
On solving sparse symmetric linear systems

whose definiteness is unknown

Roummel F. Marcia a

aDepartments of Biochemistry and Mathematics,

University of Wisconsin-Madison, Madison, WI 53706-1544, USA

Abstract

Solving a large, sparse, symmetric linear system Ax = b iteratively must use
appropriate methods. The conjugate gradient (CG) method can break down if A

is indefinite while algorithms such as SYMMLQ and MINRES, though stable for
indefinite systems, are computationally more expensive than CG when applied to
positive definite matrices. In this paper, we present an iterative method for the
case where the definiteness of A is not known a priori. We demonstrate that this
method reduces to the CG method when applied to positive definite systems and is
numerically stable when applied to indefinite systems.

Key words: conjugate gradient method, symmetric indefinite matrices, symmetric
indefinite factorization, tridiagonal matrices

1 Introduction

We are interested in solving the linear system

Ax = b, (1)

where A ∈ ℜn×n is large, sparse, symmetric, and nonsingular, and x and b are
vectors in ℜn. In some applications, the definiteness of A may not be known a

priori. If A is positive definite, then the linear system (1) can be solved using
the conjugate gradient (CG) method of Hestenes and Stiefel [11]. However, if
A is indefinite, then this method can break down since the tridiagonal matrix
Tk in the underlying Lanczos process may be indefinite and its LDLT factor-
ization Tk = LkDkL

T
k , where Lk is unit lower triangular and Dk is diagonal,

Email address: marcia@math.wisc.edu (Roummel F. Marcia).

Preprint submitted to Elsevier Science 6 February 2007

may be unstable or may not exist. Specifically, the LDLT factorization can
encounter a near-zero pivot, which may result in overflow, or a zero pivot,
for which the factorization may not exist at all. Many methods overcome this
potential pivoting breakdown by computing alternative factorizations of Tk.
For example, SYMMLQ [15] computes the numerically stable factorization
Tk = L̄kQk, where L̄k is lower triangular and Qk is orthogonal. This factoriza-
tion always exists, even if Tk is singular. The SYMMLQ iterate xS

k is computed
using L̄k+1’s principal k×k submatrix, Lk, which is always nonsingular, rather
than L̄k, which is singular whenever Tk is singular. (The matrices Lk and L̄k

differ in the (k, k) entry.) Thus although SYMMLQ is computationally more
expensive than CG, each of its iterates xS

k is always well-defined, unlike the
corresponding CG iterate xC

k . (For a survey of iterative methods for solving
linear systems, see [9].)

In this paper, we present an algorithm that combines the numerical efficiency
of the CG method with the stability of SYMMLQ for solving (1) for the case
where the definiteness of A is not known. We follow the SYMMBK algorithm
[7] which computes a block factorization Tk = LkBkL

T
k , where Bk is block

diagonal with 1 × 1 and 2 × 2 blocks. In this method, if the diagonal pivot
is near zero at the kth iteration, then SYMMBK sidesteps xk, and instead
performs a double iteration using a 2 × 2 block in the LBLT factorization
of Tk+1 to compute xk+1 from xk−1. The iterates corresponding to small piv-
ots are thereby avoided. To determine the pivot size, SYMMBK requires a
bound on the eigenvalues of A, which may not be available in many cases.
Thus a different pivoting strategy for factorizing Tk is used, namely, that
of Bunch and Marcia [5]. Solving nonsingular symmetric tridiagonal systems
with an LBLT factorization using this pivoting strategy has been shown to
be normwise backwards stable. We demonstrate that this approach reduces
to the CG method when applied to positive definite matrices and is stable,
like SYMMLQ, when applied to indefinite systems. This paper is arranged as
follows. In Section 2, we discuss the underlying Lanczos process, its connec-
tion to the CG method, and the instability of this method when applied to
indefinite systems. In Section 3, we propose an iterative method that does not
suffer from this instability. Numerical results are presented in Section 4, and
we close with some concluding remarks in Section 5.

Notation. The norms in this paper use the Euclidean norm and will be de-
noted by ‖ · ‖ unless stated otherwise. The condition number of a matrix will
be denoted by κ2(·).

2

2 Conjugate gradient method

Let A be positive definite in (1). The conjugate gradient method generates a
sequence of approximate solutions {xk} to (1) of the form xk = Vkyk, where
Vk = [v1 v2 · · · vk] and the vi’s are linearly independent vectors in ℜn. The
vector yk is defined as the solution to

V T
k AVkyk = V T

k b, (2)

which always exists since A is positive definite and Vk has full column rank
and, therefore, V T

k AVk must be also positive definite and thus nonsingular.
Using the Lanczos vectors [14] as vi’s reduces (2) into a tridiagonal system.
The approximate solution xk = Vkyk can then be defined without explicitly
storing all the Lanczos vectors.

