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Abstract. An algorithm for finding an approximate global minimum of a funnel shaped function
with many local minima is described. It is applied to compute the minimum energy docking position
of a ligand with respect to a protein molecule. The method is based on the iterative use of a convex,
general quadratic approximation that underestimates a set of local minima, where the error in the
approximation is minimized in the L1 norm. The quadratic approximation is used to generate a
reduced domain, which is assumed to contain the global minimum of the funnel shaped function.
Additional local minima are computed in this reduced domain, and an improved approximation is
computed. This process is iterated until a convergence tolerance is satisfied. The algorithm has been
applied to find the global minimum of the energy function generated by the Docking Mesh Evaluator
program. Results for three different protein docking examples are presented. Each of these energy
functions has thousands of local minima. Convergence of the algorithm to an approximate global
minimum is shown for all three examples.

1 Introduction

Two important problems in computational biology can be formulated as that of finding the
global minimum of a funnel (or basin) shaped function with many local minima. The function
to be minimized represents the potential energy of a single molecule, or of two molecules
joined together. In the first case, we wish to approximate the native structure of a protein
molecule, given the amino acid sequence which describes the protein (the protein folding
problem). In the second case we wish to determine computationally the correct location on
a protein molecule where a ligand (drug) will attach to it, as well as the correct orientation
of the ligand with respect to the protein molecule. This is called the docking problem. For
both of these cases the basic assumption is that with a reliable potential energy function,
the correct geometric structure corresponds to the global minimum of the energy function.

The Convex Global Underestimator (CGU) was developed for finding the global min-
imum of a function of the type described above. Initially the method was developed for,
and applied to, the protein folding problem for a set of small model molecules [2,10]. Briefly
CGU first computes a set of local minima to the energy function f(x), in the space x in
IRn, of coordinates which determine the protein molecule structure (conformation space).
A strictly convex, quadratic function q(p, x), with s parameters p, is then computed, which
underestimates all the local minima, and also minimizes the approximation error in the L1

norm. The local minimum x∗pred corresponding to the unique minimum xpred of q(p, x), with
respect to x, is then an estimate of the location of the global minimum of the funnel shaped
energy surface. A reduced rectangular domain in IRn is then determined, which contains
x∗pred and the local minimum xmin with the minimum function value, and additional local
minima are computed in this domain. A convex quadratic underestimator is again com-
puted, and the process iterated until x∗pred ≈ xmin. For this application to small molecules,
the quadratic function q(p, x) was limited to a diagonal Hessian matrix. In this paper we
apply a similar method to the protein-ligand docking problem. For this problem we need to
use a convex, general quadratic underestimating function, in which the Hessian of q(p, x)
may contain nonzero, off-diagonal terms. The manner in which such an approximating func-
tion is computed has been described in [11]. The algorithm is described in Section 3, the
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docking problem is summarized in Section 4, and the results of applying the algorithm to
three different docking problems are given in Section 5.

2 General Convex Quadratic Approximation

The General Convex Quadratic Approximation (GCQA) algorithm determines a general
quadratic function which is strictly convex, and underestimates a set of m data points in
IRn+1, {(x1, f(x1)), (x2, f(x2)), · · · , (xm, f(xm))}, where xk ∈ IRn for k = 1, · · · ,m, and
f : IRn → IR. The s = (n+1)(n+2)/2 parameters in the quadratic function are determined
so that the function is strictly convex, underestimates the data points, and minimizes the
error in the approximation to the data in the L1 norm. The number of data points required
is m ≥ s, usually m = 4s. This underestimator to the data points is used iteratively to
attempt to find a good approximation to the global minimum of a function with many local
minima. The potential energy function for the docking of a ligand on a protein is a function
of this type as described in Section 4. The energy function is defined in a six-dimensional
space (n = 6), where the six coordinates determine the relative positions of the protein and
the ligand.

The protein-ligand energy function is computed by the program Docking Mesh Evaluator
(DoME), as summarized in Section 4. An adaptive grid consisting of three-dimensional sim-
plices is generated using Adaptive Poisson-Boltzmann Solver (APBS) [1]. DoME computes
the energy function at each of the four vertices of each simplex, and linearly interpolates
to get the energy at any interior point of a simplex. Thus once the function values at the
vertices are computed, it is a relatively fast calculation to compute the function value for any
specified orientation of the ligand with respect to the protein molecule. This energy func-
tion is a six-dimensional piecewise linear function. A local minimization therefore consists
of minimizing this 6-D piecewise linear function.

