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The underestimation of data points by a convex quadratic function is a useful tool for approximating
the location of the global minima of potential energy functions that arise in protein-ligand docking
problems. Determining the parameters that define the underestimator can be formulated as a convex
quadratically constrained quadratic program and solved efficiently using algorithms for semidefinite
programming (SDP). In this paper, we formulate and solve the underestimation problem using SDP
and present numerical results for active site prediction in protein docking.
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1 Introduction

Protein-ligand docking problems in computational biology can be formulated
as global minimization problems in which the docked configuration of the two
molecules corresponds to the global minimum of a potential energy function
describing the molecular interaction. Typically, the energy landscape is funnel-
shaped and highly nonlinear with many local minima, making the docking
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problem very difficult to solve. Convex global underestimators (CGU) [1–5]
were developed to determine the location of the global minimum of such func-
tions by iteratively underfitting a set of data points over a contracting domain
by a sequence of strictly convex quadratic functions. The (unique) minimum
of each convex quadratic underestimator is an approximation to the global
minimum and is used to define the domain in the next iteration. Underes-
timation methods have been successfully implemented in protein structure
determination [1–4] as well as in protein docking [6–10].

Determining the parameters p that define the underestimator q(p;x) involves
solving a nonlinear program that minimizes L1 distance between the energy
function f(x(k)) and q(p;x(k)), k = 1, 2, . . . ,m, subject to q(p;x(k)) ≤ f(x(k))
for each k; see (1). The L1 distance is used primarily because it is robust
with respect to outliers [11–13]. The quadratic function q(p;x) is required to
underestimate f(x) so that its minimizer is a plausible predictor of the global
minimum of f(x). To guarantee that q(p;x) is convex, its Hessian matrix
H with respect to x must be positive definite. In the original formulation
of CGU [1], H was chosen to be a diagonal matrix with positive diagonal
entries, which simplifies the underestimation problem to a linear program.
The choice for the Hessian was generalized to dense positive definite matrices
in [5], where H was expressed in terms of its Cholesky factorization H = LLT ,
with L a lower triangular matrix with positive diagonal entries. In this case,
the nonlinear program becomes a quadratically constrained quadratic program
whose global solution is not necessarily easy to find. A two-phase approach,
proposed in [5], finds an underestimator with a diagonally dominant Hessian H
in the first phase, using H as the initial guess in the second phase, which solves
for the Cholesky factorization LLT . The globally optimal positive definite
Hessian is almost always found by this approach. In this paper, we solve the
underestimation problem using a single-phase approach, formulating it as a
semidefinite programming problem that can be solved efficiently.

Semidefinite programming (SDP) can be viewed as an extension of linear
programming in which the unknowns include symmetric matrices as well as
vectors and scalars, and nonnegativity constraints on the variables become pos-
itive semidefiniteness requirements on the symmetric matrix variables. More
information on SDP can be found in [14] and [15]. It is natural to formulate (1)
as an SDP in which the Hessian of the quadratic underestimator q appears as
one of the unknowns. Paschalidis et al. [16], concurrently with the submission
of this paper, described an underestimation procedure based on an SDP for-
mulation, using a biased sampling procedure to select new starting points at
each major iteration. The authors discuss the relationship of their algorithm
to earlier versions of CGU [4], and obtain test results on three problems, in-
cluding those used in Examples 4 and 5 below. However, they fixed the three
orientation variables for the ligand at their optimal values, and applied their
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procedure only to the three translational variables, and from a nearby starting
point. In contrast, our results above did not assume any such knowledge of
the global minimizer.

A second innovation presented in this paper is the use of clustering to de-
termine separate regions of space to be searched for the global minimizer.
Frequently, an initial scan of the parameter space reveals widely separated re-
gions with low function values, which can be identified by applying clustering
procedures to the local minima found during the scan. A process of repeated
convex underestimation, random point generation, and local optimization can
be applied to each cluster separately, to find the “global” minimizer for each
cluster. The best such solution becomes our estimate of the overall global
solution. (We note that clustering was not used in [16].)

