 are applied to dimension k and we have

∑
j′ pj′(k) ≥ m,

which again leads to Property 4 by a simple volume argument. Thus, by Property 4 and Lemma 12, it sufficient to show
that the makespan of the algorithm’s schedule is O(log d/ log log d).
Algorithm Definition: As discussed earlier, our algorithm consists of two procedures: a random assignment and greedy
packing. It will be convenient to assume that the algorithm has two disjoint sets M1, M2 of m identical machines that
will be used independently by the two procedures, respectively. Each machine in M1 is paired with an arbitrary distinct
machine in M2, and the actual load on a machine will be evaluated as the sum of the loads on the corresponding pair of
machines. In other words, to show competitiveness it is sufficient to prove that all machines in both M1 and M2 have load
O(log d/ log log d).

Define the parameter α := 10 log d
log log d . Our two procedures are formally defined as follows.

• First procedure (random assignment): Assign each job to one of the machines in M1 uniformly at random. Let J1
j (i)

denote the subset of the first j jobs {1, 2, ..., j} that are assigned to machine i in this procedure, and let Λ1
i,j(k) denote

the resulting load on machine i on dimension k due to jobs in J1
j (i). If Λ1

i,j(k) ≥ 2α + 1 for some k ∈ [d], then we
pass job j to the second procedure (however, note that all jobs are still scheduled by the first procedure; so even if a
job j is passed to the second procedure after being assigned to machine i in the first procedure, j still contributes load
to Λ1

i (k) for all k).
• Second procedure (greedy packing): This procedure is only concerned with the jobs J2 that are passed from the first

procedure. It allocates each job in J2 (in the order that the jobs arrive in) to one of the machines in M2 such that the
resulting makespan, maxi∈M2,k∈[d] Λ2

i,j(k) is minimized; Λ2
i,j(k) is analogously defined for this second procedure as

above.
This completes the description of the algorithm. We will let J1(i) := J1

n(i) and Λ1
i (k) := Λ1

i,n(k), and define J2(i) and
Λ2
i (k) similarly. We emphasize again that jobs in J2 are scheduled only on machines M2; all other jobs are scheduled on

M1 machines.
Algorithm Analysis: It follows directly from the definition of the algorithm that the loads on machines in M1 are at most
2α+1 = O(log d/ log log d). Therefore, we are only left with bounding the loads on machines in M2. The following lemma

shows that the second procedure receives only a small fraction of the total volume, which then allows us to argue that the
greedy assignment in the second procedure is α-competitive.

Lemma 14. The probability that a job j is passed to the second procedure is at most 1/d3, i.e. Pr[j ∈ J2] ≤ 1/d3.

Proof: Fix a machine i, job j and dimension k. Suppose job j was assigned to machine i by the first procedure and
is passed to the second procedure because we would have had Λ1

i,j(k) ≥ 2α + 1. Since pj(k) ≤ 1 due to Property 2, it
follows that Λ1

i,j−1(k) ≥ 2α. Therefore we will show

Pr[Λ1
i,j−1(k) ≥ 2α] ≤ 1/d4, (6)

where the probability space is over the random choices of jobs 1, 2, ..., j − 1. Once inequality (6) is established, the lemma
follows from a simple union bound over all dimensions.

To show (6), we use standard Chernoff-Hoeffding bounds (stated in Theorem 8 earlier). Note that E[Λ1
i,j−1(k)] ≤ 2 due to

Property 1 and the fact that jobs are assigned to machines uniformly at random. To apply the inequality, we define random
variables X1, X2, ..., Xj−1 where Xj′ = 1 if job j′ is assigned to machine i; otherwise Xj′ = 0. Set the parameters of
Theorem 8 as follows: aj′ = pj′(k), µ = 2, and δ = α− 1. Thus we have:

Pr[Λ1
i,j−1(k) ≥ 2α] = Pr


 ∑

j′∈[j−1]

aj′Xj′ ≥ αµ


 = Pr


 ∑

j′∈[j−1]

aj′Xj′ ≥ (1 + δ)µ




≤
(

eδ

(1 + δ)(1+δ)

)µ
≤ eδ

(1 + δ)(1+δ)

≤ 1/(5 log d/ log log d)(5 log d/ log log d) ≤ 1/d4 (for sufficiently large d),

as desired.
Next, we upper bound the makespan of the second procedure in terms of its total volume of jobs V2, i.e. V2 =∑
j∈J2,k∈[d] pj(k).

Lemma 15. maxi∈M2,k∈[d] Λ2
i (k) ≤ V2/m+ 1.

Proof: For sake of contradiction, suppose that at the end of the instance there exists a dimension k and machine i such
that Λ2

i (k) > V2/m+ 1. Let j be the job that made machine i first cross this V2/m+ 1 threshold in dimension k. For each
machine i′, let ki′ = arg maxk′ Λ

2
i,j−1(k′) denote the dimension with maximum load on machine i′ before j was assigned.

