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ABSTRACT
Traditionally, optical sensors have been designed to collect the most directly interpretable and intuitive measurements pos-
sible. However, recent advances in the fields of image reconstruction, inverse problems, and compressed sensing indicate
that substantial performance gains may be possible in many contexts via computational methods. In particular, by design-
ing optical sensors to deliberately collect “incoherent” measurements of a scene, we can use sophisticated computational
methods to infer more information about critical scene structure and content. In this paper, we explore the potential of
physically realizable systems for acquiring such measurements. Specifically, we describe how given a fixed size focal
plane array, compressive measurements using coded apertures combined with sophisticated optimization algorithms can
significantly increase image quality and resolution.
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1. INTRODUCTION
Recent advances in the field of compressive sensing (CS)1–5 indicate that when feasible, judicious selection of the type
of image transformation introduced by measurement systems may dramatically improve our ability to extract high-quality
images from a limited number of measurements. In optical systems, carefully chosen indirect measurements combined
with computational methods allow relatively small focal plane arrays (FPAs) to be used to generate high-resolution im-
agery. By designing optical sensors to collect measurements of a scene according to CS theory, we can use sophisticated
computational methods to infer critical scene structure and content.

While recent progress in the exploitation of CS theory is highly encouraging, there are several key issues in the context
of optical systems that must be addressed:

• Physical constraints. Photon intensities and CS projections must all be nonnegative in linear optical systems.

• Practical systems. Projecting a scene onto a collection of unstructured random vectors, the case most commonly
considered in the literature, would typically require very large physical systems or very long total exposure times.

• Algorithm properties. Many CS reconstruction algorithms are made fast by exploiting key properties of the sensing
matrix. Once the above physical constraints are incorporated, however, algorithms must be adjusted accordingly.

• Reconstruction time. Fast image reconstruction algorithms are imperative, particularly in high-throughput or video
systems.

• Noise and quantization. While CS measurements can lead to impressive results when measurements have arbitrary
accuracy, measurement noise and quantization errors play a significant role in determining reconstruction accuracy.

In this paper, we explore practical methods for addressing the above challenges in the context of coded aperture imag-
ing.
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2. COMPRESSED SENSING
Let f? ∈ Rn+ be a vector representation of the n-pixel image of interest, and let θ? ∈ Rn be the set of basis expansion
coefficients for f? in some orthonormal basis W ∈ Rn×n:

f? =
n∑
i=1

θ?iwi,

where wi is the ith basis vector and θ?i is the corresponding coefficient. In many settings, the basis W , [w1, . . . , wn]
can be chosen so that only k � n coefficients have significant magnitude, i.e., many of the θi’s are zero or very small
for large classes of images; we then say that θ? is sparse or compressible. The key insight of CS is that, with slightly
more than k well-chosen measurements, we can determine which θi’s are significant and accurately estimate their values.
Furthermore, fast algorithms which exploit the sparsity of θ make this recovery computationally feasible. Sparsity has long
been recognized as a highly useful metric in a variety of inverse problems, but much of the underlying theoretical support
was lacking. However, more recent theoretical studies have provided strong justification for the use of sparsity constraints
and quantified the accuracy of sparse solutions to these underdetermined systems.1, 6

The problem of estimating the image f? can be formulated mathematically as an inverse problem, where the data
collected by an imaging or measurement system are represented as

y = Af? + ε, (1)

where A ∈ Rm×n+ linearly projects the scene onto a m-dimensional set of observations, ε ∈ Rm is noise or quantization
errors associated with the sensor, and y ∈ R

m
+ is the observed data. Compressive sensing addresses the problem of

solving for f? when n � m, i.e., A is severely underdetermined. In general, this is an ill-posed problem as there are an
infinite number of candidate solutions for f?; nevertheless, CS theory provides a set of conditions that, if satisfied, assure
an accurate estimation of f?. We first presuppose that f? is sparse or compressible in a basis W . Then given W , we
require that A in conjunction with W satisfies a technical condition called the Restricted Isometry Property (RIP).7 More
specifically, we say that AW satisfies the RIP of order s if there exists a constant δs ∈ (0, 1) for which