The paper is organized as follows. We describe the convex quadratic un-
derestimator and the SDP formulation in Section 2. Section 3 gives details
on DoME, the algorithm for global minimization of energy functions arising
in docking applications, and Section 4 describes computational tests on five
problems from the Protein Data Bank [17]. We summarize our conclusions in
Section 5.

2 SDP Formulation

Given m data points (x(1), f(x(1))), (x(2), f(x(2))), · · · , (x(m), f(x(m))), where
x(k) ∈ <n, k = 1, 2, · · · ,m, and f : <n → <, we compute a convex quadratic
function that underestimates these data points by defining a quadratic function
q(c0, c, H;x) = c0 + cT x + 1

2xT Hx, where c0 ∈ <, c ∈ <n, and H ∈ <n×n, and
solving the minimization problem

minimize
c0,c,H

m∑
k=1

sk

subject to q(c0, c, H, x(k)) + sk = f(x(k)), k = 1, 2, · · · ,m

sk ≥ 0, k = 1, 2, · · · ,m

H symmetric positive definite,

|c0|, ‖c‖, and ‖H‖ bounded,

(1)

where sk ∈ < for k = 1, 2, · · · ,m. The constraint that H is positive definite
ensures that q(c0, c, H;x) is convex with respect to x. We impose the following
explicit bounds on c0 and c:

|c0| ≤ β0, and ‖c‖∞ ≤ βc, (2)
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and discuss the bounding of ‖H‖ further below.
We now formulate (1) as a semidefinite program. First, by introducing the

slack variables v+
0 , v−0 ∈ < and v+, v− ∈ <n, we can express (2) as

v+
0 = β0 − c0 ≥ 0

v−0 = c0 + β0 ≥ 0

v+ = βce− c ≥ 0

v− = c + βce ≥ 0,

where e ∈ <n is the vector of ones. Note that

c0 =
1
2
(v−0 − v+

0 ), and c =
1
2
(v− − v+).

Using these formulae, we can eliminate the parameters c0 and c, and the
constraints (2) can be written as follows:

v+
0 + v−0 = 2β0

v+ + v− = 2βce

v+
0 , v−0 , v+, v− ≥ 0.

Next, we note that xT Hx = X •H, where X = xxT and A •B =
∑

i,j Ai,jBi,j

is the standard inner product of symmetric matrices. To ensure that q has a
(strictly) positive definite Hessian, we replace H by H + εIn, where ε > 0 is
some parameter that is a lower bound to the smallest eigenvalue of the desired
Hessian. The corresponding equality constraint becomes

c0 + cT x(k) +
1
2
(X(k) •H) + sk = f(x(k))− ε

2
‖x(k)‖2

2,

sk ≥ 0.

The size of H can be controlled by adding a regularization term λ·trace(H) =
λ · (In • H) to the objective, where λ is a “tuning” parameter that can be
successively increased to force ‖H‖ to drop below a prescribed bound. In fact,
λ can be interpreted as a Lagrange multiplier for a constraint trace(H) ≤ C,
for some bound C. (In our computational experience, ‖H‖ does not grow too
large even for λ = 0, but we include it in our formulation for completeness.)
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In summary, our SDP formulation of (1) is given by

minimize
m∑

k=1

sk + λ(In •H) (SDP)

subject to
1
2
(v−0 − v+

0 ) +
1
2
(v− − v+)T x(k) +

1
2
(X(k) •H) + sk

= f(x(k))− ε

2
‖x(k)‖2

2 for all k

v+
0 + v−0 = 2β0

v+ + v− = 2βce

v+
0 , v−0 , v+, v− ≥ 0

sk ≥ 0, k = 1, 2, · · · ,m,

H � 0.

Although we can apply transformations to the vector and scalar variables to
obtain a problem with symmetric matrix variables only, such transformations
are computationally inefficient and in any case unnecessary, as current SDP
software can handle such variables explicitly.