By Property 2 and the greediness of the algorithm, we have that Λ2
i′,j−1(ki′) > V2/m for all i′. Otherwise, j would have

been assigned to a machine other than i resulting in a makespan less than V2/m + 1 (since maxk,j pj(k) ≤ 1). However,
this implies that every machine in M2 has a dimension with more than V2/m load. Clearly, this contradicts the definition
of V2.

We are now ready to complete the analysis. From Lemma 14 and linearity of expectation, we know that

E[V2] ≤ 1

d3

∑

j,k∈[d]

pj(k) ≤ 1

d3
· 2dm =

m

d2
, (7)

where the second inequality follows from Property 1. Hence, inequality (7) along Lemma 15 imply that the second procedure
yields an expected makespan of O(1), which completes our analysis.

2) Derandomized Algorithm for VSMAX-I: Our derandomization borrows the technique developed in [44]. To derandomize
the algorithm, we replace the first procedure — a uniformly random assignment — with a deterministic assignment guided
by the following potential Φ. Let f(x) := αx for notational simplicity. Recall that α := 10 log d/ log log d.

Φi,k(j) := f


Λ1

i,j(k)− α

m

∑

j′∈[j]

pj′(k)


 ∀i ∈M1, j ∈ [n], k ∈ [d]

Φ(j) :=
∑

i∈M

d∑

k=1

Φi,k(j)

• (New deterministic) first procedure. Each job j is assigned to a machine i such that Φ(j) is minimized. If Λi,j(k) ≥
3α + 1, then j is added to queue J2 so that it can be scheduled by the second procedure. As before, each job is
scheduled by either the first procedure or the second, and contributes to the “virtual” load Λi,j(k) in either case.

Lemma 16. Φ(j) is non-increasing in j.

Proof: Consider the arrival of job j. To structure our argument, we assume the algorithm still assigns j to a machine
in M1 uniformly at random. Our goal now is to show that E[Φ(j)] ≤ Φ(j − 1), which implies the existence of a machine
i such that assigning job j to the machine i leads to Φ(j) ≤ Φ(j − 1) (and such an assignment is actually found by the
algorithm since its assignment maximizes the decrease in potential). We bound E[Φi,k(j)] as follows.

E[Φi,k(j)] =
1

m
f


Λi,j−1 + pj(k)− α

m
pj(k)− α

m

∑

j′∈[j−1]

Λi,j−1(k)




+ (1− 1

m
)f


Λi,j−1 −

α

m
pj(k)− α

m

∑

j′∈[j−1]

Λi,j−1(k)




= Φi,k(j − 1) · α− α
mpj(k) ·

(
1

m
(αpj(k) − 1) + 1

)

≤ Φi,k(j − 1) · α− α
mpj(k)

(
pj(k)

m
(α− 1) + 1

)
(8)

≤ Φi,k(j − 1) · exp

(
−(α logα) · pj(k)

m

)
exp

(
pj(k)

m
· (α− 1)

)
(9)

≤ Φi,k(j − 1)

Inequality (8) follows since αx − 1 ≤ (α− 1)x for x ∈ [0, 1], and pj(k) ≤ 1 due to Property 2. Inequality (9) follows from
the fact that x+ 1 ≤ ex. Therefore, by linearity of expectation, we have E[Φ(j)] ≤ Φ(j−1), thereby proving the lemma.

The next corollary follows from Lemma 16 and the simple observation that Φ(0) = md.

Corollary 17. Φ(n) ≤ md.

As in Section II-B1, it is straightforward to see that the algorithm forces machines in M1 to have makespan O(α),
so we again focus on the second procedure of the algorithm. Here, we need a deterministic bound on the total volume
V2 =

∑
j∈J2

∑
k∈[d] pj(k) that can be scheduled on machines in M2. Lemma 18 provides us with such a bound.

Lemma 18. V2 ≤ m/d.

Proof: Consider a job j ∈ J2 that was assigned to machine i in the first procedure. Let k(j) be an arbitrary dimension
k with Λ1

i,j ≥ 3α + 1 (such a dimension exists since j ∈ J2). Let J2
i (k) = {j : j ∈ J1(i) ∩ J2 and k(j) = k} denote the

set of jobs j ∈ J2 that were assigned to machine i by the first procedure and are associated with dimension k. We upper
bound V2 as follows:

V2 =
∑

j∈J2

∑

k′∈[d]

pj(k
′)

=
∑

i∈M1,k∈[d]

∑

j∈J2
i (k)

∑

k′∈[d]

pj(k
′) (since we associate job j ∈ J2 with a unique dimemsion k(j))

≤
∑

i∈M1,k∈[d]

∑

j∈J2
i (k)

d2pj(k) (by Property 3)