The Lanczos algorithm. The Lanczos method generates a sequence of or-
thonormal vectors vi ∈ ℜn such that V T

k AVk = Tk is tridiagonal. For k = n,
Vn is an orthogonal matrix, and therefore AVn = VnTn. Equating columns we
get

Avi = βivi−1 + αivi + βi+1vi+1, Tn ≡





























α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βn

βn αn





























, (3)

for i = 1, · · · , n − 1, with β0 = 0 and v0 = 0. The Lanczos vectors can then
be defined by the following recursion:

βi+1vi+1 = Avi − αivi − βivi−1, (4)

with β1v1 = b, βi+1 ≥ 0 chosen so that ‖vi+1‖ = 1, and αi = vT
i Avi. Then (2)

becomes

Tkyk = β1e1,

where e1 is the first column of the identity matrix.

The CG algorithm. If A is positive definite, then Tk is also positive definite.
Thus, its LDLT factorization

Tk = LkDkL
T
k

exists, where Lk is unit lower triangular and Dk is diagonal with positive

3

entries. Denote these two matrices by

Lk =





























1 0 0 · · · 0

µ1 1 0 · · · 0

0 µ2 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 µk−1 1





























and Dk =





























d1 0 0 · · · 0

0 d2 0 · · · 0

0 0 d3
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 0 dk





























,

with µk−1 = βk−1/dk−1 and dk = αk − βkµk−1 > 0. Define Ck = [c1 · · · ck] ∈
ℜn×k and sk = [σ1 · · ·σk] ∈ ℜk by

CkL
T
k = Vk and LkDksk = V T

k b. (5)

Note that Cksk = xk. Equating the last column of CkL
T
k with that of Vk and

the last entry in LkDksk with that of V T
k b in (5), we get

ck = vk − µk−1ck−1 and σk = (vT
k b − µk−1dk−1σk−1)/dk. (6)

If we partition Ck as [Ck−1 ck], where Ck−1 ∈ ℜn×(k−1) and sk as [sT
k−1 σk]T ,

where sk−1 ∈ ℜk−1, then it can be shown that

xk = Cksk =
[

Ck−1 ck

]







sk−1

σk





 = Ck−1sk−1 + ckσk = xk−1 + σkck (7)

(see [10]). Thus the current approximate solution xk can be obtained from the
previous solution xk−1 using only σk and ck as updates. Note that ck in (6) is
computed using only the previous iterate ck−1 and the current Lanczos vector,
vk. Likewise, the scalar σk is computed using just the previous scalar, σk−1,
and the elements in the LDLT factors, namely, µk−1, dk−1, and dk. Thus, the
iterate xk and all its necessary updates can be defined recursively. In fact, only
four vectors need to be stored in the CG algorithm: the approximate solution
x, the Lanczos vector v, the update vector c and the matrix-vector product
w = Av. The CG method terminates when the residual ‖rk‖ ≤ τ , where τ is
some specified tolerance. It can be shown that ‖rk‖ = |βk+1σk| [16]; thus the
termination criterion can be checked without explicitly computing rk.

If Tk is not positive definite, then V T
k AVk in (2) is not necessarily invertible,

in which case, yk may not be defined. Here dk may not necessarily be nonzero.
Consequently σk in (6) may not be defined. Thus the iterate xk may not be
defined as well, causing the CG algorithm to break down.

4

3 Symmetric indefinite factorization

A factorization that is similar to the LDLT factorization but is stable for in-
definite matrices is the symmetric indefinite factorization (e.g., [1], [4], [6]).
Such methods compute permutation matrices P such that P T AP = LBLT ,
where L is unit lower triangular and B is block diagonal with 1× 1 and 2× 2
blocks. For a tridiagonal matrix T , these general methods are not suitable since
the row and column permutations create fill-in in the Schur complement. One
method that does not require such permutations is the normwise backwards
stable algorithm of Bunch [3]. In this section, we discuss how a modification to
this algorithm can be used to overcome the instability of the LDLT for indefi-
nite tridiagonal systems. The first conjugate gradient-type method developed
using this approach is the SYMMBK algorithm of Chandra [7]. The method
we are proposing will be based on this algorithm. We begin by discussing the
framework of a CG method that uses an LBLT factorization of Tk.

Let Tk+1 = Lk+1Bk+1L
T
k+1 with

Lk+1 =





























1 0 0 · · · 0

µ1 1 0 · · · 0

ν1 µ2 1
. . .

...

