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ABSTRACT

The observations in many applications consist of counts of dis-
crete events, such as photons hitting a dector, which cannot be effec-
tively modeled using an additive bounded or Gaussian noise model,
and instead require a Poisson noise model. As a result, accurate
reconstruction of a spatially or temporally distributed phenomenon
(f ) from Poisson data (y) cannot be accomplished by minimizing a
conventional `2 − `1 objective function. The problem addressed in
this paper is the estimation of f from y in an inverse problem set-
ting, where (a) the number of unknowns may potentially be larger
than the number of observations and (b) f admits a sparse approx-
imation in some basis. The optimization formulation considered in
this paper uses a negative Poisson log-likelihood objective function
with nonnegativity constraints (since Poisson intensities are natu-
rally nonnegative). This paper describes computational methods for
solving the constrained sparse Poisson inverse problem. In particu-
lar, the proposed approach incorporates key ideas of using quadratic
separable approximations to the objective function at each iteration
and computationally efficient partition-based multiscale estimation
methods.

Index Terms—Photon-limited imaging, Poisson noise, wavelets,
convex optimization, sparse approximation, compressed sensing

1. INTRODUCTION

In a variety of applications, ranging from nuclear medicine to night
vision and from astronomy to traffic analysis, data are collected by
counting a series of discrete events, such as photons hitting a detector
or vehicles passing a sensor. The measurements are often inherently
noisy due to low count levels, and we wish to reconstruct salient
features of the underlying phenomenon from these noisy measure-
ments as accurately as possible. The inhomogeneous Poisson pro-
cess model [1] has been used effectively in many such contexts. Un-
der the Poisson assumption, we can write our observation model as

y ∼ Poisson(Af), (1)

where f ∈ Rm+ is the signal or image of interest, A ∈ RN×m+ lin-
early projects the scene onto a N -dimensional set of observations,
and y ∈ ZN+ is a length-N vector of observed Poisson counts.

The problem addressed in this paper is the estimation of f from
y in a compressed sensing context, when (a) the number of un-
knowns, m, may be larger than the number of observations, N , and
(b) f is sparse or compressible in some basis W (i.e. f = Wθ
and θ is sparse). This challenging problem has clear connections
to “compressed sensing” (CS) (e.g., [2]), but arises in a number of
other settings as well, such as tomographic reconstruction in nuclear
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medicine, superresolution image reconstruction in astronomy, and
deblurring in confocal microscopy.

In recent work [3], we explored some of the theoretical chal-
lenges associated with CS in a Poisson noise setting, and in partic-
ular highlighted two key differences between the conventional CS
problem and the Poisson CS problem:

1. unlike many sensing matrices in the CS literature, the matrix
A must contain all nonnegative elements, and

2. the intensity f , and any estimate of f , must be nonnegative.

Not only are these differences significant from a theoretical stand-
point, but they pose computational challenges as well. In this paper,
we consider algorithms for computing as estimate bf of f from ob-
servations y according to
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A ef ” is the Poisson likelihood of y given intensity A ef ,

•
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i
is the ith element of the vector A ef ,

• Γ is a collection of nonnegative estimators such that ef ≥ 0 for
all ef ∈ Γ, and
• pen( ef ) is a penalty term which measures the sparsity of ef in

some basis.
This paper explores computational methods for solving (2). The
nonnegativity of f and A results in challenging optimization prob-
lems. In particular, the restriction that f is nonnegative introduces
a set of inequality constraints into the minimization setup; as shown
in [4], these constraints are simple to satisfy when f is sparse in
the canonical basis, but they introduce significant challenges when
enforcing sparsity in an arbitrary basis. We will consider several
variants of the penaly term, including ‖f‖1, ‖WTf‖1 for some arbi-
trary orthonormal basis W , and a complexity regularization penalty
based upon recursive dyadic partitions. We refer to our approach as
SPIRAL (Sparse Poisson Intensity Reconstruction ALgorithm).

