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ABSTRACT
The observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot
be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As
a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f?) from Poisson data (y) cannot be
accomplished by minimizing a conventional `2-`1 objective function. The problem addressed in this paper is the estimation
of f? from y in an inverse problem setting, where (a) the number of unknowns may potentially be larger than the number
of observations and (b) f? admits a sparse representation. The optimization formulation considered in this paper uses a
negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally
nonnegative). This paper describes computational methods for solving the constrained sparse Poisson inverse problem.
In particular, the proposed approach incorporates key ideas of using quadratic separable approximations to the objective
function at each iteration and computationally efficient partition-based multiscale estimation methods.
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1. INTRODUCTION
In a variety of applications, ranging from nuclear medicine to night vision and from astronomy to traffic analysis, data
are collected by counting a series of discrete events, such as photons hitting a detector or vehicles passing a sensor.
The measurements are often inherently noisy due to low count levels, and we wish to reconstruct salient features of the
underlying phenomenon from these noisy measurements as accurately as possible. The inhomogeneous Poisson process
model1 has been used effectively in many such contexts.

1.1 Background
Under the Poisson assumption, we can write our observation model as

y ∼ Poisson(Af?), (1)

where f? ∈ Rm+ is the signal or image of interest, A ∈ RN×m+ linearly projects the scene onto a N -dimensional set of
observations, and y ∈ ZN+ is a length-N vector of observed Poisson counts. Specifically, under the model in (1), the
likelihood of observing a particular vector of counts y is given by

p (y |Af? ) =
N∏
j=1

(Af?)yjj
yj !

e−(Af?)j ,

where (Af?)j is the jth component of Af?.

The problem addressed in this paper is the estimation of f? from y when (a) the number of unknowns, m, may be
larger than the number of observations, N , and (b) f? is sparse or compressible in some basis W (i.e., f? = Wθ? and
θ? is sparse). This challenging problem has clear connections to “compressed sensing” (CS),2–5 but arises in a number
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of other settings as well, such as tomographic reconstruction in nuclear medicine, superresolution image reconstruction in
astronomy, and deblurring in confocal microscopy.

In recent work,6, 7 we explored some of the theoretical challenges associated with CS in a Poisson noise setting, and in
particular highlighted two key differences between the conventional CS problem and the Poisson CS problem:

1. unlike many sensing matrices in the CS literature, the matrix A must contain all nonnegative elements, and

2. the intensity f?, and any estimate of f?, must be nonnegative.

Not only are these differences significant from a theoretical standpoint, but they pose computational challenges as well. In
this paper, we consider algorithms for computing an estimate f̂ of f? from observations y according to

f̂ , arg min
f

− log p(y |Af ) + pen(f ) subject to f ≥ 0

= arg min
f

N∑
i=1

{(Af )i − yi log [(Af )i]}+ pen(f ) subject to f ≥ 0,
(2)

where pen(f ) is a penalty term which measures the sparsity or noncomplexity of f in some basis or alternative represen-
tation. This paper explores computational methods for solving (2). The nonnegativity of f and A results in challenging
optimization problems. In particular, the restriction that f is nonnegative introduces a set of inequality constraints into
the minimization setup; these constraints are simple to satisfy when f is sparse in the canonical basis,8 but they introduce
significant challenges when enforcing sparsity in an arbitrary basis. We will consider several variants of the penalty term,
including ‖f‖1, ‖WTf‖1 for some arbitrary orthonormal basis W , and a complexity regularization penalty based upon
recursive dyadic partitions.

1.2 Current methods
Recent advances in the area of compressed sensing (CS) have spurred widespread interest in sparse reconstruction. The
majority of the CS literature assumes that there exists a “sparsifying” reference basis W , so that θ? , WTf? is sparse or
lies in a weak-`p space. When the matrix product AW obeys the so-called restricted isometry property (RIP)2 or some
related criterion,9 and when the noise is bounded or Gaussian, then θ? can be accurately estimated from y by solving the
following `2-`1 optimization problem (or some variant thereof):

θ̂ = arg min
θ
‖y −AWθ‖22 + τ‖θ‖1, (3)

where τ > 0 is a regularization parameter.3, 9, 10 However, the `2 data-fitting term, ‖y − AWθ‖22, is problematic in the
presence of Poisson noise. Because under the Poisson model the variance of the noisy observations is proportional to the
signal intensity, `2 data-fitting terms can lead to significant overfitting in high-intensity regions and oversmoothing in low-
intensity regions. Furthermore, photon-limited imaging systems impose hard constraints on the nature of the measurements
that can be collected, such as nonnegativity, which are not considered in much of the existing CS literature.