≤ d2
∑

i∈M1

∑

k∈[d]

(Λ1
i (k)− 3α)+ (10)

To see why the last inequality holds, recall that Λ1
i,j(k) ≥ 3α + 1 when j ∈ J1(i) and k = k(j). This can happen only

when Λ1
i,j−1(k) ≥ 3α since pj(k) ≤ 1 due to Property 2. Since Λ1

i,j′(k) is non-decreasing in j′, the sum of pj(k) over all
such jobs j is at most (Λ1

i (k)− 3α)+; here (x)+ := max{0, x}.
We claim that for all i ∈M1, k ∈ [d],

Φi,k(n) ≥ αα(Λ1
i,j(k)− 3α)+ (11)

If Λ1
i,j(k)− 3α ≤ 0, then the claim is obviosuly true since Φi,k(n) is always non-negative. Otherwise, we have

Φi,k(n) ≥ αΛ1
i,n(k)−2α ≥ αα(Λi,j(k)− 3α),

where the first inequlaity follows from Property 1. So in either case, (11) holds.
By combining (10), (11), Corollary 17, and recalling α = 10 log d

log log d , we have

V2 ≤ d2
∑

i

∑

k

(Λ1
i (k)− 3α)+ ≤

d2

αα

∑

i

∑

k

Φi,k(n) ≤ d3

αα
m ≤ m

d
.

By Lemma 15, we have maxi∈M2,k∈[d] Λ2
i (k) ≤ 1

mV2 +1 = O(1). Thus, we have shown that each of the two deterministic
procedures yields a makespan of O(α) = O(log d/ log log d), thereby proving the upper bound.

3) Algorithm for VSALL-I: We now give our O((log d/ log log d)
r−1
r)-competitive algorithm for VSALL-I. Throughout

the section, let A denote the O(log d/ log log d)-competitive algorithm for VSMAX-I defined in Section II-B2. Our VSALL-I
algorithm essentially works by using A as a black box; however, we will perform a smoothing transformation on large loads
before scheduling jobs with A.
Algorithm Definition: We will apply the following transformation to all jobs j that arrive online after Transformation 1
has been performed (note that this is in replacement of Transformations 2 and 3 defined in Section II-B1).
• Transformation 2: If pj(k) > 1, we reduce pj(k) to be 1. If this load reduction is applied in dimension k for job j,

we say j is large in k; otherwise, j is small in dimension k.
It is straightforward to see that Transformations 1 and 2 provide the following two properties:
• Property 1:

∑
j∈J pj(k) ≤ m for all k ∈ [d].

• Property 2: 0 ≤ pj(k) ≤ 1 for all j ∈ J, k ∈ [d].
On this transformed instance, our algorithm simply schedules jobs using our VSMAX-I algorithm A.

Algorithm Analysis: Let α = O(log d/ log log d) be the competitive ratio of algorithm A. Clearly if we can establish
α(r−1)/r-competitiveness for the scaled instance (i.e. just applying Transformation 1 to all jobs but not Transformation 2),
then our algorithm is competitive on the original instance as well. Let OPT′(k, r) be the cost of the optimal solution on the
scaled loads in dimension k. In Lemma 19, we establish two lower bounds on OPT′(k, r)r.

Lemma 19. OPT′(k, r)r ≥ max


∑

j∈J
pj(k)r,m ·


∑

j∈J
pj(k)/m



r
 = max


∑

j∈J
(pj(k)r) ,m


 .

Proof: Consider any fixed assignment of jobs, and let J ′(i) ⊆ J be the set of jobs assigned to machine i. Consider any
fixed k. The first lower bound (within the max in the statement of the lemma) follows since

∑

i∈M


 ∑

j∈J′(i)

pj(k)



r

≥
∑

i∈M

∑

j∈J′(i)

pj(k)r =
∑

j∈J
pj(k)r.

The second lower bound is due to the convexity of xr when r ≥ 1.
Let J(i) ⊆ J be the set of jobs assigned to machine i by the online algorithm. Let `(i, k) and s(i, k) be the set of jobs

assigned to machine i that are large and small in dimension k, respectively. For brevity, let σ`(i, k) =
∑
j∈`(i,k) pj(k) and

σs(i, k) =
∑
j∈s(i,k) pj(k). Observe that since algorithm A is α-competitive on an instance with both Properties 1 and 2,

we obtain the following additional two properties for the algorithm’s schedule:
• Property 3: |`(i, k)| ≤ α for all i ∈M,k ∈ [d].
• Property 4: σs(i, k) ≤ α for all i ∈M,k ∈ [d].
Using these additional properties, the next two lemmas will bound the contribution of both large and small loads to the

objective; namely, we need to bound both σ`(i, k)r and
∑
i σs(i, k)r in terms of α. Lemma 20 provides this bound for large

loads, while Lemma 21 will be used to bound small loads.