The global optimization algorithm consists of a sequence of major iterations. The first
major iteration consists of a coupled use of scanning and optimization. Initially, DoME scans
the energy landscape for favorable configurations. The coordinates for these configurations
are then used as starting points for local optimization. (This coupled optimization can
be done once as a preprocessing step and need not be done again.) The best m = 4s local
minima are chosen as initial points to underestimate. The vertex with the minimum function
value is denoted by x∗init. The function value f(x∗init) is the minimum value that is known
from the adaptive grid calculation only. An initial six-dimensional hyperrectangular domain
is constructed so as to include all 4s vertices. This is the initial domain D. The major
iterations of the global optimization algorithm are then carried out, as summarized next.

Each major iteration consists of two phases. Phase I of the first major iteration consists
of the coupled optimization described previously. Phase I of subsequent major iterations
consists of defining a hyperrectangular domain D in IRn, and randomly generating m ( ≥s )
data points {x1, · · · , xm}, and computing a corresponding local minimum from each of these
points, to give x∗k, and f∗k = f(x∗k), k = 1, · · · ,m. Let Skb

denote the set of kb points with
the smallest function values. (A typical value for kb is 3.) In Phase II of each major iteration
the data points (x∗k, f∗k ), k = 1, · · · ,m, are underestimated by a general convex quadratic
function, with an easily computed global minimum xpred, which is a predicted value for
the global minimum of the energy function f(x). A corresponding local minimum x∗pred,
is computed, and is added to the set of data points. This new point x∗pred, may replace
one of the points in Skb

. The new domain D is then defined as the smallest hyperrectangle
containing the points in Skb

. The next major iteration is started with this domain.
The domain size is typically reduced at each major iteration, and the iterations are

terminated when the predicted global minimum xpred is close to the local minimum with
the smallest function value. Details of this algorithm are given in the next section. At
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termination, as shown by the computational results in Section 5, many of the data points
are interpolated by the convex quadratic approximation, so that this quadratic function,
and its eigenvalues and eigenvectors give a good representation of the energy surface in the
neighborhood of the presumed global minimum of the energy function.

The Phase II of the global optimization algorithm has been described in detail in an
earlier paper [11] where the theory and computational results are given for fitting data
points in IRn with a convex quadratic function. It is shown there that the convex quadratic
approximation gives a good approximation to a nonconvex function. Specifically, the data
points xi are selected randomly in a hyperrectangle in IRn, with n as large as 15, and the
function values f(xi) are obtained from a convex quadratic function, with a positive or
negative random perturbation of each function value. The results given in [11] show that
the approximation essentially recovers the original unperturbed convex quadratic function.
The computational method used to determine the convex quadratic approximation in Phase
II of the global optimization algorithm is the large-scale constrained optimization package
NPSOL [3].

An earlier version of the convex quadratic approximation has been used successfully to
determine the global minimum energy conformation of small protein models [2,10]. This
earlier version, called the Convex Global Underestimator (CGU) algorithm limited the
quadratic function to diagonal terms only. Using diagonal terms only, CGU was also used for
docking small ligands. This problem required only good convex approximation in the three
space variables [9]. This limited its usefulness if the best convex quadratic approximation
actually included off-diagonal terms. The protein-ligand docking energy functions generated
by DoME all require significant off-diagonal terms to get a good approximation, as described
in Section 4.

3 Algorithmic Details

3.1 Phase I: Generating Points

After the first iteration where the the initial seed points are computed by DoME, the data
points used to construct the approximation are obtained as follows. Given the domain D,
m points are randomly generated such that xk ∈ D, k = 1, · · · ,m and f(xk) ≤ fmax for
some scalar fmax. Since the points xk are chosen at random, some function values f(xk)
may be very large. Such data points can be considered as outliers in the underestimator
approximation process. Since we are minimizing the error in the L1 norm, these outliers will
not affect the shape of the underestimator q(p, x). In fact, only the interpolated data points
will determine the s parameters in q(p, x) (see for example [12]). The approximation error
value will however be greatly increased by these outliers. If two (or more) random points
are close to each other, only the one with the minimum f(x) will be interpolated. Any
random points with large function values can therefore be eliminated without changing the
underestimator . Eliminating such points will significantly reduce the computation time,
and also the size of the approximation error. Since f(xinit) is known from DoME to be
negative, we chose the cutoff value fmax = 2.0× 102. Increasing this value does not change
the underestimator. The randomly generated points are then used as initial values for local
minimization. A non-gradient-based optimization algorithm (the Hooke-Jeeves direct search
algorithm [6]) is used for computing the local minima since the energy function is piecewise
linear and therefore non-differentiable. The set of local minima is denoted by {x∗1, · · · , x∗m}.
Let xmin be one of the local minima with the smallest function value, i.e., xmin ∈ {x∗k} with
f(xmin) ≤ f(x∗k) for all k. While it is possible that a local minima x∗k might lie outside of
the domain, this has not occurred in any of the examples we have tested so far.
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3.2 Phase II: Computing the Predicted Global Minimum