Instead of considering the sparsity of f? in a particular basis, many successful image reconstruction approaches rely on
some sense of smoothness in f?. In the case of emission tomography, Ahn and Fessler11 consider a penalized maximum
likelihood scheme similar to that in (2) where the penalty corresponds to a measure of the image roughness. These penalties
are of the general form

pen(f) =
m∑
i=1

∑
k∈Ni

wikψ(fi − fk),

where Ni is a neighborhood about the ith pixel, wik > 0 are weighting factors, and ψ is a continuously differentiable,
convex potential function, symmetric about the origin with ψ(0) = 0. Commonly employed potential functions include
the quadratic potential, ψ(fi) = f2

i , and the hybrid `2-`1 Huber potential

ψ(fi) =

{
1
2f

2
i if |fi| ≤ δ

δ|fi| − 1
2δ

2 otherwise.
(4)



If we consider a particular neighborhood Ni, we see that the penalty would be small if fi ≈ fk for all k ∈ Ni, hence
this type of penalty favors smooth candidate estimates. Considerable flexibility is achieved via the selection of different
weighting schemes, neighborhoods, and potential functions. The objective in these algorithms are often minimized using
a variant of the expectation-maximization (EM) algorithm.12, 13 In some respects, penalty functions such as (4) result in
relatively simple optimization problems because physical constraints such as the nonnegativity of f can be imposed on the
canonical basis. As we describe below, penalty functions which, for example, measure sparsity in some alternative basis
result in a more complex set of constraints and optimality conditions.

Alternative complexity penalizations have been considered in other schemes,14–20 but many of these approaches are
difficult to use in inverse problem settings, yield non-convex optimization problems for which it is difficult to find the
global minimum, or are associated with reconstruction algorithms with relatively slow convergence. Closely related to the
approach described in this paper is the work of Fessler and Erdoğan,21 in which they approximate a penalized Poisson
log-likelihood with a quadratic function at each iteration. The quadratic approximation used in their work, however, yields
a more complicated quadratic optimization subproblem which must be solved numerically, while the approach described
in the sequel yields a simple subproblem equivalent to nonnegative denoising. As a result, the number of iterations needed
by our algorithm will typically be larger, but the computation at each iteration can be very fast.

1.3 Organization of the paper
The paper is organized as follows. We first describe the negative Poisson log-likelihood in Sec. 2. Next, in Sec. 3,
we consider three methods for solving the constrained maximum penalized Poisson likelihood estimation problem with
different penalty terms. The first two approaches use an `1 penalty while the third uses partition-based penalty functions.
Algorithmic details are further described in Sec. 4, and experimental results comparing the proposed approaches with
expectation-maximization (EM) algorithms are presented in Sec. 5. We conclude with some remarks in Sec. 6.

2. NEGATIVE POISSON LOG-LIKELIHOOD
The negative Poisson log-likelihood is given by

F (f) =
N∑
i=1

{(Af )i − yi log [(Af )i]} = 1
TAf −

m∑
i=1

yi log(eTiAf), (5)

where 1 is the vector of ones in RN and ei is the ith column of the N × N identity matrix. To avoid the singularity at
f = 0, it is advantageous to introduce a small parameter ε > 0:

F (f) = 1
TAf −

m∑
i=1

yi log(eTi Af + ε). (6)

This small parameter also appears in the gradient,

∇F (f) = AT1−
m∑
i=1

yi
eTi Af + ε

AT ei, (7)

and the Hessian,

∇2F (f) = AT

{
m∑
i=1

yi
(eTi Af + ε)2

eie
T
i

}
A. (8)

We state and prove a result that will be used in the convergence analysis of our proposed method.