Lemma 20. σ`(i, k)r =
(∑

j∈`(i,k) pj(k)
)r
≤ αr−1

∑
j∈`(i,k) pj(k)r.

Proof: Let h = |`(i, k)|. Then, it follows that

 ∑

j∈`(i,k)

pj(k)



r

=


 1

h

∑

j∈`(i,k)

(pj(k) · h)



r

≤ 1

h

∑

j∈`(i,k)

(pj(k) · h)r (due to the convexity of xr)

= hr−1
∑

j∈`(i,k)

pj(k)r ≤ αr−1
∑

j∈`(i,k)

pj(k)r (by Property 3).

Recall that by Property 1, we have that σs(i, k) ≤ m. Using this fact and along with Property 4, the general statement
shown in Lemma 21 will immediately provide us with the desired bound on

∑
i σs(i, k)r (stated formally in Corollary 22).

Lemma 21. Let f(x) = xr for some r ≥ 1 whose domain is defined over a set of variables x1, . . . , xn ∈ [0, α] where
α ≥ 1. If

∑m
i=1 xi ≤ m, then

m∑

i=1

f(xi) ≤ 2m αr−1.

Proof: Let f̃ =
∑m
i=1 f(xi). We claim that f̃ is maximized when 0 < xi < α for at most one i ∈ [m]. If there are

two such variables xi and xj with 0 < xi ≤ xj < α, it is easy to see that we can further increase f̃ by decreasing xi and
increasing xj by an infinitesimal equal amount (i.e. xi ← xi − ε and xj ← xj + ε) due to convexity of f .

Hence, the f̃ is maximized when the multi-set {xi : i ∈ [m]} has bm/αc copies of α, and one copy of m − αbm/αc
(which is at most α), which gives,

f̃ ≤ bm/αcf(α) + f(m− αbm/αc). (12)

If bm/αc ≥ 1, then it follows that
m∑

i=1

f(xi) = f̃ ≤ (bm/αc+ 1)f(α) (by Eqn. (12) and since m− αbm/αc ≤ α)

≤ 2(m/α)αr = 2m αr−1 (since bm/αc ≥ 1).

In the case where m < α, f̃ is maximized by making single xi = m. Therefore f̃ ≤ f(m) = mr ≤ mαr−1.

Corollary 22. For all dimensions k,
∑
i∈M σs(i, k)r ≤ 2m αr−1.

We are now ready to bound ‖Λ(k)‖r against OPT′(k, r).

Lemma 23. For all dimensions k, ‖Λ(k)‖r = O(α(r−1)/r)OPT′(k, r), i.e., the Lr norm of the vector load is at most
O(α(r−1)/r) times the Lr norm of the vector load of the optimal solution.

Proof: Using Lemmas 19, 20, and Corollary 22, we have the following bound for |Λ(k)‖rr =
∑
i∈M

(∑
j∈J(i) pj(k)

)r
:

∑

i∈M


 ∑

j∈J(i)

pj(k)



r

=
∑

i∈M


 ∑

j∈`(i,k)

pj(k) +
∑

j∈s(i,k)

pj(k)



r

≤
∑

i∈M


2 max


 ∑

j∈`(i,k)

pj(k),
∑

j∈s(i,k)

pj(k)





r

≤ 2r
∑

i∈M




 ∑

j∈`(i,k)

pj(k)



r

+


 ∑

j∈s(i,k)

pj(k)



r


≤ 2r


αr−1

∑

j∈`(i,k)

pj(k)r + 2m · αr−1


 (by Lemma 20 and Corollary 22)

≤ (2r+1αr−1)OPT′(k, r)r (by Lemma 19)

which, raising both the LHS and RHS to 1/r, gives us

‖Λ(k)‖r ≤
(

21+1/rα(r−1)/r
)

OPT′(k, r) = O(α(r−1)/r)OPT′(k, r).

The upper bound in Theorem 3 now follows immediately from Lemma 23.

III. UNRELATED MACHINES

Now, we consider the online vector scheduling problem for unrelated machines. In this section, we obtain tight upper
and lower bounds for this problem, both for the makespan norm (Theorem 2) and for arbitrary Lr norms (Theorem 4).

A. Lower Bound for VSANY-U

In this section we prove the lower bound in Theorem 4, i.e., we show that we can force any algorithm to make an
assignment where there exists a dimension k that has cost at least Ω(log d+ rk) where 1 ≤ rk ≤ logm.