The paper is organized as follows. We first consider related op-
timization methods for solving the compressed sensing problem in
Sec. 2. Next, in Sec. 3, we consider three methods for solving the
constrained penalized Poisson likelihood estimation problem with
different penalty terms. The first two approaches use an `1 penalty
while the third uses partition-based penalty functions. Experimen-
tal results comparing the proposed approaches with expectation-
maximization (EM) algorithms are presented in Sec. 4.



2. SPARSITY-REGULARIZED OPTIMIZATION

Without any nonnegativity constraints on f , the Poisson minimiza-
tion problem (2) can be solved using the SpaRSA algorithm of
Figueireido et al. [5], which solves a sequence of minimization prob-
lems using quadratic approximations to the log penalty function:

fk+1 , arg min
f∈Rm
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pen(f), (2)

where

sk = fk − 1

αk
∇F (fk), (3)

αk is a positive scalar chosen using Barzilai-Borwein (spectral)
methods (see [5] for details), and

F (f) , − log p(y|Af)

is the negative log Poisson likelihood in (2). If the penalty term
in (2) is separable, i.e., it is the sum of functions with each func-
tion depending only on one component of f , then (2) can be solved
component-wise, making the problem (2) relatively easy to solve.

Much of existing CS optimization literature (e.g., [6, 7, 8]) fo-
cuses on penalty functions where pen(f) ∝ ‖WTf‖1, where W is
some orthonormal basis, such as a wavelet basis, and θ , WTf are
the expansion coefficients in that basis. Also, nonnegativity in the
signal f = Wθ ≥ 0 is not necessarily enforced. In this paper, we
develop three approaches to solving the optimization problem in (2).
In all three approaches, we require f to be nonnegative. The first ap-
proach assumes that the image is sparse in the canonical basis, i.e.,
W = I , while the second involves the more general orthogonal ma-
trixW . The third uses partition-based denoising methods, described
in detail in Sec. 3.3.

3. NONNEGATIVE REGULARIZED LEAST-SQUARES
SUBPROBLEM

3.1. Sparsity in the canonical basis

Let pen(f) = τ‖f‖1, where τ > 0 is a regularization parame-
ter. The minimization problem (2) with this penalty term and that is
subject to nonnegativity constraints on f has the following analytic
solution:

fk+1 =

»
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where the operation [ · ]+ = max{ · , 0} is to be understood
component-wise. Thus solving (2) subject to nonnegativity con-
straints with an `1 penalty function and with a solution that is sparse
in the canonical basis is straightforward to solve. An alternative al-
gorithm for solving this Poisson inverse problem with sparsity in the
canonical basis was also explored in the recent literature [4].

3.2. Sparsity in an arbitrary orthonormal basis

Now suppose that the signal of interest is sparse in some other basis.
Then the `1 penalty term is given by

pen(f) , τ‖WTf‖1 = τ |θ‖1,

where θ , Wf for some orthonormal basis W , and τ > 0 is some
scalar. When the reconstruction f̂ = Wθ̂ must be nonnegative (i.e.,

Wθ̂ ≥ 0), the minimization problem

θk+1 , arg min
θ∈Rm
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1
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‖θ‖1,

subject to Wθ ≥ 0 (4)

no longer has an analytic solution necessarily. We can solve this
minimization problem by solving its dual. First, we reformulate
(4) so that its objective function φk(θ) is differentiable by defin-
ing u, v ≥ 0 such that θ = u − v. The minimization problem (4)
becomes
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subject to u, v ≥ 0, W (u− v) ≥ 0, (5)

which has twice as many parameters and has additional nonnegativ-
ity constraints on the new parameters, but now has a differentiable
objective function. The Lagrange dual problem associated with this
problem is given by
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and at the optimal values γ? and λ?, the primal iterate θk+1 ,
uk+1 − vk+1 is given by

θk+1 = sk + γ? +WTλ?.

We note that the minimizers of the primal problem (5) and its dual
(6) satisfy φk(θk+1) = −h(γ?, λ?) since (5) satisfies (a weakened)
Slater’s condition [9]. In addition, the function −h(γ, λ) is a lower
bound on φk(θ) at any dual feasible point.

