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ABSTRACT
Nonlinear image reconstruction based upon sparse representations of images has recently received widespread attention
with the emerging framework of compressed sensing (CS). This theory indicates that, when feasible, judicious selection
of the type of distortion induced by measurement systems may dramatically improve our ability to perform image recon-
struction. However, applying compressed sensing theory to practical imaging systems poses a key challenge: physical
constraints typically make it infeasible to actually measure many of the random projections described in the literature, and
therefore, innovative and sophisticated imaging systems must be carefully designed to effectively exploit CS theory. In
video settings, the performance of an imaging system is characterized by both pixel resolution and field of view. In this
work, we propose compressive imaging techniques for improving the performance of video imaging systems in the pres-
ence of constraints on the focal plane array size. In particular, we describe a novel yet practical approach that combines
coded aperture imaging to enhance pixel resolution with superimposing subframes of a scene onto a single focal plane
array to increase field of view. Specifically, the proposed method superimposes coded observations and uses wavelet-based
sparsity recovery algorithms to reconstruct the original subframes. We demonstrate the effectiveness of this approach by
reconstructing with high resolution the constituent images of a video sequence.
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1. INTRODUCTION
In a wide variety of video applications, keeping the focal plan array (FPA) small is useful or even critical. For example, in
low light settings, where sensitive detectors are costly, smaller FPAs translate directly to less expensive systems. Smaller
FPAs also make systems lighter weight and thus more portable. Finally, smaller cameras can fit into tighter spaces for
unobtrusive surveillance. A key goal of many video systems, then, is to extract as much information as possible from a
small number of detector array measurements.

Recent work in compressed sensing (CS)1–3 indicates that it is possible to extract high-resolution images from small
numbers of noisy, indirect, projection measurements when the scene is sparse or compressible in some basis. The high-
resolution image is inferred from the measurements using a nonlinear, iterative reconstruction method which searches for
the collection of basis coefficients which is (a) a good match to the observed data, and (b) sparse. Sparsity has long been
recognized as a highly useful metric in a variety of inverse problems, but much of the underlying theoretical support was
lacking. However, more recent theoretical studies have provided strong justification for the use of sparsity constraints and
quantified the accuracy of sparse solutions to these underdetermined systems.1, 4

Despite the theoretical promise of CS specifically and sparsity constrained iterative reconstruction in general, very little
is known about its application to practical video systems. In particular, imaging systems implicitly place hard constraints
on the nature of the measurements which can be collected, such as non-negativity of both the projection vectors and the
measurements, which are not considered in the existing compressed sensing literature. Furthermore, it typically is not
possible to wait hours or even minutes for an iterative reconstruction routine to produce a single frame of a video; rather,
algorithms must be able to operate effectively under stringent time constraints.

In this paper, we explore the potential of several different practical systems for measuring a temporally varying scene.
While holding both the total intensity of the scene and the FPA size constant, we simulate collecting measurements using a
pinhole camera, a coded aperture camera using conventional Modified Uniformly Redundant Arrays (MURAs),5 a coded

Further author information: (Send correspondence to Roummel F. Marcia.)
Roummel F. Marcia: E-mail: roummel@ee.duke.edu, Telephone: 1 (919) 613 9123
Zachary T. Harmany: E-mail: zth@duke.edu, Telephone: 1 (919) 613 9123
Rebecca M. Willett: Email: willett@duke.edu, Telephone: 1 (919) 660 5544



aperture camera specifically designed for CS applications,6 a recently proposed camera which superimposes image halves,7

and a superimposition camera with CS coded apertures. We will see that CS coded aperture constructions in general yield
performance gains over pinhole cameras and conventional coded aperture cameras in video settings. In other words,
given a fixed size FPAs, compressive measurements combined with sophisticated optimization algorithms such as the one
described in this document can significantly increase the quality and/or resolution of the video.

1.1 Observation Model
Throughout this paper, we use the following observation model:

yt = Atf
?
t + wt, (1)

where f?t ∈ IRn is the image of interest at time t, At ∈ IRk×n linearly projects the scene onto a k-dimensional set of
observations, wt is a vector of white Gaussian noise, and yt ∈ Zk is a length-k vector of observations.