0
. . .

. . .
. . . 0

0 · · · νk−1 µk 1





























and Bk+1 =





























b1,1 b1,2 0 · · · 0

b1,2 b2,2 b2,3
. . .

...

0 b2,3 b3,3
. . . 0

...
. . .

. . .
. . . bk,k+1

0 · · · 0 bk,k+1 bk+1,k+1





























.

Since Bk+1 is block diagonal with 1× 1 and 2× 2 blocks, then no consecutive
off-diagonal of Bk+1 can be both nonzero, i.e., bi−1,ibi,i+1 = 0 for each i. Also,
if a 2× 2 pivot at the ith iteration, i.e., bi,i+1 is nonzero, then µi = 0. Finally,
Lk+1 can have only one nonzero nondiagonal element in each column, i.e.,
µiνi = 0, since a nonzero µi corresponds to a 1 × 1 pivot in the ith iteration,
and a nonzero νi corresponds to a 2 × 2 pivot.

We now show that a nonsingular pivot always exists. First, we note that Ti and
Ti+1 cannot be singular simultaneously for 1 ≤ i ≤ k (see [2] Theorem 2.1).
Suppose we are solving for the iterate xk. Without loss of generality, we can
assume that the iterate xk−1 has been computed using Tk−1 = Lk−1Bk−1L

T
k−1

with Tk−1 nonsingular. Note that Bk−1 is necessarily nonsingular as well. Sup-
pose Tk is singular. This implies that Tk+1 is nonsingular. Let B̄k−1 be the last
diagonal block in Bk−1. Since Tk−1 is nonsingular, then B̄k−1 is nonzero if B̄k−1

is 1×1 and nonsingular if B̄k−1 is 2×2. If B̄k−1 is 1×1, then B̄k−1 = [bk−1,k−1]

5

Therefore, Tk can be written as

Tk =







Lk−1

lTk 1













Bk−1

α̃k













LT
k−1 lk

1





 , (8)

where lk = µk−1ek−1 with µk−1 = βk/bk−1,k−1 and ek−1 is the (k−1)th column
of the (k − 1) × (k − 1) identity matrix Ik−1. Here α̃k = αk − βkµk. If B̄k−1 is
2× 2, then its determinant ∆̄k−1 ≡ bk−2,k−2bk−1,k−1 − b2

k−2,k−1 is nonzero, and
lk in (8) is given by lk = νk−2e

T
k−2 +µk−1e

T
k−1, where νk−1 = −bk−2,k−1βk/∆̄k−1

and µk = bk−2,k−2βk/∆̄k−1 and ek−2 is the (k−2)th column of Ik−1. As before,
α̃k = αk − βkµk. In both cases, the pivot α̃k = 0 since Tk is singular. The
matrix Tk+1 can similarly be written as

Tk+1 =

















Lk−1

lTk 1

1

































Bk−1

α̃k βk

βk αk+1

































LT
k−1 lk

1

1

















.

Since Tk+1 and Bk−1 are nonsingular, the 2×2 pivot B̄k+1 = [α̃k βk; βk αk+1]
must therefore be nonsingular as well. Thus at any step of the factorization,
a nonsingular pivot always exists. In particular, a 1 × 1 pivot is used if Tk+1

is singular and a 2 × 2 pivot if Tk is.

We now assume that both Tk and Tk+1 are nonsingular. As in the previous
section, we define Ck+1 = [c1 · · · ck+1] ∈ ℜn×(k+1) and sk+1 = [σ1 · · · σk+1] ∈
ℜk+1 by

Ck+1L
T
k+1 = Vk+1 and Lk+1Bk+1sk+1 = V T

k+1b. (9)

It can be shown likewise that Ck+1sk+1 = xk+1. If a 1 × 1 pivot is used, then
by equating the k-th columns of Ck+1L

T
k+1 and Vk+1, we get

ck = vk − µk−1ck−1 − νk−2ck−2. (10)

Note that if a 1 × 1 pivot is used in the previous iteration, then νk−2 = 0,
and (10) simplifies to (6). If a 2 × 2 pivot is used, then equating the last two
columns of Ck+1L

T
k+1 with the last two of Vk+1, we get

ck = vk − µk−1ck−1 − νk−2ck−2

ck+1 = vk+1.
(11)

To compute σk and (possibly) σk+1, we first define

lk−1 =







νk−2

µk−1






, B̄k−1 =







bk−2,k−2 bk−2,k−1

bk−2,k−1 bk−1,k−1






, s̄k−1 =







σk−2

σk−1






.