(1− δs)‖z‖22 ≤ ‖AWz‖22 ≤ (1 + δs)‖z‖22. (2)

holds for all s-sparse z ∈ Rn. In other words, the energy contained in the projected image, AWz, is close to the energy
contained in the original image, z. While the RIP cannot be verified for an arbitrary given observation matrix and basis,
it has been shown that observation matrices A drawn independently from many probability distributions satisfy the RIP
of order s with high probability for any orthogonal basis W when m ≥ Cs log(n/s) for some constant C.7 Although
generating CS matrices using this procedure is simple in software, building physical systems to measure AWθ can be
notoriously difficult.

While the system of equations in (1) can be grossly underdetermined, CS theory suggests that selecting the sparsest
solution to this system of equations will yield a highly accurate solution, subject to θ? = WTf? being sufficiently sparse
and A satisfying the RIP of order 2k, where k is the sparsity of f?.7 In particular, the `2-`1 minimization

f̂ = arg min
f

1
2
‖y −Af‖22 + τ‖WTf‖1

will yield a highly accurate estimate of f? with very high probability.6, 8 Alternatively, we can compute the basis expansion
coefficients directly by solving

θ̂ = arg min
θ

1
2
‖y −AWθ‖22 + τ‖θ‖1 (3)

f̂ = Wθ̂

The regularization parameter τ > 0 helps to overcome the ill-posedness of the problem, and the `1-penalty term drives
small components of θ to zero and helps promote sparse solutions.



3. CONVENTIONAL CODED APERTURES
The basic idea of coded aperture imaging is to use a mask in the aperture of an imaging system composed of a pat-
tern of openings to induce a more complicated point spread function than that associated with a simple pinhole camera.
This approach allows a larger fraction of the available photons to hit the detector array; the mask pattern can then be
exploited during the image reconstruction process.9–11 These techniques are particularly popular in astronomical12, 13 and
medical14–16 applications because of their efficacy at wavelengths where lenses cannot be used. Recent work has also
demonstrated their utility for collecting both high resolution images and object depth information simultaneously.17

Seminal work in coded aperture imaging includes the development of Modified Uniformly Redundant Arrays
(MURAs).18 These mask patterns (which we denote by hMURA) are binary, square patterns, whose grid size matches
the spatial resolution of the photo-detector and whose sidelength is a prime integer number of grid cells. Each mask pat-
tern is specifically designed to have a complementary pattern hrecon such that hMURA ∗ hrecon is a Kronecker δ function.
Here, the operator ∗ denotes 2D convolution, and in a slight abuse of notation, can be applied to vectorized representations
of images, such as f?.

MURA observations can be modeled as

y = (D(f?)) ∗ hMURA + ε, (4)

where ε corresponds to noise associated with the physics of the sensor, and D(f?) is the downsampling of the scene to the
resolution of the detector array. By construction of hMURA and hrecon, D(f?) can be estimated using

f̂ = y ∗ hrecon = (D(f?)) ∗ hMURA ∗ hrecon + ε ∗ hrecon = D(f?) + ε ∗ hrecon.

However, the resulting resolution is often lower than what is necessary to capture some of the desired details in the image.
Clearly, the estimates from MURA reconstruction are limited by the spatial resolution of the photo-detector.

4. COMPRESSIVE CODED APERTURES
Recent studies by the authors19, 20 and others21 address the accurate reconstruction of a high resolution static image which
has a sparse representation in some basis from a single low resolution observation using compressive coded aperture
(CCA) imaging. In our study, we designed a coded aperture imaging mask such that the corresponding observation matrix
ACCA satisfies the RIP of order 2k as described in (2) with high probability when m ≥ C1k

3 log(n/k) for some constant
C1 > 0.19, 22 Stronger results are shown recently,23 where if m ≥ C2(k log(n) + log3(k)) for some constant C2 > 0, then
f? can be accurately recovered with high probability.