The measurement matrix At can correspond to a wide variety of imaging system models, several of which will be
examined explicitly in the course of this paper. For example,At could correspond to a coded aperture point spread function
composed with a downsampling operation, resulting in a very low resolution coded aperture observation. Alternatively, At
could represent superimposing different regions in a wide field of view scene, resulting in an ambiguous representation of
the scene which must separated into different intensity functions for the different scene regions. This will be made explicit
in the following sections.

The problem addressed is this paper is the estimation of {f?t } from {yt} in a compressed sensing context, when (a) the
number of unknowns is much larger than the number of observations, (b) f?t is sparse or compressible in some basis W ,
and (c) the matrix product Rt , AtW is sufficiently “incoherent” or satisfies some other probabilistic criterion.8, 9 While
the problem (1) can be grossly underdetermined, compressed sensing suggests that selecting the sparsest solution to this
system of equations will yield a highly accurate solution.

1.2 Organization of the Paper
This paper is organized as follows. In Sec. 2 we describe several practical camera architectures which could be used in to
yield practical video cameras which make effective use of a limited size FPA: pinhole cameras, MURA coded apertures,
compressive coded apertures, and subframe superimposition. Sec. 3 describes mechanisms used in optical video settings
to improve the quality and speed of video frame reconstruction algorithms; these methods are used to exploit correlations
between successive frames and compensate for the positivity of optical measurements and point spread functions. In Sec. 4
we report our the results of our numerical experiments. Analysis and conclusions are presented in Sec. 5.

2. ARCHITECTURES FOR SNAPSHOT COMPRESSIVE VIDEO CAMERAS
Examining the observation model in (1), a natural question is the following: what is the “best” At? As noted above, the
compressed sensing literature describes the theoretical optimality of choosing At to be populated by random draws from
an appropriate distribution, but practical aspects of optical system design and positivity constraints make this infeasible in
our setting. Others have suggested taking a different random projection at each time step and producing the projections
using digital micromirrors.10 This approach only requires one detector element, but requires the scene to remain static
for a relatively long period of time. Using an array of digital micromirror chips to collect multiple random projects
simultaneously would add significant bulk and power requirements to the system design.

In this paper we consider an alternative based on coded apertures. The projections recorded based on coded apertures
have somewhat weaker theoretical guarantees than a series of completely different random projects, but this disadvantage
is offset by the following considerations: (a) coded apertures are simple to build and incorporate into practical, robust
and compact optical system designs, and (b) all the measurements of a single frame of scene can be collected in a single
“snapshot”, allowing us to reconstruct dynamic scenes with more fidelity than would be possible with a system which only
collects one random projection at each time step.

In this section, we review the challenges associated with pinhole cameras which led to the initial development of
coded apertures, and then briefly describe the conventional MURA coded aperture design. We then describe how CS
leads to a new, optimal coded aperture design, and how these coded apertures can be used in conjunction with subframe
superimposition to increase both video resolution and field of view.



2.1 Pinhole cameras
Pinhole cameras are simple imaging systems that use a single opening (aperture) for collecting observations. Very small
apertures lead to images with sharp details and crisp edges – aperture size determines the smallest feature a pinhole camera
can resolve. However, because they allow relatively little light to pass through, a slow shutter speed is often required
to prevent under-exposure. This requirement is problematic for capturing images with non-static components. Also, it
places an added constraint that the camera be stationary for prolonged periods of time, which might not be feasible in
some settings, such as cameras that are mounted on vehicles. Dim observations resulting from small apertures can be
compensated by making the size of the opening larger; but, larger apertures increase light diffraction, leading to increased
blurriness in the observations.

For pinhole cameras, the measurement matrix operation can be modeled as

A
(pinhole)
t f?t = f?t ∗ h(pinhole),

where ∗ denotes the convolution operator and hpinhole is a Gaussian blur with full width at half maximum (FWHM)
proportional to the size of the pinhole. (Note that in this case the operator At is independent of t, but we do not reflect
this in the notation to be consistent throughout the paper.) The peak amplitude of the Gaussian is one, so smaller pinholes
correspond to Gaussian blurs with smaller integrals which subsequently cause less light to reach the detector.