Given the m data points, a strictly convex quadratic function q(x) such that q(x∗k) ≤ f(x∗k)
for all k is constructed using GCQA (see Section 2). Let xq be the unique global minimum
of q(x). If xq is feasible with respect to D, then the initial predicted global minimum xpred

is defined by xq. If not, i.e., xq /∈ D, then xpred is defined as the solution of the quadratic
programming problem

minimize
x∈IRn

q(x)

subject to xL ≤ x ≤ xU ,
(QP)

where xL and xU define the domain D = {x : xL ≤ x ≤ xU}.
Using xpred as an initial estimate, a local minimization is performed on f(x) to obtain a

local minimum x∗pred. This local minimum is used as the predicted global minimum for the
energy function.

3.3 Domain Trimming

The GCQA algorithm consists of a number of major iterations. At each major iteration the
volume of the search domain D is usually reduced. Initially the search domain is chosen suf-
ficiently large so that it will contain the global minimum xgmin of f(x). At each subsequent
iteration it is desired to reduce the volume of D as much as possible, subject to its contain-
ing xgmin, with high probability. This is accomplished by finding the smallest rectangular
domain that contains, in its interior, both the predicted global minimum, x∗pred, and the
local minimum point xmin with the minimum function value. The assumption is that xgmin

is close to at least one of these points. Based on the computational results obtained (Section
5) this assumption is valid for the examples considered. Typically, the distance between the
new xmin and x∗pred will decrease with each major iteration. That is, the underestimator is
an improved approximation to f(x) in the neighborhood of xmin.

Given the predicted global minimum x∗pred, we wish to reduce the hyperrectangle to
obtain a new search domain. The reduced domain must contain a set of kb points, Skb

,
with the lowest function values and if appropriate, x∗pred. In general, it is assumed that
at least one of the points in Skb

will be near the global minimum. Since the new domain
must contain the global minimum, these points are required to be in the strict interior
of the new domain. This new domain RD({xk}; ρ) is obtained by computing the smallest
hyperrectangle containing {xk} and by padding the sides by a factor of ρ. More precisely, if
the smallest and largest i-th coordinate for all xk are denoted by

(x)min
i = {(xk)i : (xk)i ≤ (xj)i for all j}

(x)max
i = {(xk)i : (xk)i ≥ (xj)i for all j},

then the bounds of RD({xk}; ρ) are given by

(xL)i = (x)min
i − ρ

(
(x)max

i − (x)min
i

)
(xU )i = (x)max

i + ρ
(
(x)max

i − (x)min
i

)
.

In our numerical experiments, the value ρ = 0.1 is chosen.
If the predicted global minimum x∗pred is in D, then the new domain will contain x∗pred

and the local minimum with the lowest function value, xmin, i.e., D = RD(x∗pred, xmin; ρ). If
x∗pred /∈ D, then the new domain is defined to contain the kb best points: D = RD(Skb

; ρ).
There are two possible situations for which the size of the domain D does not decrease.

The first is when the local minimum values f(x∗k) and the predicted global minimum value
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f(x∗pred) are all greater than f(xmin), where xmin is the previous best local minimum. The
second is when x∗pred is exterior to D, and f(x∗pred) < f(xmin). In this case D is expanded to
include x∗pred. These situations only occurred in Example 1 (Table 5.1). If the termination
tolerance (Section 3.4) is not satisfied when the number of major iterations (= itermid),
termination is forced by reducing the length of each edge of D by a factor γ ∈ (0, 1), so that
the volume of D is reduced by γ6 at each major iteration, with D centered at xmin. The
values itermid = 20 and γ = 0.5 were used to ensure that calculations would terminate within
a day. This type of domain reduction was needed only for Example 1, and the maximum
number of major iterations needed was always ≤ 28.