6

If a 1 × 1 pivot is used, then

σk =
[

vT
k b − lTk−1B̄k−1s̄k−1

]

/bk,k. (12)

If a 1×1 pivot is used in the previous iteration, then νk−2 = 0 and bk−2,k−1 = 0.
Thus

lTk−1B̄k−1s̄k−1 = µk−1bk−1,k−1σk−1,

and (12) reduces to (6) since bk−1,k−1 = dk−1. If a 2 × 2 pivot is used, then
νk−1 = 0 and µk = 0, and σk and σk+1 satisfy

B̄k+1







σk

σk+1





 =







vT
k b

vT
k+1b





 −







lTk−1B̄k−1

0













σk−2

σk−1





 ,

where

B̄k+1 =







bk,k bk,k+1

bk,k+1 bk+1,k+1





 . (13)

Therefore, if a 1 × 1 pivot block is used, then

xk = xk−1 + σkck.

Otherwise, the iterate xk is jumped over, and xk+1 is computed instead using

xk+1 = xk−1 + σkck + σk+1ck+1. (14)

Because the iterate xk can be skipped over and xk+1 computed directly from
xk−1, it is necessary that, to apply a symmetric indefinite factorization, the
Lanczos method must look ahead and compute Tk+1 and vk+1 at the kth step.
CG methods using LBLT factorization requires storage for six vectors: x, the
matrix-vector product w ≡ Av, vk+1 and vk, and ck+1 and ck, which is two
more than the classical CG. As in the CG algorithm, this method terminates
when the two-norm of the residual ‖rk‖ = |βk+1σk| ≤ τ , for some tolerance τ
[16].

We now discuss how to choose the pivot size so that small 1× 1 pivots in (12)
and near-singular 2 × 2 pivots in (13) are avoided.

SYMMBK. The criterion for choosing the size of the pivot in SYMMBK is
based on the pivoting strategy of Bunch [3] for solving symmetric tridiagonal
systems. The pivoting strategy can be described sufficiently at the first step.
Given a symmetric tridiagonal system Tnx = b, let σ = maxi,j{|αi|, |βj|}. Then
a 1 × 1 pivot is used if

|α1|σ ≥ αβ2
2 ,

where α = (
√

5 − 1)/2 is chosen to to minimize the growth factor in the
factorization. A 2 × 2 pivot is used otherwise. This method is efficient and is

7

normwise backward stable [12]. However, in the conjugate gradient method,
the factorization must be performed as Tk is formed. Thus, the largest element
σ is not known a priori, and the pivoting strategy of Bunch cannot be applied
in this case. The pivoting strategy in SYMMBK circumvents this difficulty by
using a bound on σ, rather than σ itself. Let {λi} be the eigenvalues of A, and
let maxi |λi| ≤ θ. Then σ ≤ θ (see [7, Theorem 9.2]). In SYMMBK, a 1 × 1
pivot is chosen if

|α1|θ ≥ αβ2
2 ,

and a 2×2 pivot is chosen otherwise. This process was shown to be successful in
solving certain indefinite systems, e.g., those arising from the finite difference
discretization of an elliptic partial differential equation over a uniform mesh,
where known bounds on the eigenvalues can be used (see [8], [13]). However,
bounds on the eigenvalues of A are not known in general. In conjugate gradient
methods, one does not necessarily know A explicitly but rather how it acts on
a vector by left multiplication. Thus the SYMMBK criterion for choosing the
size of the pivot can require more information than what is available. Instead,
we propose using the pivoting strategy of Bunch and Marcia [5] for determining
the pivot size since the only further information this pivoting strategy requires
at the kth iteration are the diagonal and off-diagonal elements in the following
iteration.

ASIFCG. The pivoting strategy of Bunch and Marcia uses a 1 × 1 pivot if

|α1α2| ≥ αβ2
2 or

|β2|
|α1|

≤ α max

{

|β2β3|
|∆| ,

|α2β3|
|∆|

}

,

where ∆ = α1α2 − β2
2 . A 2 × 2 pivot is chosen otherwise. The first criterion

ensures that if Tk is positive definite, then the LBLT factorization reduces
to the LDLT factorization since the Schur complement will always be posi-
tive definite and positive definite tridiagonal matrices satisfy α1α2 ≥ β2

2 . The
second criterion minimizes the elements in the matrix Lk. If a 1 × 1 pivot is
used in the first iteration, then L2,1 = β2/α1. Otherwise, L3,1 = −β2β3/∆ and
L3,2 = α2β3/∆. A 1 × 1 pivot is chosen if |L2,1| is smaller than either |L3,1|
or |L3,2|. The right hand side of the inequality is scaled by α to relate the
pivot sizes with the pivot sizes in Bunch [3] and to minimize the bound on the
growth factor. It can be shown that solving a tridiagonal system using this
factorization is normwise backwards stable [5]. Denote the iterates using these
criteria for the pivot size by xA

k . Note that if at the kth iterate, a 2 × 2 pivot
is used, then we define xk ≡ xk−1 and xk+1 as in (14). For later reference,
we shall call this method ASIFCG, which is a symmetric indefinite factorized
conjugate gradient method.

