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Abstract. In several applications, underestimation of functions has proven to be a helpful tool for global opti-
mization. In protein-ligand docking problems as well as in protein structure prediction, single convex quadratic
underestimators have been used to approximate the location of the global minimum point. While this approach
has been successful for basin-shaped functions, it is not suitable for energy functions with more than one dis-
tinct local minimum with a large magnitude. Such functions may contain several basin-shaped components and,
thus, cannot be underfitted by a single convex underestimator. In this paper, we propose using an underestimator
composed of several negative Gaussian functions. Such an underestimator can be computed by solving a nonlin-
ear programming problem, which minimizes the error between the data points and the underestimator in the L'
norm. Numerical results for simulated and actual docking energy functions are presented.
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1. Introduction

The problem of estimating the location of the global minimum point of a basin-shaped energy
function f(z) € R", with a very large number of local minima, is important in a number of
computational biology applications, including protein-ligand docking and the prediction of
protein structure from sequence. This problem has been considered in several earlier papers,
where a set of m > n, local minima is computed in an initial large search domain D in R",
and these data points are approximated by a strictly convex quadratic function ¢(z, p) which
underestimates all of them and minimizes the error in the L! norm [2, 4, 5,7, 9, 10]. In ¢(x, p),
the variables p € R°, with s < m, represents the parameters which are determined so as to
minimize the L' distance between ¢(z,p) and f(z) at each data point . The unique minimum
point zpreq € D of g(w, p) is then a good prediction for the global minimum zgmiy of the true
energy function f(z). A more detailed search is then carried out in a greatly reduced domain
with zpreq at its center, to determine the actual global minimum of f(x). The convex quadratic
approximation has been successfully applied to a realistic docking energy function, as well as
a large number of simulated docking energy test functions [6].

However, there are situations when an approximation by a single convex function gives a
poor prediction of the global minimum of the true energy function f(z). This occurs when
f(z) is not basin-shaped, but contains two, or more, local minima with large magnitudes at
distinct locations. In this situation the predicted global minimum will be located at some point
between the two large magnitude local minima, rather than at the correct global minimum
point. For this situation, a much better approach is to use an underestimating function g(z, p)
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Figure1. A sum of 2D negative Gaussian functions with [ = 4.

consisting of the sum of [ (2 < | < 5) negative Gaussian functions, in effect, clustering the
data points into distinct energy wells. Specifically we define

!
glx,p) =a+ Lo — Zﬁje—f’jl\x—sz?’ B; >0, pj >0, 1)
i=1

where p represents the parameters («, ¢, 3}, pj, zj), to be determined. If 5, > 3, j = 1,2, -- -,
[, with k # j, then the approximate global minimum of g(z, p) will occur at x = zj, (see Fig. 1).

An algorithm based on Gaussian Underestimation has been developed and implemented.
We call this the GU algorithm. As in other underestimation methods, the parameters (a, ¢, 3;,
pj, 2;) for defining the Gaussian underestimator are obtained by solving an optimization prob-
lem that minimizes the L' distance between the data points f(x(**)) and the underestimator
g(p; z*)) subject to g(p; z) underfitting all the data points. We describe the GU algorithm and
its computational implementation and testing in this paper, which is organized as follows. In
Section 2, we formulate GU as a two-phase optimization program, where the solution to a lin-
ear optimization problem is used as an initial estimate for the solution in the general nonlinear
program formulation in the second phase. We describe in Section 3 the problem type to which
we will apply the GU algorithm. We present numerical results in Section 4 and conclude with
some closing remarks in Section 5.

2. Formulation and Solution as Nonlinear Program

In order to determine the parameters p in g(x,p) we formulate the problem as a nonlinear
programming problem which minimizes the error at the m data points in the L' norm, and
requires that g(x, p) underestimates f(x) at every data points z;, : = 1,2, --- , m (see Figure 2).
Let y; = f(z;). Then we require g(z;,p) < y;, @ = 1,2,--- ,m. The formulation is then given
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Figure 2.  Gaussian underestimation in 1D

minimize G(p) = Zyi —g(xi,p), g(z,p) given by (1)
peERS :
=1 (GU)
subjectto  y; — g(z;,p) >0, i=1,2,---,m
All parameters in p bounded.

This nonlinear programming problem (GU) is a key part of the GU algorithm. Note that both
the objective function G(p) and the constraints in (GU) are linear in the parameters ¢, ¢, and
Bj, and nonlinear in p; and z;. This formulation is similar to that used in [10], except that
g(z,p) is nonlinear in some of the parameters, whereas the convex quadratic underestimator
q(z,p) in [10] is linear in all the parameters.