3.4 Termination

The algorithm is terminated when the predicted global minimum xpred corresponds to the
local minima with the lowest known function value xmin, i.e., the relative error is smaller
than some prescribed tolerance:

‖xmin − x∗pred‖2
‖xmin‖2

< τ,

for some τ > 0. In our computations, the value τ = 10−4 is used.

4 Docking Mesh Evaluator

The Docking Mesh Evaluator (DoME) is a program for predicting the structure of bound
protein-protein or other macromolecular complexes by modeling the potential energy land-
scape and finding its global minima. This model is based on the effects of solvents on bio-
logical interactions and the pairwise interactions between the atoms in each molecule. The
electrostatic potential is described by a second order nonlinear partial differential equation
known as the Poisson-Boltzmann equation:

−∇ · (ε∇u) + κ̄2 sinh(u) = ρ, (PBE)

where u is the electrostatic potential, ρ is a normalized sum of charges taken at atomic
centers, ε describes the degree of polarizability, and κ̄ indicates the impact of temperature
and ionic concentration on solvent effects. This model approximates the statistical average of
electrostatic effects for a macromolecule in solution. The attractive and repulsive interaction
between the atoms is modeled by the Lennard-Jones (12-6) pairwise potential:

uij = 4εij

((
σij

rij

)12

−
(

σij

rij

)6
)

, (LJ)

where εij and σij are specific Lennard-Jones parameters and rij represents the Euclidean
distance between atoms i and j. Note that the 1

r12
ij

term in (LJ) describes the short-range

repulsive potential while the 1
r6

ij
term describes the long-range attractive tail of the potential

between two particles.
DoME evaluates the total energy function by using the numerical solution of the Poisson-

Boltzmann Equation generated by the Adaptive Poisson-Boltzmann Solver (APBS) and the
Finite Element Toolkit (FEtk) [1,5] on a high-resolution adaptive mesh and interpolating
at the four vertices of each simplex. The Lennard-Jones potential function values are then
computed at all vertices of the adaptive mesh, using the van der Waals radii for target
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molecule atoms and assuming a probe atom the size of carbon. The Lennard-Jones poten-
tial can be interpolated nearly identically to the electrostatic potential. This approach to
computing interaction energies is similar to that of other fast molecular docking methods,
such as AutoDock[4] and DOCK[8]. These methods interpolate precomputed potential func-
tion values in order to lessen the computational expense. The major difference is that DoME
interpolates against adaptive meshes rather than regular grids, and electrostatic potentials
are defined using solutions to the Poisson-Boltzmann equation.

The energy function generated by DoME represents a typical landscape for docking
problems. Since the correct docking position is known for each of the three examples used
here, we can compare the energy function value at this docking position with the minimum
function value computed for the same function by the global optimization algorithm. Based
on this information, we are aware that the energy function needs to be further improved.
This is based on the fact that, for all three examples, the value of the energy function at the
known docking position is significantly higher (by as much as 60%) than the global minimum
value obtained by Algorithm 5.1. Clearly this means that the current energy function does
not attain its global minimum at the correct docking position, and therefore needs to be
suitably modified. Work on this is currently in progress, however we are confident that with a
better energy model, the predicted global minima identified by GCQA will give biologically
realistic results.

5 Numerical Results

We first present the algorithm for the global optimization method implemented in DoME.

5.1 The algorithm

Algorithm 5.1. Global optimization algorithm in DoME
Define γ (0 < γ < 1); τ ; itermax; fmax; kb; itermid;
Initialize xU , xL;
Define D = {x : xL ≤ x ≤ xU};
Initialize iter = 1;
while (‖xmin − x∗pred‖2/‖xmin‖2 > τ) and (iter ≤ itermax) do

Generate m points {xk} such that xk ∈ D and f(xk) ≤ fmax;
Perform local minimization on {xk} to obtain {x∗k};
if (x∗k /∈ D) then

if (f(x∗k) ≤ f(xmin)) then
Expand D such that x∗k ∈ D;

else
x∗k ← xk;