Our construction is an adaptation of the lower bounds in [23] and [21] but for a multidimensional setting. Informally,
the instance is defined as follows. We set m = d and then associate ith machine with the ith dimension, i.e., machine i
only receives load in the ith dimension. We then issue jobs in a series of log d+ 1 phases. In a given phase, there will be
a current set of active machines, which are the only machines that can be loaded in the current phase and for the rest of
the instance (so once a machine is inactivated it stays inactive). More specifically, in a given phase we arbitrarily pair off
the active machines and then issue one job for each pair, where each job has unit load but is defined such that it must be
assigned to a unique machine in its pair. When a phase completes, we inactivate all the machines that did not receive load
(so we cut the number of active machines in half). This process eventually produces a load of log d+ 1 on some machine,
whereas reversing the decisions of the algorithm gives an optimal schedule where Lk = 1 for all k ∈ [d].

More formally let d = 2h. The adversary sets the instance target parameters to be Tk = 1 for all k ∈ [d] (it will be clear
from our construction that these targets are feasible). For each job j, let m1(j),m2(j) ∈ [m] denote the machine pair the
adversary associates with job j. We define j to have unit load on machines m1(j), m2(j) in their respective dimensions
and arbitrarily large load on all other machines. Formally, pi,j(k) is defined to be

pi,j(k) =





0 if i 6= k and i ∈ {m1(j),m2(j)}
1 if i = k and i ∈ {m1(j),m2(j)}
∞ otherwise.

As discussed above, the adversary issues jobs in h + 1 phases. Phases 1 through h will work as previously specified
(we describe how the final (h+ 1)th phase works shortly). Let S` denote the active machines in phase `. In the `th phase,
we issue a set of jobs J` where |J`| = 2h−`. We then pair off the machines in S` and use each machine pair as m1(j)
and m2(j) for a unique job j ∈ J`. Clearly the algorithm must schedule j on m1(j) or m2(j), and thus 2h−` machines
accumulate an additional load of 1 in phase `. Machines that receive jobs in phase ` remain active in phase `+ 1; all other
machines are set to be inactive. In the final phase h+ 1, there will be a single remaining active machine i′; thus, we issue
a single job j′ with unit load that must be scheduled on i′ (note that this final phase is added to the instance only to make
our target vector feasible).

Based on this construction, there will exist a dimension k′ at the end of the instance that has load h + 1 on machine
k′ and 0 on all other machines. Observe that the optimal schedule is obtained by reversing the decisions of the algorithm,
which places a unit load on one machine in each dimension. Namely, if j was assigned to m1(j), then the optimal schedule
assigns j to m2(j) (and vice versa), with the exception that j′ is assigned to its only feasible machine.

In the case that log d ≥ rk′ , the adversary stops. Since Tk′ = 1 and Lk′ = h + 1 = log d + 1, we have that Lk′/Tk′ =
Ω(log d+ rk). If log d < rk′ , then the adversary stops the current instance and begins a new instance. In the new instance,
we simply simulate the lower bound from [21] in dimension k′ (i.e., the only dimension that receives load is dimension k′;
the adversary also resets the target vectors accordingly). Here, the adversary forces the algorithm to be Ω(rk′)-competitive,
which, since log d < rk′ , gives us the desired bound of Ω(log d+ rk′).

B. Upper Bound

Our goal is to prove the upper bound in Theorem 4. Recall that we are given targets Tk, and we have to show that
‖Λ(k)‖rk = O(log d + rk) · Tk for all k ∈ [d]. (Λ(k) is the load vector in dimension k and rk is the norm that we are
optimizing.) First, we normalize pi,j(k) to pi,j(k)/Tk for all dimensions k; to keep the notation simple, we will also denote
this normalized load pi,j(k). This ensures that the target objective is 1 in every dimension. (We assume wlog that Tk > 0.
If Tk = 0, the algorithm discards all assignments that put non-zero load on dimension k).

1) Description of the Algorithm: As described in the introduction, our algorithm is greedy with respect to a potential
function defined on modified Lrk norms. Let Lk = ‖Λ(k)‖rk denote the Lrk -norm of the machine loads in the kth dimension,
and qk = rk + log d denote the desired competitive ratio; all logs are base 2. We define the potential for dimension k as
Φk = Lqkk . The potentials for the d different dimensions are combined using a weighted linear combination, where the
weight of dimension k is αk = (3qk)−qk . Note that dimensions that allow a smaller slack in the competitive ratio are given
a larger weight in the potential. We denote the combined potential by Φ =

∑d
k=1 αk · Φk. The algorithm assigns job j to

the machine that minimizes the increase in potential Φ.

2) Competitive analysis: Let us fix a solution satisfying the target objectives, and call it the optimal solution. Let Λi(k)
and Λ∗i (k) be the load on the ith machine in the kth dimension for the algorithmic solution and the optimal solution
respectively. We also use L∗k to denote the Lrk norm in the kth dimension for the optimal solution; we have already asserted
that by scaling, L∗k = 1.

Similar to [22], [23], we compare the actual assignment made by the algorithm (starting with zero load on every machine
in every dimension) to a hypothetical assignment made by the optimal solution starting with the final algorithmic load on
every machine (i.e., load of Λi(k) on machine i in dimension k).