2.2 Modified Uniformly Redundant Arrays
Coded aperture imaging was developed to allow more light to reach the detector without a loss in resolution. Seminal work
in coded aperture imaging includes the development of Modified Uniformly Redundant Arrays (MURAs).5 These mask
patterns are binary, square patterns with prime integer sidelengths (see Fig. 1(a)). The measurement matrix operation can
then be modeled as

A
(MURA)
t f?t = f?t ∗ h(MURA),

and f?t can be reconstructed as
f̂t = y ∗ h̃(MURA)

for some complementary pattern h̃(MURA) (see Fig. 1(b)). In other words, the MURA patterns (and their complements) are
specifically designed so that h(MURA) ∗ h̃(MURA) approximately equals the Kronecker δ function (Fig. 1(c)) and hence to
optimize reconstruction accuracy subject to the constraint that linear, convolution-based reconstruction methods would be
used. MURA coded apertures are approximately 50% open, and, therefore, a significant improvement over conventional
pinhole cameras because they allow in significantly more light.

Generally, the size and resolution of the MURA patterns is chosen to match the size of the FPA. Using a higher
resolution MURA pattern would not be effective because the FPA would effectively downsample the coded image, making
the reconstruction via convolution with a complementary pattern suboptimal. As a result, the resolution of the estimate
which can be achieved using MURA patterns is limited by the size of the FPA even when we have prior information about
the scene (such as its sparsity in some basis). Furthermore, while MURA coded apertures are successful in the context of
linear reconstruction, there exist a wide variety of nonlinear reconstruction methods which can dramatically outperform
linear reconstructions when f has a sparse representation in some basis, such as a wavelet basis.

2.3 Compressive coded apertures
2.3.1 Compressed sensing preliminaries

Nonlinear image reconstruction based upon sparse representations of images has received widespread attention recently
with the advent of “compressive sensing”. This emerging theory indicates that very high dimensional vectors (f?t ∈ IRN ,
where N = n2) can be recovered with astounding accuracy from a much smaller dimensional observation (y) when f?t has
a “sparse” representation in some basis W (i.e., f?t = Wθ?t where θ?t has few non-zero coefficients). This result hinges on
the Restricted Isometry Property (RIP)8 condition being satisfied on the product of the observation matrix At and the basis
matrix W , denoted Rt , AtW . A matrix R is said to satisfy the RIP of order 3m if, for T ⊂ {1, 2, · · · , N} and RT , a
submatrix obtained by retaining the columns of R corresponding to the indices in T , there exists a constant δ3m ∈ (0, 1/3)
such that for all z ∈ IR|T |,

(1− δ3m)‖z‖22 ≤ ‖RT z‖22 ≤ (1 + δ3m)‖z‖22 (2)
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(a) Coding pattern h(MURA) (b) Decoding pattern h̃(MURA) (c) Convolution h(MURA) ∗ h̃(MURA)

Figure 1. The MURA pattern for a 101×101 grid. (a) The white blocks are openings (b) The decoding pattern for (a) is nearly identical.
(c) If the white blocks have value 1 and the black blocks have value 0, and the blue blocks in (b) have value −1, then the convolution of
the matrices corresponding to this two patterns appear like a Kronecker-δ function.

holds for all subsets T with |T | ≤ 3m.8 An observation matrix R satisfying RIP with high probability is often referred
to as a compressed sensing (CS) matrix. While the RIP cannot be verified for a given R, it has been shown that matrices
with entries drawn independently from some probability distributions satisfy the condition with high probability when
k ≥ Cm log(N/m) for some constant C, where m ≡ ‖θ?t ‖`0 is the number of non-zero elements in the vector θ?t .8

We observe yt = Rtθ
?
t + nt, where nt is white Gaussian noise. The `2 − `1 minimization

θ̂t = arg min
θt

1
2
‖yt −Rtθt‖22 + τ‖θt‖1 (3)

f̂t = Wθ̂t

will yield a highly accurate estimate of f?t with very high probability.4, 11 The regularization parameter τ > 0 helps to
overcome the ill-posedness of the problem, and the `1 penalty term drives small components of θ to zero and helps create
sparse solutions.

2.3.2 Coded apertures for compressed sensing

We have previously designed a coded aperture imaging mask, denoted h(CCA), such that the corresponding observation
matrix Rt satisfies the RIP.6 The measurement matrix At (recall Rt = AtW ) associated with compressive coded apertures
(CCA) can be modeled as

A
(CCA)
t f?t = D(f?t ∗ h(CCA)) (4)

whereD is a downsampling operator induced by the FPA which consists of partitioning f?t ∗h(CCA) into k uniformly sized
blocks and measuring the total intensity in each block. (This is sometimes referred to as integration downsampling.) In
this case the operator At is independent of t, but we do not reflect this in the notation to be consistent throughout the paper.