THEOREM 2.1. The gradient of the negative log Poisson likelihood with parameter ε > 0 in (7) is Lipschitz continuous
over the feasible set {f : f ≥ 0}, i.e., for all f, f̃ ≥ 0,

‖∇F (f)−∇F (f̃)‖ ≤ LF ‖f − f̃‖

with Lipschitz constant
LF ≤

ymax

ε2
max(AT1) max(A1),



where ymax = maxi=1,...,N yi.

PROOF. A sufficient condition for ∇F (f) to be Lipschitz continuous is that its derivative, the Hessian matrix ∇2F (f), is
uniformly bounded for all f ≥ 0; and in particular, a bound on the largest eigenvalue of ∇2F (f) is the same as a bound
on the Lipschitz constant of the gradient. Now, the Hessian ∇2F (f) in (8) is positive semidefinite since the term in the
brackets is a diagonal matrix with nonnegative entries. Therefore, all that is required is to bound

λmax = sup
f≥0

sup
‖z‖2≤1

zT∇2F (f)z.

Since A is nonnegative, the supremum over f ≥ 0 is attained at f = 0. Therefore we simply need to bound the largest
eigenvalue of

∇2F (0) =
1
ε2
ATDiag(y)A,

using properties of matrix norms we have

λmax =
1
ε2
‖ATDiag(y)A‖2 ≤

1
ε2
‖A‖22‖Diag(y)‖2 ≤

ymax

ε2
‖A‖1‖A‖∞ =

ymax

ε2
max(AT1) max(A1).

Note that this quantity can either be analytically determined by exploiting the structure ofA, or numerically computed with
little effort. This bound on the largest eigenvalue of∇2F (f) completes the proof. �

3. ALGORITHMS
Our Poisson reconstruction algorithms solves the following constrained optimization problem:

minimize
f∈Rm

Φ(f) , F (f) + τpen(f)

subject to f ≥ 0,
(9)

where

• F : Rm → R is the negative Poisson log-likelihood in (6)

• pen : Rm → R is a finite, usually nonsmooth and potentially nonconvex penalty functional.

In previous work,22 we proposed an approach that is similar to Majorization-Minimization methods:23 at each iteration, we
approximate or majorize F (f) with an appropriate quadratic function, and then minimize this quadratic plus pen(f) subject
to the constraints. The benefit of this approach is that the penalized quadratic problem can often be solved very efficiently
and accurately, leading to fast algorithms with good convergence properties. Similar to the SpaRSA framework,24 we solve
(9) via a sequence of subproblems of the form

fk+1 = arg min
f∈Rm

φk(f) ,
1
2
‖f − sk‖22 +

τ

αk
pen(f)

subject to f ≥ 0,
(10)

where
sk , fk − 1

αk
∇F (fk).

This subproblem can be interpreted as a nonnegative denoising method applied to the gradient descent result.

The parameter αk > 0 is chosen via a sequence of two repeated steps. The Barzilai-Borwein method25, 26 is used to
choose the initial value of αk. With dk = fk − fk−1 and rk = ∇F (fk)−∇F (fk−1), then

αk =
(dk)T rk

(dk)T dk

clipped to be within the range [αmin, αmax]. This initial choice of αk is used if the resulting solution of (10) satisfies the
acceptance criteria

Φ(fk+1) ≤ max
i=[k−M ]+,...,k

Φ(f i)− σαk
2
‖fk+1 − fk‖22, (11)



where σ ∈ (0, 1) is a small constant and the operator [ · ]+ = max{0, ·}. If acceptance criteria (11) is not satisfied,
αk is repeatedly increased by a factor η > 1 until the solution to (10) satisfies (11). This gentle criteria allows the
nonmonotonic objective behavior characteristic of the Barzilai-Borwein methods, yet enforces that the next iterate have a
slightly smaller objective than the largest value over the past M iterations. We call our proposed approach Sparse Poisson-
Intensity Reconstruction Algorithm (SPIRAL), and for clarity, we describe our general procedure in Algorithm 1.