Define xmin ∈ {x∗k} such that f(xmin) ≤ f(x∗k) for all k;
GCQA: Compute and minimize approximation q(p, x) subject to x ∈ D

to obtain predicted global minimum xpred;
Perform local minimization on xpred to obtain x∗pred;
if (x∗pred /∈ D) then

if (f(x∗pred) ≤ f(xmin)) then
Expand D such that x∗pred ∈ D;

else
Let Skb

be the set of kb best points.
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D ← RD(Skb
; ρ);

else
D ← RD(x∗pred, xmin; ρ);

if (iter ≥ itermid) then
Reduce D by γ such that x∗ ∈ D, where x∗ = arg min{f(x∗pred), f(xmin)};

iter = iter+1;
end do

5.2 Results

We now consider the application of Algorithm 5.1 to three problems in protein docking. The
first two protein-protein complexes come from the CAPRI (Critical Assessment of Predicted
Interactions; http://capri.ebi.ac.uk) blind docking trial [7]. We present results from CAPRI
Targets 5 and 6 involving antibody/large-antigen complexes. The third complex involves an
extracellular protein found in bacillus amyloliquefaciens called barnase, whose potentially
lethal functions within the cell are inhibited by a polypeptide called barstar.

Examples 1 and 2: Antibody/large-antigen complexes. These targets call for the dock-
ing of an antibody to porcine α-amylase, a large antigen present in pancreatic secretion.
These examples involve different camelid antibody heavy chain variable domains AMB7
and AMD9.

Example 3: Barnase-barstar complex. The barnase-barstar complex is a complex between
the bacterial ribonuclease, barnase, and a Cys→Ala(40,82) double mutant of its intracellular
polypeptide inhibitor, barstar. Barstar inhibits barnase by sterically blocking the active site
with an α-helix and the loop segment connecting it to the adjacent helix. Thus, there is a
high degree of complementarity of shape between the two structures. Also, the electrostatic
interactions are stabilized at the surface interface. Thus, there is a high degree of charge
complementarity as well.

The results for these examples are presented in Tables 5.1, 5.2, and 5.3. Each example
was run three times, with different random points chosen in the reduced rectangular domain
for each of the three runs. For each run, the same m = 112 initial points were used to start
the process, and an equal number of points were generated at each subsequent iteration.
The results for each of the three runs are given in the three columns of each table. In each
column the following values are given:

f(x∗init) Minimum function value obtained from adaptive grid calculation.

f(xmin) Function value at final best known local minimum xmin.

∆ffinal

f(x∗pred)−f(xmin), where x∗pred is the local minimum corresponding
to the final predicted global minimum point. The value ∆ffinal is
a measure of the accuracy of prediction of the global minimum by
the convex quadratic approximation.

Iter Number of major iterations required by the algorithm to terminate.

Error(Init.) Initial L1 approximation error between approximation and all local
minima in D.

Error(Final) Final value of this error.
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Domain(Init.)
Value of the domain size Ds =

∑
i

(
(xU )i − (xL)i

)
for initial hy-

perrectangle D.
Domain(Final) Ds for final hyperrectangle.

Interp. Pts. Number of local minima interpolated by final approximation.

λmin
Minimum eigenvalue of Hessian for final convex quadratic approx-
imation.

cond(H) Condition number of Hessian for final approximation.

1 2 3
f(x∗init) -44.7170 -44.7170 -44.7170
f(xmin) -45.1937 -45.4878 -45.2417
∆ffinal 0.2205 0.0000 0.1070
Iter 27 25 28

Error(Init.) 1894.20 1894.20 1894.20
Error(Final) 5.51 2.94 6.34
Domain(Init.) 252.5601 252.5601 252.5601
Domain(Final) 0.0201 0.0409 0.1013
Interp. pts. 10 15 15

λmin 1.6964 0.1028 0.1001
cond(H) 1.2× 102 4.4× 106 2.0× 107

Table 5.1: Results for Example 1: α-amylase-AMB7

1 2 3
f(x∗init) -37.6290 -37.6290 -37.6290
f(xmin) -64.8419 -64.3779 -64.3780
∆ffinal 0.1139 0.0986 0.0008
Iter 9 23 16

Error(Init.) 1969.16 1969.16 1969.16
Error(Final) 2.21 14.06 11.66
Domain(Init.) 274.4603 274.4603 274.4603
Domain(Final) 0.0066 0.0135 0.0070
Interp. pts. 16 16 12

λmin 0.1182 0.1000 0.1000
cond(H) 1.6× 105 1.4× 109 2.7× 106

Table 5.2: Results for Example 2: α-amylase-AMD9

1 2 3
f(x∗init) -35.5870 -35.5870 -35.5870
f(xmin) -52.4205 -51.9627 -52.7510
∆ffinal 0.0010 1.1293 0.5970
Iter 9 10 11

Error(Init.) 669.46 669.46 669.46
Error(Final) 9.92 95.74 11.92
Domain(Init.) 184.2256 184.2256 184.2256
Domain(Final) 0.0051 0.0165 0.0118
Interp. pts. 11 10 11