We will need the following fact for our analysis, which follows by observing that all parameters are positive, the function
is continuous in the domain, and its derivative is non-negative.

Fact 24. The function f(x1, x2, . . . , xm) = (
∑
i(xi + ai)

w)
z − (

∑
i x

w
i)
z is non-decreasing if for all i ∈ [m] we restrict

the domain of xi to be [0,∞), w ≥ 1, z ≥ 1, and ai ≥ 0.

Using greediness of the algorithm and convexity of the potential function, we argue in Lemma 25 that the change in
potential in the former process is upper bounded by that in the latter process.

Lemma 25. The total change in potential in the online algorithm satisfies:

d∑

k=1

αkL
qk
k = Φ(n)− Φ(0) ≤

d∑

k=1

αk

(m∑

i=1

(
Λi(k) + Λ∗i (k)

)rk)qk/rk
−

d∑

k=1

αkL
qk
k

Proof: Let yi,j = 1 if the algorithm assigns job j to machine i; otherwise, yi,j = 0. Define y∗i,j similarly but for the
optimal solution’s assignments. We can express the resulting change in potential from scheduling job j as follows.

Φ(j)− Φ(j − 1) =
∑d
k=1 αk (Lqkk (j)− Lqkk (j − 1)) =

∑d
k=1 αk

((∑m
i=1 Λrki,j(k)

)qk/rk
−
(∑m

i=1 Λrki,j−1(k)
)qk/rk)

=
∑d
k=1 αk

((∑m
i=1

(
Λi,j−1(k) + pi,j(k) · yi,j

)rk)qk/rk
−
(∑m

i=1 Λrki,j−1(k)
)qk/rk)

. (13)

Since the online algorithm schedules greedily based on Φ(j), using optimal schedule’s assignment for job j must result
in a potential increase that is at least as large. Therefore by (13) we have

Φ(j)− Φ(j − 1) ≤
d∑

k=1

αk

((m∑

i=1

(
Λi,j−1(k) + pi,j(k) · y∗i,j

)rk)qk/rk
−
(m∑

i=1

Λrki,j−1(k)
)qk/rk)

. (14)

As loads are non-decreasing, Λi(k) ≥ Λi,j−1(k). Also note that rk ≥ 1 and

qk/rk = (rk + log d)/rk > 1.

Thus, we can apply Fact 24 to (14) (setting w = rk, z = qk/rk, and ai = pi,j(k) · y∗i,j) to obtain

Φ(j)− Φ(j − 1) ≤
d∑

k=1

αk

((m∑

i=1

(
Λi(k) + pi,j(k) · y∗i,j

)rk)qk/rk
−
(m∑

i=1

Λrki (k)
)qk/rk)

. (15)

We can again use Fact 24 to further bound the potential increase (using the same values of ai, w, and z, but now xi =
Λ∗i,j−1(k)):

Φ(j)− Φ(j − 1) ≤
d∑

k=1

αk

((m∑

i=1

(
Λi(k) + Λ∗i,j−1(k) + pi,j(k) · y∗ij

)rk)qk/rk
−
(m∑

i=1

(
Λi(k) + Λ∗i,j−1(k)

)rk)qk/rk)

=

d∑

k=1

αk

((m∑

i=1

(
Λi(k) + Λ∗i,j(k)

)rk)qk/rk
−
(m∑

i=1

(
Λi(k) + Λ∗i,j−1(k)

)rk)qk/rk)
. (16)

Observe that for a fixed k, the RHS of (16) is a telescoping series if we sum over all jobs j:
n∑

j=1

αk

((m∑
i=1

(
Λi(k) + Λ∗i,j(k)

)rk)qk/rk
−
(m∑

i=1

(
Λi(k) + Λ∗i,j−1(k)

)rk)qk/rk)
= αk

(m∑
i=1

(
Λi(k) + Λ∗i (k)

)rk)qk/rk
−
(m∑

i=1

(
Λi(k)

)rk)qk/rk
.

We have
n∑

j=1

(Φ(j)− Φ(j − 1)) = Φ(n)− Φ(0),

since this is also a telescoping series. By definition, Φ(0) = 0 and Φ(n) =
∑d
k=1 αkL

qk
k . Using these facts along with (16)

and (17), we establish the lemma:

d∑

k=1

αkL
qk
k =

n∑

j=1

(Φ(j)− Φ(j − 1)) (since Φ telescopes, Φ(0) = 0, and Φ(n) =

d∑

k=1

αkL
qk
k)

≤
d∑

k=1

αk

(m∑

i=1

(
Λi(k) + Λ∗i (k)

)rk)qk/rk
−

d∑

k=1

αkL
qk
k

)
(by (16) and (17)).