3 The DoME Algorithm

The Docking Mesh Evaluator (DoME) is software for predicting the active site
of proteins upon binding with ions, DNA, ligands, and other macromolecules.
The proteins are treated as rigid bodies, with one (receptor) fixed in space
while the other (ligand) is allowed to move and rotate, leading to six degrees of
freedom: three translational and three rotational. Previously, DoME described
the molecular interaction by defining an energy model based only on solvent
effects and van der Waals forces [7]. Specifically, the electrostatic interactions
in DoME were described by a finite-element solution to the Poisson-Boltzmann
equations (PBE) while the dipole moments and steric repulsion were computed
using a standard Lennard-Jones 6-12 formula. Because the computed solution
to the PBE was piecewise-linear, the potential energy function was not dif-
ferentiable, and therefore, non-gradient-based optimization had to be used for
local minimization.

In the new version of DoME, the potential energy function has been made
differentiable by utilizing the analytical solution to the linearized PBE, known
as the Yukawa potential. While this model does not address dialectric effects
to the same level of detail as the Poisson-Boltzmann model, it nonetheless in-
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corporates the Debye-Huckel screening of charges in solvents. Two additional
terms, representing hydrogen bonding and desolvation, have also been in-
cluded in this version of DoME. Solvation plays an important role in protease-
inhibitor complexes. The hydrogen bond energy term has a hydrogen-acceptor
cutoff distance of 4.5Å and a donor-hydrogen-acceptor (D-H-A) cutoff angle of
90◦. It includes a dependence on the D-H-A angle since bond strength favors
a linear alignment. The free energy associated with removing solvents at the
active site is approximated by computing the change in the solvent accessible
surface area [18]. (For further details on each energy term, see [19].)

DoME searches for the global minimum by performing an exhaustive scan-
ning preprocessing phase, followed by a sequence of major iterations, each con-
sisting of scanning and underestimation. In the preprocessing phase, a scan is
performed over the six degrees of freedom by holding the receptor in a fixed
position and orientation, then placing the ligand at various distances from
it (fixing three degrees of freedom) and oriented in various ways (fixing the
other three). Typically, energies are evaluated at about 2 million sampling
points during this initial phase, and the lowest 900 are used as starting points
for local optimizations. The local minima thus found are underfitted with the
convex quadratic function constructed in the manner described in Section 2.
The global minimizer of the underestimator is used to initialize another local
search and thus obtain another local minimizer, which we call x∗pred. On each
subsequent major iterations, we construct a new, smaller search domain that
encompasses x∗pred along with the lowest kb local minima obtained from the
other local searches. (A typical value for kb is three.) Random points are gen-
erated within this smaller domain, followed by local minimization from each
of these points, underestimation, and another local search form the minimizer
of the underestimator. The process is repeated until the the predicted global
minima is close to the local minima with the lowest known function value and
the domain size is sufficiently small. This algorithm is described more fully
in [7].

It has been shown that the coupled use of scanning and optimizing is more
effective in determining points of low energy values than by scanning or opti-
mization alone [6]. However, we find that the initial exhaustive scan sometimes
produces points with low energy values in distinct regions in space. In this
work, we enhanced DoME by clustering the low-energy points found during
the scan in the preprocessing phase on the basis of their (x, y, z) coordinates.
We then form a separate quadratic underestimator for each cluster and ap-
ply the subsequent major iterations to each cluster separately. At the end of
this process, we obtain an approximate global minimizer for each cluster. For
clustering, we used the k-Median algorithm of Bradley et al. [20], which mini-
mizes the total L1 distance between points in a chosen cluster. This algorithm
is robust and is guaranteed to converge to a solution satisfying the mini-
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mum principle necessary optimality condition for the problem [21]. No more
than four clusters were used, ensuring that each cluster contained sufficiently
many points for underestimation. This approach differs from the clustering
algorithm for protein complexes called ClusPro [22], which computes the root-
mean-square deviation (RMSD) between ligand residues at the interface of
each candidate conformations and groups those structures within a (default)
cluster radius of 9Å RMSD. The clusters are then ranked based on the num-
ber of structures they contain. It is possible that such an approach would
yield many clusters (as many as 30) and would not guarantee the number of
data points necessary to determine the convex quadratic underestimator, so
we elected not to use this approach.

4 Computational Examples in Protein Docking

We applied the enhanced DoME code described in the previous section to five
examples from the Protein Data Bank [17]. For each of these examples, the
bound configuration is known, allowing us to compare the DoME results with
the known global minimizer.