The convolution of h(CCA) with a signal f?t as in (4) can be computed by applying the Fourier transform F to f?t
and h(CCA), then performing element-wise matrix multiplication, and then mapping the product using the Fourier inverse
transform. In linear algebra notation, this series of operation can be expressed as

h(CCA) ∗ f?t = F−1CHF f?t ,

where F is the two-dimensional Fourier transform matrix, and CH is the diagonal matrix whose diagonal elements cor-
respond to the transfer function H = F (h(CCA)). (This is a slight abuse of notation, since on the left hand side f?t is an
image, and on the right hand side f?t is a vectorized representation of an image.) The coded aperture masks are designed
so that A(CCA)

t satisfies RIP as described in (2). Specifically, the authors developed a method for randomly generating a
mask h(CCA) so that the corresponding matrix product F−1CHF is block-circulant and each block was in turn circulant,



Figure 2. The matrix F−1CHF is block-circulant with circulant blocks.

as illustrated in Fig. 2. Block-circulant matrices are known to be a compressed sensing matrix, and based upon recent theo-
retical work on Toeplitz-structured matrices for compressive sensing, the proposed masks are fast and memory-efficient to
generate.6, 12 The incorporation of the integration downsampling operator D does not prevent the RIP from being satisfied;
a key element of the proof that the RIP is satisfied is a bound on the number of rows of A(CCA)

t which are statistically
independent. Since the downsampling operator effectively sums rows of a block circulant matrix, downsampling causes
the bound on the number of dependent matrix rows to be multiplied by the downsampling factor.

2.4 Subframe superimposition and disambiguation
Recently, we proposed a numerical method by which the FOV of an imaging system can be increased without compro-
mising its resolution.7, 13 In our setup, a dynamic scene to be imaged is partitioned into smaller scenes (called subframes),
which are imaged onto a single FPA using beam splitters and mirrors to form a composite image. This is illustrated in
Fig. 3. We developed an efficient video processing approach to separate the composite image into its constituent images,
thus restoring the complete scene corresponding to the overall FOV. To make this otherwise highly ill-posed problem of
disambiguating the image tractable, the superimposed subframes are moved relative to one another between video frames.
This approach is easily implemented and is mechanically more robust than a multiple-shutter system that alternately opens
and closes shutters to capture the subframes of a scene.

Each frame f?t is partitioned into left and right subframes f?t = [f?L,t; f
?
R,t]. The measurement matrix operation

associated with the superimposition process can be modeled as

A
(sup)
t f?t = D[hL ∗ f?L,t + hR ∗ (Stf?R,t)]

where hL and hR are the point spread function of the imager and can either correspond to a pinhole or to a coded aperture,
and St is an operator describing the shifting movement of one subframe relative to another. In the superimposition process,
the two subimages are merged to form a composite image. For the case where hL and hR correspond to pinholes, the
intensity of each pixel in the composite image is the simple summation of the intensities of the corresponding pixels in the
individual images.

For the case where hL and hR correspond to coded apertures, the intensity of each pixel in the composite image is
the summation of the corresponding coded aperture images. A schematic illustrating how the coded apertures could be
included in the camera design in presented in Fig. 4. These coded observations require fewer measurements than the
original subframes to reconstruct them with high accuracy. This fact allows for an even smaller focal plane array while
maintaining our ability to reconstruct the original image with high accuracy. The coded aperture masks hL and hR are
generated similarly as in the compressive coded aperture setup, i.e., they are generated independently such that the resulting
projection matrix for each mask satisfies the RIP (2).

The inverse process – the disambiguation of the individual subimages from this composite image – is more challenging.
For this, we must determine how the intensity of each pixel in the composite image is distributed over the corresponding
pixels in the individual subimages so that the resulting reconstruction accurately approximates the original scene. As
before, an estimate can be formed using the `2 − `1 minimization described in (3).
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Figure 3. Schematics of the superimposition and disambiguation process.

