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ABSTRACT

In many medical imaging applications (e.g., SPECT, PET), the data
are a count of the number of photons incident on a detector ar-
ray. When the number of photons is small, the measurement pro-
cess is best modeled with a Poisson distribution. The problem ad-
dressed in this paper is the estimation of an underlying intensity from
photon-limited projections where the intensity admits a sparse or
low-complexity representation. This approach is based on recent in-
roads in sparse reconstruction methods inspired by compressed sens-
ing. However, unlike most recent advances in this area, the optimiza-
tion formulation we explore uses a penalized negative Poisson log-
likelihood objective function with nonnegativity constraints (since
Poisson intensities are naturally nonnegative). This paper describes
computational methods for solving the nonnegatively constrained
sparse Poisson inverse problem. In particular, the proposed approach
incorporates sequential separable quadratic approximations to the
log-likelihood and computationally efficient partition-based multi-
scale estimation methods.

Index Terms— Photon-limited imaging, Poisson noise, sparse
approximation, wavelets, tomography

1. INTRODUCTION

Photon-limited imaging arises in several important imaging modal-
ities, including Positron Emission Tomography (PET), Single Pho-
ton Emission Computed Tomography (SPECT), and Confocal Mi-
croscopy [1]. Frequently, diagnostics depend on the quality of these
images. In these settings, the statistics governing the data follow a
Poisson process. If the photon counts are sufficiently high, the data
can be modeled accurately using a Gaussian distribution. However,
a Poisson statistical model should be employed when the number
of photons collected by the detector elements is very small relative
to the number of pixels, voxels, or other quantities to be estimated.
Doing so will avoid over-fitting in high intensity regions and over-
smoothing in low intensity regions, demonstrated by the numerical
results herein. While the Poisson distribution accurately reflects the
physics of these systems, rigorously accounting for Poisson statistics
within a reconstruction algorithm is a challenging task.

Recent advances in image reconstruction theory and algorithms
have been based on the assumption that the underlying image is
sparse or nearly sparse within some basis or other representation.
In particular, compressed sensing theory [2, 3, 4] has resulted in
compelling arguments in favor of incorporating prior information
about image sparsity into the reconstruction processes, leading to
a plethora of new sparsity-promoting reconstruction algorithms (see
http://dsp.rice.edu/cs for a list of currently available CS methods).
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However, these and other algorithms typically measure the re-
construction’s fit to the data using a squared error term which cor-
responds to a negative Gaussian log likelihood. While effective in
some settings, in the Poisson noise context it can result in signifi-
cant over- and under-fitting artifacts. In this paper we present a new
approach to sparsity-promoting image reconstruction from Poisson
observations in an inverse problem setting.

2. PROBLEM FORMULATION

A variety of photon-limited imaging modalities are well-modeled by
an inhomogeneous Poisson process model. In this model, the true
scene intensity f? is passed through an intensity-preserving passive
imaging system described by the matrix A, yielding a detector pho-
ton intensity of Af?. We then make Poisson observations, y, of the
detector photon intensity, Af?; that is

y ∼ Poisson(Af?). (1)

where f? ∈ Rm is the signal or image of interest, A ∈ Rn×m
linearly projects the scene onto an n-dimensional space of obser-
vations, and y ∈ {0, 1, 2, . . .}n is a length-n vector of observed
Poisson counts. Specifically, under the model in (1), the likelihood
of observing a particular vector of counts y is given by

p(y|Af?) =

nY
j=1

(Af?)
yj

j

yj !
e−(Af?)j ,

where (Af?)j is the jth component of Af?.
In this paper, we propose estimating f? from y using a penalized

Poisson log-likelihood objective function in the context of inverse
problems in medical imaging. Our class of algorithms reconstructs
an estimate bf of the true intensity f? according to the following
objective:

bf = arg min
f

φ(f) + τpen(f)

subject to f � 0,
(2)

where

φ(f) ,
nX
j=1

ˆ
(Af)j − yj log(Af)j

˜
,

pen(·) is a sparsity-based penalty function that will be detailed later,
and the standard notation f � 0 means that the components of f are
nonnegative. The constraints reflect the nonnegativity of both the
observed intensity and the underlying image. We keep the penalty
term pen(·) general since our class of reconstruction algorithms may
utilize one of many modern complexity-penalization schemes.