Algorithm 1 Sparse Poisson-Intensity Reconstruction Algorithm (SPIRAL)
1: Initialize Choose η > 1, 0 ≤ αmin ≤ αmax, and initial solution f0. Start iteration counter k ← 0.
2: repeat
3: choose αk ∈ [αmin, αmax]
4: repeat
5: fk+1 ← solution of (10)
6: αk ← ηαk
7: until fk+1 satisfies acceptance criteria (11)
8: k ← k + 1
9: until stopping criterion is satisfied

3.1 Sparsity in canonical basis
Let pen(f) = τ‖f‖1, where τ > 0 is a regularization parameter. The minimization problem (9) with this penalty term and
that is subject to nonnegativity constraints on f has the following analytic solution:

fk+1 =
[
sk − τ

αk
1

]
+

where the operation [ · ]+ = max{0, · } is to be understood component-wise. Thus solving (2) subject to nonnegativity
constraints with an `1 penalty function measuring sparsity in the canonical basis is straightforward to solve. An alternative
algorithm for solving this Poisson inverse problem with sparsity in the canonical basis was also explored in the recent
literature.8

3.2 Sparsity in non-canonical basis
Now suppose that the signal of interest is sparse in some other basis. Then the `1 penalty term is given by

pen(f) , τ‖WTf‖1 = τ‖θ‖1,

where θ ,Wf for some orthonormal basis W , and τ > 0 is some scalar. Then (9) becomes

minimize
θ∈Rm

Φ(θ) = F (θ) + τ‖θ‖1

subject to Wθ ≥ 0,
(12)

where F (f) = F (Wθ) is now simply rewritten as F (θ). When the reconstruction f̂ = Wθ̂ must be nonnegative (i.e.,
Wθ̂ ≥ 0), the minimization problem

θk+1 , arg min
θ∈Rm

φk(θ) ,
1
2
‖θ − sk‖22 +

τ

αk
‖θ‖1,

subject to Wθ ≥ 0
(13)

no longer has an analytic solution necessarily, as in Sec. 3.1. We can solve this minimization problem by solving its dual.
First, we reformulate (13) so that its objective function φk(θ) is differentiable by defining u, v ≥ 0 such that θ = u − v.
The minimization problem (13) becomes

(uk+1, vk+1) , arg min
u,v∈Rm

1
2
‖u− v − sk‖22 +

τ

αk
1
T(u+ v)

subject to u, v ≥ 0, W (u− v) ≥ 0,
(14)



which has twice as many parameters and has additional nonnegativity constraints on the new parameters, but now has a
differentiable objective function. The Lagrangian function corresponding to (14) is given by

L (u, v, λ1, λ2, λ3) =
1
2
‖u− v − sk‖22 +

τ

αk
1
T (u+ v)− λT1 u− λT2 v − λT3 W (u− v),

where λ1, λ2, λ3 ∈ Rm are the Lagrange multipliers corresponding to the constraints in (14). Let βk = τ/αk. Setting the
derivative of L with respect to u and v to zero, we obtain

u− v = sk + λ1 − βk1 +WTλ3 and λ2 = 2βk1− λ1,

which leads to the Lagrangian dual function

g(λ1, λ3) = −1
2
‖sk + λ1 − βk1 +WTλ3‖22 +

1
2
‖sk‖22.

We define γ , λ1 − βk1. For the Lagrange dual problem corresponding to (14), the Lagrange multipliers λ1, λ2, λ3 ≥ 0.
Since λ2 = 2βk1 − λ1, then −βk1 ≤ γ ≤ βk1. Also, let λ = λ3. The Lagrange dual problem associated with this
problem is given by

minimize
λ,γ∈Rm

h(γ, λ) ,
1
2
‖sk + γ +WTλ‖22 −

1
2
‖sk‖22

subject to − τ

αk
1 ≤ γ ≤ τ

αk
1 and λ ≥ 0

(15)

and at the optimal values γ? and λ?, the primal iterate θk+1 is given by

θk+1 , uk+1 − vk+1 = sk + γ? +WTλ?.

We note that the minimizers of the primal problem (14) and its dual (15) satisfy φk(θk+1) = −h(γ?, λ?) since (14) satisfies
(a weakened) Slater’s condition.27 In addition, the function −h(γ, λ) is a lower bound on φk(θ) at any dual feasible point.