The measurement matrix ACCA associated with compressive coded apertures can be modeled as

ACCAf? = D(f? ∗ hCCA), (5)

where hCCA is the coding mask and is the size and resolution at which f? will be reconstructed, rather than the size and
resolution of the FPA as we had with hMURA. The convolution of hCCA with an image f? as in (5) can be represented as
the application of the Fourier transform to f? and hCCA, followed by element-wise matrix multiplication and application
of the inverse Fourier transform. In matrix notation, this series of linear operations can be expressed as

hCCA ∗ f? = F−1CHFf?,

where F is the 2D Fourier transform matrix and CH is the diagonal matrix whose diagonal elements correspond to the
transfer function HCCA, which is the Fourier transform of the hCCA, i.e., HCCA , F(hCCA). The matrix product
F−1CHF is block-circulant and each block is in turn circulant. Block-circulant matrices with circulant blocks, whose
entries are drawn from an appropriate probability distribution, are known to be CS matrices.19, 22

Based upon recent theoretical work on Toeplitz- and circulant-structured matrices for CS, compressive mask patterns
are fast and memory-efficient to generate19, 22, 23 as follows. First, let

R , F−1CHF , (6)



(a) (b)
Figure 1. Coded aperture patterns. Here, the white blocks represent the openings in the mask pattern. (a) The 31×31 Modified Uniform
Redundant Array (MURA) mask pattern hMURA. The length of the side of the MURA pattern must be a prime number. (b) An example
of a 32 × 32 compressive coded aperture (CCA) mask pattern hCCA. The pattern is not quite random – note the circular symmetry of
the CCA pattern about the (17, 17) element.

and let D be the downsampling matrix corresponding to the downsampling operator D. Thus, ACCA = DR. To determine
the mask hCCA so that the resulting ACCA satisfies the RIP, we generate the block circulant with circulant blocks matrix R
by drawing from an appropriate probability distribution (such as a zero-mean Gaussian or scaled Radamacher distribution).
Then, by the way R is defined in (6), we can compute CH = FRF−1. The elements of the transfer function HCCA are
the elements of the diagonal matrix CH , from which the mask hCCA can be easily obtained since hCCA = F−1(HCCA).
The computational bottleneck in this sequence of calculations lies in the formation of CH from the (large) n×n matrix R.
However, the diagonalizability of block-circulant matrices with circulant blocks by the two-dimensional discrete Fourier
transform leads to fast and memory-efficient computations. Specifically, let F be the one-dimensional Fourier transform
matrix so that F = F ⊗F , where ⊗ is the matrix Kronecker product. If Rj is the jth circulant block of R and if we
define the

√
n×
√
n diagonal matrixMj , FRjF−1 (circulant matrices are diagonalized by the one-dimensional Fourier

transform), then the jth √n×
√
n diagonal block of CH is given by

(CH)j = M1 + (−1)j−1M√n/2+1 +

√
n/2∑
t=2

2Re
(
ω−(t−1)(j−1)Mt

)
.

(We assume that
√
n is even.) Since each (CH)j and Mt are diagonal, only

√
n elements need to be stored in each, and so

relatively little memory and computational time are needed for this calculation.

The incorporation of the integration downsampling operator D does not prevent the RIP from being satisfied; a key
element of the proof that the RIP is satisfied is a bound on the number of rows ofACCA which are statistically independent.
Since the downsampling operator effectively sums rows of a block circulant matrix, downsampling causes the bound on
the number of dependent matrix rows to be multiplied by the downsampling factor. Enforcing symmetry on F−1CHF is
equivalent to assuring that the transfer function matrix HCCA is symmetric about its center, so that the resulting coding
mask pattern hCCA , F−1(HCCA) will be necessarily real.19 Contrasting mask patterns for MURA coded aperture
imaging vs. compressive coded aperture imaging are displayed in Fig. 1.

