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Abstract— This paper considers the problem of sequential
assignment of probabilities (likelihoods) to elements of an in-
dividual sequence using an exponential family of probability
distributions. We draw upon recent work on online convex pro-
gramming to devise an algorithm that does not require computing
posterior distributions given all current observations, involves
simple primal-dual parameter updates, and achieves minimax
per-round regret against slowly varying product distributions
with marginals drawn from the same exponential family. We
validate the theory on synthetic data drawn from a time-varying
distribution over binary vectors of high dimensionality.

I. INTRODUCTION

The problem of sequential probability assignment appears in
such contexts as universal data compression, online learning,
and sequential investment [1], [2]. It is defined as follows. El-
ements of an arbitrary sequence x = x1, x2, . . . over some set
X are revealed to us one at a time. We make no assumptions on
the structure of x. At time t = 1, 2, . . ., before xt is revealed,
we have to assign a probability density pt to the possible
values of xt. When xt is revealed, we incur the logarithmic
loss − log pt(xt). We refer to any such sequence of probability
assignments p = {pt}∞t=1 as a prediction strategy. Since the
probability assignment pt is a function of the past observations
xt−1 4= (x1, x2, . . . , xt−1) ∈ X t−1, we may view it as a
conditional probability density p(·|xt−1).

In this paper, we analyze the following prediction strategy.
We restrict our attention to an exponential family of distribu-
tions {pθ}, where the parameter θ ranges over a convex set
Λ in a Euclidean space. At time t, we choose the parameter
θt+1 and the corresponding distribution pt+1 according to

θt+1 ≈ arg min
θ∈Λ

[
− log pθ(xt) +

1
λt
D(pθ‖pt)

]
(1.1)

pt+1 = pθt+1 (1.2)

where λt > 0 is a regularization parameter and D(·‖·) is the
relative entropy (Kullback–Leibler divergence). We will show
that this approach has several key advantages:
• The sequence {pt}t achieves minimax per-round regret

(see definitions below) with respect to any prediction
strategy in a comparison class consisting of time-varying
product distributions with marginals in {pθ}θ∈Λ, provided
the variation in time is sufficiently slow. A fortiori, we

achieve minimax regret relative to the best time-varying
sequence that can be fitted to the entire data sequence
(after a finite number of rounds) in hindsight. This is
proved using recently developed theory of online convex
programming [3]–[5].

• The optimization at each time can be computed using
only the current observation and the probability density
estimated at the previous time; it is not necessary to keep
all observations in memory to ensure strong performance.

• The Kullback–Leibler regularization term induces a Breg-
man divergence [2, Ch. 11] on the parameter space of the
exponential family; this allows the parameter updates to be
computed using an efficient primal-dual “mirror descent”
algorithm of Nemirovsky and Yudin [6], [7].

In an individual-sequence setting, the performance of a
given prediction strategy is compared to the best performance
achievable on x by any strategy in some specified comparison
class F [1], [2]. Thus, given a prediction strategy p, let us
define the regret of p w.r.t. some f ∈ F after T time steps as

RT (f) 4=
T∑
t=1

log
1

p(xt|xt−1)
−

T∑
t=1

log
1

f(xt|xt−1)
. (1.3)

The goal is to design p in such a way that

RT (p,F) 4= sup
x

sup
f∈F

RT (f) = o(T ).

If we are interested in predicting only the first T elements of x,
we could consider approaches based on maximum likelihood
estimation or mixture strategies; both, however, have certain
disadvantages compared to the approach proposed in this
paper. For example, a fundamental result due to Shtarkov [8]
says that the minimax regret R∗T (F) 4= infpRT (p,F), where
the infimum is over all prediction strategies, is achieved by
the normalized maximum likelihood estimator (MLE) over
F . However, practical use of the normalized MLE strategy
is limited since it requires solving an optimization problem
over F whose complexity increases with T .