The objective function of (15) can be minimized by alternately solving for λ and γ, which is accomplished by taking
the partial derivatives of h(γ, λ) and setting them to zero. Each component is then constrained to satisfy the bounds in
(15). At the jth iteration, the variables can, thus, be defined as follows:

γ(j) = mid
{
− τ

αk
1,−sk −WTλ(j−1),

τ

αk
1

}
λ(j) =

[
−W

(
sk + γ(j)

)]
+
,

where the operator mid(a, b, c) chooses the middle value of the three arguments component-wise. Note that at the end of
each iteration j, the approximate solution to (13), given by

θ(j) , sk + γ(j) +WTλ(j),

is feasible with respect to the constraint Wθ ≥ 0:

Wθ(j) = Wsk +Wγ(j) + λ(j) = W (sk + γ(j)) +
[
−W (sk + γ(j))

]
+

=
[
W
(
sk + γ(j)

)]
+
≥ 0.

Note also that the complimentarity conditions (λ(j))TWθ(j) = 0 holds for all j since

(λ(j))TWθ(j) =
[
−W

(
sk + γ(j)

)]T
+

[
W
(
sk + γ(j)

)]
+

= 0. (16)

We shall refer to this approach henceforth as SPIRAL-`1.



3.3 Partition-based methods
We can build on the framework of recursive dyadic partitions (RDP), which we summarize here and are described in detail
in.28 Let P be the class of all recursive dyadic partitions of [0, 1]2 where each cell in the partition has a sidelength at
least 1/

√
m, and let P ∈ P be a candidate partition. The intensity on P , denoted f(P ), is calculated using a nonnegative

least-squares method to fit a model (such as a constant) to sk in (13) in each cell in the RDP. As an example, consider
Fig. 1. Here we approximate the true emission image (Fig. 1(a)) on the recursive dyadic partition defined in Fig. 1(b)).
The result is a piecewise constant approximation to the emission image (Fig. 1(c)). We see that the partition model is able
to accurately capture the image in clear multiresolution fashion: large homogeneous regions are well-modeled by large
cells, whereas edges are approximated via the deeper recursive partitioning. Furthermore, a penalty can be assigned to the
resulting estimator which is proportional to |P |, the number of cells in P . Thus we set

P̂ k+1 = arg min
P∈P

1
2
‖sk − f(P )‖22 +

τ

αk
|P |,

f̂k+1 = f(P̂ k+1).
(17)

A search over P can be computed quickly using a dynamic program. When using constant partition cell models, the
nonnegative least-squares fits can be computed non-iteratively in each cell by simply using the maximum of the average
of sk in that cell and zero. Because of this, enforcing the constraints is trivial and can be accomplished very quickly. The
disadvantage of using constant model fits is that it yields piecewise constant estimates. However, a cycle-spun translation-
invariant (TI) version of this approach28 can be implemented with high computational efficiency and be used for solving this
nonnegative regularized least-squares subproblem that results in a much smoother estimator. We refer to these approaches
as SPIRAL-RDP and SPIRAL-RDP-TI.

(a) (b) (c)

Figure 1. Example of a partition-based estimate: (a) true emission image, (b) partition associated with (c) the partition-based approxi-
mation of the true emission image.

It can be shown that partition-based denoising methods such as this are closely related to Haar wavelet denoising with
an important hereditary constraint placed on the thresholded coefficients—if a parent coefficient is thresholded, then its
children coefficients must also be thresholded.28 This constraint is akin to wavelet-tree ideas which exploit persistence of
significant wavelet coefficients across scales and have recently been shown highly useful in compressed sensing settings.29

4. ALGORITHMIC DETAILS
4.1 Termination criteria
In this section, we list criteria by which SPIRAL decides whether the iterates in the subproblem (10) and for the main
problem (2) are acceptable approximations to the true minimizers to terminate the algorithm. Here, we only provide
criteria for the SPIRAL-`1 subproblem since the global solution to the partition-based SPIRAL subproblem (17) can be
easily and exactly obtained using a non-iterative tree-pruning algorithm,28 even though its objective function is nonconvex
(due to the nonconvex penalty).