3. IMPROVING PERFORMANCE OF RECONSTRUCTION ALGORITHMS WITH
WARM-STARTING AND MEAN SUBTRACTION

All of the architectures described above result in a system which collects far fewer measurements than there are pixels in
the image to be reconstructed. Iterative reconstruction methods are effective for these architectures, as we will demonstrate
in Sec. 4. However, we perform two key tasks which significantly improve the performance of iterative solvers for the
video reconstruction problem. The first is solving for multiple frames simultaneously combined with warm-starting, which
improves the initialization of the reconstruction routine for each frame and significantly reduces the time required to achieve
an accurate reconstruction. The second is mean subtraction, which allows us to compensate for Rt not having zero mean
in practical camera systems.

3.1 Multi-frame difference reconstruction
Several of the above architectures lead to challenging inverse problems which can be solved using the `2−`1 minimization
in (3). While this is an effective approach, the reconstruction results can be significantly improved by solving for multiple
video frames simultaneously, instead of solving for each frame separately. To see this, note that we could write two
successive observed frames in any of the above architectures as[

yt
yt+1

]
,

[
Rt 0
0 Rt+1

] [
θ?t
θ?t+1

]
+
[

nt
nt+1

]
≡

[
Rt 0
Rt+1 Rt+1

] [
θ?t

∆θ?t

]
+
[

nt
nt+1

]
,
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Figure 4. Schematics of the superimposition of coded aperture observation and disambiguation process.

where ∆θ?t , θ?t+1 − θ?t . For strongly correlated frames, ∆θ?t will be very sparse (even significantly sparser than θ?t+1),
and, thus, will be highly suitable for sparse recovery algorithms. In fact, the above observation leads to the following
optimization problem as an alternative to (3):[

θ̂t
∆̂θt

]
= arg min

θ,∆θt

∥∥∥∥[ yt
yt+1

]
−
[
Rt 0
Rt+1 Rt+1

] [
θt

∆θt

]∥∥∥∥2

2

+ τ

∥∥∥∥[ θt∆θt

]∥∥∥∥
1

. (5)

Note that in this formulation, the coefficients for the current frame and the difference between two subsequent frames are
solved. The coefficients for the subsequent frame will be given by θ̂t+1 = θ̂t + ∆̂θt. The following optimization problem
for frame (t+ 1) is initialized using [

θ
(0)
t+1

∆θ(0)t+1

]
≡
[
θ̂t + ∆̂θt

∆̂θt

]
.

This approach can be extended for solving arbitrarily many frames simultaneously but limited by memory constraints and
by the amount of time a solver is allowed per optimization problem.7, 13 In our simulations, we solved for four frames
simultaneously in order to balance computation time per frame versus reconstruction accuracy. This approach is related to
recent work in high-dimensional joint support recovery, in which the fact that successive frames share a partially common
support is used to significantly improve reconstruction accuracy.14

3.2 Mean subtraction
Generative models for random projection matrices used in CS involve drawing matrix elements independently from a zero-
mean probability distribution,1, 2, 4, 8, 12, 15 and likewise a zero-mean distribution was used to generate the coded aperture



masks described in Sec. 2.3. However, a coded aperture mask with zero mean is not physically realizable in optical
systems. As described in,6 we generate our physically realizable mask by taking our randomly generated, zero mean mask
pattern and scaling it so that all mask elements are in the range [0, 1/n]. This rescaling ensures that the coded aperture
corresponds to a valid probability transition matrix which describes the distribution of photon propagation through the
optical system.

This rescaling, while necessary to accurately model real-world optical systems, negatively impacts the performance of
the proposed `2−`1 reconstruction algorithm. More specifically, if we generate a non-realizable zero-mean mask (h̃(CCA))
with elements in the range [− 1

2n ,
1
2n ] and simulate measurements of the form

ỹ = D(f? ∗ h̃(CCA)) ≡ Ã(CCA)f? (6)

(we omit the t subscripts in this section for simplicity of presentation), then the corresponding observation matrix Ã(CCA)

will satisfy the RIP with high probability and f? can be accurately estimated from ỹ using `2 − `1 minimization. In
contrast, if we rescale h̃(CCA) to be in the range [0, 1/n] and denote this h(CCA), then we have a practical and realizable
coded aperture mask, but observations of the form

y = D(f? ∗ h(CCA)) ≡ A(CCA)f?

cannot be directly used with `2 − `1 minimization to yield as accurate an estimate. To address this problem, we note that
h(CCA) = h̃(CCA) + 1

2n , yielding

y = A(CCA)f? =
(
Ã(CCA) +

1
2n

1k×n

)
f? = ỹ +

‖f?‖1
2n

1k×1,

where 1k×n is a k × n matrix of ones and we exploit the known positivity of f?. Furthermore, since y is also positive we
note that

IE [‖y‖1] =
k∑
i=1

n∑
j=1

A
(CCA)
i,j f?j =

n∑
j=1

(
k∑
i=1

A
(CCA)
i,j

)
f?j = CA‖f?‖1,

where CA is the sum of each column of A(CCA) and is known by construction. Putting this all together we can estimate

ỹ ≈ y − ‖y‖1
2nCA

1k×1,

and use this estimate to solve for f? in (6). It can readily be seen that solving for f? in (6) will produce a solution with
zero mean, and so we add ‖y‖1/CA to this result to achieve our final, accurate estimate.

4. NUMERICAL EXPERIMENTS
Previously, we conducted experiments demonstrating that our compressive coded aperture reconstruction methods are able
to preserve edges better and capture more details than using uncoded observations.6, 16 Our goal here is to more pre-
cisely assess the resolution gains and FOV increase associated with the compressive coded apertures and superimposition
architectures for a fixed focal plane array size.

4.1 Video
For our numerical experiments, we designed a video that tests whether the proposed subframe superimposition and disam-
biguation approach with compressive coded apertures described in Sec. 2.4 will be effective in accomplishing this goal.
Each video frame is in 256×512 gray-scale pixel resolution and consists of vertical bars of various widths spaced unevenly
in a row (see Fig. 5), moving slowly from the middle of the frame to the top. For this video, we created 50 frames. The
frames are sparse in the Haar wavelet domain and are, therefore, suitable for the compressed sensing framework. Although
this video seems simple, it is particularly challenging because several of these vertical bars are very narrow, and in several
instances, are one pixel in width. In addition, there are spacings between vertical bars that are also one pixel or very narrow.
Zero-mean additive white Gaussian noise is added to the observations.



Figure 5. A single frame of the video to be reconstructed. The video depicts the simultaneous movements of the vertical bars from the
middle of the frame to the top. Low resolution cameras blur the fine lines, narrow spaces, and edges of the vertical bars. Compressive
coded apertures help mitigate these effects.

Our experiments compare the reconstruction results from using (1) a pinhole camera (which we label as Pinhole), (2)
a camera with a MURA coded aperture (MURA), (3) a camera with a compressive coded aperture (CCA), (4) a pinhole
camera with the superimposition and disambiguation setup (Pinhole Dis), and (5) a camera with the superimposition and
disambiguation setup with compressive coded apertures (CCA Dis). We do not include a superimposition and disambigua-
tion setup with MURA coded apertures because MURA is designed for linear reconstruction using the MURA decoding
pattern, where as the disambiguation problem formulation is nonlinear. Without prior knowledge about the scene, it is
impossible to use a linear reconstruction method to disambiguate the two halves of the scene.

We require that each camera setup have a 128 × 128 focal plane array size. Thus, in all setups, a downsampling by a
factor of two in each dimension must be applied because the original video is twice the resolution of the FPA in the vertical
direction and four times in the horizontal direction. In addition, to take measurements on the 128 × 128 FPA, half of the
original scene be cropped out in Setups (1)-(3). Setups (4) and (5) superimpose the scene halves and disambiguate the
subframes in the reconstruction process. These experiments explore the tradeoffs between increasing the video field-of-
view and potentially decreasing spatial resolution, and how using compressive coded apertures can mitigate some of the
loss in resolution.

In these experiments, we solve the optimization problem (5) using the Gradient Projection for Sparse Reconstruction
(GPSR) algorithm,17 a derivative-based optimization algorithm that uses a projected gradients. It is very fast, accurate,
and efficient. In addition, GPSR has a debiasing phase, where upon solving the `2 − `1 minimization problem, it fixes the
non-zero pattern of the optimal θt and minimizes the `2 term of the objective function, resulting in a minimal least-squares
error in the reconstruction while keeping the number of non-zeros in the wavelet coefficients at a minimum. Published
results have shown that it outperforms many of the state-of-the-art codes for solving the `2−`1 minimization problem or its
equivalent formulations. In our numerical experiments, we restricted the number of GPSR iterations due to time constraints
imposed on reconstructing the entire duration of the video sequence. Higher quality reconstructions are possible with more
computation time, but not realistic in video settings with a steady stream of new observations.