We proceed by applying Minkowski inequality (e.g., [45]), which states that for any two vectors v1 and v2, we have
‖v1 + v2‖r ≤ ‖v1‖r + ‖v2‖r. Applying this inequality to the RHS in Lemma 25, we obtain

d∑

k=1

αkL
qk
k ≤

d∑

k=1

αk

((m∑

i=1

Λrki (k)
)1/rk

+
(m∑

i=1

(Λ∗i (k))rk
)1/rk)qk

−
d∑

k=1

αkL
qk
k

=

d∑

k=1

αk

(
Lk + L∗k

)qk
−

d∑

k=1

αkL
qk
k . (17)

Next, we prove a simple lemma that we will apply to inequality (17).

Lemma 26. (Lk + L∗k)qk ≤ e1/2Lqkk + (3qk · L∗k)qk for all k ∈ [d].

Proof: First consider the case Lk ≥ 2qk · L∗k. Then it follows,

(Lk + L∗k)qk ≤ (1 + 1/(2qk))
qk · Lqkk

≤
(
e1/(2qk)

)qk
· Lqkk = e1/2Lqkk . (18)

Otherwise Lk < 2qk · L∗k, and then we have

(Lk + L∗k)qk ≤ (3qk · L∗k)qk .

Combining these two upper bounds completes the proof.
Thus, we can rearrange (17) and bound 2

∑d
k=1 αkL

qk
k as follows:

2
d∑

k=1

αkL
qk
k ≤

d∑

k=1

αk (Lk + L∗k)
qk ≤ e1/2

d∑

k=1

αkL
qk
k +

d∑

k=1

αk(3qk · L∗k)qk (by Lemma 26)

= e1/2
d∑

k=1

αkL
qk
k +

d∑

k=1

(L∗k)qk . (19)

Note that the last equality is due to the fact that α−1
k = (3qk)qk . By our initial scaling, L∗k = 1 for all k. Therefore, after

rearranging (19), we obtain
(

2− e1/2
) d∑

k=1

αkL
qk
k ≤

d∑

k=1

(L∗k)qk ≤ d,

which for any fixed k implies

Lk ≤
1

(
2− e1/2

)1/qk ·
(
d

αk

)1/qk

≤ 1

2− e1/2
·
(
d

αk

)1/qk

=
3

2− e1/2
·
(
d

1
rk+log d

)
qk < 10 · d 1

log d · qk = 20qk = O(rk + d),

where the first inequality uses qk ≥ 1 and 2−e1/2 < 1. This completes the proof of the upper bound claimed in Theorem 4.

ACKNOWLEDGEMENTS

S. Im is supported in part by NSF Award CCF-1409130. A part of this work was done by J. Kulkarni at Duke University,
supported in part by NSF Awards CCF-0745761, CCF-1008065, and CCF-1348696. N. Kell and D. Panigrahi are supported
in part by NSF Award CCF-1527084, a Google Faculty Research Award, and a Yahoo FREP Award.

REFERENCES

[1] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in NSDI, 2011, p. 24.

[2] G. Lee, B.-G. Chun, and R. H. Katz, “Heterogeneity-aware resource allocation and scheduling in the cloud,” in HotCloud, 2011.

[3] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource packing for cluster schedulers,” in SIGCOMM,
2014, pp. 455–466.

[4] A. Gulati, G. Shanmuganathan, A. Holler, C. Waldspurger, M. Ji, and X. Zhu, “Vmware distributed resource management: Design, im-
plementation, and lessons learned,” https://labs.vmware.com/vmtj/vmware-distributed-resource-management-design-implementation-
and-lessons-learned.

[5] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu, “Generating adaptation policies for multi-tier applications in
consolidated server environments,” in ICAC, 2008, pp. 23–32.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar, “Tarazu: optimizing mapreduce on heterogeneous clusters,” in
ACM SIGARCH Computer Architecture News, vol. 40, no. 1, 2012, pp. 61–74.

[7] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min fair sharing for datacenter jobs with constraints,” in ECCS,
2013, pp. 365–378.

[8] S. Zhang, B. Wang, B. Zhao, and J. Tao, “An energy-aware task scheduling algorithm for a heterogeneous data center,” in TRUSTCOM,
2013, pp. 1471–1477.

[9] A. K. Chandra and C. K. Wong, “Worst-case analysis of a placement algorithm related to storage allocation,” SIAM J. Comput.,
vol. 4, no. 3, pp. 249–263, 1975.

[10] R. A. Cody and E. G. C. Jr., “Record allocation for minimizing expected retrieval costs on drum-like storage devices,” J. ACM,
vol. 23, no. 1, pp. 103–115, 1976.

[11] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Understanding and abstracting total data center power,” in Workshop on
Energy-Efficient Design, 2009.

[12] S. Albers, “Energy-efficient algorithms,” Communications of the ACM, vol. 53, no. 5, pp. 86–96, 2010.