4.1.1 SPIRAL-`1 subproblem
The criterion for termination for the SPIRAL-`1 subproblem measures the duality gap. Since the objective function φk(θ)
in (13) is convex and all the constraints are affine, then (a weaker) Slater’s condition holds27 and, therefore, the duality gap
is zero, i.e.,

φk(θk+1) = −h(γ?, λ?),

where (γ?, λ?) solves (15). Recall that, at the jth iterate, θ(j) = sk + γ(j) + WTλ(j) can be viewed as an approximate
solution to θk+1. Thus, the SPIRAL approach for the `1 subproblem will consider the iterates to be sufficiently close to the
optimal solution if

|φk(θ(j)) + h(γ(j), λ(j))|
|φk(θ(j))|

≤ tolSUB,

where tolSUB > 0 is some small constant. In our numerical experiments, we often found that it is not necessary to
solve this subproblem very accurately, especially at the beginning of the algorithm where the iterate θk is still far from the
optimal solution.

4.1.2 SPIRAL
Since the global minimizer θ? of (12) is not known a priori, criteria to terminate the SPIRAL algorithm must be established
to determine whether a computed minimizer θ̂ is an acceptable solution. We list two such criteria. The first of these criteria
is simple: terminate if consecutive iterates or the corresponding function values do not change significantly, i.e.,

‖θk+1 − θk‖2
‖θk‖2

≤ tolP or
|Φ(θk+1)− Φ(θk)|

|Φ(θk)|
≤ tolP,

where tolP is a small positive constant. The advantage of these criteria is that they apply to general penalty functions.
The disadvantage, however, is that it is possible that the change between two consecutive iterates may be small or that
they result in only small improvements in the objective function even though iterates are still far from the true solution.
However, we have yet to observe this premature termination in practice.

The next criterion applies only to SPIRAL-`1, where the penalty is convex and, after a change of variables, differen-
tiable. This criterion is based on the Karush-Kuhn-Tucker (KKT) conditions for optimality: at the kth iteration, given θk

and the corresponding Lagrange multipliers λk computed from (15), determine whether

‖∇Φ(θk)−WTλk‖2 ≤ tolP, (18)

The left hand side corresponds to the gradient of the Lagrangian function, which criterion (18) forces to be sufficiently close
to zero. A complimentarity condition could also be required, but by construction, it is always satisfied, i.e., (λk)TWθk = 0
(see (16)).

4.2 Convergence proof
In this section we consider the minimization problem

minimize
θ∈Rm

Φ(θ) , F (θ) + τpen(θ) subject to Bθ ≥ 0, (19)

where F is the negative Poisson log-likelihood defined in (5) in our context, possibly after a coordinate transformation as
in (12). Note that Φ(θ) is convex and has a Lipschitz continuous gradient over the feasible set so that

‖∇Φ(θ)−∇Φ(θ′)‖ ≤ LΦ‖θ − θ′‖;

this follows from Theorem 2.1 when the penalty function is strictly convex with a Lipschitz continuous gradient. Let θ0

denote the initial iterate, and let

Θ , {θ : Bθ ≥ 0}
S , {θ ∈ Θ : Φ(θ) ≤ Φ(θ0)}.

We note that S is a convex closed set and assume it is bounded. At iteration k, let φk(θ) be a function satisfying the
following conditions:



CONDITION 1: Φ(θ)− Φ(θk) ≤ φk(θ)− φk(θk) for all θ ∈ S;

CONDITION 2: φk(θ) is strictly convex, twice differentiable, and continuous with a Lipschitz continuous gradient over S
so that

‖∇φk(θ)−∇φk(θ′)‖ ≤ Lφ‖θ − θ′‖,
where Lφ does not depend on k;

CONDITION 3: the gradient of φk matches the gradient of Φ at θk: ∇Φ(θk) = ∇φk(θk);

CONDITION 4: θk+1 solves the subproblem

minimize
θ∈Rm

φk(θ)subject toBθ ≥ 0,

so that there exists a Lagrange multiplier λk+1 such that the subproblem KKT conditions are satisfied:

∇φk(θk+1)−BTλk+1 = 0
λk+1 ≥ 0

Bθk+1 ≥ 0
(λk+1)TBθk+1 = 0;

CONDITION 5: and the minimum eigenvalue of the Hessian∇2φk(θ) exceeds some C > 0.

