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Abstract. For some applications it is desired to approximate a set of m data points in IR"™ with
a convex quadratic function. Furthermore, it is required that the convex quadratic approximation
underestimate all m of the data points. It is shown here how to formulate and solve this problem
using a convex quadratic function with s = (n + 1)(n + 2)/2 parameters, s < m, so as to minimize
the approximation error in the L' norm. The approximating function is q(p, z), where p € IR® is the
vector of parameters, and x € IR™. The Hessian of ¢(p, x) with respect to x (for fixed p) is positive
semi-definite, and its Hessian with respect to p (for fixed z) is shown to be positive semi-definite
and of rank < n. An algorithm is described for computing an optimal p* for any specified set of m
data points, and computational results (for n = 4, 6,10, 15) are presented showing that the optimal
q(p*, z) can be obtained efficiently. It is shown that the approximation will usually interpolate s of
the m data points.

1 Introduction

The approximation of data in IR™ by a quadratic function has been extensively studied ([8],
[10], [12], [13]). This can be based on either interpolation of a specified number of data
points (equal to the number of parameters in the quadratic) (see [11], [17]), or minimizing
the error (in a suitable norm) of the quadratic approximation (see [2], [3], Chap. 15 of [10],
Sect. 3.3 of [13]). In these previous methods the quadratic approximation may be indefinite,
and data errors may have a large effect on the accuracy of the approximation.

These difficulties were addressed in several recent papers where the quadratic approx-
imation was required to be convex and the error was minimized in the one-norm ([5], [9],
[15]). In these papers the convex quadratic function was used to approximate a set of local
minima, as part of an iterative method to find the global minimum of a funnel-like function.
This is an important problem in molecular biology where it is desired to predict molecular
structure or the docked configuration of a protein and a ligand (a candidate for an effective
drug) by computing the global minimum of an energy function with a large number of local
minima. For this application the convex quadratic function was limited to the separable
case, where the quadratic term consists of a diagonal matrix. Also in this application, the
approximation was required to under-estimate all the local minima.

In the present paper we generalize the earlier approximation to a general convex quadratic
function. Convexity is enforced by requiring that the Cholesky factorization of the Hessian
matrix exists, i.e., H = LL”T, where L is a lower triangular matrix, with positive diagonal
entries, to be computed. The problem will be formulated as a constrained nonlinear min-
imization problem. The formulation is given for the case where we approximate m data
points:

{(x(l),f(x(l))),~-~ , (x(m)’f(x(M)))}, with z® e R",

with a convex quadratic function q(p,x), where p € IR®, is a vector of parameters. We
assume that enough data points are known so that m > s. With a reasonable assumption
on the data, a minimum error approximation to this (possibly overdetermined) system will
be obtained. Formulations are given for approximation in both the one and the two norm,,
both with and without an underestimation requirement.

As shown in the next section, the objective functions
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which represent the approximation error, are non-convex in the parameter vector p. There-
fore the objective function will not have a unique local minimum in general. We would like
to find a global minimum of the objective (or a near global minimum) so as to get the best
possible fit of the convex quadratic function to the data. In order to do this, we need to
find a good starting estimate for the parameter vector p when we solve the minimization
problem to obtain the general convex quadratic approximating function ¢(p, x).

Several possible methods for getting this initial p vector have been investigated. Each
method has a unique minimum solution which is obtained by solving a single linear program.
The methods differ in the form of the convex quadratic function ¢(p, z). In the first method
the Hessian is a diagonal matrix with all elements positive, and in the other methods the
Hessian has non-zero off-diagonal terms, but is constrained to be diagonally dominant. It is
shown that, by using a good initial p vector, the best general convex quadratic approximation
is usually obtained. This is discussed in detail in Sections 2 and 4.

In this paper we limited our computational results to the case where the error is mini-
mized in the one norm. We did this to take full advantage of four important properties of
the one norm in this context:

1. The one-norm approximation is robust with respect to outliers [2,3,16].

2. The one-norm approximation always interpolates a subset of the data points [2,3].

3. A better initial value for the p vector can be obtained by the linear program for the
one-norm approximation problem.

4. The objective function for the one norm is quadratic in the elements of the Hessian ma-
trix, whereas in the least squares approximation the objective function contains fourth-
order terms in these elements.