8

4 Computational experience

We now demonstrate numerically how the proposed algorithm avoids poten-
tial instability in the conjugate gradient method by allowing 2 × 2 pivots in
factorizing Tk. We compare the behavior of the CG method with this pro-
posed conjugate gradient-type method, ASIFCG, on one positive definite and
two indefinite systems. In the last example, we compare the performance of
ASIFCG with two established methods of solving symmetric indefinite sys-
tems: SYMMLQ and MINRES [15]. The codes were written in Matlab and
were run on a 2.20 GHz Pentium 4 single processor Linux workstation with
896 MB of RAM. The residuals of the CG, ASIFCG, SYMMLQ, and MIN-
RES methods are denoted by rC

k , rA
k , rS

k , and rM
k , respectively. We denote the

solution to (1) by x∗. The algorithms are terminated when the residuals are
less than τ = 1.0 × 10−8.

Example 1. We first tested ASIFCG on a positive definite system described
in [17]. The problem involves the matrix associated with a 7-point finite-
difference approximation to Laplace’s equation in a 3-dimensional rectangle
of order 210 (5× 6 × 7 grid). The Laplacian matrix is block tridiagonal, with
nonzero diagonal elements and at most 6 nonzero nondiagonal elements in
each row and column. Thus this matrix is sparse. It is also positive definite,
which makes it suitable for CG.

Example 2. We consider a system from [15], which involves solving (G2 −
µI)x = b, where G ∈ ℜn×n is symmetric tridiagonal with nonzero row ele-
ments (−1, 2,−1). The matrix G2 is pentadiagonal with nonzero row elements
(1,−4, 6,−4, 1). The scalar µ =

√
3 is not an eigenvalue of G2 and is chosen

to be greater than the smallest eigenvalue of G so that G2 − µI is indefinite
but nonsingular. We choose b to be the vector of ones, and n = 50.

0 5 10 15 20 25

−8

−6

−4

−2

0

2

Iterations

lo
g 10

(|
|r

es
id

ua
ls

|| 2)

CG
ASIFCG

Fig. 1. The log of the norm of the residuals for (G2 − µI)x = b

Example 3. The third example compares the performance of ASIFCG with

9

0 50 100 150 200

−8

−6

−4

−2

0

2

4

CG Iterations

lo
g 10

(|
| r

kC
|| 2)

0 50 100 150 200

−8

−6

−4

−2

0

2

4

ASIFCG Iterations

lo
g 10

(|
|r

kA
|| 2)

Fig. 2. Solving a KKT system with CG and ASIFCG

CG, SYMMLQ, and MINRES on a randomly generated symmetric linear sys-
tem Mx = b, with

M =







A BT

B 0






.

The matrix M has the structure of systems arising in optimization and numer-
ical PDEs that are often referred to as KKT systems or saddle-point systems.
In this example, the matrix A ∈ ℜ100×100 is pentadiagonal with randomly
generated entries in [−10, 10], and B ∈ ℜ50×100 has entries in [−5, 5]. The
matrix M is well-conditioned, with κ2(M) = 4.72 × 102. The matrix M has
74 negative eigenvalues and 76 positive eigenvalues. The vector b is again the
vector of ones. Extensive tests on random matrices were performed and have
produced qualitatively similar results. The Matlab codes for SYMMLQ and
MINRES were obtained from Stanford’s Systems Optimization Laboratory
website: http://www.stanford.edu/group/SOL/software.html.

Results. In Example 1, both CG and ASIFCG converged in 22 iterations,
with log(‖r22‖) ≈ −8.6. The norm of the residuals decreased monotonically,
and a 1 × 1 pivot is chosen at each ASIFCG iteration, confirming that for
positive definite matrices, like the Laplacian matrix in this example, ASIFCG
reduces to the CG method.

For Example 2, ‖rC
k ‖ and ‖rA

k ‖ agree for all iterates but three. These three
cases correspond to 2× 2 pivots in ASIFCG, and in each case, ‖rC

k+1‖ ≥ ‖rC
k ‖

and ‖rC
k+1‖ ≥ ‖rC

k+2‖. In particular there is a sharp jump in ‖rC
k ‖ at k = 5 (see

Fig. 1). This represents an ill-conditioned T5, and consequently, it indicates
a region of instability in CG. In this case, κ2(T5) = 3.7 × 103, and the 1 × 1
pivot d5 = 2.3×10−2. By contrast, the condition number of the corresponding
2× 2 pivot is slightly less than 4.3. Thus it is preferable to use the 2× 2 pivot
to avoid the large residual norm in this iteration.

