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ABSTRACT

Many infrared optical systems in wide-ranging applications such
as surveillance and security frequently require large fields of view.
Often this necessitates a focal plane array (FPA) with a large num-
ber of pixels, which, in general, is very expensive. In this paper, we
propose a method for increasing the field of view without increas-
ing the pixel resolution of the FPA by superimposing the multiple
subimages within a scene and disambiguating the observed data to
reconstruct the original scene. This technique, in effect, allows each
subimage of the scene to share a single FPA, thereby increasing the
field of view without compromising resolution. To disambiguate the
subimages, we develop wavelet regularized reconstruction methods
which encourage sparsity in the solution. We present results from
numerical experiments that demonstrate the effectiveness of this ap-
proach.

Index Terms— Image reconstruction, Image sampling, Video
cameras

1. INTRODUCTION

The performance of a typical imaging system is characterized by the
resolution (smallest feature the system can resolve) and the field of
view (FoV: the maximum angular extent that is observed at a given
instance). In most video imaging systems today, the detector ele-
ment is a focal plane array (FPA) typically made out of semicon-
ductor photodetectors. While low-cost, large pixel count charge-
coupled device (CCD) and complementary metal-oxide semicon-
ductor (CMOS) sensors are widely available for imaging in visi-
ble wavelengths, the FPAs in the mid- and long-wave infrared (3-20
µm in wavelength) remain very expensive. Many thermal-imaging
surveillance systems utilize this wavelength range, and technologies
that enable a wide FoV using a small pixel count FPA will have an
important impact in this application. It has been long known that
human vision can effectively differentiate two superimposed images
moving relative to each other [1]. In this paper, we propose and
demonstrate a computational imaging technique where the overall
FoV of an imaging system is broken into smaller scenes and super-
imposed onto a single FPA, effectively increasing the FoV of the
imaging system. The superimposed image is disambiguated using
an efficient video processing algorithm using small relative motion
among the scenes, and restores the complete scene corresponding to
the overall FoV.

The proposed technique has two key advantages over possible
alternative methods of generating high FoV, high-resolution image
data in the infrared domain: (1) unlike shutter-based systems which
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could measure different regions of a scene sequentially, the proposed
system is mechanically stable, robust, and easy to assemble, and (2)
the proposed physical system does not require complicated calibra-
tion or tuning.

In the proposed approach, a video is produced in which the dif-
ferent subimages are moved relative to one another, resulting in a
collection of frames with different composite images. The video
data thus generated is considered as a linear mixture, which is then
separated by an optimization technique based on sparse representa-
tion bases. This technique, in effect, allows each subimage to share
a single FPA, thereby increasing the FoV without compromising res-
olution. Our numerical experiments, where superimposed videos
are generated numerically from digital images, show that our opti-
mization technique can reconstruct the constituent images with small
mean square errors.
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Fig. 1. Superimposition and disambiguation.

In this paper, we propose a simple infrared camera architecture
for collecting composite images of the type described above and an
associated technique for disambiguating the superimposed subim-
ages. The paper is organized as follows: In Sec. 2, we discuss the
concept of our technique, followed by a more detailed description of
the proposed architecture and the basic mathematical formulation in
Sec. 3. Sec. 4 shows how the video disambiguation problem can be
solved using optimization techniques based on sparse representation
algorithms. In Sec. 5, we describe the numerical experiments.

2. PROBLEM FORMULATION

Fig. 1 schematically shows the basic concept of superimposition and
disambiguation. In the superimposition process, multiple subimages
are merged to form a composite image (shown on the right side of
Fig. 1) in a straightforward manner; the intensity of each pixel in the
composite image is the simple summation of the intensities of the
corresponding pixels in the individual images. However, the inverse
process – the disambiguation of the individual subimages from this
composite image – is more challenging. For this, we must determine
how the intensity of each pixel in the composite image is distributed
over the corresponding pixels in the individual subimages so that the



resulting reconstruction accurately approximates the original scene.
Our technique achieves this task by measuring a composite video
sequence, where the position of each subimage is slightly altered at
each frame. It is the movement of these individual subimages that
allows disambiguation to succeed.