2 Problem Formulation and Initial Parameter Estimates

Given m data points {(z(l), f(x(l))), cee (x(m), f(z(m)))}, with () € IR", we approximate
these points with a convex function ¢(p,x), where p € IR® is a vector of parameters and
m > s, by solving the minimization problem

L (k)y _ (k)
minitize ;f(x ) —q(p, =)

subject to ¢(p,z) convex in x

q(p,z®) < f(=®) for all k.

We assume that the gradients of q(p,x(k')) with respect to p, for k = 1,--- ;m, span IR®.
The following formulation is equivalent to (1):

m

maximize Z q(p, x(k))

P k=1 @)
subject to ¢(p,z) convex in x

q(p,z®) < f(=®) for all k.

We note that other norms, such as the 2-norm can be used and that the underestimation
constraint may not be required. However, because of the type of application we will consider,



we require that ¢ underestimate f. Since we wish to use a general quadratic approximation,
we express (1) as

s . (k)y _ H: 2"
mi?}g}ze l;f(l‘ ) — q(co, ¢, H; ')

subject to  ¢(co, ¢, H,:c(k)) < f(:z:(k)) for all k, (3)
H symmetric positive semi-definite,
leols llell, and ||H|| are bounded,

where q(co,c, H;z) = co + cl'z + %xT(H +el)x with ¢ € R, ¢ € IR", and H € R"*",
and € > 0 is a specified lower bound on the minimum eigenvalue of the Hessian of ¢q. The
elements of the parameter vector p are cp,c, and the n(n + 1)/2 elements of H, so that
s = (n+2)(n+1)/2. It should be noted that while the objective function and constraints
of (3) are linear in the parameters cg,c, and the elements of H, the requirement that H
be positive semi-definite makes this a semidefinite program which is known to be difficult
[1]. We impose the requirement that H be positive semi-definite by noting that for any
lower triangular matrix L, the matrix H = LL” is symmetric and positive semi-definite.
We therefore let the elements l;; of L be n(n + 1)/2 of the parameters to be determined.
We also impose the condition that [;; > 0 to reduce the size of the parameter search space.
Thus, our formulation of the convex quadratic approximation problem involves solving the
General Quadratic Convex Under-estimator (GQCU) problem:

m

minimize Z F(=®)) = g(co, ¢, Lyz™)

co,c,L 1
. (k) - (K)
subject to  f(z™) > g(co, ¢, L;z™) for all k (GQCU)
ljj >0 for all 7,
_ﬁcgcigﬁc 1=0,1,---,n
_6l§lzj§/6l iujzla"'7n

where q(co,c, L; ) = co+cla+ %LL’T(LLT—I—E)SC, and [;; are the elements of L. The bounds 3.
and (; are specified, so as to prevent any of the parameter absolute values from becoming too
large. Furthermore, we choose 8. so that a feasible solution to (GQCU) always exists. This is
done by requiring — 3, < ming{f(z*)}. This requirement insures that co = —f,, ¢ = 0, and
all [;; = 0 give a feasible solution to (GQCU). An upper bound on the maximum eigenvalue
of LLT can also be given as a function of 3; and n. Therefore, since the minimum eigenvalue
of (LLT +€I) > ¢, we have an upper bound on the condition number of the Hessian of g.

For a fixed (¥, ¢ is quadratic as a function of the parameters cg, ¢, and L. A stronger
statement about ¢ can be made using the following lemma:

Lemma: Let q(co,c, Liz) = co + ¢'z + 22T LLTz, with x € IR". Then q is convex as a
function of ¢y, c, and L. Moreover, the rank of the Hessian of q as a function of ¢y, ¢, and L
is at most n.