5. ALGORITHMS FOR NONNEGATIVE CS MINIMIZATION
In optical imaging, we often estimate light intensity, which a priori is nonnegative. Thus it is necessary that the reconstruc-
tion ĝ = Wθ̂ is nonnegative, which involves adding constraints to the CS optimization problem (3), i.e.,

θ̂ = arg min
θ

1
2
‖y −AWθ‖22 + τ pen(θ), (7)

subject to Wθ ≥ 0,

where pen(θ) is a general sparsity-promoting term. The addition of the nonnegativity constraint in (7) makes the problem
more challenging than the conventional CS minimization problem, and has been addressed in CS literature recently in the



context of photon-limited compressive sensing.24, 25 Here, we discuss approaches to address the nonnegativity constraints
in the CS minimization problem.

The minimization problem (7) can be solved using a sequence of quadratic approximation subproblems that are easier
to solve. Specifically, this sequential approach reduces to a series of alternating steps: (a) approximating the objective
function with a regularized quadratic objective, and (b) regularized least squares image denoising. (This approach is similar
to SpaRSA,26 which does not address the nonnegativity constraint on the reconstruction.) The resulting minimization
subproblem is given by

θj+1 = arg min
θ

φ(θj) + (θ − θj)T∇φ(θj) +
αj
2
‖θ − θj‖22 + τ pen(θ), (8)

subject to Wθ ≥ 0,

Here, φ(θ) = 1
2‖y−AWθ‖22 is the quadratic term in (7), and the first three terms in the objective function of (8) correspond

to the Taylor expansion of φ(θ) at the current iterate θj . The second derivative of φ(θ) is approximated by a multiple of
the identity matrix, namely, ∇2φ(θj) ≈ αjI , with αj > 0 computed using the Barzilai-Borwein (spectral) methods.26–28

This approach is particularly fast and effective for RIP-satisfying CS matrices since the near-isometry condition implies
that ATA ≈ αI , for some α > 0. The constrained subproblem (8) can be written equivalently and more compactly as

θj+1 = arg min
θ

1
2
‖sj − θ‖22 +

τ

αj
pen(θ) (9)

subject to Wθ ≥ 0,

where
sj , θj − 1

αj
∇φ(θj). (10)

The subproblem (9) can be viewed as a nonnegative denoising subproblem applied to sj (the next gradient descent iterate)
to obtain the next iterate θj+1. This framework allows users to take advantage of the plethora of fast and effective image
denoising methods available for various penalty terms.

5.1 `1 Penalty
When the penalty term pen(θ) = ‖θ‖1, (7) is simply the constrained `2-`1 CS minimization problem (3), and the corre-
sponding constrained denoising subproblem is given by

θj+1 = arg min
θ

1
2
‖sj − θ‖22 +

τ

αj
‖θ‖1 (11)

subject to Wθ ≥ 0,
f j+1 = Wθj+1.

In the canonical basis (i.e., W = I), it has an analytic solution that can easily be calculated. In the noncanonical basis,
however, (9) does not necessarily have a closed form solution, which, nonetheless, can be estimated quickly using gradient-
based methods in the following manner. First, the `1 norm is non-differentiable, and therefore, a change of variables must
be applied to (9) to use derivative information. By letting θ = u− v where u, v ≥ 0, we can write (9) as

(uj+1, vj+1) = arg min
(u,v)

g(u, v) ,
1
2
‖sj − (u− v)‖22 +

τ

αj
1
T (u+ v) (12)

subject to u ≥ 0, v ≥ 0, W (u− v) ≥ 0

where 1 is a vector of ones. The next iterate θj+1 is then defined as θj+1 = uj+1 − vj+1. Because the constraints in
(12) are nonnegativity bounds not only on the variables u and v but also on W (u− v), solving (12) is not straightforward.
However, the dual formulation of this minimization problem, i.e., solving for the Lagrange multipliers associated with
(12), has simple box constraints and can be easily solved iteratively. Specifically, the Lagrange dual problem is given by

minimize
λ,γ∈Rm

h(λ, γ) ,
1
2
‖sj + γ +WTλ‖22 −

1
2
‖sj‖22 (13)

subject to λ ≥ 0, − τ

αj
1 ≤ γ ≤ τ

αj
1



and at the optimal values γ? and λ?, the primal iterate θj+1 , uj+1 − vj+1 is given by

θj+1 = sj + γ? +WTλ?.