The disambiguation problem can be modeled mathematically at
thetth frame as

zt = Atx + nt, (1)

wherezt ∈ <m×1 is the observed composite image,x ∈ <n×1 is
the scene,At ∈ <m×n is the mixing matrix, andnt is noise at frame
t. We assume in this paper thatnt is zero-mean white Gaussian
noise. In this setting,n > m, which makes (1) underdetermined.
There are several techniques for approaching this ill-posed statistical
inverse problem, many of which exploit the sparsity ofx in one or
more bases (cf. [2, 3, 4]).

We formulate the reconstruction problem as a sequence of non-
linear optimization problems, minimizing the norm of the error‖zt−
Atx‖ at each time frame and using the computed minimum as the
initial value for the following frame. Since the underlying inverse
problem is underdetermined, we include a regularization termτ‖x‖,
whereτ is a tuning parameter, in the objective function to make
the disambiguation problem well-posed. This formulation of the re-
construction problem is similar to thè2 − `1 formulation of the
compressed sensing problem [5, 6, 7] for suitably chosen norms:
using the Euclidean norm for the error term gives the least-squares
error while using the one norm for the regularization term induces
sparsity in the solution. When the number of observation frames is
large, solving forx using all the data{zt}T

t=1 simultaneously can be
overdetermined yet computationally prohibitive. This problem can
be circumvented by solving (1) for each successivet, and using the
tth-frame solution to initialize the(t + 1)th-frame optimization.

3. PROPOSED CAMERA ARCHITECTURE AND SYSTEM
MODEL

Superimposed images which are shifted relative to one another at
different frames can easily be recorded using a simple camera ar-
chitecture, depicted for two subimages in Fig. 2. Constructed using
beamsplitters and movable mirrors, the proposed assembly merges
the subimages into a single image and temporally varies the relative
position of the two subimages as they hit the detector. The optical
field from the left half of the scene (denoted S) propagates directly
through the beamsplitter (denoted BS) and hits the FPA in the cam-
era at the same relative position for every frame. The optical field
from the right half of the scene, however, is reflected by a movable
mirror (denoted M) followed by the beamsplitter before hitting the
focal plane array. When the mirror, mounted on a linear stage, is
translated, the right half of the scene is translated by a proportional
amount on the FPA. The image recorded by the FPA is then the sum
of the stationary left subimage and translated right subimage for each
frame, resulting in a superimposed video sequence. Using this setup,
building a superposition imaging system is straightforward, making
the methods described in this paper readily applicable to practical,
real-world settings.

For ease of notation, we will assume that we are only superim-
posing two subimages, but the approach we describe can easily be
extended to more general cases. (In our numerical experiments, we
superimpose and disambiguate up to four subimages; see Sec. 5.)
Without loss of generality, we can also assume that one subimage is
stationary relative to the other. Ifx = [x(1);x(2)] are the parameters
corresponding to the two images, thenAt is the underdetermined
matrix [I St], whereI is the identity matrix andSt describes the

Fig. 2. Proposed camera architecture for superimposing two subim-
ages. The scene (marked with the S) is split into two halves. The
optical field from the left half propagates directly through the beam-
splitter (marked with the BS) to hit the FPA in the camera. The
optical field from the right half hits a movable mirror (marked with
the M) before propagating to the beamsplitter and being reflected to
the FPA in the camera.

movement of the second subimage in relation to the first. Here, we
assume thatx(1) corresponds to the stationary subimage whilex(2)

corresponds to the moving subimage. Then the above system can be
modeled as

zt = [I St]

»
x(1)

x(2)

–
+ nt.

4. SPARSE REPRESENTATION ALGORITHMS

4.1. Optimization problem formulation

The above camera architecture results in a sequence of frames where
each frame is a superposition of several subimages; this disambigua-
tion problem can thus be formulated as a sequence of underdeter-
mined inverse problems as in (1). Letθ(1) andθ(2) denote the vec-
tors of coefficients for the two subimages in some basis,e.g., the
wavelet basis, so that

x =

»
x(1)

x(2)

–
=

»
Wθ(1)

Wθ(2)

–
≡ fWθ,

where fW ≡
»
W 0
0 W

–
, W is the matrix corresponding to the

inverse wavelet transform andθ = [θ(1); θ(2)] corresponds to the
wavelet basis coefficients for the two subimages. We use the wavelet
transform here because of its effectiveness with many natural im-
ages, but alternative bases could certainly be used depending on the
setting.