The objective function of (6) can be minimized by alternatingly
solving for λ and γ, which is accomplished by taking the partial
derivatives of h(λ, γ) and setting them to zero. Each component is
then constrained to satisfy the bounds in (6). At the jth iteration, the
variables can, thus, be defined as follows:
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where the operator mid(a, b, c) chooses the middle value of the three
arguments component-wise. Note that at the end of each iteration
j, the approximate solution θ(j) , sk + γ(j) + WTλ(j) to (4) is
feasible with respect to the constraint Wθ ≥ 0:

Wθ(j) = Wsk +Wγ(j) + λ(j)

=
h
W
“
sk + γ(j)

”i
+
≥ 0.

Unfortunately, there are several important disadvantages associ-
ated with the above approach. First, the solution to the subproblem
must itself be computed by an iterative algorithm – so while the prob-
lem may be solvable, it must by solved at each iterate, and the result-
ing overall algorithm may not be fast, particularly for large problems.
Furthermore, since we rely on an iterative solver in this subproblem,
our computed solution may not be the true optimal point, particu-
larly if we use a gentle convergence requirement to limit computa-
tion time. Further study is needed to understand the impact of com-
puting inaccurate solutions to this subproblem on the performance
of the overall algorithm.



3.3. Partition-based penalties

In the special case where the signal of interest is known to be smooth
or piecewise smooth in the canonical basis (i.e. is compressible in
a wavelet basis), we can formulate a penalty function which is a
useful alternative to the `1 norm of the wavelet coefficient vector.
In particular, we can build on the framework of recursive dyadic
partitions (RDP), which we summarize here and are described in
detail in [10, 11]. Let P be the class of all recursive dyadic partitions
of [0, 1] where each interval in the partition has length at least 1/m,
and let P ∈ P be a candidate partition. The intensity on P , denoted
f(P ), is calculated using a nonnegative least-squares method to fit a
model (such as a constant or polynomial) to sk in (3) on each interval
in the RDP. Furthermore, a penalty can be assigned to the resulting
estimator which is proportional to |P |, the number of intervals in P .
Thus we set bP = arg min

P∈P

1

2
‖f(P )− sk‖22 + τ |P |

bf = f( bP ).

A search over P can be computed quickly using a dynamic pro-
gram. When using constant partition interval models , the nonnega-
tive least-squares fits can be computed non-iteratively in each inter-
val by simply using the maximum of the average of sk in that interval
and zero. Because of this, enforcing the constraints is trivial and can
be accomplished very quickly.

It can be shown that partition-based denoising methods such as
this are closely related to Haar wavelet denoising with an impor-
tant hereditary constraint placed on the thresholded coefficients—if
a parent coefficient is thresholded, then its children coefficients must
also be thresholded [10]. This constraint is akin to wavelet-tree ideas
which exploit persistence of significant wavelet coefficients across
scales and have recently been shown highly useful in compressed
sensing settings [12].

As we mention in Sec. 4 below, using constant model fits makes
it easy to satisfy nonnegativity constraints and results in a very
fast non-iterative algorithm, but has the disadvantage of yielding
piecewise constant estimators. However, a cycle-spun translation-
invariant version of this approach can be implemented with high
computational efficiency [10] and be used for solving this nonneg-
ative regularized least-squares subproblem that results in a much
smoother estimator.

4. NUMERICAL SIMULATIONS

We evaluate the effectiveness of the proposed approaches in re-
constructing a piecewise smooth function from noisy compressive
measurements. In our simulations, the true signal (the black line
in Figs. 1(a–c)) is of length 1024. We take 512 noisy compres-
sive measurements of the signal using a sensing matrix that con-
tains 32 randomly distributed nonzero elements per row. This setup
yields a mean detector photon count of 50, ranging from as few
as 22 photons, to as high as 94 photons. We allowed each algo-
rithm a fixed time budget of three seconds in which to run, which
is sufficient to yield approximate convergence for all methods con-
sidered. Each algorithm was initialized at the same starting point,
which was generated using a single E-step of the EM algorithm.
That is if z = AT y, and x : xi = yi/(Az)i, then we initialize
with f0 : f0

i = zi(A
Tx)i/(A

T
1)i. The value of the regularization

parameter τ was tuned independently for each algorithm to yield the
minimal root-mean-squared error RMS = ‖f̂ − f‖2/‖f‖2 at the
exhaustion of the computation budget (see Table 1).