2.1. Related work

Recent advances in the area of compressed sensing (CS) have
spurred widespread interest in sparse reconstruction. The majority
of the CS literature assumes that there exists a “sparsifying” refer-
ence basis W , so that θ? , WTf? is sparse or lies in a weak-`p
space. When the matrix product AW obeys the so-called restricted
isometry property (RIP) [2] or some related criterion [4], and when
the noise is bounded or Gaussian, then θ? can be accurately esti-
mated from y by solving the following `2-`1 optimization problem
(or some variant thereof):

bθ = arg min
θ
‖y −AWθ‖22 + τ‖θ‖1, (3)

where τ > 0 is a regularization parameter [3, 4, 5]. This method
is highly accurate for sparse images, however the performance de-
grades as the sparsity decreases [6, 7].

Although this method works well in the Gaussian noise case, the
`2 data-fitting term, ‖y−AWθ‖22, is problematic in the presence of
Poisson noise. Because under the Poisson model the variance of the
noisy observations is proportional to the signal intensity, `2 data-
fitting terms can lead to over-fitting in high-intensity regions and
over-smoothing in low-intensity regions (as evidenced in the numer-
ical simulations below). Furthermore, photon-limited imaging sys-
tems impose hard constraints on the nature of the measurements that
can be collected, such as non-negativity, which are not considered in
much of the existing CS literature.

Instead of considering the sparsity of f? in a particular basis,
many successful image reconstruction approaches rely on some
sense of smoothness in f?. In the case of emission tomography, the
approaches in [8] consider a penalized maximum likelihood scheme
similar to that in (2) where the penalty corresponds to a measure of
the image roughness. These penalties are of the general form

pen(f) =

mX
i=1

X
k∈Ni

wik ψ(fi − fk),

whereNi is a neighborhood about the ith pixel, wik > 0 are weight-
ing factors, and ψ is a continuously differentiable convex poten-
tial function, symmetric about the origin with ψ(0) = 0. Com-
monly employed potential functions include the quadratic potential,
ψ(x) = x2, and the hybrid `2-`1 Huber potential

ψ(x) =

(
1
2
x2 if |x| ≤ δ

δ|x| − 1
2
δ2 otherwise,

where δ is the Huber threshold. If we consider a particular neigh-
borhood Ni, we see that the penalty would be small if fi ≈ fk for
all k ∈ Ni, hence this type of penalty favors smooth candidate esti-
mates. Considerable flexibility is achieved via the selection of differ-
ent weighting schemes, neighborhoods, and potential functions. The
objective in these algorithms are often minimized using a variant of
the expectation-maximization (EM) algorithm.

The penalties or regularization terms considered in this paper
can be considered negative log prior probabilities on candidate re-
constructions, and hence our approach can also be formulated as a
Bayesian maximum a posterior (MAP) estimate. While a wide va-
riety of other Bayesian priors have been proposed for image recon-
struction tasks, the multiscale penalties used in this paper effectively
capture prior image information and have important theoretical per-
formance guarantees [9].

3. RECONSTRUCTION ALGORITHM

In previous work [10], we described an optimization method called
SPIRAL (Sparse Poisson Intensity Reconstruction Algorithms) for
solving (2). Here we describe the key ideas and features of this opti-
mization method.

Sequential quadratic problems. The SPIRAL approach sequen-
tially approximates the objective function in (2) by separable
quadratic problems that are easier to minimize. In particular, at
the kth iteration we use the second-order Taylor expansion of φ
around fk and approximate the Hessian by a positive scalar (ηk)
multiple of the identity matrix, resulting in the following minimiza-
tion problem:

fk+1 = arg min
f

‚‚‚ sk − f ‚‚‚2

2
+

2τ

ηk
pen(f)

subject to f � 0,
(4)

where sk = fk− 1
ηk
∇φ(fk). The optimization problem (4) can be

viewed as a denoising subproblem applied to the gradient descent,
and as such, it gives us considerable flexibility in designing effective
penalty functions.

`1-penalty. Much of existing CS optimization literature focuses on
`1-penalty functions, i.e., pen(f) ∝ ‖WTf‖1, where W is some
orthonormal basis, such as a wavelet basis, and θ , WTf are the
expansion coefficients in that basis. However, because the `1 norm
is not differentiable, we cannot simply solve (4) with an `1-penalty
using gradient-based methods. Instead, we introduce additional vari-
ables and constraints so that the derivative of the objective function
always exists. The resulting optimization problem is more compli-
cated, but the solution can be obtained by solving the corresponding
Lagrangian dual problem, which, in this case, is much easier to solve
(see [10] for details). We refer to this `1-based reconstruction algo-
rithm as SPIRAL-`1.