We note that the minimizers of the primal problem (12) and its dual (13) satisfy g(uj+1, vj+1) = −h(γ?, λ?) since the
minimization problem (12) satisfies (a weakened) Slater’s condition.29

The objective function in (13) can be minimized by alternatingly solving for λ and γ, which is accomplished by taking
the partial derivatives of h(λ, γ) and setting them to zero. Each component is then constrained to satisfy the bounds in
(13). At the ith iteration, the variables can, thus, be defined as follows:

γi = mid
{
− τ

αj
1,−sj −WTλi−1,

τ

αj
1

}
λi =

[
−W

(
sj + γi

)]
+
,

where the operator mid(a, b, c) chooses the middle value of the three arguments component-wise. Note that at the end of
each iteration i, the approximate solution θj+1

i , sj+γi+WTλi to (11) is feasible with respect to the constraintWθ ≥ 0:

Wθj+1
i = Wsj +Wγi + λi = W (sj + γi) +

[
−W (sj + γi)

]
+

=
[
W (sj + γi)

]
+
≥ 0.

In general, these subproblems are solved approximately (i.e., with a limited number of iterations) as relatively good esti-
mates of each primal iterate θj tend to be produced with only few inner iterations.

5.2 Model-Based Sparsity
While the majority of the CS literature has focused on the case where the scene of interest admits a sparse representation in
some basis or dictionary, more recent developments have used more sophisticated models of scenes which incorporate key
structure into the sparsity models. The basic idea has been used previously in the context of image denoising and compres-
sion. For example, it is well-known that image denoising can be accomplished via wavelet coefficient-wise thresholding.
However, more refined thresholding methods exploit the fact that significant wavelet coefficients tend to cluster near one
another within scales and arise at similar locations between scales; this approach can yield significant improvements in
accuracy.30

CS reconstruction methods have recently been developed based upon similar principles to improve reconstruction
results.4, 31, 32 For instance, as we noted above, (9) amounts to an image denoising operation conducted during each loop
of the reconstruction algorithm. Thus a variety of denoising methods can be used. Unfortunately, some of these models
result in nonconvex optimization problems for which finding the globally optimal reconstruction is not computationally
tractable – though locally optimal reconstructions are often very good. Nevertheless, recent theoretical work31 shows that
incorporating sparsity models can reduce the number of measurements needed to achieve a desired accuracy level. Another
alternative to conventional sparsity assumptions is that scenes of interest lie on a low-dimensional manifold embedded in the
n-dimensional pixel space. Similar assumptions have been shown to be useful in analyzing databases of text documents,33

visualization of high-dimensional data sets,34 object recognition,35 and classification and semi-supervised learning.36, 37 In
general, however, devising computationally efficient general-purpose methods to perform image reconstruction based on
manifold structure is a challenging open problem.38 In the case where the image of interest is known to be smooth or
piecewise smooth in the canonical basis (i.e., it is compressible in a wavelet basis), we can formulate a penalty function
which is a useful alternative to the `1 norm of the wavelet coefficient vector. In particular, we can build on the framework
of recursive dyadic partitions (RDP),39, 40 which we summarize here.