4.2 Results and analysis
Here we compare the performance and assess the relative merits of the proposed methods so that one may choose which
method to implement for a given task. (The image is cropped to focus on the resolution bar pattern for visual clarity.) In
describing the performance of image reconstruction methods, the normalized mean squared error, MSE = ‖f̂−f‖2/‖f‖2,
allows us to quantify the fidelity of the reconstruction to the original scene. However, because the MSE is a global metric
over the entire scene, it fails to capture how well small high-resolution features are preserved in the estimates. For this
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Figure 6. A comparison of the ground truth with the reconstructions using the five different setups: pinhole camera, camera with MURA
coded aperture, camera with compressive coded aperture (CCA), disambiguation with a pinhole camera, and disambiguation with a
camera using CCA. All five setups use the same FPA size. The pinhole, MURA, and CCA must be cropped, whereas the pinhole and
CCA disambiguation setups superimpose the two halves onto the same FPA.

reason, we also examine one-dimensional normalized intensity profiles of the reconstructions to examine the peak-to-valley
differences as an alternative metric for image quality.

Figure 6 shows, for a single frame, a comparison between the reconstructions obtained in each method. Notice im-
mediately that the subframe superimposition and disambiguation approaches offer twice the field of view compared to the
other methods that are focused only on the right half of the scene. We first compare these setups that can only capture half
of the scene. All three setups reconstruct the general shape of the blocks on the right hand side of the scene. Pinhole and
MURA require upsampling to make their reconstructions comparable to the original scene. We used bicubic interpolation,
which blurred the edges but produced lower MSE values. In contrast, CCA incorporates the downsampling operator in
its problem formulation (4) and, hence, does not require an upsampling scheme. For the disambiguation methods that are
able to reconstruct the entire scene, we notice that using the CCA we are able to reconstruct details (especially on the left
half of the image) that the pinhole is unable to capture. In addition, both of the disambiguation methods incorporate the
downsampling operator in their formulations, and therefore do not require upsampling.

When we compare the MSE of the reconstructions to the wide FOV scene (Fig. 7(a)), there is a large gap between
the disambiguation approaches versus the other methods simply because they make observations of and reconstruct both
halves of the scene. We first focus on the disambiguation approaches (Pinhole Dis and CCA Dis). Because we use relatively
few iterations per frame to solve the optimization problem, the reconstruction for the first few frames are often not very
accurate. However, because we take full advantage of the warm-starting strategy for subsequent frames, the MSE quickly
improves, settling to a steady-state value, with the CCA disambiguation method consistently outperforming the pinhole
disambiguation method after 20 video frames.

If we focus only on the ability of the other methods to reconstruct the right half of the scene (Fig. 7(b)), we see
that the CCA method yields much higher performance than the MURA or pinhole methods. These MSE values were
computed only over the pixels in the right half of the scene. The MSE values for the pinhole and MURA are very steady,
because although moving, the shape of the objects in the video are not changing. Due to the low noise conditions of our
simulation, the MURA and pinhole images are virtually indistinguishable. CCA is an iterative method similar to CCA Dis
and therefore exhibits the same MSE convergence behavior, i.e., dramatic improvements in MSE values are obtained after
very few frames. In this case, CCA outperforms pinhole and MURA after only two frames. These results validate the use
of compressive coded apertures offers an effective means to improve reconstruction accuracy.

The plots in Fig. 7 exhibit a zig-zag pattern which we observe consistently across all considered architectures and
reconstruction algorithms. In the video, the vertical bars move one pixel upwards at each frame. The downsampling in the



observations are obtained by averaging four adjacent pixels. Thus, in every even-numbered frame, there is a blurring of the
edges along the top and bottom of each bar (the bars are of even length), while in the odd-numbered frames this blurring
doesn’t occur and the MSE is smaller. This issue is present in the pinhole and MURA simulations, and exacerbated by our
use of Haar wavelets for the reconstructions from CCA observations. For the Haar wavelet basis, sharp edges are encoded
in fewer coefficients than smooth transitions, and so the slight blurring in even-numbered frames at the top and bottoms
of the vertical bars introduces additional significant wavelet coefficients that systematically change the sparsity pattern of
the wavelet coefficients over alternating frames of the reconstruction. This alternating between sharp discontinuities and
smooth transitions yields the triangular wave shape of the MSE curves in the reconstructions.