Model-based penalty. We can build on the framework of recur-
sive dyadic partitions (RDP), which are described in detail in [9].
Let P be the class of all recursive dyadic partitions of [0, 1]2 where
each cell in the partition has a sidelength at least 1/

√
m, and let

P ∈ P be a candidate partition. The intensity on P , denoted f(P ),
is calculated using a nonnegative least-squares constant fit to sk in
(4) in each cell in the RDP. As an example, consider Fig. 1. Here
we approximate the true emission image (Fig 1(a)) on the recursive
dyadic partition defined in Fig 1(b). The result is a piecewise con-
stant approximation to the emission image (Fig 1(c)). Furthermore,

(a) (b) (c)

Fig. 1. Example partition-based estimate: (a) true emission image,
(b) partition associated with (c) the partition-based approximation of
the true emission image.



a penalty can be assigned to the resulting estimator which is propor-
tional to |P |, the number of cells in P . Thus we set

P k+1 = arg min
P∈P

‚‚‚sk − f(P )
‚‚‚2

2
+

2τ

ηk
|P |,

fk+1 = f
`
P k+1´.

A search over P can be computed quickly using a dynamic program.
The disadvantage of using constant model fits is that it yields piece-
wise constant estimates. However, a cycle-spun translation-invariant
(TI) version of this approach can be implemented with high com-
putational efficiency [9], resulting in a much smoother estimator.
We refer to our RDP-based methods as SPIRAL-RDP, and SPIRAL-
RDP-TI when the translation-invariant method is employed.

It can be shown that partition-based methods are closely re-
lated to Haar wavelet denoising with an important hereditary con-
straint placed on the thresholded coefficients—if a parent coefficient
is thresholded, then its children coefficients must also be thresholded
[9]. This constraint is akin to wavelet-tree ideas which exploit persis-
tence of significant wavelet coefficients across scales and have been
shown highly useful in compressed sensing settings [11].

4. NUMERICAL RESULTS

Although our algorithms are applicable to a wide range of imaging
contexts, we demonstrate the effectiveness of the proposed estima-
tion algorithms on a simulated emission tomography dataset. We
compare our algorithm with the currently available state-of-the-art
emission tomography reconstruction algorithms [8].

In this experimental setup, we wish to reconstruct the true axial
emission map f? (Fig. 3(a)) as accurately as possible. The photon
flux described by this true emission map is subject to attenuation
effects caused by the various densities of tissue through which the
photons must travel to reach the detector array. The simulated atten-
uation map, µ, which is assumed known during the reconstruction
process, is shown in Fig. 2(a). (This and the true axial emission
map are standard test images included in Prof. Fessler’s Image Re-
construction Toolbox (IRT) [12].) The tomographic projection op-
eration G, corresponding to a parallel strip-integral geometry with
66 radial samples and 102 angular samples uniformly spaced over
180 degrees, was also generated by the IRT software [12]. The re-
sulting sensing matrix in the emission tomography setup is given by
A ≡ diag[exp(−Gµ)]G, with the noisy tomographic data y sim-
ulated according to the inhomogeneous Poisson process (1). The
noisy sinogram observations are shown in Fig. 2(b); in this image,
we have a total photon count of 199647, a mean count over the sup-
port of the tomographic projections of 45.4, and a maximum count
of 95.

(a) (b) (c)

Fig. 2. Simulation Setup: (a) attenuation map, (b) noisy sinogram
observations, and (c) filtered backprojection solution used as an ini-
tialization for all the algorithms considered.

The methods we evaluate include the proposed SPIRAL-`1
algorithm, using the Daubechies-8 wavelet basis for W , and the
proposed SPIRAL-RDP and SPIRAL-RDP-TI partition-based algo-
rithms. We compare our proposed approaches with two competing
methods. The first, denoted SPS-OS, uses a separable paraboloidal
surrogate with ordered subsets algorithm utilizing the Huber po-
tential function [8]. The second, denoted E-ML-EM-3, employs
an incremental penalized Poisson likelihood EM algorithm utiliz-
ing the Huber potential function. This method is available using
Prof. Fessler’s Image Reconstruction Toolbox [12]; specifically, we
used the epl inc function from the toolbox. This was suggested
by Prof. Fessler as representative of the current state-of-the-art in
emission tomographic reconstruction.

In addition to these two Poisson reconstruction methods, we also
compare to the GPSR algorithm [13]. This algorithm solves the `2-
`1 problem (3), using the Daubechies-8 wavelet basis for W . As the
solution to (3) is not guaranteed to be nonnegative, we threshold the
result to obtain a feasible – and therefore more accurate – solution.
Including this result allows us to demonstrate the effectiveness of
solving the formulation (2) that utilizes the Poisson likelihood.