In Example 3, all four algorithms terminated within 235 iterations. However,

10

0 50 100 150 200

−8

−6

−4

−2

0

2

4

Iterations

lo
g 10

(|
|r

es
id

ua
ls

|| 2)

SYMMLQ
ASIFCG

0 50 100 150 200

−8

−6

−4

−2

0

2

4

Iterations

lo
g 10

(|
|r

es
id

ua
ls

|| 2)

ASIFCG
MINRES

Fig. 3. Solving a KKT system with SYMMLQ and MINRES

their convergence histories differ significantly. Note the oscillatory behavior of
‖rC

k ‖ compared to the ASIFCG residual norms in Fig. 2. The “smoothness” of
the graph of ‖rA

k ‖ is due to the frequent use of 2× 2 pivots to avoid numerous
small 1× 1 pivots. Indeed, no less that 104 2× 2 pivots were used in ASIFCG
to eliminate the regions of instability, most notably at k = 17, 21, and 110. At
these iterations, the distances between the CG and ASIFCG iterates and the
known solution are listed in Table 1. These iterates associated with very large

k ‖xC
k − x∗‖ ‖xA

k − x∗‖

17 3.33 × 102 1.25 × 101

21 1.60 × 103 1.25 × 101

110 6.37 × 102 9.17 × 100

Table 1: Distances of CG and ASIFCG iterates to the known solution.

residuals are also poor approximates of the true solution, which is another
reason why they should be avoided. We note that not every xA

k is closer to x∗

than xC
k is. In our computation, however, these situations occur less frequently

and the distances differ to a lot lesser extent than the ones listed in Table 1.

The SYMMLQ residual norms are generally not as small as the ASIFCG
residual norms (see Fig. 3) because the SYMMLQ iterates are approximate
solutions in a slightly different subspace from the CG subspace over which
the CG and ASIFCG iterates are defined (see Sec. 5 in [15]). However, each
SYMMLQ iterate xS

k is well defined, unlike the CG iterates, and the CG and
ASIFCG iterates can always be recovered from xS

k . Also, ‖rC
k ‖ can be computed

without explicitly forming xC
k . Thus the SYMMLQ algorithm can terminate

by choosing whichever residual gives the smaller norm. The SYMMLQ graph
in Fig. 3 follows the norm of xS

k except for the last iteration, where xC
k is

used, since ‖rC
k ‖ was computed and was found to be less than the prescribed

tolerance for termination.

11

In exact arithmetic, the residual norms of the MINRES iterates are always
less than those of the ASIFCG iterates in the Euclidean norm since the MIN-
RES iterates are defined to minimize ‖AVkyk − b‖2 at each iteration, whereas
the ASIFCG iterates minimize ‖AVkyk − b‖A−1 . More formally, the following
relation holds for the MINRES and ASIFCG residuals:

‖rM
k ‖2 ≤ ‖rA

k ‖2.

From Sec. 7 in [15], the CG residuals satisfy ‖rM
k ‖2 = |hk|‖rC

k ‖2, for some
|hk| < 1 for all steps except the last. Now xC

k and xA
k differ only when a 2× 2

pivot is used in the previous iterate, in which case xA
k = xA

k−1 = xC
k−1. The

MINRES residual norm ‖rM
k ‖ is monotonically decreasing (see Eq. 7.4 in [15]).

Thus
‖rM

k ‖2 ≤ ‖rM
k−1‖2 ≤ ‖rC

k−1‖2 = ‖rA
k−1‖2 = ‖rA

k ‖2.

In Fig. 3 the MINRES iterates uniformly produced smaller residual norms
than those of the ASIFCG iterates, except near the termination when both
residual norms began to decrease substantially and their values were essentially
equivalent. We note that although the MINRES residual norms were smaller,
both MINRES and ASIFCG converged in the same number of iterations.