Figure 8(a) shows in detail a cross section of ground truth (in black) and of the reconstruction from the Pinhole (blue),
MURA (green), and CCA (green) observations, focused on the fourteen rightmost bars. The peaks correspond to the
locations of the vertical bars, and close alignment of the peaks of the different methods to the peaks of the ground truth
imply more accurate reconstructions of the vertical bars. Both the MURA and the pinhole camera obscure features that
are smaller a few pixels wide where in most cases the compressive coded aperture reconstruction is able to achieve higher
resolution, failing only when single-pixel wide features are separated by single-pixel wide spaces. Specifically, CCA
correctly identifies the peaks near pixel locations 450 and 455. Pinhole and MURA incorrectly identify a peak at 452-453.
Also, CCA identifies the peaks at 463 and 469 and the valleys (corresponding to spaces in the original scene) near 465
and 470. In contrast, Pinhole and MURA are unable to differentiate the peaks and valleys from locations 460 to 475 and
produces only the average pixel intensities.

The results for the second group of setups (Pinhole Dis and CCA Dis) are comparable to each other (Fig. 9(b)). Perhaps
an interesting result of this experiment is that Pinhole Dis, in this case, is able to identify the four peaks around pixel
locations 450 and 455, which Pinhole is unable to. This result is due to the movement of the mirror in the disambiguation
camera setup (see Fig. 3). The position of the mirror can be changed very slightly, thus, inducing a sub-pixel change in
the observation. In our disambiguation setup, this change is modeled by letting the shifting operator St act before the
downsampling operator D. Thus, in the measurements, a shift of one pixel before downsampling translates to a sub-pixel
movement. In comparison, the Pinhole Dis reconstruction on the leftmost vertical bars (see Fig. 9(a)) averages the first four
peaks (near pixel locations 35 and 40), whereas CCA Dis accurately captures the first two. Also, CCA Dis is better able
to approximate the peaks between locations 50 and 55 and near 60. The increase in resolution in Pinhole Disambiguation
on the right half of the scene is not present on the left half of the scene because the left subimage remains stationary, and,
therefore, remains unaltered.
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Figure 7. MSE plots of the reconstruction for each frame. (a) MSE values for all five setups to reconstruct the full scene. (b) MSE values
restricted to the right subframe for the non-disambiguating setups (Pinhole, MURA, and CCA).



5. CONCLUSIONS
High-resolution video measurement can be challenging in many settings where small cameras (and hence small focal
plane arrays) are essential. Conventionally, small focal plane arrays translated directly into low-resolution data. Recent
theoretical work in Compressed Sensing suggests that this is not a fundamental limitation, and that high-resolution video
can be estimated from a relatively small number of random projection measurements. However, it is very difficult to build
a practical camera which computes random projections of scene for several reasons. First, projection matrices consistent
with realizable optical systems cannot have negative elements, which is contrary to most generative models for random
projection matrices. Second, having all the projections (i.e. rows ofRt in the notation of this paper) completely independent
would force us to have a very large, expensive and complex optical system, which would not be usable in many applications.
Third, computing a single different random projection at each time step (cf.10) severely limits temporal resolution of the
video camera.

In this paper, we showed that coded aperture designs based on the principles of Compressed Sensing lead to very simple
and robust camera architectures which are particularly effective for low light video settings: (a) a simple coded aperture
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Figure 8. A cross section of the rightmost vertical bars from Fig. 6 of (a) the ground truth (black) and the reconstruction using Pinhole
(blue), MURA (green), CCA (red); and (b) the Pinhole Disambiguation (dashed blue) and CCA Disambiguation (dashed red).
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Figure 9. A cross section of the leftmost vertical bars of Fig. 6 of the Pinhole Disambiguation (dashed blue) and CCA Disambiguation
(dashed red).



camera and (b) a superimposition coded aperture camera. Coded apertures have added benefit of allowing more light to hit
detector than a pinhole would, and so yield less noisy observations. Conventional coded apertures, such as MURAs, are
optimal only under the assumption of linear reconstruction (based on convolution). In contrast, we have proved that the
proposed coded apertures are optimal when making compressive measurements and allowing for nonlinear reconstruction.
We showed through simulation that this allows us to achieve higher spatial resolution than MURA codes when the focal
plane array size is kept constant.
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