λmin 0.1000 0.1000 0.1000
cond(H) 3.0× 103 3.8× 104 1.2× 103

Table 5.3: Results for Example 3: Barnase-barstar
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5.3 Analysis of Results

The three examples for which results are presented show that the combination of the global
optimization algorithm with DoME finds an approximate global minimum of the docking po-
tential energy function. While the adaptive grid calculation used in DoME finds reasonably
good minimum energy docking positions, significantly reduced energy values are computed
by Algorithm 5.1, as shown by the difference between f(x∗init) and f(xmin). For the examples
shown, the average decrease

f(x∗init)− f(xmin)
|f(xmin)|

is 1.3%, 41% and 31.8% for Examples 1, 2 and 3. These results are typical of all the cases
computed. For Examples 2 and 3 where a substantial decrease between f(x∗init) and f(xmin)
is observed, the global minimum was found in the latter major iterations while the global
minimum for Example 1 was obtained in the early major iterations, which suggests that the
initial DoME scanning was successful in detecting local minima near the global minimum
for Example 1.

The times for each run of the three examples range between 5 and 17 hours. The GCQA
underestimation takes up approximately 6% of the run time, with the rest going into gener-
ating the initial points and the local optimization. Thus the additional computational time
incurred by GCQA is marginal. On average, 500 function evaluations are needed to generate
the initial m = 112 points for each major iteration. Each of the 112 generated points are used
as initial points for the Hooke-Jeeves local optimization, and approximately 100 function
evaluations are needed for each local optimization. Thus, for a run of 20 major iterations,
the total number of function evaluations is comparable to that of the initial DoME scanning
(2.0× 106), indicating that for roughly the same amount of work, our coupled optimization
approach is more effective in determining points of low energy values than by scanning or
optimization alone (see [9]).

The convergence of Algorithm 5.1 to the approximate global minimum is shown by
the decrease in three quantities. The first of these quantities, ∆ffinal is a measure of how
accurately the final quadratic underestimator approximates the presumed global minimum
of the energy function f(x). In the examples shown, the average differences are 0.11, 0.03,
and 0.57 for Examples 1, 2 and 3. These small values mean that the convex underestimator
is an excellent approximation to the true local landscape of f(x) at the approximate global
minimum xmin. The nature of this local landscape is characterized by the eigenvalues of the
Hessian of the final approximation. The minimum eigenvalue λmin represents the minimum
curvature of the convex surface, and the condition number gives the ratio of the maximum
to minimum curvature of this surface. The corresponding eigenvectors (not shown) also
give useful information on the linear combination of the original coordinates for which the
function value changes least rapidly, and most rapidly.

The second quantity showing convergence is the decrease in the approximation error
between the first major iteration and the final iteration. This decrease shows that at the
final iteration the approximation error has decreased substantially from its initial value, and
in fact, that the final approximation actually interpolated a significant number of the local
minimum. Finally, the large domain size reduction shown in the Tables means that at termi-
nation the local minimum landscape is well-represented by the final convex approximation.

The energy function f(x) being minimized is a complicated function of the six coordi-
nates, with thousands of local minima. There is no guarantee that Algorithm 5.1 actually
determines the global minimum of f(x). For each of the three examples used, the global
minimum of the corresponding energy function is not known in advance, so we cannot be
certain the f(xmin) found in each case is in fact the desired global minimum. However,
convincing evidence that f(xmin) is at least very close to the true global minimum is given
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by the fact that each of the three runs for each example gave close to the same value. In
addition, the coordinates at the minima computed from the three runs were only slightly
different. The protein configurations corresponding to these solutions were nearly indistin-
guishable. Except for the initial local minima used to start the first iteration, each of the
three runs were completely different, but still found essentially the same global minimum.

6 Conclusions

A global optimization algorithm has been successfully used to find an approximate global
minimum of the potential energy function generated by the DoME code for each of three
examples of docking problems, showing that, with a correct energy function, it could be used
to predict a correct docking configuration for a protein-ligand molecular pair. The typical
protein-ligand docking energy function contains adjustable parameters which determine the
location of its global minimum. We therefore anticipate that improved parameter values
can be determined by adjusting them so as to minimize the difference between the global
minimum coordinates of the docking energy function and the correct docking coordinates,
for examples where these are known. This improved docking energy function can then be
used to predict the docking configuration for protein-ligand pairs where the correct docking
configuration is not yet known.
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