To solve the problem of disambiguating two superimposed im-
ages, we formulate it as the nonlinear optimization problem

bθ = arg min
θ

‚‚‚zt − [I St]fWθ
‚‚‚2

2
+ τ ‖θ‖1 . (2)

The first term in the objective function is the least-squares error be-
tween the observation and the image reconstruction while the second
term regularizes the problem and drives the small wavelet coeffi-
cients in the solution to zero, thus ensuring a sparse solution. Sparse
solutions in the wavelet domain provide good solutions since the
wavelet transform typically retains the majority of natural images’



energy in a relatively small number of basis coefficients. The reg-
ularization parameterτ is calibrated to the noise level of the obser-
vations or to the normalized̀2-norm of the observations for nearly
noiseless cases.

Note that if we solve (2) for each frame independently, then the
inverse problem is underdetermined and ill-posed, but the`1 regular-
ization term can lead to reasonably accurate solutions, particularly
when the true scene isvery sparse in the wavelet basis. However,
small subsets of subsequent frames of observations can be used si-
multaneously to achieve significantly better solutions. We explore
this using the following three methods:

Method 1. For a scene that changes only slightly from frame to
frame, the reconstruction from a previous frame is often a good ap-
proximation to the following frame. In Method 1, we use the solutionbθ to (2) at thetth frame to initialize the optimization problem for the
(t + 1)th frame.

Methods 2.We can improve upon the Method 1 approach by solving
for multiple frames simultaneously. In Method 2 we solve for two
frames at a time, and the optimization problem becomes

bθ = arg min
θ

‚‚‚‚»
zt

zt+1

–
−

»
I St

I St+1

– fWθ

‚‚‚‚2

2

+ τ ‖θ‖1 , (3)

wherezt+1 andSt+1 are the observation and shifting operator in the
(t + 1)th frame.

Method 3. Method 3 is very similar to Method 2, but we solve for
θ using four successive frames instead of two, includingzt+2 and
zt+3 in the observation vector andSt+2 andSt+3 in the observation
operator matrix. By requiringθ(1) andθ(2) to satisfy more equa-
tions, the resulting linear system becomes less underdetermined or
overdetermined, making the problem less ill-posed and the solutions
more accurate. The drawback, however, is that the corresponding
linear systems to be solved are larger and require more computation
time.

5. SIMULATION RESULTS

To verify that our optimization techniques are capable of disam-
biguating superimposed images and explore the tradeoffs associated
with the above three methods, we perform two simulation studies,
where superimposed videos were generated numerically from digi-
tal images. In this study, we use stationary scenes but note that the
proposed approach will also be effective when motion within the
scene is slow relative to the frame rate of the imaging system. More
effective exploitation of inter-frame correlations for disambiguating
moving scenes can yield additional improvements and is the subject
of ongoing work.

In these experiments, we solve the optimization problems for the
various proposed methods (e.g., (2) and (3)) using the Gradient Pro-
jection for Sparse Reconstruction (GPSR) algorithm of Figueiredo
et al. [4]. GPSR is a gradient-based optimization method that is
very fast, accurate, and efficient. In addition, GPSR has adebiasing
phase, where upon solving the`2−`1 minimization problem, it fixes
the non-zero pattern of the optimalθ(1) andθ(2) and minimizes the
`2 term of the objective function, resulting in a minimal error in the
reconstruction while keeping the number of non-zeros in the wavelet
coefficients at a minimum. It has been shown to outperform many of
the state-of-the-art codes for solving the`2 − `1 minimization prob-
lem or its equivalent formulations. The computational bottleneck in
GPSR is the multiplication by the mixing matrixAt (and its trans-
pose) in (1). In our setup, this can be performed very efficiently since
the shifting operatorSt and the discrete wavelet transform are both

O(n), i.e., the computational complexity is linear in the number of
image pixels.