Note that these conditions are satisfied by the approach described in Section 3. In particular, for αk chosen appropri-
ately, φk as in (13) (or defined similarly via θ is an alternative basis) satisfies Conditions 1- 5. From these conditions, we
have the following:

LEMMA 4.1.30 The iterates {θk} yield monotonic decreases in Φ(θk), and hence θk ∈ S.

LEMMA 4.2.30 Given ε̃ > 0, there exists some constant Kε̃ > 0 such that for all k > Kε̃, ‖θk+1 − θk‖ < ε̃.

Using these lemmas, we can prove the following weak convergence result.

THEOREM 4.3. Given ε > 0, there exists some Kε > 0 such that for all k > Kε, the primal-dual pair (θk+1, λk+1) nearly
satisfies the KKT conditions associated with (19); that is, for all k sufficiently large, we have

‖∇Φ(θk+1)−BTλk+1‖ < ε (20)
λk+1 ≥ 0 (21)

Bθk+1 ≥ 0 (22)
(λk+1)TBθk+1 = 0. (23)

PROOF: The final three KKT conditions (i.e. (21), (22), and (23)) are satisfied as a result of Condition 4 above. To see
(20), note

‖∇Φ(θk+1)−BTλk+1‖ = ‖∇Φ(θk+1)−∇φk(θk+1)‖ (24)

≤ ‖∇Φ(θk+1)−∇Φ(θk)‖︸ ︷︷ ︸
T1

+ ‖∇Φ(θk)−∇φk(θk)‖︸ ︷︷ ︸
T2

+ ‖∇φk(θk)−∇φk(θk+1)‖︸ ︷︷ ︸
T3

, (25)

where (24) follows from the first KKT condition of the subproblem described in Condition 4 and (25) follows from the
triangle inequality. Given ε > 0, showing that there exists Kε such that for all k > Kε, T1 + T2 + T3 < ε, will complete
the proof of the theorem. First, note that T2 ≡ 0 by Condition 3. Then, for T1, by Lemma 4.2, given ε̃Φ , ε/(2LΦ), there
exists Kε̃Φ such that for all k > Kε̃Φ ,

T1 = ‖∇Φ(θk+1)−∇Φ(θk)‖ ≤ LΦ‖θk+1 − θk‖ < LΦε̃Φ =
ε

2
,



using the Lipschitz continuity of∇Φ(θ). Similarly, for T3, by Lemma 4.2, given ε̃φ , ε/(2Lφ), there exists Kε̃φ such that
for all k > Kε̃φ ,

T3 = ‖∇φk(θk)−∇φk(θk+1)‖ ≤ Lφ‖θk+1 − θk‖ < Lφε̃φ =
ε

2
,

using Condition 2. Thus, these inequalities show that by letting Kε = max
{
Kε̃Φ ,Kε̃φ

}
,

‖∇Φ(θk+1)−BTλk+1‖ ≤ T1 + T3 < ε

for all k > Kε. �

This theorem says that for any arbitrarily small tolerance level ε, we can satisfy the KKT conditions to within that
tolerance if the number of iterations, k, is sufficiently large.

5. NUMERICAL EXPERIMENTS
Although the algorithms described heretofore are applicable to a wide range of imaging contexts, we demonstrate the ef-
fectiveness of the proposed estimation algorithms on a simulated emission tomography dataset. We compare our algorithm
with the currently available state-of-the-art emission tomography reconstruction algorithms.11

In this experimental setup, we wish to reconstructe the true axial emission map f? (Fig. 1a) as accurately as possible.
The photon flux desribed by this true emission map is subject to attenuation effects caused by the various densities of tissue
through which the photons must travel to reach the detector array. The simulated attenuation map, µ, which is assumed
known during the reconstruction process, is shown in Fig. 2(a). (This and the true axial emission map are standard test
images included in Prof. Fessler’s Image Reconstruction Toolbox.31) Denoting G as the tomographic projection operation,
the sensing matrix in the emission tomography setup is given by A ≡ diag[exp(−Gµ)]G, with the noisy tomographic data
simulated according to the inhomogeneous Poisson process (1). The noisy sinogram observations are shown in Fig. 2(b);
in this image, we have a total photon count of 4.99× 105, a mean count over the support of the tomographic projections of
166.35, and a maximum count of 365.