Because the vectors z; occur in g(z, p) nonlinearly, it is possible to obtain solutions to (GU)
which do not give the smallest possible L' error. That is, we may get a local minimum of
the error rather than the desired global minimum. This will depend primarily on the initial
values chosen for the z; at the start of the optimization. Since z;, represents the approximate
minimum location of the kth Gaussian function, ¥ = 1,2,--- ,I, we would like to start the
solution of (GU) with a reasonable estimate of these locations in the initial search domain
D. Fortunately, such an estimate is usually known from a course grid constructed on D, and
an evaluation of f(z) at each course grid point. This information is used to specify both the
initial values of z;, and also a lower and upper bound on each element of each z;. This course
grid evaluation will also permit an initial value, and bounds, on each of the parameters p;,
j=1,2,-- L

The solution to (GU) will give optimal values p of the parameter vector p, including Z; and
pj,j =1,2,--- 1. One of the 2;, say 2, is then a good predictor for the location of the global
minimum of the true energy function f(x). This 2 is such that g(Z, p) is its predicted value,
and

g(ék’vﬁ) < 9(2]715)7 ] = 1727"' 7l'

We then do a final search in a much reduced search domain, with its center at 2;. This final
search uses a relatively large number of local minimizations in the reduced search domain to
determine the location of wgmin, the global minimum point, and its value f(Zgmin). In some
cases it is possible that one of the other locations Z; gives a function value g(Z;, p) close that to
that of g(Z, p). If that occurs, then a similar detailed search is also done in the neighborhood
of this Z;, and the point with the smallest value of f(z) is then chosen as the global minimum
point.
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3. Docking Energy Functions

The true protein-ligand docking energy surface is represented by a function f(z), x € D C ®",
which is assumed to have a very large number (possibly exponential in n) of local minima.
Typically the computation of the energy surface value at a single point =, may require sev-
eral minutes. Furthermore, many local minima are needed to insure that the underestimating
function gives a good prediction of the global minimum. This means that m (the number of lo-
cal minimum data points) may be large, and may increase exponentially with n. The number
of minimum will typically be O(n?), so that using the true energy surface for test problems is
not practical. Instead, we follow the approach presented in [4, 5] which simulates the energy
landscape commonly found in protein docking problems. The majority of results presented
here uses this simulated energy function. However, we also present results of the GU algo-
rithm to a potential energy function used in an actual docking software called Docking Mesh
Evaluator [6].

3.1 Simulated energy functions

In the prediction of the global minimum for a real docking energy surface we typically com-
pute a relatively large number m of local minima of f(z), to obtain f(x;),i = 1,2,--- ,m. We
then compute the underestimating function g(z, p) as described earlier. The only information
used by the GU algorithm in approximating the real docking energy surface f(x), consists of
the function values f(x;),i =1,2,--- ,m, at the m local minimum points z;. For a real docking
energy surface the computation of the local minima is by far the most time consuming part of
the calculation. In our simulated test problems we replace this slow calculations as follows.

First we generate the sum of negative Gaussian functions (1), choosing ! (the number of
functions) and the parameters p = p, to represent the general surface of the true f(x). We then
simulate //m local minima by first generating (usually randomly) the points z;, ¢ = 1,2,--- ,m,
with function values g(z;,p), i = 1,2,--- ,m. We then perturb these values by a random
perturbation n;, —y < n; < v, for selected values of v, and define

We define a simulated energy surface Sf(z), as the function g(z, p), with m known local min-
ima y;, as given by (2). The set of points (z;,y;) is the only information we use in (GU) to
determine the underestimator. By an appropriate choice of the parameter vector p, we can
ensure that one of the z;, (say z1), is the global minimum point, zgmin = 21, of g(x,p). This is
done by choosing 5 > 3, j = 2,3,--- ,1, and p; > pmin > 0, for some appropriate value of
Pmin- We then assume that xgmin is the global minimum point of the simulated energy surface
Sf(x). In order to make the test using Sf(z) as close as possible to the situation with a true
docking energy surface, we eliminate any random point x; which is close to z;. This makes
Sf(x) a better representation of f(z), since it is highly unlikely that any random point used
when applying (GU) to a true energy function f(z) will be very close to its true global mini-
mum point. Each point z;, with function value y;, is assumed to represent a local minimum
of f(x). Since y; is very easily computed, these simulated local minima of f(z;) make it much
faster to test the algorithm, than using f(z) would be.

Given the (z;,y;) values we apply (GU) exactly as we would with a true docking energy
surface f(z), using the data points (z;, f(x;)). The GU algorithm has been tested on problems
in R2 and R6. In both cases we used the sum of four negative Gaussians, so that [ = 4. In
each case the initial search domain D, was a hypercube with edge length equal to 10, so that
its volume was 10™.