Mixture strategies provide a more easily computable alter-
native: if the reference class F is parametrized, F = {fθ : θ ∈
Θ} with fθ = {fθ,t}∞t=1, then we can pick a prior probability
measure w on Θ and consider a strategy induced by the joint



densities

p(xt) =
∫

Θ

t∏
s=1

fθ,s(xs|xs−1)dw(θ)

via the posterior p(a|xt−1) 4= p(a,xt−1)
p(xt−1) . For instance, when the

underlying observation space X is finite and the reference class
F consists of all product distributions of the form f(xt) =∏t
s=1 f0(xs), where f0 is some probability mass function on
X , the well-known Krichevsky–Trofimov (KT) predictor [9]

p(a|xt−1) =
N(a|xt−1) + 1/2
(t− 1) + |X |/2

,

where N(a|xt−1) is the number of times a ∈ X occurs in
xt−1, is a mixture strategy induced by a Dirichlet prior on the
probability simplex over X [1]. It can be shown that the regret
of the KT predictor is O(|X | log T ).

The computational cost of updating the probability assign-
ment using a mixture strategy is independent of T . However,
as can be seen in the case of the KT predictor, the dependence
of the regret on the cardinality of X still presents certain
difficulties. For example, consider the case where X = {0, 1}d
for some large positive integer d. If we wish to bring the per-
round regret T−1RT down to some given ε > 0, we must
have T/ log T = Ω(2d/ε). Moreover, when X = {0, 1}d,
the KT predictor will assign extremely small probabilities (on
the order of 1/2d) to all as yet unseen binary strings x ∈
{0, 1}d. This is undesirable in settings where prior knowledge
about the “smoothness” of the relative frequencies of x is
available. Of course, if the dimensionality k of the underlying
parameter space Θ is much lower than the cardinality of X ,
mixture strategies lead to O(k log T ) regret, which is minimax
optimal [2]. This can be thought of as a generalization of
the MDL-type regret bounds of Rissanen [1], [10] to the
online, individual-sequence setting. However, the predictive
distributions output by a mixture strategy will not, in general,
lie in F , which is often a reasonable requirement.

In this paper, we show that the prediction strategy based
on (1.1) and (1.2) leads to an algorithm that does not re-
quire choosing a prior distribution over the comparison class
(thus avoiding the need to compute posteriors conditioned on
observed sequences of increasing length), has simple update
rules, and does not rely on empirical frequencies. In addition
to proving a regret bound for our algorithm, we demonstrate its
empirical performance in the sequential probability assignment
for high-dimensional binary vectors. An algorithm similar to
(1.1) and (1.2) was suggested by Azoury and Warmuth [11]
for the problem of sequential probability assignment over an
exponential family, but they only proved regret bounds for a
couple of specific exponential families. One of the contribu-
tions of the present paper is to demonstrate that near-minimax
regret bounds can be obtained for a general exponential family,
subject to mild restrictions on the parameter space Θ.

II. EXPONENTIAL FAMILIES AND PREDICTION STRATEGIES

Our main contribution is an online convex programming
(OCP) algorithm for sequential probability assignment that

can compete with time-varying prediction strategies induced
by an exponential family of probability densities. Exponential
families (see, e.g., [12], [13] and references therein) are a
natural choice because (a) their log-likelihood functions are
convex in the underlying parameter, and (b) their geometric
properties immediately lead to an efficient implementation of
OCP using the method of mirror descent [6], [7] (see [2,
Chap. 11] for a detailed description of the mirror descent
algorithm in the context of sequential linear prediction).

More specifically, we construct the class of candidate dis-
tributions from which we select each pt and the comparison
class of distributions F as follows. We assume that the
observation space X is equipped with a σ-algebra B and a
dominating σ-finite measure ν on (X ,B). From now on, all
densities will be defined w.r.t. ν. Given a positive integer d,
let φk : X → R, k = 1, . . . , d, be a given set of measurable
functions. Define a vector-valued function φ : X → Rd by
φ(x) 4=

(
φ1(x), . . . , φd(x)

)T
and the set

Θ =
{
θ ∈ Rd : Φ(θ) 4= log

∫
X
e〈θ,φ(x)〉dν(x) < +∞

}
,

where 〈θ, φ(x)〉 = θ1φ1(x)+ . . .+θdφd(x). The function Φ is
the so-called log partition function. Finally, let p0 be a fixed
reference density. Then the exponential family induces by φ is

P(φ) =
{
pθ(·)

4= p0(·) exp
(
〈θ, φ(·)〉 − Φ(θ)

)
: θ ∈ Θ

}
.