We compare the computational work required for defining the iterates for
SYMMLQ, MINRES, and ASIFCG by counting the flops, which we define
as floating point addition or multiplication, at each iteration. For all three
methods, computing the Lanczos vectors and the corresponding tridiagonal
elements αk and βk+1 at the kth iteration essentially requires 9n + 1 flops.
(There are some slight differences in implementation, but these are negligi-
ble.) In SYMMLQ and MINRES computing the plane rotations Qk and the
elements in Lk requires 13 flops and a sqrt operation, while updating x and
all relevant quantities requires 7n + 6 flops. ASIFCG, on the other hand, re-
quires 11 flops to determine the pivot size, 4n+13 flops for updating xk using
a 1 × 1 pivot and 8n + 26 flops for using a 2 × 2 pivot. Since using a 2 × 2
pivot is in essence a double iteration, ASIFCG uses 4n+13 flops per iteration
to update xk. Thus SYMMLQ and MINRES uses 16n + 20 flops per iteration
while ASIFCG uses 13n+25 flops. (Incidentally, CG uses 13n+6 flops per it-
eration.) In Example 3, both SYMMLQ and MINRES used 568700 flops while
ASIFCG used 462616 flops. We note that the number of flops per iteration for
ASIFCG does not divide exactly the total number of flops because the pivot
size is not determined necessarily at each iteration. If a 2 × 2 pivot is used in
the previous iteration, then two Lanczos vectors must be first computed be-
fore the next pivot size can be determined. The ratio of these two quantities
is 462616/568700 = 0.8135, which is approximately the ratio of the two flop
counts asymptotically.

Remarks. From Example 3, it is easy to see that ASIFCG is preferable over
CG for indefinite systems. Although the CG algorithm did not break down

12

for Example 3, there were many instances (represented by the peaks in the
graphs) for which it could have. These large residual norms are due to the
small pivots dk encountered:

‖rC
k ‖2 = |βk+1σk| = |βk+1|

|vT
k b − µk−1dk−1σk−1|

|dk|

from (5). As noted in [15], at least half of the CG iterates are well defined,
and it is these iterates that ASIFCG keeps as its iterates. Just as SYMMLQ
and MINRES sidestep possible intermediate singularities in the tridiagonal
matrices from the Lanczos process, so too does ASIFCG by looking ahead and
by using 2 × 2 pivots to skip the iterates corresponding to near-singularities.

As for the comparison of ASIFCG with MINRES and SYMMLQ, in many
runs not reported here, the three algorithms converge in approximately the
same number of iterations while demonstrating stability in defining each ap-
proximate solution. The primary difference between SYMMLQ and MINRES
with ASIFCG arises in the flop counts. In SYMMLQ, the updates for the
approximate solution xS

k = xS
k−1 + ζkwk are computed using

W̄k+1 ≡ [w1, · · · , wk, w̄k+1] ≡ Vk+1Q
T
k+1

z̄k+1 ≡ (ζ1, · · · , ζk, ζ̄k+1)
T ≡ Qk+1yk+1,

where z̄k+1 solves L̄k+1z̄k+1 = β1e1 and L̄k+1 comes from the LQ factorization
of Tk+1. When applied recursively, the updates are given by

wk = ckw̄k + skvk+1 and ζk = ckζ̄k,

where ck and sk are elements of the rotation matrix Qk,k+1 at the kth iteration.
The vector wk is not actually stored but rather w̄k since it can be defined
recursively: w̄k = sk−1w̄k−1 − ck−1vk. Thus each SYMMLQ iteration requires
two vector updates and an additional scaling to update w̄ for the solution xS

k ,

xS
k = xS

k−1 + ζkckw̄k + ζkskvk+1

rather than one in the CG algorithm, xC
k = xC

k−1 + σkck (see (7)). (Note
that the scalar ck in the SYMMLQ update is different from the vector ck

in the CG update.) These differences account for the 3n flop difference in
the operational count at each iteration. Meanwhile, MINRES computes its
updates xM

k = xM
k−1 + τkmk using

Mk ≡ [m1, · · · , mk] ≡ VkL
−T
k

with τi = β1s1s2 · · · si−1ci. Here Lk comes from L̄k = LkDk, where Dk =

13

diag(1, 1, · · · , 1, ck). If Lk is of the form

Lk =





























γ1

δ2 γ2

ǫ3 δ3 γ3

. . .
. . .

. . .

ǫk δk γk





























,

then the update mk is given by

mk =
1

γk

(vk − δkmk−1 − ǫkmk−2) ,

which implies that similar to the SYMMLQ case, two vector updates with
an additional scaling are necessary for computing the approximate solution
xM

k . By contrast, ASIFCG uses a single vector update for ck if the previous
iterate used a 1 × 1 pivot, i.e., (10) reduces to (6). Two vector updates are
used only when a 2 × 2 pivot is used in the previous iterate, which means
that ck−1 = vk−1 (see (11)). If a 1 × 1 pivot is used at the current iterate,
then xA

k = xA
k−1 + σkck. If a 2 × 2 pivot is used, then xA

k is skipped over, i.e.,
xA

k ≡ xA
k−1 and xA

k+1 = xA
k−1 + σkck + σk+1ck+1, which means that for every

two-vector update for ck or xA
k+1 the previous iterate ck−1 or xA

k did not require
a vector update at all. Therefore ASIFCG essentially uses one vector update
per iteration.