It can be shown that partition-based denoising methods such as this are closely related to Haar wavelet denoising with
an important hereditary constraint placed on the thresholded coefficients—if a parent coefficient is thresholded, then its
children coefficients must also be thresholded.40 This constraint is akin to wavelet-tree ideas which exploit persistence of
significant wavelet coefficients across scales and have recently been shown highly useful in compressive sensing settings.31

In particular, the partition-based methods calculate image estimates by determining the ideal partition of the domain of
observations and by using maximum likelihood estimation to fit a model (e.g., a constant) to each cell in the optimal
partition. The space of possible partitions is a nested hierarchy defined through a recursive dyadic partition (RDP) of the
image domain, and the optimal partition is selected by pruning a quad-tree representation of the observed data to best fit



(a) (b) (c)
Figure 2. Recursive dyadic partition of the Cameraman image. (a) Original image f?. (b) RDP P , with larger partition cells corre-
sponding to regions of more homogeneous intensity. (c) Piecewise constant approximation f(P ) to original image, with constant pieces
corresponding to RDP cells.

the observations with minimal complexity. Each of the terminal squares in the pruned RDP could correspond to a region of
homogeneous or smoothly varying intensity. This gives our estimators the capability of spatially varying the resolution to
automatically increase the smoothing in very regular regions of the image and to preserve detailed structure in less regular
regions.

An RDP can be obtained by merging neighboring squares of (i.e., pruning) a full quad tree representation of the data to
form a data-adaptive RDP, P , and fitting models to the data on the terminal squares of P . Thus the image estimate, f(P ),
is completely described by P . An image f?, an RDP P , and an image approximation, f(P ), are displayed in Fig. 2. The
model coefficients for each partition cell are chosen via nonnegative least squares (addressed below). RDP-based image
estimates are computed using a very simple framework for penalized least squares estimation, wherein the penalization is
based on the complexity of the underlying partition (i.e., the number of cells in the partition). The goal here is to find the
partition which minimizes the penalized squared error function:

P j+1 = arg min
P∈P

‖sj − f(P )‖22 +
τ

αj
pen(P ) (14)

subject to f(P ) ≥ 0

f j+1 = f(P j+1) (15)

where P is a collection of all possible RDPs of the image domain and sj is defined similarly as in (10):

sj = f j − 1
αj
∇φ(f j) where φ(f) =

1
2
‖y −Af‖22

The penalty term pen(P ) in (14) is the penalty associated with the estimate f(P ) and is proportional to the number of cells
in the partition P .39–41

A search over P can be computed quickly using a dynamic program. When using constant model fits, the nonnegative
least-squares fits can be computed non-iteratively in each interval by simply using the maximum of the average of sj in
that interval and zero. Because of this, enforcing nonnegativity constraints is trivial and can be accomplished very quickly.

5.3 Total Variations
Regularization based on a total variation (TV) norm has also garnered significant recent attention.42 In general, this norm
measures how much an image varies across pixels, so that a highly textured or noisy image will have a large TV norm,
whereas a smooth or piecewise constant image would have a relatively small TV norm. This is often a useful alternative
to wavelet-based regularizers, which are also designed to be small for piecewise smooth images but can result in spurious
large, isolated wavelet coefficients and related image artifacts.



The problem of estimating the true intensity f? from y using a TV-regularized objective function with nonnegativity
constraints has recently been addressed by Beck and Teboulle,43 where an estimate f̂ of f? is obtained by solving the
following constrained minimization problem:

f̂ = arg min
f

1
2
‖y −Af‖22 + τ‖f‖TV

subject to f ≥ 0,
(16)

where

‖f‖TV ,

√
n−1∑
k=1

√
n∑

l=1

|fk,l − fk+1,l| +

√
n∑

k=1

√
n−1∑
l=1

|fk,l − fk,l+1|. (17)

In (17), we have used 2D pixel indices instead of vector indices in a small abuse of notation. We have also assumed
that f ∈ Rn is a vector corresponding to a square

√
n ×
√
n image for simplicity of presentation, but this assumption is

not necessary for the algorithm. The gradient-based optimization approach proposed by Beck and Teboulle is based on a
monotone fast iterative shrinking and thresholding (IST) algorithm and has been shown to outperform other IST methods
that do not take into account of the nonnegativity constraints.