[13] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,” in FOCS, 1995, pp. 374–382.

[14] R. L. Graham, “Bounds for certain multiprocessing anomalies,” SIAM Journal of Applied Mathematics, 1966.

[15] C. Chekuri and S. Khanna, “On multidimensional packing problems,” SIAM J. Comput., vol. 33, no. 4, pp. 837–851, 2004.

[16] D. G. Harris and A. Srinivasan, “The moser-tardos framework with partial resampling,” in FOCS, 2013, pp. 469–478.

[17] Y. Azar, I. R. Cohen, S. Kamara, and F. B. Shepherd, “Tight bounds for online vector bin packing,” in STOC, 2013, pp. 961–970.

[18] A. Meyerson, A. Roytman, and B. Tagiku, “Online multidimensional load balancing,” in APPROX, 2013, pp. 287–302.

[19] M. M. Halldórsson and M. Szegedy, “Lower bounds for on-line graph coloring,” Theor. Comput. Sci., vol. 130, no. 1, pp. 163–174,
1994.

[20] T. Mütze, T. Rast, and R. Spöhel, “Coloring random graphs online without creating monochromatic subgraphs,” Random Struct.
Algorithms, vol. 44, no. 4, pp. 419–464, 2014.

[21] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter, “Load balancing in the lp norm,” in FOCS, 1995, pp.
383–391.

[22] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts, “On-line routing of virtual circuits with applications to load balancing
and machine scheduling,” J. ACM, vol. 44, no. 3, pp. 486–504, 1997.

[23] I. Caragiannis, “Better bounds for online load balancing on unrelated machines,” in SODA, 2008, pp. 972–981.

[24] Y. Azar, “On-line load balancing,” in Online Algorithms, The State of the Art, 1996, pp. 178–195.

[25] J. Sgall, “On-line scheduling,” in Online Algorithms, 1996, pp. 196–231.

[26] ——, “Online scheduling,” in Algorithms for Optimization with Incomplete Information, 2005.

[27] K. Pruhs, J. Sgall, and E. Torng, “Online scheduling,” Handbook of scheduling: algorithms, models, and performance analysis, 2004.

[28] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. Cambridge University Press, 1998.

[29] Y. Bartal, A. Fiat, H. J. Karloff, and R. Vohra, “New algorithms for an ancient scheduling problem,” J. Comput. Syst. Sci., vol. 51,
no. 3, pp. 359–366, 1995.

[30] D. R. Karger, S. J. Phillips, and E. Torng, “A better algorithm for an ancient scheduling problem,” J. Algorithms, vol. 20, no. 2, pp.
400–430, 1996.

[31] S. Albers, “Better bounds for online scheduling,” SIAM J. Comput., vol. 29, no. 2, pp. 459–473, 1999.

[32] R. Fleischer and M. Wahl, “Online scheduling revisited,” in ESA, 2000, pp. 202–210.

[33] U. Faigle, W. Kern, and G. Turán, “On the performance of on-line algorithms for partition problems,” Acta Cybern., vol. 9, no. 2,
pp. 107–119, 1989.

[34] Y. Bartal, H. J. Karloff, and Y. Rabani, “A better lower bound for on-line scheduling,” Inf. Process. Lett., vol. 50, no. 3, pp. 113–116,
1994.

[35] T. Gormley, N. Reingold, E. Torng, and J. Westbrook, “Generating adversaries for request-answer games,” in SODA, 2000, pp.
564–565.

[36] J. F. R. III, “Improved bound for the on-line scheduling problem,” PhD thesis, The University of Texas at Dallas, 2001.

[37] A. Avidor, Y. Azar, and J. Sgall, “Ancient and new algorithms for load balancing in the lp norm,” Algorithmica, vol. 29, no. 3, pp.
422–441, 2001.

[38] Y. Azar, J. Naor, and R. Rom, “The competitiveness of on-line assignments,” J. Algorithms, vol. 18, no. 2, pp. 221–237, 1995.

[39] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and L. Moscardelli, “Tight bounds for selfish and greedy load
balancing,” Algorithmica, vol. 61, no. 3, pp. 606–637, 2011.

[40] P. Berman, M. Charikar, and M. Karpinski, “On-line load balancing for related machines,” J. Algorithms, vol. 35, no. 1, pp. 108–121,
2000.

[41] G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos, “Convergence and approximation in potential games,” Theor. Comput. Sci.,
vol. 438, pp. 13–27, 2012.

[42] S. Suri, C. D. Tóth, and Y. Zhou, “Selfish load balancing and atomic congestion games,” Algorithmica, vol. 47, no. 1, pp. 79–96,
2007.

[43] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press, 1997.

[44] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering and packing problems,” in ESA, 2005, pp. 689–701.

[45] Wikipedia, “Minkowski inequality — Wikipedia, the free encyclopedia.”