Proof: Let l; = [Li; liv1i -+ lns )T andlet I=[1F1F - 11T e RMTY7/2 Tt is enough
to show that T LLTx = [T Ml for some positive-semidefinite matrix M dependent on z
with rank(M) < n. Let Z; = [ ; 2441 -+ o 7. Then

2
n n
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where X is given by the block-diagonal matrix

Tzt
_ Ty
X pr—

Each z;#7 block is positive semidefinite. Therefore X must also be positive semidefinite.
Moreover, since each 7,71 block has at most rank one and there are n such blocks, it follows
that rank(X) <n. O

We now consider some important properties of ¢(p,x) = q(co,c¢, L;z), the optimum
solution to (GQCU). As noted above, a feasible solution to (GQCU) always exists. Since
each g(co, ¢, L; 2F)) is a convex function in the parameters, the constraints of (GQCU) define
a nonempty bounded, convex, compact set in the parameter space IR°. The objective is a
concave function. Therefore the global minimum is always attained at an extreme point of
the convex set (see [4, Theorem 3.4.6], [14, Corollary 32.3.2]). Because we are minimizing a
concave function over a convex set, there may be multiple local minima. If all the constraints
were linear, there would always be a vertex solution to the problem, where s of the m data
points would be interpolated. To the extent that the functions ¢(p, x(k)), k=1,---,m, are
close to being linear two important properties of the solution will occur:

1. The number of local minima will be small and there may be only one.
2. The number of interpolation points, g(p*, z*)) = f(z*)), will be close to s, where p* is
the optimal parameter vector.

As shown above, the rank of the Hessian of ¢(p,z(®)), as a function of p € IR®, is n < s.
Therefore the functions ¢(p, z(*)) are linear in an (s — n)-dimensional subspace of IR®. Since
s = (n+ 2)(n + 1)/2, the dimension of this subspace increases as n? with increasing n.
This fact seems to explain the observed computational results that we always get close to
s interpolation points, and that (GQCU) almost always finds the global minimum solution
when given a reasonable initial parameter estimate.

We attempt to find the global minimizer of (GQCU) by defining a simpler problem related
to (GQCU) and using its solution as the parameter estimate for (GQCU). We consider two
methods.

Method 1: Separable Quadratic Function. The minimization problem (GQCU) can be
simplified by restricting the Hessian of ¢ to be diagonal. The separable quadratic function

1
q(co, e, Dsx) = co + Lo+ §xTDac,

where D = diag(ds,---d,) and d; > 0 for all j, is the simplest convex quadratic function.
The function ¢(cg, ¢, D; x) can be written as

n n
1
q(Co,C,D;.ﬁ) =co+ E Ci$i+§ E dzl‘f
=1 =1

Although ¢ is a quadratic function in x, it is linear in ¢g, ¢, and D for a fixed x. Thus the
general problem reduces to the linear program

m
minimize Z F(@®) = q(co, ¢, D; )

€0,C,
=1 (LP1)
subject to f(x(k)) > q(co, ¢, D;x(k))

d; > 0.



This minimization problem is a linear program with 2n + 1 variables and (m + n) inequality
constraints. The point [co, ¢, D] = [c3™,0, 0], where ¢ = ming{f(x*)}, is feasible, and
since the objective function is bounded below by zero, then a feasible solution must always
exist. The solution [cf, c*, D*] of the LP can then be used to obtain [cf,c*, (D*)'/?], an
initial point for the general problem.

Method 2: Quadratic Function with a Diagonally-Dominant Hessian. Since diag-
onal matrices are special cases of diagonally-dominant matrices whose off-diagonal elements
are set to zero, we can express a different linear program using a more general convex
quadratic function. A symmetric diagonally-dominant matrix is positive definite if its diag-
onal elements are positive. Thus the Hessian H is positive definite and diagonally dominant
if its entries satisfy the following:

S

hjj =2 ) Bij
i—1
i

hij > —Bij

hij < Bij

for all 1 < ¢,j < n where 3;; is an upper bound on |h;;|. For a fixed x, the function
q(co, ¢, H; x) is linear with respect to ¢, ¢, and H since it can be written as

n n n
1
q(Co,C,H;Jj) = Cp +Zci$i +Z 5]1”33‘?4- Z hijxjxi
i=1 j=1 i=j+1
Thus a linear program with a more general convex quadratic function ¢ than in (LP1) can

be expressed by introducing the n(n — 1)/2 variables §;; with 1 < j < i < n and writing
the LP as

m

inimi (k)Y _ H: 2"
minimize T co,c, H;x
mnigze 3 1) - gt )

subject to f(x(k)) > q(co, ¢, H;x(k))

n
LP2
hjj > Zﬂz‘j (LP2)
i=1
i#]
hij > —PBij
hij < Bij.
This minimization problem is a linear programming problem with n? + n + 1 variables
and m + n? constraints. The solution of (LP1) is a feasible point in (LP2). Thus the objec-
tive function value at the solution [c§, ¢*, H*] of (LP2) must be lower than at the solution

[¢§5,c*, D*] of (LP1), and therefore the quadratic function ¢(cf,c*, H*) must be a better
approximation than ¢(cj, c*, D*).

Other Methods. We also investigated other possible methods for obtaining the initial point
for (GQCU). We considered using separable quadratic functions whose minimum must lie
within a given region, as done in ([5]). This problem can be formulated as follows. Suppose
xy minimizes q(ch, c*, D*; ) and we want ry to lie within certain bounds, i.e., b <z < b
where b, b € IR™. We replace the second set of constraints in (LP1) by the following:

¢j+ djb; < —(bj — by)e/2
¢j+dib; > (bj —by)e/2.



By subtracting the first inequality from the second, we see that d; > e. Moreover, the

minimizer xy must satisfy ¢* + D*zy = 0, and therefore the previous inequalities give:

Since d; > & > 0, then b <z} <b.

We also considered using a less general diagonally-dominant Hessian in Method 2. By
requiring that the off-diagonal elements h;; be nonnegative, we can eliminate j;; from (LP2),
thereby reducing the number of variables and the number of constraints by n(n — 1)/2 in
Method 2.

We found these other possible methods for computing an initial estimate of the parame-
ters did not always give as good a result in the general convex quadratic problem (GQCU),
as the diagonally dominant Hessian (Method 2).

3 Algorithm

Our algorithm for underestimating a set of points with a convex quadratic function consists
of two phases. The first phase involves solving a linear program formulated using Method 1
or 2. The solution is then used to obtain an initial parameter estimate for the second phase,
which involves solving the nonlinear program (GQCU).

Algorithm. General quadratic convex under-estimator (GQCU) algorithm.

Define Phase-1 initial point:
co = ming {f(™)};
c =0;
D (or H) =0;
Solve Phase-1 LP;
Compute Phase-2 initial point: L = D'/? or from Cholesky H = LLT
Solve Phase-2 NLP;
end;

In our implementation, the Phase-1 LP and the Phase-2 NLP are solved using the NPSOL
software of Gill et al. (see [7]).

4 Numerical Results

We now examine the robustness and the sensitivity to perturbed data of the algorithm.
In the first part of this section, we test whether the algorithm provides an exact fit to
convex quadratic functions of various dimensions. The results from using Methods 1 and
2 in defining the Phase-1 LP are compared. In the second part, we perturb the objective
function values and examine how these perturbations affect the under-fitting.

In practical applications we want the minimum point * of ¢(co, ¢, L; ) to be unique.
Since z* is given by (H + el)z* = —¢, we get a unique x* provided £ > 0. In our computa-
tional tests, we used ¢ = 0.1.

The convex quadratic functions for our numerical tests were defined by generating ran-
dom positive-definite Hessians. The minimizer x* for each function is fixed, and the vector
¢ is defined accordingly (¢ = —Hz*). The number of parameters s = (n +2)(n + 1)/2, and
the number of random data points z(*) generated was m = 2s. The minimum eigenvalue of



n=4 n==~06 n =10 n =15

S 15 28 66 136

m 30 56 132 272
/\maX(H) 1.5e+01 | 8.6e+01 3.3e+01 5.2e+02
)\min(H) 1.0e-01 | 1.0e-01 1.0e-01 1.0e-01

Table 1. Function f(z) and the number of parameters and data points.