In order to evaluate the computation test results obtained with the simulated docking en-
ergy function, we need some measure of how well the underestimating function g(x, p) pre-
dicts Tgmin, the global minimum of Sf(x). The GU algorithm determines p, so we know the
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point ;. This will typically be very close to the global minimum point of g(z,p). We let
Tpred = 21, and call zpeq the predicted global minimum of Sf(z). The algorithm is therefore
successful if | Zpreqd — Zgminl|oo i sufficiently small.

Given zpreq, We construct the smallest hypercube in R", with x4 at its center, that contains
Tgmin- This hypercube will have an edge length of da, where d2 = 2||7preq — Tgminlloo- The
initial search domain D, known to contain xgmin, will be a hypercube of edge length d;, with
a volume df. The new hypercube, given by x.q and dz, will have a volume of dy. The ratio
of these two volumes is therefore (da/d;)". If the GU algorithm is successful, we will have
reduced the search volume by the volume reduction ratio:

d n
VRR = <—2> < 1. 3)
dy
The VRR is used to evaluate the success of the GU algorithm as shown in Tables (1-3) in the

next section.

3.2 Docking Mesh Evaluator

The Docking Mesh Evaluator (DoME) is software for predicting the active site of a protein to
an ion, ligand, DNA, and other macromolecules upon binding. It describes the molecular in-
teraction by defining a potential energy function whose global minimum corresponds to the
known docked configuration. This energy model takes into account both long-range forces
(electrostatic potential) and short-range forces (hydrogen bonds, desolvation energy, and van
der Waals interactions (dipole moments and steric repulsion)). DOME uses an exhaustive scan
for favorable configurations, treating each molecule as a rigid body and allowing one to move
and rotate in relation to the other, inducing six degrees of freedom (three translational and
three rotational). These points are then used as initial estimates for local optimization. Un-
derestimation is used to reduce the search area, and the process is iterated. Currently, a single
convex quadratic approximation is used to underestimate the best local minima obtained in
the scanning. The GU algorithm improves on this approach by allowing for the possibility of
multiple funnels within the energy landscape, which is the more likely general shape of the
potential energy function. Such underfitting is thus a more reasonable approach.

4. Computational Implementation and Results

The computational implementation of GU consists of two phases: Phase-1 LP and Phase-2
NLP. The first phase fixes the initial estimates for the nonlinear variables p; and z; so that
(GU) reduces to a linear programming problem on the variables o, ¢, and 3;. The global
minimum to this linear program is easily computed (often within a few iterations) and is then
used as an initial estimate for the nonlinear program (GU), where the parameters p; and z;
are now allowed to vary. By solving the linear program first, we obtain a reasonably good
estimate for the global minimum of the nonlinear program.

4.1 Algorithmic details
The Gaussian Underestimation approach is summarized by the following algorithm:

Algorithm. Gaussian Underestimation (GU) algorithm.

Define Phase-1 initial point pO = (a0 ) ﬁj(-o) , pg-o), zj(-o)) and set

l
(0)
o — m]jn f(w(k)) _ c(O)Tgc(O) _ Z 1 ﬁ](-o)e_”;m”x(k)_zjo |12 :
J:
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to ensure feasibility of GU.
Solve Phase-1 LP to obtain p* = (a*, ¢*, B;, pg-o), zﬁo)) ;
Solve Phase-2 NLP using Phase-1 LP solution p* as initial estimate solution;
end;

Computational details. In the simulated docking energy function cases, we define Sf(z) :
R0 — R, whose domain D € RS is the six-dimensional hypercube [0,10] x --- x [0,10]. The
function Sf(x) is a sum of four Gaussian functions, i.e., [ = 4, with distinct local minima. The
bound ~ on the perturbation has values 2.0" x 107!, where r = 0,1,--- ,5. The parameters
zj are required to remain feasible in D. In the DoME test case, we used the 1TAB system
from the Protein Data Bank [1]. The 1TAB complex consists of the enzyme trypsin and BBI,
the Bowman-Birk trypsin-inhibitor, which is a polypeptide chain of 71 amino acids highly
cross-linked by seven disulfide bridges [8]. Elevated levels of trypsin have been found in
pancreatic tumors, and BBI, commonly found in soybeans, has been shown to suppress this
type of tumor in various animals. In all test cases, m = 111 points were used to construct the
Gaussian underestimator.

