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SUMMARY

The pivoting strategy of Bunch and Marcia for solving systems involving symmetric indefinite

tridiagonal matrices uses two different methods for solving 2 × 2 systems when a 2 × 2 pivot is

chosen. In this paper, we eliminate this need for two methods by adding another criterion for choosing

a 1× 1 pivot. We demonstrate that all the results from the Bunch and Marcia pivoting strategy still

hold. Copyright c© 2000 John Wiley & Sons, Ltd.
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ADDENDUM

We consider a pivoting strategy that simplifies the one proposed in [1] for solving systems

involving symmetric tridiagonal matrices. This addendum is meant to follow it directly. Thus,

we use the same notations as in [1], and references to equations, lemmas, and algorithms are

made without explicitly referring to the paper. Here, we denote the pivot size for the simplified

strategy by sS . The proposed simplified strategy is as follows:

Algorithm A1. (Simplified pivoting strategy).

α = (
√

5− 1)/2 ≈ 0.62

∆ = α1α2 − β2
2

if |α1α2| ≥ αβ2
2 or |∆| ≤ α|α1β3| or |β2∆| ≤ α|α2

1β3|

sS = 1

else

sS = 2

end

Algorithm A1 differs from the alternative pivoting strategy (Algorithm 3.1) in that the criterion

|α1α2| ≥ αβ2
2 is added for choosing a 1 × 1 pivot. This added criterion eliminates having to

solve the 2 × 2 system in Algorithm 3.1 in two different ways. Specifically, if a 2 × 2 pivot is

chosen in Algorithm A1, then |α1α2| ≤ αβ2
2 , Thus if Algorithm 3.2 is used to solve the 2× 2

system, then the explicit inverse (6) is used automatically. The added criterion also eliminates

the need for a 2× 2 pivot if T is positive definite by the following:

Property A1. If T is positive definite, then the LBLT factorization using Algorithm A1

reduces to the LDLT factorization.
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Proof. By induction on n. The case n = 1 is trivial. Thus we assume that for a symmetric

positive definite tridiagonal matrix of size (n−1)× (n−1), Property A1 holds. If T is positive

definite, then α1α2 ≥ β2
2 . Since α1α2 ≥ αβ2

2 , a 1 × 1 pivot is chosen in Algorithm A1 and

the first diagonal entry in B is a 1× 1 block.. The Schur complement is a symmetric positive-

definite tridiagonal matrix of size (n− 1)× (n− 1). By induction, the LBLT factorization of

this matrix using Algorithm A1 reduces to the LDLT factorization. Thus every element in B

is a 1× 1 diagonal block. �

The simplified pivoting strategy can be related to the original Bunch strategy in the following

way.

Lemma A2. If sS = 1, then sB = 1.

Proof. Suppose sS = 1. If |α1α2| ≥ αβ2
2 , then σ|α1| ≥ αβ2

2 trivially. Thus sB = 1. Otherwise,

|∆| ≤ α|α1β3| or |β2∆| ≤ α|α2
1β3|. Thus sA = 1 and consequently sB = 1 by Lemma 3. �

Lemma A3. If sS = 2 and sB = 1, then s′B = 1.

Proof. It is clear that if sS = 2, then sA = 2. Thus s′B = 1 by Lemma 4.�

We now demonstrate that the bound on the growth factor for this simplified pivoting strategy

is the same as that for the Bunch pivoting strategy. If sS = 1, then sB = 1 by Lemma A3,

and therefore, |β2
2/α1| ≤ σ/α. Thus

|α̃2| =
∣∣∣∣ α2 −

β2
2

α1

∣∣∣∣ ≤ σ +
σ

α
.

If sS = 2, then sA = 2. Thus

|α̃3| ≤ σ +
σ

α
.
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Thus, the growth factor ρn for this pivoting strategy satisfies ρn ≤ 2 + α ≈ 2.62.

To show the stability of the LBLT factorization using Algorithm A1, we must show that

|F | and |G| in Section 3.4 are bounded by T in some norm. For |F |, if sS = 1, then

‖F‖∞ = |β2| ≤ σ. If sS = 2, then sA = 2 and ‖F‖∞ ≤ (4α + 5)σ by Section 3.4. For

|G|, if sS = 1, then sB = 1 by Lemma A2. Thus ‖G‖∞ ≤ σ/α. If sS = 2, then sA = 2, and

‖G‖∞ ≤ (7α + 11)σ. Thus

‖|L||B||LT |‖M ≤ 16× 2.62‖T‖M < 42‖T‖M .

We conclude by modifying Theorem 7 to demonstrate the normwise backwards stability

of solving symmetric tridiagonal matrices using the LBLT factorization whose pivoting is

described in Algorithm A1.

Theorem A4. Let the LBLT factorization with the pivoting strategy of Algorithm A1 be

applied to a symmetric tridiagonal matrix T ∈ <n×n to yield the computed factorization

T ≈ L̂B̂L̂T , and let x̂ be the computed solution to Tx = b obtained using the factorization.

Assume that all linear systems Ey = f involving 2 × 2 pivots E are solved using the explicit

inverse (6). Then

T + ∆T1 = L̂B̂L̂T , (T + ