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Aperture imaging

Signal

Images can be taken using pinhole cameras, which have infinite depth of field

and do not suffer from chromatic aberration.
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Aperture imaging
Aperture Observation

Signal �
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Small pinholes allow little light =⇒ dark observations.
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Aperture imaging
Aperture Observation

Signal �
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Larger pinholes allow more light but leads to decrease in resolution

=⇒ blurry observations.
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Aperture imaging
Aperture Observation
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Multiple small pinholes =⇒ overlapping observations.
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Modified Uniformly Redundant Array (MURA)

Gottesman and Fenimore (1989)

A MURA pattern p consists of specified openings that has a corresponding

decoding pattern p̃:

∼

∗ =

Coded aperture p Decoding pattern p̃ δ
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Modified Uniformly Redundant Array (MURA)

Gottesman and Fenimore (1989)

∼

∗ ∗ =

︸ ︷︷ ︸

Coded observation

Decoding Reconstruction
pattern

MURA patterns are ∼50% open =⇒ coded observations are much brighter

than those from small pinhole cameras.
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MURA aperture imaging

Signal Aperture Observation Reconstruction

- - -

f p y f̂

The observation y is given by

y = f ∗ p + w

where w is zero-mean white Gaussian noise. The MURA reconstruction is

given by

f̂MURA = y ∗ p̃

where p̃ is the decoding pattern. This reconstruction method is linear in y.
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Coded aperture imaging

Signal Aperture Observation Reconstruction

- - -

f p y f̂

• MURA patterns are optimal assuming linear reconstruction and no

downsampling.

• Few guiding principles for coded aperture mask design for nonlinear

reconstructions.

• Low resolution observations useful for lower bandwidth and storage

requirements, for smaller focal plane arrays.
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Coded aperture imaging

Signal Aperture Observation Reconstruction

- - -

f p y f̂

?

This talk: How to design coded aperture, p, for nonlinear reconstruction of

signal from low-resolution noisy observations y.
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Compressive Sensing

Candès et al. (2006), Donoho (2006), Baraniuk (2007)

Recover signal f from limited observations y ∈ IRk:

=

y R

f

with (underdetermined) projection matrix R ∈ IRk×n and k � n.

Highly accurate estimates of f can be obtained with high probability if

• f is sparse in some basis W , i.e., f = Wθ with θ mostly zeros.

• RW is sufficiently “nice” (RIP, details to follow).
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`2 − `1 minimization

Candès and Tao (2005), Haupt and Nowak (2006)

Recover the signal f by solving the nonlinear optimization problem

θ̂ = argmin
θ

1

2
‖y −RWθ‖2

2 + τ‖θ‖1

f̂ = Wθ̂

where

• `2 term minimizes the least-squares error.

• `1 term drives small components of θ to zero.

• τ > 0 is a regularization parameter to make problem well-posed.

• `2 − `1 minimization (or equivalent variants) is the right problem to solve.
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Restricted Isometry Property (RIP)

Candès and Tao (2005)

A matrix R satisfies the Restricted Isometry Property of order m if

submatrices RT of R are almost an isometry, i.e., for some constant δm,

R

RT

(1− δm)‖z‖2
2 ≤ ‖RT z‖2

2 ≤ (1 + δm)‖z‖2
2

• Example: Elements of R are drawn from a zero-mean Gaussian

distribution – not realizable in most optical systems.

• Verifying the RIP for a particular matrix cannot be done computationally.
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Projection matrix R

In our setup, the observation y is given by

y = D(f ∗ p) + w,
�

����
�
��

A
AU

H
HHHj

Downsampling Signal Coded Gaussian
operator aperture noise
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Projection matrix R

In our setup, the observation y is given by

y = D(f ∗ p) + w,
�

����
�
��

A
AU

H
HHHj

Downsampling Signal Coded Gaussian
operator aperture noise

Then

Rf︷ ︸︸ ︷

Rf = D(f ∗ p) = (DF−1CpF)f

�
��	 ?

HHHHj
Inverse Transfer Fourier
Fourier function transform

transform
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Projection matrix R

In our setup, the observation y is given by

y = D(f ∗ p) + w,
�

����
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A
AU

H
HHHj

Downsampling Signal Coded Gaussian
operator aperture noise

Then

Rf︷ ︸︸ ︷

Rf = D(f ∗ p) = (DF−1CpF)f

�
��	 ?

HHHHj
Inverse Transfer Fourier
Fourier function transform

transform

- - - -

f Ff CpFf F−1CpFf DF−1CpFf
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Projection matrix R

In our setup, the observation y is given by

y = D(f ∗ p) + w,
�

����
�
��

A
AU

H
HHHj

Downsampling Signal Coded Gaussian
operator aperture noise

Then

Rf︷ ︸︸ ︷

Rf = D(f ∗ p) = (D

A︷ ︸︸ ︷
F−1CpF)f

The matrix A = F−1CpF is block-circulant with circulant blocks:

A =

︸ ︷︷ ︸
n blocks
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Projection matrix R

Bajwa et al. (2007)

Theorem: [Bajwa et al (2007)] If R is circulant whose entries are drawn

from an appropriate probability distribution, R satisfies the RIP with high

probability.

Proposed compressive coded aperture:

• R = DA is “pseudo-circulant” =⇒ R also satisfies the RIP with high

probability.

• RW , where W = Haar wavelet transform, also satisfies this property.

ICASSP 2008: Compressive coded aperture aperture superresolution image reconstruction Slide 9



Computing p from block-circulant A

General approach:

1. Draw elements of A randomly from Gaussian distribution (subject to a

symmetry constraint).

2. Set A = F−1CpF .

3. Solve for p.

Issue: A is very large — solving for p non-trivial computationally but possible

by exploiting structure of F−1CpF .
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Computing p from block-circulant A

Mask p must be physically realizable:

• p = real-valued =⇒ F(p) = circularly symmetric =⇒ A = symmetric

(A = AT ).

• p = non-negative =⇒ Shift p =⇒ R is no longer zero mean — this can

be compensated for in the reconstruction procedure.

• Rescale p so that its values ∈ [0, 1].

Example:

p =
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Gradient Projection for Sparse Reconstruction (GPSR)

Figueiredo et al. (2007)

The `2 − `1 minimization problem

θ̂ = argmin
θ

1

2
‖y −RWθ‖2

2 + τ‖θ‖1

is solved using the Gradient Projection for Sparse Reconstruction (GPSR)

algorithm. GPSR is

• fast, efficient, and accurate.

• shown to outperform many state-of-the-art methods for CS minimization.

Numerical experiment:

Compare three methods for reconstruction: (1) no coding, (2) proposed

coding, and (3) coding with rounded values (0 or 1) for simplicity.
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Numerical experiments

Original image Uncoded No coding
observation MSE = 0.1011

Coded Proposed coding Coding with 0 and 1
observation MSE = 0.0867 MSE = 0.0897

����

���� ����
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Summary: Compressive Coded Aperture

Aperture Observation

Signal �
���

-

- -

Reconstruction

@
@@R - -

CCA

Compressive Coded Aperture (CCA) enhances image reconstruction from

low-resolution observations using nonlinear methods.
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Thank you.

Have a nice day.
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