Example 1: CheY-binding domain of CheA in complex with CheY (1A0O).
The 1A0O complex consists of response regulator of bacterial chemotaxis,
CheY, bound to the recognition domain from its cognate histidine kinase,
CheA [27]. This specific recognition domain minimizes the cross-talk in signal
transmission mediated by Mg2+-dependent phospho-relay reactions between
histidine auto-kinases and phosphoaccepting receiver domains.

Example 2: V-1 Nef protein in complex with wild type Fyn SH3 domain
(1AVZ). The antibody-antigen complex 1AVZ consists of a viral protein, HIV-
1 Nef, and the host cell signal transduction protein, Fyn tyrosine kinase SH3
domain [28]. The interaction between these two proteins provides for long
term survival of infected T cells and for destruction of non-infected T cells by
inducing apoptosis.

Example 3: Trypsin complex with Bowman-Birk inhibitor (1TAB). The
1TAB complex consists of the enzyme trypsin and BBI, the Bowman-Birk
trypsin-inhibitor, which is a polypeptide chain of 71 amino acids highly cross-
linked by seven disulfide bridges [29]. Elevated levels of trypsin have been
found in pancreatic tumors, and BBI, commonly found in soybeans, has been
shown to suppress this type of tumor in various animals.

Example 4: Barnase-barstar complex (1BRS) Barnase is an extracellular
ribonuclease found in bacillus amyloliquefaciens. The intracellular polypeptide
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Cluster Iter E(x0
min) E(xf

min) ‖ · ‖2 ‖ · ‖θ

1 4 -29.652 -41.779 32.516 1.314
2 3 -58.535 -58.804 0.138 0.022
3 4 -42.855 -46.526 55.774 3.093
4 5 -41.645 -44.416 55.690 2.954
- 4 -58.535 -58.788 0.122 0.025

Table 1: Results for 1A0O.

inhibitor barstar disrupts its potentially lethal functions by sterically blocking
its active site with a helix and adjacent loop segment [30].

Example 5: Trypsin-pancreatic enzyme inhibitor complex (2PTC). The
2PTC complex involves trypsin interacting with a bovine pancreatic enzyme
inhibitor [31].

We solved (SDP) using the Matlab software package SDPT3 (version
3.0) of Tütüncü et al. [23], which is an interior-point algorithm that uses a
predictor-corrector primal-dual path-following method. In our numerical test-
ing, the default HKM [24–26] direction was used. All runs were made on a
single 2.20 GHz Pentium 4 processor Linux workstation with 896 MB of RAM
from Dell Computers and 2.0 GHz Apple Power Mac G5 Cluster. The compu-
tational times for each cluster in each example ranged between 7.5 and 12.5
hours on four processors, with 80% of the time spent on local optimization
and 20% on random point generation and function evaluations. Constructing
the underestimator at each iteration took no more than two seconds.

Results for the five examples appear in Tables 1–5. We denote the local
minima with the lowest energy value in the initial scanning and in the final
iteration by x0

min and xf
min, respectively. For each of the four clusters, we list

the number of major DoME iterations (Iter), the energy values (E(x0
min) and

E(xf
min)) in kcal/mol, and the 2-norm ‖ · ‖2 (Å) and angular distances ‖ · ‖θ

(radians) of the local minima xf
min to the known docked configuration. As a

point of comparison, we list in the last row of each table, indicated by “−” in
the Cluster column, the results obtained by scanning and underfitting without
clustering the data points in the initial iteration.

Analysis of Results. In the five examples presented, DoME approximated
the locations of the global minima by clustering the initial points followed by
iterative underestimation. In the 1A0O complex (Example 1), a point near
the global minimum was detected in DoME’s initial scanning, in cluster 2.
Naturally, DoME identified this point correctly as the global minimum, after
several iterations. It is interesting to note that DoME also finds the global so-
lutions if clustering is not used. Due to the low energy value of the minimum
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Cluster Iter E(x0
min) E(xf

min) ‖ · ‖2 ‖ · ‖θ

1 3 -31.071 -45.214 24.565 2.075
2 4 -42.132 -45.280 24.855 1.836
3 4 -45.515 -53.381 6.353 2.987
4 4 -47.406 -76.947 0.276 0.079
- 5 -47.406 -60.195 5.556 2.893

Table 2: Results for 1AVZ.