H was required to be greater than 0.1 to avoid a very ill-conditioned quadratic term. For
the computational results presented, problems of sizes n = 4,6, 10, and 15 were considered.
This information, and the minimum and maximum eigenvalues of H are given in Table 1.

All runs were made on a single 2.20 GHz Pentium 4 processor Linux workstation with
896 MB of RAM from Dell Computers. The algorithm was written in C. The C version of
NPSOL was generated using the f2¢ Fortran to C translator.

Robustness. The first part of this section tests the robustness of the algorithm. For each
phase, we list the number of major iterations, the final objective function value, and the 2-
norm distance between the minimizers of the exact quadratic function and of the computed
quadratic function. The vectors T}, Ty and zy, are the minimizers of f (x), Phase 1 and
Phase 2, respectively.

1

n=4 n==6 n =10 n =15
Iterations 4 18 15 35
Phase 1 Objective 5.1e+03 8.1e+04 9.5e+04 2.8e+06
|z} — 2g, |2 5.8e+02 1.8e+01 1.1e+07 1.0e+07
Iterations 16 39 IL 282
Phase 2 Objective 2.9e-08 8.2e-07 5.3e+03 7.6e-06
|z} — 23,2 1.1e-08 1.3e-09 5.0e+16 1.2e-07
Table 2. GQCU using Method 1.
n=4 n==~6 n =10 n =15
Iterations 4 14 11 61
Phase 1 Objective 1.5e+03 2.3e+04 3.1e+04 1.5e+06
llz7 — 23,12 4.9e+00 7.3e+00 7.5e+00 2.3e+01
Iterations 21 10 63 23
Phase 2 Objective 4.6e-08 7.8e-07 7.7e-07 2.6e-05
llz7 — 23,12 9.0e-09 2.4e-08 1.4e-09 1.2e-07

Table 3. GQCU using Method 2.

Sensitivity. We now consider underestimating a convex quadratic function whose function
values are the perturbed values f(2(®)) = f(2®)(1 + o) with —6 < o} < § for some & > 0.
The total perturbation 7, introduced over all data points is then given by

T, = i ‘ka(x(k))‘ .

k=1



It is therefore expected that the best approximation by ¢(p, z) will have an error of this size.
The objective function in (GQCU) with perturbed data is given by

m

n
F= f(x(k)) —q(Co,C,L;JI(k)).

k=1
Since all function values are perturbed by different positive and negative quantities, the

points {(x(k), f(m(k)))} cannot all be interpolated by any convex quadratic function.