5 Summary

The conjugate gradient method is an effective algorithm for solving large
sparse symmetric positive definite systems. However, it can break down when
the matrix is indefinite. This potential break down comes from instability of
the LDLT factorization of the tridiagonal matrix in the underlying Lanczos
process. In this paper, we presented an iterative method, ASIFCG, which
avoids this potential break down by computing a block LDLT factorization
with 1× 1 and 2× 2 blocks. It uses a pivoting strategy that has been demon-
strated to be normwise backwards stable for factorizing and solving sym-
metric tridiagonal systems. We have seen in our numerical experiments that
ASIFCG reduces to the CG method for positive definite systems and is stable
like SYMMLQ and MINRES for indefinite systems. We have also seen that
ASIFCG requires fewer flops than SYMMLQ and MINRES when computing
its iterates, making it less computationally expensive. Therefore, ASIFCG is
a stable and efficient iterative method for solving linear systems whose defi-
niteness is unknown.

14

Acknowledgments

The author is supported by National Library of Medicine Training Grant
5T15LM007359-03 and is thankful to the referee for invaluable suggestions for
improving this paper.

References

[1] C. Ashcraft, R. G. Grimes, J. G. Lewis, Accurate symmetric indefinite
linear equation solvers, SIAM J. Matrix Anal. Appl. 20 (2) (1999) 513–561
(electronic).

[2] R. E. Bank, T. F. Chan, A composite step bi-conjugate gradient algorithm
for nonsymmetric linear systems, Numer. Algorithms 7 (1) (1994) 1–16.

[3] J. R. Bunch, Partial pivoting strategies for symmetric matrices, SIAM J.
Numer. Anal. 11 (1974) 521–528.

[4] J. R. Bunch, L. Kaufman, Some stable methods for calculating inertia and
solving symmetric linear systems, Math. Comp. 31 (137) (1977) 163–179.

[5] J. R. Bunch, R. F. Marcia, A simplified pivoting strategy for symmetric
tridiagonal systems, Numer. Linear Algebra Appl. 13 (2006) 865–867.

[6] J. R. Bunch, B. N. Parlett, Direct methods for solving symmetric indefi-
nite systems of linear equations, SIAM J. Numer. Anal. 8 (1971) 639–655.

[7] R. Chandra, Conjugate gradient methods for partial differential equa-
tions, Ph.D. thesis, Department of Computer Science, Yale University
(1978).

[8] G. E. Forsythe, W. R. Wasow, Finite-difference methods for partial dif-
ferential equations, Applied Mathematics Series, John Wiley & Sons Inc.,
New York, 1960.

[9] R. W. Freund, G. H. Golub, N. M. Nachtigal, Iterative solution of linear
systems, in: Acta numerica, 1992, Acta Numer., Cambridge Univ. Press,
Cambridge, 1992, pp. 57–100.

[10] G. H. Golub, C. F. Van Loan, Matrix computations, 3rd Edition, Johns
Hopkins Studies in the Mathematical Sciences, Johns Hopkins University
Press, Baltimore, MD, 1996.

[11] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving
linear systems, J. Research Nat. Bur. Standards 49 (1952) 409–436 (1953).

[12] N. J. Higham, Stability of block LDLT factorization of a symmetric tridi-
agonal matrix, Linear Algebra Appl. 287 (1-3) (1999) 181–189, special
issue celebrating the 60th birthday of Ludwig Elsner.

[13] A. Iserles, A first course in the numerical analysis of differential equations,
Cambridge Texts in Applied Mathematics, Cambridge University Press,
Cambridge, 1996.

[14] C. Lanczos, An iteration method for the solution of the eigenvalue prob-

15

lem of linear differential and integral operators, J. Research Nat. Bur.
Standards 45 (1950) 255–282.

[15] C. C. Paige, M. A. Saunders, Solutions of sparse indefinite systems of
linear equations, SIAM J. Numer. Anal. 12 (4) (1975) 617–629.

[16] B. R. Parlett, The symmetric eigenvalue problem, Classics in Applied
Mathematics, SIAM, Philadelphia, PA, 1998.

[17] J. Reid, On the method of conjugate gradients for the solution of large
sparse systems of linear equations, in: J. Reid (Ed.), Large Sparse Sets
of Linear Equation, Academic Press, New York and London, 1971, pp.
231–254.

16