We will use Eθ[·] to denote expectations w.r.t. pθ.
Our comparison class of prediction strategies F = {fθ :

θ ∈ Λ} will be made up of product distributions where each
marginal belongs to a certain subset of P(φ). We assume
that the functions φk are bounded: |φk(x)| ≤ G/2 for some
G < +∞. To define F , we choose a closed, convex set
Λ ⊆ Θ satisfying the following condition: there exist constants
H1, H2 > 0, such that, for every θ ∈ Λ, 2H1Id � ∇2Φ(θ) �
2H2Id, where Id denotes the d × d identity matrix. (A � B
means B−A is positive semidefinite.) Since Φ(θ) is a convex
function of θ, this condition amounts to placing upper and
lower bounds on the curvature of Φ, which will guarantee the
convexity of Λ. Note that the Hessian ∇2Φ(θ) is equal to
J(θ) 4= −Eθ[∇2

θ log pθ(X)], which is the Fisher information
matrix at θ [12]. Our assumption on Λ thus stipulates that
the eigenvalues of the Fisher information matrix are bounded
between 2H1 and 2H2 on Λ. Moreover, κ 4= H2/H1 can be
viewed as a bound on the condition number of J(θ), θ ∈ Λ.

Then let F consist of prediction strategies fθ, where θ =
(θ1, θ2, . . .) ranges over all infinite sequences over Λ, and each
fθ is of the form

ft,θ(xt|xt−1) = pθt
(xt), t = 1, 2, . . . ;xt ∈ X t.

In other words, each prediction strategy in F is a time-varying
product density whose marginals belong to {pθ : θ ∈ Λ}.

III. SEQUENTIAL PROBABILITY ASSIGNMENT USING OCP
AND EXPONENTIAL FAMILIES

Recent results on online convex programming (OCP) [3]–
[5] make it possible to analyze the performance of a Fore-



caster who is continually predicting changes in a dynamic
Environment. The effect of the Environment is represented
by an arbitrarily varying sequence of convex cost functions
over a given feasible set, and the goal of the Forecaster is
to pick the next feasible point in such a way as to keep
the running cost as low as possible. This framework has
not been used conventionally in the context of sequential
probability assignment, but it is a natural fit in that the assigned
probabilities pt are essentially forecasts of changing environ-
mental variables xt, and the exponential-family negative log-
likelihoods − log pθ(xt) are convex functions of θ. Let us
define the loss function ` : X ×Θ→ R by

`(x, θ) 4= − log pθ(x) = Φ(θ)− 〈θ, φ(x)〉 − log p0(x). (3.4)

In an OCP setting, this loss is referred to as the cost in-
curred by the Forecaster’s choice of θ when the Environment
produces x. Owing to the convexity of Φ, θ 7→ `(x, θ)
is convex for any x ∈ X . The convexity of Φ can be
established by considering its derivatives; because P(φ) is an
exponential family, the log partition function Φ(θ) is lower
semicontinuous on Rd and infinitely differentiable on Θ. The
derivatives of Φ at θ are the cumulants of the random vector
φ(X) =

(
φ1(X), . . . , φ(X)

)T
when X ∼ pθ. In particular,

∇Φ(θ) =
(

Eθ φ1(X), . . . ,Eθ φd(X)
)T

and

∇2Φ(θ)i,j = Covθ
(
φi(X), φj(X)

)
, 1 ≤ i, j ≤ d.

The latter property implies that Φ(θ) is a convex function of
θ. Therefore, the set Θ, which is the essential domain of Φ, is
convex. We denote by Θ∗ the image of Θ under the gradient
mapping θ 7→ ∇Φ(θ), which maps the primal parameter θ ∈
Θ to the corresponding dual parameter µ ∈ Θ∗. The gradient
mapping is invertible, with the inverse µ 7→ ∇Φ∗(µ), where

Φ∗(µ) 4= sup
θ∈Θ
{〈µ, θ〉 − Φ(θ)}

is the Legendre–Fenchel dual of Φ [13].
Using (3.4), we can express the regret (1.3) of any fθ ∈ F

w.r.t. some other fθ∗ ∈ F after T time steps as

RT (fθ) =
T∑
t=1

`(xt, θt)−
T∑
t=1

`(xt, θ∗t ).

A. Proposed algorithm

We now present our OCP approach to sequential proba-
bility assignment using exponential families. Our scheme is
described below as Algorithm 1; {λt}∞t=1 is a decreasing
sequence of step sizes. The algorithm is essentially a mirror
descent procedure [6], [7] (see also [2, Chap. 11]): after
seeing each new observation xt, we compute the probability
assignment pθt+1 for xt+1 by first performing gradient descent
in the space Θ∗ of the dual parameters (thought of as the
“mirror image” of the primal space Θ), then mapping back
to the primal space Θ via the inverse gradient mapping ∇Φ∗,
and finally by projecting onto Λ. This is illustrated in Fig. 1. It

Θ
Λ Θ∗μt

μ't+1θ't+1θ t+1

θt

OΦ

OΦ*

Fig. 1. Graphical depiction of mirror descent.

can be shown [2], [7] that the combination of the dual update
and the projected primal update is equivalent to finding

min
θ∈Λ

[
−〈θ,∇θ log pθt

(xt)〉+
1
λt
D(θ‖θt)

]
.

This corresponds to regularized minimization of the first-order
Taylor approximation to − log pθ(xt) around θ = θt, as shown
in (1.1) and (1.2).

Algorithm 1
1: Initialize with θ1 ∈ Λ
2: for t = 1, 2, ... do
3: Acquire new observation xt
4: Incur the cost `t(θt) = − log pθt(xt)
5: Compute µt = ∇Φ(θt)
6: Dual update: compute µ′t+1 = µt − λt∇`t(θt)
7: Projected primal update: compute θ′t+1 = ∇Φ∗(µ′t+1) and

θt+1 = arg min
θ∈Λ

D(θ‖θ′t+1)

8: end for

In mirror descent, the dual variables are related to the primal
variables via the gradient of the so-called potential function,
which in the current setting is the log partition function Φ.
The role of the potential function is to induce a regularization
functional on the underlying feasible set [7]. In the context of
exponential families, this regularization functional turns out to
be the relative entropy. It can be shown [13] that the relative
entropy between pθ and pθ′ in P(φ), defined as D(pθ‖pθ′) =∫
X pθ log(pθ/pθ′)dν, can be written as

D(pθ‖pθ′) = Φ(θ)− Φ(θ′)− 〈∇Φ(θ′), θ − θ′〉 (3.5)

From now on, we will use the shorthand D(θ‖θ′). The fact that
the relative entropy can be written in the form (3.5), together
with the analytic properties of the log partition function [13],
implies that the mapping D(·‖·) : Θ×Int Θ→ R is a Bregman
divergence (see, e.g., [2, Ch. 11]) on Θ.

As a Bregman divergence, D(·‖·) satisfies the generalized
Pythagorean inequality: Let Λ be a closed convex subset of Θ.
Given any θ0 ∈ Θ, let θ̃0 ∈ Λ denote the Bregman projection
of θ0 onto Λ, defined by θ̃0

4= arg minξ∈ΛD(ξ‖θ0). Then for
all θ ∈ Λ we have

D(θ‖θ0) ≥ D(θ‖θ̃0) +D(θ̃0‖θ0). (3.6)

B. Tracking regret of the proposed method

The fact that D(·‖·) is a Bregman divergence is a key aspect
of the proof of our main result: a bound on the regret of
Algorithm 1 (with suitably chosen λt’s) w.r.t. any prediction
strategy in F . Following the terminology of [2], we refer
to this regret as a tracking regret since it quantifies how



well the proposed prediction strategy can “track” a time-
varying sequence of probability distributions drawn from our
comparison class F .

Theorem 3.1. Let F be the comparison class described above.
Suppose that Algorithm 1 is run with λt = κ/t, t = 1, 2, . . .,
where κ = H2/H1. Then for any fθ∗ ∈ F we have
T∑
t=1

`(xt, θt) ≤
T∑
t=1

`(xt, θ∗t )+
LT · VT (θ∗)

κ
+
κL2

4H1
(log T+1),

(3.7)
where L =

√
dG and VT (θ∗) 4=

∑T
t=1 ‖θ∗t − θ∗t+1‖ is the

variation of the sequence θ∗ from t = 1 to t = T + 1.
Proof: The proof combines the technique used in [2]

to analyze tracking regret of linear prediction strategies with
OCP-type arguments [4]. Fix some sequence θ∗ over Λ.
Given xt ∈ X at time t and any θ ∈ Θ, we use the
shorthand `t(θ) ≡ `(xt, θ) and ∇`t(θ) ≡ ∇θ`(xt, θ). Note
that ∇2

θ`t(θ) = ∇2Φ(θ). Hence, `t(θ) is 2H1-strongly convex
[14]: for all θ, θ′ ∈ Λ

`t(θ′) ≥ `t(θ) + 〈∇`t(θ), θ′ − θ〉+H1‖θ′ − θ‖2.