[ 6 ] [ n=4 ] n=6 ] n=10 | n=15 |

Interpolated 15 28 66 136

Objective 9.6e-01 | 8.7e+00 | 8.3e+00 2.6e+02

.0001 Ratio 8.9e-01 | 9.2e-01 | 7.9e-01 9.3e-01

Amax (H) 1.5e+01 | 8.6e+01 | 3.4e+01 5.2e+02

Amin (H) 1.0e-01 | 1.0e-01 | 1.0e-01 1.0e-01
Interpolated 15 28 66 136

Objective 3.3e+00 | 6.3e+01 | 1.0e+02 2.6e+03

.001 Ratio 6.1e-01 | 9.1e-01 | 8.9e-01 1.0e+00

Amax (H) 1.5e+01 | 8.6e+01 | 3.4e+01 5.2e+02

Amin (H) 1.0e-01 | 1.0e-01 | 1.0e-01 2.1e-01
Interpolated 15 28 66 136

Objective 7.5e+01 | 6.4e+02 | 9.6e+02 2.4e+04

.01 Ratio 1.1e+00 | 6.9e-01 | 9.3e-01 1.0e+00

Amax (H) 1.5e+01 | 8.5e+01 | 3.4e+01 5.2e+02

Amin (H) 1.0e-01 | 8.9e-01 | 1.6e-01 7.1e-01
Interpolated 15 27 66 133

Objective 1.3e+02 | 1.5e+03 | 2.0e+03 5.2e+04

.02 Ratio 8.2e-01 | 9.0e-01 | 8.2e-01 1.1e+00

Amax (H) 1.5e+01 | 8.6e+01 | 3.3e+01 5.2e+02

Amin (H) 1.9e0-1 | 1.0-01 2.2e-01 1.0e-01
Interpolated 14 28 66 133

Objective 3.3e+02 | 4.7e+03 | 4.2e+03 1.4e+05

.05 Ratio 1.0e+00 | 1.1e+00 | 8.4e-01 1.1e+00

Amax (H) 1.4e+01 | 8.5e+01 | 3.3e+01 5.1e+02

Amin (H) 1.0e-01 | 2.4e-01 | 2.2e-01 1.0e-01

Table 4. GQCU on perturbed data.

Analysis of Results. Typical results are shown in Tables 2, 3, and 4. In Tables 2 and 3
the data points were obtained from a specified convex quadratic function f(z) with l;; > e,
so that the optimal solution to (GQCU) should give ¢(cg, ¢, L;x) = f(x). Thus all m data
points should be interpolated and the minimum value of the objective function in Phase 2
should be essentially zero. It is seen that with Method 1 (Table 2), 3 of the 4 cases satisfy
these conditions. For the case n = 10, the initial parameter estimate obtained by Phase 1
was not good enough, and Phase 2 terminated within an iteration limit (IL) and did not
give the desired ¢(p,z) interpolating all the data points. However, Phase 1 of Method 2
did give better estimates for all 4 values of n, so that the desired ¢(p,z) was obtained for
all cases. It is also clear that the initial approximation to the data obtained by the linear
programs (Phase 1) is very poor as seen by the large values of the objective function in all



cases. Thus the more difficult optimization problem (GQCU) must be solved in order to get
a good approximation.

Table 4 shows the results obtained for the more difficult problem, where the data has been
perturbed so that no quadratic function can interpolate all the data points. The perturbed
data is given by f(z®)), so that the absolute value of the relative perturbation at z(*) is
bounded by §, and the total perturbation for each value of n and § is given by T},. The
objective function value ' and the ratio F'/T), are listed for each value of n and 4. Tt is
shown that the ratio is close to unity for all cases.

The extent to which the approximation ¢(p,z) reproduces the unperturbed function
f(z) is shown by the minimum and maximum eigenvalues of the matrix H (Table 4). These
values should be compared with the eigenvalues of the Hessian of f(z) given in Table 1. The
comparison shows that the maximum eigenvalues of the Hessians of f(z) and the optimum
q(p*,x) are essentially the same. The minimum eigenvalue for ¢(p*, ) is 0.24 or smaller, in
all cases, showing that the approximation g(p, ) is very close to the unperturbed function
f(z). Thus the optimum ¢(p*, z) is a good approximation to f(z), in spite of the perturbed
data. For the unperturbed data, we know that (GQCU) finds the global minimum solution,
since the objective function value is zero. We cannot prove that we find the global minimum
solution with perturbed data, but based on the results in Table 4, we believe we did find
the global minimum in every case.

The results presented in Tables 2, 3, and 4 are typical of additional results obtained with
many other test cases computed.

5 Conclusions

We have presented a computationally efficient method for determining a convex, quadratic
approximating function ¢(p,x), with s parameters, to a set of m data points in IR™, m >
s > n. An additional condition, that ¢(p,«) underestimate all the data points, is also im-
posed. This leads to the determination of the optimal p* by maximizing a convex, quadratic
function in IR®, subject to convex, quadratic inequality constraints, a problem which may
have multiple local minima. An important property of the approximating function ¢(p, z) is
shown: its Hessian with respect to p (for any fixed x) has reduced rank < n. We also have
shown that good initial approximations to p* can be computed by linear programming. This
reduced rank Hessian, together with a good initial approximation to p*, is responsible for
two important properties typically observed in our computational results: the approxima-
tion ¢(p*, x) gives the global minimum of the data fitting error, and it interpolates s of the
m data points.

In order to solve larger problems, large-scale optimization software packages such as the
SNOPT software of Gill et al. (see [6]) could be used to solve each phase of the algorithm.
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