5.4 Recentering and Mean Subtraction
Generative models for random projection matrices used in CS involve drawing elements independently from a zero-mean
probability distribution,1, 6, 7, 22, 44 and likewise a zero-mean distribution was used to generate the coded aperture masks
described in Sec.4. However, a coded aperture mask with a zero mean is not physically realizable in optical systems. We
generate our physically realizable mask by taking our randomly generated, zero-mean mask pattern and shifting it so that
all mask elements are in the range [0, 1/m], where m is the dimension of the observation.19 This shifting ensures that
the coded aperture corresponds to a valid (i.e., nonnegative and intensity preserving) probability transition matrix which
describes the distribution of photon propagation through the optical system.

This shifting, while necessary to accurately model real-world optical systems, negatively impacts the performance of
the proposed `2-`1 reconstruction algorithm for the following reason. If we generate a non-realizable zero-mean mask (h0)
with elements in the range [−1/2m, 1/2m] and simulate measurements of the form

y0 = D(f? ∗ h0) ≡ A0f?, (18)

then the corresponding observation matrixA0 will satisfy the RIP with high probability and f? can be accurately estimated
from y0 using `2-`1 minimization. In contrast, if we shift h0 to be in the range [0, 1/m] (by adding 1/2m to each element
in h0) and denote this h, then we have a practical and realizable coded aperture mask. However, observations of the form

y = D(f? ∗ h) ≡ Af?

cannot be directly used with `2-`1 minimization methods that assume that A is zero mean. For several algorithms,26, 28

including those in this paper, it is crucial that the second derivative of the data-fitting term φ(f) = 1
2‖y − Af‖

2
2 is well

approximated by a scalar multiple of the identity matrix. In other words, ∇2φ(f) = ATA ≈ αI for some α > 0. For the
nonzero mean A,

h = h0 +
1

2m
1√n×

√
n,

where 1√n×√n is a
√
n×
√
n matrix of ones, and

ATA =
(
A0 +

1
2m

1m×n

)T(
A0 +

1
2m

1m×n

)
≈ αI +

(
CA
m

+
1

4m

)
1n×n,

where CA is the sum of each column of A and is known by construction. Note that ATA is far from being diagonal,
so methods which attempt to exploit a near-diagonal structure in ATA would not result in fast and accurate reconstruc-
tions.26, 28



To address this problem, we note that

y = Af? =
(
A0 +

1
2m

1m×n

)
f? = y0 +

‖f?‖1
2m

1m×1,

where we exploit the known positivity of f?. Furthermore, since y is also positive, we can estimate the total signal intensity
‖f?‖1 using the total intensity of the observations:

E

[
m∑
i=1

yi

]
=

m∑
i=1

n∑
j−1

Ai,jf
?
j =

n∑
j=1

(
m∑
i=1

Ai,j

)
f?j = CA‖f?‖1,

Consequently, ‖f?‖1 ≈
∑m
i=1 yi/CA. Putting this all together, we can estimate

y0 ≈ y − 1
2mCA

(
m∑
i=1

yi

)
1m×1

and use it to solve for f? in (18). It can readily be seen that solving for f? in (18) will produce a solution f̂ with zero mean,
and so we add µ ≡

∑m
i=1 yi/(nCA) to this result to achieve our final, accurate estimate. Similar shifting operations could

be used in cases where the coded aperture mask has a fill factor different from the 50% assumed in the above derivation.

Finally, because we must use the zero-mean A0 to reconstruct the original signal, the problem formulation (7) must be
altered accordingly. Specifically, we must solve

θ̂ = arg min
θ

1
2
‖y0 −A0Wθ‖22 + τ pen(θ) (19)

subject to Wθ + µ1 ≥ 0

where pen(θ) is one of the various penalty terms described previously. The estimate for f? is then given by f̂ = Wθ̂+µ1.
We note that the algorithms described above can be modified to solve (19) in a straightforward manner.