5.1. Simulation I: Two images superimposed

In the first experiment, the simplest case involving two distinct im-
ages is studied to quantitatively compare the performances of Meth-
ods 1-3 in terms of the execution time and the mean square error
between the original and reconstructed images. Two images, “cam-
eraman” and “lamp” (both256×256 pixels in gray-scale), are shown
in Fig. 3(a). In the composite video, the cameraman image is fixed
while the lamp image is moved horizontally with some prescribed
perturbations. We created a movie consisting of 200 frames, and
added zero-mean white Gaussian noise. For each frame, we ran ten
GPSR iterations and ten debiasing steps. The number of iterations
was limited and the optimization algorithm was not allowed to run to
convergence because of the real-time nature of the video applications
for which we anticipate this approach would be most useful. As dis-
played in Fig. 3(a), the observed image is the sum of two different
images, several details and other features are difficult to visualize,
and it is not clear which features correspond to which image. Using
the wavelet-based optimization method described above, however,
very accurate reconstructions are possible, as displayed in Fig. 3(b)
and (c); these reconstructions were computed using Method 3.
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Fig. 3. Numerical experiment I, with two superimposed images.
(a) Observationz0. (b) Reconstructed cameraman image after 200
frames computed using Method 3; MSE =0.031. (c) Reconstructed
lamp image after200 frames computed using Method 3; MSE =
0.023. (d) Plot of total MSE (cameraman + lamp) as a function of
frame number.



Clearly, the separation of the two images is largely successful,
and even the fine details of each image are preserved in the disam-
biguation. Subtle ghosting occurs in each image, resulting from the
stark contrast in their intensities (the dark cameraman coat versus the
bright lamp texture). Fig. 3(d) shows that the MSE values for each
method decrease with frame number. They also show that Method 2
and 3 outperform Method 1, indicating that solving for more frames
simultaneously per iteration leads to more accurate reconstruction.
Furthermore, the MSE values for Method 3 decrease more rapidly
initially than the other two methods, which is particularly important
when the scene being recorded contains movement. Even though all
three methods have the same initial MSE value, the MSE value for
Method 3 by the 20th frame is already less than any of the MSE val-
ues of the other two methods. At the last frame, the MSE value for
Method 3 was0.053, a 69% improvement over that of Method 2.
Finally, although the linear system in Method 3 is twice as large as
the linear system in Method 2, Method 3 only took21% more time:
Method 1 took404.5 sec to complete200 frames, while Methods
2 and 3 took467.3 sec and566.6 sec, respectively. Thus, for the
following simulation, we only used Method 3 for disambiguation.

5.2. Simulation II: Four quadrants of an image superimposed

The second numerical experiment consists of dividing a512 × 512
image (Barbara) into four quadrants and superimposing them to form
one256×256 observation. To avoid parallel movements in this sim-
ulation, one image is held still, the second moves horizontally, the
third vertically, and the last moves diagonally opposite the second
and third images. These motion patterns were selected because they
will be simple to implement in the proposed camera architecture de-
scribed above. As in Simulation I, zero-mean white Gaussian noise
was added to the observation.

The result of the second simulation shows that our technique
can disambiguate the four superimposed quadrants to reconstruct
the original Barbara image (Fig. 4(a)). Prominent features in the
original image (e.g., table, books, chair, and Barbara) were recon-
structed without ambiguity. We note the low MSE value from about
the60th frame on. We also note that the MSE is nearly monotoni-
cally decreasing in time and that the steep drop in MSE observed in
the first simulation is present here as well. Like the first simulation,
the disambiguation is not perfect. For example, theaveragepixel in-
tensity of each quadrant cannot be distinguished using the proposed
approach, producing artifacts at the boundaries of the four quadrants.
This is particularly noticeable in the interface between the upper-left
and lower-left quadrants. Also, while the striped fabric patterns ex-
hibits some artifacts, many details are accurately reconstructed de-
spite the large amount of fine-scale detail in this image.

6. CONCLUSIONS

In this paper, we propose a novel camera architecture for collecting
high resolution, wide field-of-view videos in settings such as infrared
imaging where large focal plane arrays are unavailable. This archi-
tecture is mechanically robust and easy to calibrate. Associated with
this architecture is a fast and accurate technique for disambiguat-
ing the composite video image consisting of the superposition of
multiple subimages. Simulation results demonstrate that our opti-
mization approach can reconstruct the constituent images with small
mean square errors, and that the errors decay rapidly as a function
of frame number despite the very small number of optimization it-
erations allowed for each new frame. Ongoing work in this area
includes disambiguating superimposed videos of slowly changing
scenes by exploiting inter-frame correlations.
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Fig. 4. Numerical experiment II, with four superimposed quadrants.
(a) Original Barbara image. (b) Observationx0 consisting for four
superimposed quadrants of the Barbara image. (c) Reconstructed
image after200 frames computed using Method 3; MSE =0.177.
(d) Plot of MSE of each quadrant and total image as a function of
frame number.
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