Cluster Iter E(x0
min) E(xf

min) ‖ · ‖2 ‖ · ‖θ

1 5 -41.503 -44.450 36.134 2.767
2 3 -50.438 -59.761 0.092 0.081
3 3 -47.359 -47.587 30.139 0.567
4 3 -52.275 -53.503 36.360 1.104
- 5 -52.275 -53.524 36.392 1.108

Table 3: Results for 1TAB.

Cluster Iter E(x0
min) E(xf

min) ‖ · ‖2 ‖ · ‖θ

1 5 -40.996 -47.611 44.068 1.193
2 4 -49.732 -71.465 0.001 0.110
3 6 -52.534 -52.550 43.042 2.666
4 4 -41.650 -42.118 33.400 3.011
- 4 -52.534 -52.553 43.040 2.666

Table 4: Results for 1BRS.

Cluster Iter E(x0
min) E(xf

min) ‖ · ‖2 ‖ · ‖θ

1 4 -41.383 -61.791 0.008 0.133
2 5 -45.805 -53.242 39.491 2.292
3 4 -47.584 -48.696 46.499 2.632
4 4 -49.924 -53.255 30.916 1.243
- 6 -49.924 -55.015 37.828 0.624

Table 5: Results for 2PTC.

(E(x0
min) = −58.525 kcal/mol) in relation to the other local minima values

found, the shape of the underestimator is such that its minimum nearly coin-
cides with the global minimum. Thus there was a large decrease in the size of
the search domain after the initial scanning phase, and subsequent iterations
were able to obtain nearby local minima with even lower energy values.

In Example 2 (1AVZ), the global minimum was again found in the initial
scanning but was removed from the set of local minimizers before performing
the underestimation, to see if subsequent iterations could recover this point.
Again, clustering and iterative underestimation was able to locate a very good
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approximation to the global minimum, even though the initial point x0
min in

cluster 4 had a much higher energy value than the global minimizer, which
lies in this cluster. When clustering was omitted in this example, DoME found
a minimizer that that was located relatively near the global minimum (about
5.5 Å away) but was oriented incorrectly. It is the steric repulsion induced by
this incorrect orientation that prevented the ligand molecule from achieving
the correct translational coordinates for binding.

In Examples 3, 4, and 5 (the 1TAB, 1BRS, and 2PTC complexes), widely
separated regions of low energy are identified during the initial scan, and the
use of clustering enabled DoME to identify the global minimizer correctly in
each case. When clustering was not used, the single quadratic underfitting
function had its minimizer between these low-energy regions, in a region that
was neither low in energy value nor near any of the minima. In each of these
cases, when a local search was performed from the minimizer of the convex
underestimator, the best of the four initial local minimizers from each of the
clusters was identified as x∗pred. Subsequent DoME iterations in the single-
cluster case failed to identify the known global minimizers.

It is interesting to note that our “divide and conquer” approach to opti-
mization always produced a near-native (globally minimizing) structure as the
predicted global minimum of one of the initial clusters. In two of five cases, the
near-native configuration corresponded was found in the cluster whose local
minimizer had the lowest function value after the initial scanning phase. How-
ever, in the other three cases (1TAB, 1BRS, 2PTC) the near-native structure
was obtained in a different cluster, one for which the local minimizer obtained
after the scanning phase had a higher function value. This fact demonstrates
the value of the multiple cluster CGU approach, because it allows for sev-
eral domains to be searched, thereby increasing the chance of producing a
near-native solution.

5 Conclusion

We presented a method for computing a convex quadratic function that un-
derestimates a set of points for determining the global minimum of a function.
We formulated the problem as a semidefinite program, which generally can
be solved efficiently in theory and practice. We applied this approach in the
context of protein docking and showed that a combination of clustering and
iterative underestimation effectively predicted near-native docking configura-
tions for several test cases. A more comprehensive survey of docking problems
will determine whether near-native conformations are always found as cluster
global minima.
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