6. NOISE AND QUANTIZATION ERRORS
While CS is particularly useful when the FPA needs to be kept compact, it should be noted that CS is more sensitive
to measurement errors and noise than more direct imaging techniques. The experiments conducted in previous work20

simulated very high signal-to-noise ratio (SNR) settings and showed that CS methods can help resolve high resolution
features in images. However, in low SNR settings CS reconstructions can exhibit significant artifacts that may even cause
more distortion than the low-resolution artifacts associated with conventional coded aperture techniques such as MURA.
Similar observations are made by Haupt and Nowak.45 These observations are particularly relevant when considering the
bit-depth of focal plane arrays, which corresponds to measurement quantization errors. Related theoretical work24 shows
that in the presence of low SNR photon noise, theoretical error bounds can be large, and thus the expected performance of
CS may be limited unless the number of available photons to sense is sufficiently high.

7. CONCLUSION
One of the main tenets of compressed sensing is that relatively few well-chosen observations are needed to form a sparse
image using sophisticated image reconstruction algorithms. This suggests that it may be possible to build cameras with
much smaller focal plane arrays than are conventionally required for high-resolution imaging. However, the application of
these ideas in practical settings poses several challenges. First, directly implementing CS theory by collecting a series of
independent pseudo-random projections of a scene requires either (a) a very large physical system or (b) observations col-
lected sequentially over time. In this paper, we describe an alternative snapshot architecture (which capture all observations
simultaneously) with a compact form factor, namely coded aperture techniques. These approaches impose structure upon



the pseudo-random projections, most notably by limiting their independence. A second key challenge relates to the non-
negativity of image intensities and measurements which can be collected by linear optical systems. Much of the theoretical
literature on CS allows for negative measurements and does not consider nonnegativity during the reconstruction process.
In this paper, we show that (a) CS theory can be used in designing coded aperture mask patterns such that high-resolution
images can be reconstructed from low-resolution observations, (b) nonnegativity constraints can be incorporated in CS
minimization problem reconstruction algorithms without heavy computational costs, and (c) pre-processing observations
to account for nonnegative sensing matrices can be applied so that central assumptions underlying some fast CS algorithms
are satisfied.
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[34] A. N. Gorban, B. Kégl, D. C. Wunsch, and A. Zinovyev, Principal Manifolds for Data Visualization and Dimension

Reduction, Springer, 2007.
[35] M. Davenport, M. Duarte, M. Wakin, J. Laska, D. Takhar, K. Kelly, and R. Baraniuk, “The smashed filter for com-

pressive classification and target recognition,” in Proc. SPIE Elecron. Imag., 2007.
[36] A. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. Nowak, “Multi-manifold semi-supervised learning,” in AISTATS, 2009.
[37] Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin, “Semisupervised multitask learning,” IEEE Tran. Patt. Anal. Mach.

Int. 31(6), pp. 1074–1086, 2009.
[38] M. B. Wakin, “Manifold-based signal recovery and parameter estimation from compressive measurements.” submit-

ted, 2009.
[39] R. Nowak, U. Mitra, and R. Willett, “Estimating inhomogeneous fields using wireless sensor networks,” IEEE J. Sel.

Areas Commun. 22(6), pp. 999–1006, 2004.
[40] R. Willett and R. Nowak, “Multiscale Poisson intensity and density estimation,” IEEE Trans. Inform. Theory 53(9),

pp. 3171–3187, 2007.
[41] R. Willett and R. Nowak, “Platelets: a multiscale approach for recovering edges and surfaces in photon-limited

medical imaging,” IEEE Trans. Med. Imaging 22(3), pp. 332–350, 2003.
[42] T. Chan and J. Shen, Image Processing And Analysis: Variational, PDE, Wavelet, And Stochastic Methods, Society

for Industrial and Applied Mathematics, 2005.
[43] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and de-

blurring problems,” IEEE Trans. Image Process. 18(11), pp. 2419–34, 2009.
[44] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random

matrices.” To appear in Constructive Approximation, 2007.
[45] J. Haupt and R. Nowak, “Compressive sampling vs. conventional imaging,” in Proc. IEEE Intl. Conf. on Imag. Proc.,

pp. 1269–1272, 2006.