Reconstruction Method RMS

SPIRAL (TI) 0.1427
SPIRAL (TV) 0.1855
EM-MPLE (TI) 0.2485
EM-MPLE (TV) 0.2511
SPIRAL (`1) 0.2898

Table 1. Reconstruction accuracy as measured by the root-mean-
squared error, RMS = ‖f̂ − f‖2/‖f‖2.

An examination of the results in Figs. 1(a-c) reveals that even
though models within a partition (constant pieces) are less smooth
than higher-order wavelets, this drawback is neutralized through a
combination of cycle spinning (TI), the hereditary constraint, and a
fast, non-iterative solver. We compare our algorithm with an EM
algorithm based upon the same maximum penalized likelihood esti-
mation (MPLE) objective function proposed in (2), which has been
used previously in imaging contexts in which sparsity in a multiscale
partition-based framework was exploited [13]. Although Fig. 1(d)
shows that the convergence behavior of the EM-MPLE approaches
is more stable, their slow convergence ultimately hinders their per-
formance as compared with the corresponding SPIRAL-based ap-
proaches. In the case of SPIRAL-`1, the estimate seems very os-
cillatory; a smoother estimate could be achieved by increasing the
regularization parameter τ , but this leads to an “oversmoothed” so-
lution and increases the RMS of the estimate. The large RMS val-
ues early in the SPIRAL iterations are due to small values of αk
when defining sk in (3), which occur when the estimates are flat and
the consecutive iterates only change slightly. The Barzilai-Borwein
method [7], on which the choice of αk is based, is not monotone and
can exhibit spikes in the iterates’ RMS values (the non-monotone
SpaRSA algorithm is also not immune to this behavior, for exam-
ple). Although it is difficult to characterize the convergence of this
approach, it has been shown to be effective in solving minimiza-
tion problems (see [7] for details). The SPIRAL partition-based es-
timates appear to oscillate in steady state. This effect could be mit-
igated by forcing the objective function to decrease monotonically
with iteration, as described in [5] and as in EM algorithms. How-
ever, empirically this appears to hinder performance, as convergence
is significantly slowed. We are currently investigating methods that
use a non-monotonic approach to obtain a good approximation to the
minimizer, followed by a monotonic method to enforce convergence.

5. CONCLUSION

We have developed computational approaches for signal reconstruc-
tion from photon-limited measurements—a situation prevalent in
many practical settings. Our method optimizes a regularized Poisson
likelihood under nonnegativity constraints. We have demonstrated
that these methods prove effective in the compressed sensing context
where an `1 penalty is used to encourage sparsity of the resulting so-
lution. Our method improves upon current approaches in terms of
reconstruction accuracy and computational efficiency. By employ-
ing model-based estimates that utilize structure in the coefficients
beyond that of a parsimonious representation, we are able to achieve
greater accuracy with less computational burden. Future work in-
cludes supplementing our algorithms with a debiasing stage, which
maximizes the likelihood over the sparse support discovered in the
main algorithm. We also will be exploring the efficacy of alternative
optimization approaches such as sequential quadratic programming
and interior-point methods.
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Fig. 1. Reconstruction results using(a) the SPIRAL algorithm with translationally variant (TV) and translationally invariant (TI) partitions,
(b) the SPIRAL algorithm with an `1 penalty, and (c) the EM-MPLE algorithm with translationally variant (TV) and translationally invariant
(TI) partitions, (d) mean-squared error decay as a function of compute time.
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