Using this fact, the definition of the dual update (µ′t+1 =
µt − λt∇`t(θt)), and the properties of the gradient map ∇Φ,
we have

`t(θt)−`t(θ∗t ) ≤ 1
λt
〈∇Φ(θ′t)−∇Φ(θt), θ∗t−θt〉−H1‖θ∗t−θt‖2.

Next, using Eq. (3.5), we can write the inner product above
as D(θ∗t ‖θt) − D(θ∗t ‖θ′t+1) + D(θt‖θ′t+1). Since θt+1 is the
Bregman projection of θ′t+1 onto the closed, convex set Λ, it
follows from the generalized Pythagorean inequality (3.6) that

D(θ∗t ‖θ′t+1) ≥ D(θ∗t ‖θt+1) +D(θt+1‖θ′t+1) ≥ D(θ∗t ‖θt+1),

where the second step uses the fact that D(·‖·) ≥ 0. Also, our
assumption on ∇2Φ(θ) over Λ implies that for all θ, θ′ ∈ Λ

H1‖θ − θ′‖2 ≤ D(θ‖θ′) ≤ H2‖θ − θ′‖2 (3.8)

Hence, we can bound `t(θt)− `t(θ∗t ) from above by
1
λt

[D(θ∗t ‖θt)−D(θ∗t ‖θt+1)]− 1
κ
D(θ∗t ‖θt) +

1
λt
D(θt‖θ′t+1).

Adding and subtracting D(θ∗t+1‖θt+1) inside the brackets and
using the definition of λt, we rewrite the first three terms as

1
λt−1

D(θ∗t ‖θt)−
1
λt
D(θ∗t+1‖θt+1) +

1
λt

∆t,

where we have set 1/λ0 ≡ 0 and ∆t
4= D(θ∗t+1‖θt+1) −

D(θ∗t ‖θt+1). Since |φk(x)| ≤ G/2 for all x, k, ‖∇Φ(θ)‖ =
‖Eθ φ(X)‖ ≤ L/2 for all θ. Using this and Eq. (3.5),

∆t = Φ(θ∗t+1)− Φ(θ∗t )− 〈∇Φ(θt+1), θ∗t − θ∗t+1〉
≤ L‖θ∗t − θ∗t+1‖.

Finally, we deal with the term involving D(θt‖θ′t+1). Using
(3.5), the property of the gradient mapping ∇Φ, and the
definition of the dual update rule, we get

D(θt‖θ′t+1) +D(θ′t+1‖θt) = λt〈∇`t(θt), θt − θ′t+1〉.

Using Cauchy–Schwarz and (a+ b)2 ≥ 0, we further get

D(θt‖θ′t+1)+D(θ′t+1‖θt) ≤
λ2
t‖∇`t(θt)‖2

4H1
+H1‖θt−θ′t+1‖2.

Using this, (3.8), and ‖∇`t(θt)‖ ≤ ‖∇Φ(θt)‖ + ‖φ(xt)‖ ≤
L, we get D(θt‖θ′t+1) ≤ λ2

tL
2

4H1
. Combining everything and

summing from t = 1 to T gives

T∑
t=1

[`t(θt)− `t(θ∗t )] ≤
T∑
t=1

(
D(θ∗t ‖θt)
λt−1

−
D(θ∗t+1‖θt+1)

λt

)

+
T∑
t=1

L‖θ∗t − θ∗t+1‖
λt

+
T∑
t=1

λt‖∇`t(θt)‖2

4H1

≤
T∑
t=1

LT‖θ∗t − θ∗t+1‖
κ

+
T∑
t=1

κL2

4H1t

≤ LT · VT (θ∗)
κ

+
κL2

4H1
(log T + 1).