(a) (b) (c)

Figure 2. Simulation Setup: (a) attenuation map, (b) noisy sinogram observations, (c) filtered backprojection solution used as an initial-
ization for all the algorithms considered.

The methods we evaluate include the proposed SPIRAL-`1 algorithm, using the Daubechies-2 (Haar) wavelet basis
for W , and the proposed SPIRAL-RDP and SPIRAL-RDP-TI partition-based algorithms. We compare our proposed ap-
proaches with a competing approach, suggested by Prof. Fessler as representative of the current state-of-the-art in emission
tomographic reconstruction. This method, denoted E-ML-EM-3, employs an incremental penalized Poisson likelihood
EM algorithm utilizing the Huber potential function (see (4)). This method is available using Prof. Fessler’s Image Recon-
struction Toolbox;31 specifically, we used the epl inc function from the toolbox. For each method, we independently
search over an appropriate range of regularization values to minimize the RMS error with respect to the true emission map
f?. Each algorithm was initialized with the filtered backprojection solution (Fig. 2(c)), thresholded to be nonnegative (i.e.,
feasible).

From the results presented in Table 1, we see that out of the proposed SPIRAL approaches, the method based on the
TI partitions achieves the best RMS error. This is to be expected as the `1-based approach does not consider any structure



in the estimate beyond that of a sparse representation in the basis W , and the non-cycle-spun partitions are a highly
biased estimate due to considering only a single shift of the RDP structure. In addition, from Table 1, we see that the
proposed SPIRAL-RDP-TI approach achieves a lower RMS error than the competing E-ML-EM-3 approach. Examining
the reconstructed images, we see that the SPIRAL-RDP estimate in Fig. 3(a) exhibits blocking artifacts due to the RDP
structure not fortuitously aligning to any strong edges in the image, while the SPIRAL-`1 estimate in Fig. 3(b) has noticable
wavelet artifacts. The competing E-ML-EM-3 method clearly is able to accurately estimate the locations of the brighter
portions of the image in Fig. 3(c), however, it performs less well in the regions of homogeneous intensity. For instance,
there are many darker spots that could be misinterpreted as regions of low uptake. The SPIRAL-RDP-TI reconstruction in
Fig. 3(d) is highly accurate in the homogeneous regions in the image, although it does smooth the strong edges around the
white regions. Visually, the proposed SPIRAL-RDP-TI approach seems to outperform the previous three.

Reconstruction Method RMS Error (%)

SPIRAL-RDP 14.713
SPIRAL-`1 (DB-2) 11.103
E-ML-EM-3 9.996
SPIRAL-RDP-TI 8.875

Table 1. Reconstruction accuracy for the minimal RMS error solutions. Note: RMS Error (%) = 100 · ‖ bf − f?‖2/‖f?‖2.

(a) SPIRAL-RDP (b) SPIRAL-`1 (DB-2) (c) E-ML-EM-3 (d) SPIRAL-RDP-TI

Figure 3. Reconstruction emission images of the considered methods. The regularization parameter for each of the methods was chosen
to yield the minimal RMS error.

6. CONCLUSION
We have formulated the general goal of reconstructing an image from photon-limited measurements as a penalized max-
imum Poisson likelihood estimation problem. To obtain a solution to this problem, we have proposed an algorithm that
allows for a flexible choice of penalization methods, and focused particularly on sparsity-promoting penalties. In particular,
we detail the case where the penalty corresponds to the sparsity-promoting `1 norm of the expansion coefficients in a spar-
sifying basis, and also the case where the penalty is related to the complexity of a RDP-based estimate. We establish mild
conditions for which this algorithm has desirable convergence properties, although in practice it is beneficial to relax these
conditions to attain faster (albeit nonmonotonic) convergence. We demonstrate the effectiveness of our methods through
a simulated emission tomography example. When our cycle-spun TI partition method is applied to this problem set, the
resulting estimates outperform the current state-of-the-art approaches developed specifically for emission tomography.
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