In our implementation, the Phase-1 LP and the Phase-2 NLP are solved using the NPSOL
software of Gill et al. (see [3]). All runs were made on a 1.33 GHz Mac OS X PowerBook G4
with 768 MB of RAM. The algorithm was written in C. The C version of NPSOL was generated
using the f2¢ Fortran to C translator.

4.2 Results

The initial value of the objective function in Phase 1 and the final value of the objective func-
tion in Phase 2 are given by G(p(?)) and G(p}), respectively. LP NPSOL Iter is the iteration
count for the Phase 1 linear program and NLP NPSOL Iter is the count for the Phase 2 non-
linear program. The point z; is the known global minimum of the simulated docking energy
function, and 2; is the approximate global minimum computed by GU. The GU algorithm
were tested on several simulated energy functions, and Tables 1-3 are representative of these
runs. Table 4 contains the result for the 17TAB complex using DoME.

Simulated energy function. From the number of iterations in Phase 1 for all three examples,
solving the linear program is relatively easy. This is to be expected since Phase 1 is a linear
problem in only 13 variables. On the other hand, the nonlinear program Phase 2 requires
more iterations, especially for the cases with larger perturbations. We note that even with
significant perturbations (v < 0.8), the computed approximate global minimum is within 0.5
in Euclidean distance from the known global minimum.

These are representative examples of the results we get using different Sf(x) energy func-
tions to define a typical problem with different types of local minima. These results show that
the VRR is always less than 1.04 x 10~° which then reduces the search domain from 106 down
to approximately a single unit cube in the n-dimension space of z;.

DoME. As in the simulated energy function cases, the number of Phase-1 iterations is smaller
than the number for Phase-2 iterations. The high number of Phase-2 iterations is consistent
with the fact that the energy function in DoME is highly nonlinear, which makes underfitting
with a smooth function difficult. Although the GU algorithm predicted a global minimum
Tpred that is 10.61 A away from the known global minimum Zgnin, the initial domain volume
of 3.1 x 107 is reduced t0 Dyequced = 9.0 x 10? after the GU algorithm is applied. With the
domain significantly reduced, an iterative application of the convex quadratic approximation
method [10] can then be applied to further reduce the domain and more accurately predict the
location of the global minimum.
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v=0.0 v=0.1 v=0.2 vy=04 v=0.8 vy=1.6
G(p™) 106.1 112.3 122.9 136.0 186.7 285.4
G(p;‘c) 0.0 5.7 11.9 24.7 53.5 128.7
LP NPSOL Iter 1 2 1 2 2 3
NLP NPSOL Iter 1 4 4 5 10 11
121 — Z1]|2 0.0 0.053 0.144 0.175 0.356 0.841
VRR 0.00e-00 1.28e-13 4.98e-11 5.99e-10 2.52e-08 1.04e-05
Table 1. Results for a simulated energy function.
y=00 ~=01 ~4=02 ~=04 ~4=08 ~=16
G(p™) 107.9 117.2 119.9 135.2 183.5 276.5
G(p}) 0.0 6.6 11.9 27.1 49.9 107.0
LP NPSOL Iter 2 2 2 3 1 1
NLP NPSOL Iter 1 7 6 7 5 8
121 — Z1]|2 0.000 0.097 0.113 0.203 0.347 0.951
VRR 0.00e-00 6.10e-12 1.21e-11 6.26e-10 1.24e-08 1.05e-05
Table 2. Results for a simulated energy function.
y=00 ~=01 ~4=02 ~=04 ~4=08 ~=16
G(p?) 107.2 117.8 112.4 138.4 181.8 262.5
G(p}) 0.0 6.6 13.4 24.7 55.3 116.5
LP NPSOL Iter 1 2 2 3 4 2
NLP NPSOL Iter 1 4 6 11 8 16
121 — Z1]|2 0.000 0.046 0.097 0.291 0.395 0.766
VRR 0.00e-00 9.12e-14 2.20e-12 5.20e-09 8.32e-08 2.02e-06
Table 3. Results for a simulated energy function.
1TAB
G(p®) 1379.6
G} 898.5
LP NPSOL Iter 3
NLP NPSOL Iter 727
”mpred _chminH2 10.61
Direduced 8.89e02
Table 4. Results for 1”TAB in DoME.
5. Conclusions

We have presented an approach for underfitting functions with more than one local minima
with a large function value in magnitude. This approach uses an underestimating function
g(p; x) consisting of a sum of negative Gaussian functions. The parameters needed to define
g(p; x) is obtained by solving a two-phase optimization problem, where the solution of the
linear program in the first phase is used as an approximate solution to the nonlinear program
in the second phase. We demonstrated numerically that this two-phase approach is effective
in giving estimates for the location of the global minimum of a protein docking function.
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