For each method, we independently search over an appropri-
ate range of regularization values to minimize the RMS error ‖ bf −
f?‖2/‖f?‖2 with respect to the true emission map f?. Tuning the
regularization in this manner is convenient in a simulation study.
However, in the absence of truth, one typically resorts to a cross-
validation procedure to determine an appropriate level of regulariza-
tion. Each algorithm was initialized with the filtered backprojection
solution (Fig. 2(c)), thresholded to be nonnegative. Table 1 shows
the results of the reconstruction accuracy averaged over 10 trials of
the experiment (different Poisson realizations of the data y).

From the results presented in Table 1 and Fig. 3, we see that
out of the proposed SPIRAL approaches, the method based on the
TI partitions achieves the lowest RMS error. This is to be expected
as the `1-based approach does not consider any structure in the esti-
mate beyond that of a sparse representation in the basis W , and the
non-cycle-spun partitions are a highly biased estimate due to con-
sidering only a single shift of the recursive dyadic partition structure
for which there are no fortuitous alignment of the breakpoints of the
partition with strong edges in the image. From Table 1, we also see
that the proposed SPIRAL-RDP-TI approach outperforms the com-
peting SPS-OS and E-ML-EM-3 approaches in terms of the average
RMS error.

Examining the reconstructed images in Fig. 3, we see that the
SPIRAL-`1 estimate in (b) has significant wavelet artifacts. As ex-
pected, the SPIRAL-RDP estimate in (c) exhibits blocking artifacts
due to the recursive dyadic partition structure not fortuitously align-
ing to any strong edges in the image. The SPIRAL-RDP-TI recon-
struction in (d) is highly accurate in the homogeneous regions in the

Reconstruction Method Mean RMSE (%)

GPSR `2-`1 (DB-8) 24.070
SPIRAL-RDP 21.707
SPIRAL-`1 (DB-8) 20.127
E-ML-EM-3 18.818
SPS-OS 18.493
SPIRAL-RDP-TI 17.769

Table 1. Mean reconstruction accuracy statistics over 10 trials of the
experiment (different realizations of the data y). Note: RMSE (%) =

100 · ‖ bf − f?‖2/‖f?‖2.



image, although the minimal RMS solution over-smoothes some of
the small features such as the smaller bright and dark spots in the true
image (circled in red and yellow in Fig. 3(a)). However, this can be
avoided by de-emphasizing the regularizer to yield a less-smooth es-
timate in (e), which recovers this isolated bright spot. Our proposed
approaches are comparable to the competing SPS-OS method in (f)
and E-ML-EM-3 method in (g). Both of these methods are able to
accurately estimate the locations of the brighter points in the image,
but perform less well in some of the regions of homogeneous inten-
sity or near low-contrast boundaries. For instance, the E-ML-EM-3
estimate shows many dark spots that could be misinterpreted as re-
gions of low uptake. The GPSR solution in (h) has higher RMS error
and is clearly visually inferior to all the reconstruction that utilize a
Poisson log-likelihood term in the objective.

(a) True Emission Image (b) SPIRAL-`1 (DB-8)
19.851% RMSE

(c) SPIRAL-RDP
20.909% RMSE

(d) SPIRAL-RDP-TI
18.008% RMSE

(e) SPIRAL-RDP-TI
(Less Regularized)

18.617% RMSE

(f) SPS-OS
18.610% RMSE

(g) E-ML-EM-3
18.452% RMSE

(h) GPSR `2-`1 (DB-8)
23.479% RMSE

Fig. 3. Reconstructed emission images for one of 10 experiments
performed: (a) is the true emission image, (b)–(d) and (f)–(h) are
the minimal RMS error solutions. We include a less-regularized
SPIRAL-RDP-TI estimate (e) that recovers more features at the ex-
pense of a slight increase in RMS error.

5. CONCLUSIONS

We have formulated the general goal of reconstructing an image
from photon-limited measurements as a penalized maximum Pois-
son likelihood estimation problem. To solve this problem we pro-
posed an algorithm that allows for a flexible choice of penaliza-
tion methods, and focused on penalization schemes that discourage
overly-complex or non-sparse estimates. We consider the case where
the penalty corresponds to the sparsity-promoting `1 norm of the co-
efficients in a sparsifying basis, and the case where the penalty is re-
lated to the complexity of a partition-based estimate. When a cycle-
spun translationally-invariant partition method is applied to the par-
ticular example of an emission tomography problem, the resulting
estimates are comparable to the current state-of-the-art approaches
developed specifically for emission tomography.
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