This finishes the proof.
We immediately get the following bounds on the per-round

regret against all constant strategies and against all sufficiently
slowly varying strategies in F :

Corollary 3.2. Let Fconst be the subset of F consisting of all
constant strategies fθ∗ , where θ∗1 = θ∗2 = . . .. Then

sup
f∈Fconst

1
T
RT (f) ≤ κL2

4H1

log T + 1
T

.

Let Fslow be any subset of F consisting of slowly varying
prediction strategies fθ∗ , such that VT (θ∗) = o(1). Then

sup
f∈Fslow

1
T
RT (f) ≤ κL2

4H1

log T + 1
T

+
L

κ
o(1).

Remark 3.1. The O(T−1 log T ) per-round regret is minimax-
optimal for OCP with strongly convex cost functions [5].

IV. EXPERIMENTS

In this section, we show how our approach performs on
simulated data drawn from time-varying Bernoulli product
densities. This allows us to compute the empirical regret
with respect to the known data generation parameters, and to
compare it against the theoretical regret bound of Theorem 3.1.
We draw i.i.d. observations from d-dimensional Bernoulli
product densities with exponential-family parameter vectors
θ∗t = (α∗1,t, . . . , α

∗
d,t)

T ∈ Rd, i.e.,

log pθ∗t (xt) = 〈θ∗t , xt〉 −
d∑
i=1

log[1 + exp(α∗i,t)].

Note that the corresponding mean parameters are µ∗t =
(β∗1,t, . . . , β

∗
d,t)

T with β∗i,t = exp(α∗i,t)/(1 + exp(α∗i,t)). That
is, xt ∼

∏d
i=1 Bernoulli(β∗i,t). The initial θ∗1 is drawn at

random from the cube [−α0, α0]d for some α0 > 0, and at
certain jump times we draw new parameter vectors. The value
of θ∗t (and therefore µ∗t ) is kept constant between jumps.
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Fig. 2. Estimated µ vs. ground truth. The µ values correspond to Bernoulli
means. Lighter colors depict higher probabilities.
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For product Bernoulli densities with canonical parameter
θ = (α1, . . . , αd)T , the Hessian of Φ(θ) is a diagonal matrix
with elements ∇2Φ(θ)i,j = δi,j ·exp(αi)/(1+exp(αi))2. The
maximum value of the function α 7→ exp(α)/(1 + exp(α))2

is 1
4 (attained at α = 0), and its infimum is zero (attained

as |α| → ∞). To define our feasible set Λ, we set H2 = 1
8 ,

H1 = exp(α0)
2(1+exp(α0))2 . Thus, Λ = [−α0, α0]d, which is closed

and convex. For our results, we use α0 = 4, so that κ ≈ 193.
We also use d = 500, 1 ≤ t ≤ 1000, and generate three jumps
at t = 100, 500 and 700.

Figure 2 illustrates the estimated parameter vector vs. the
ground truth. We show µt, which is easier to interpret than
θt, since its components are numbers between 0 and 1, corre-
sponding to Bernoulli parameters assigned to the components
of xt. Figure 3 shows that the empirical per-round regret
is well below the theoretical bound (3.7) of Theorem 3.1.
Finally, Figure 4 shows that the log-loss exhibits pronounced
spikes at the jump times, and then subsides as the forecaster
adapts to the new parameters. It can also be observed that,
for t < κ ≈ 193, the log-loss is higher than for subsequent t.
In this transient period, the dual update must be followed by
clipping to keep each component of µt in the interval [0, 1].

V. SUMMARY

The online convex programming framework offers a natural
set of tools for addressing the sequential probability assign-
ment problem. The conventional perspective of OCP using
a Forecaster to make predictions about a changing Environ-
ment translates into using sequential probability assignment
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800

1000

1200
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ss

Fig. 4. Evolution of the log-loss. Note the spikes at the jump times (t = 100,
500 and 700), and the transient for t < κ ≈ 193.

to make predictions about a changing individual sequence. In
this paper, we explored the theoretical ramifications of this
connection, and in particular demonstrated that OCP leads to
a sequential probability assignment scheme that (a) performs
(in a minimax sense) as well as the very best (even clairvoyant)
predictor in a broad comparison class of time-varying product
exponential family distributions and (b) has high computa-
tional efficiency and minimal memory requirements.
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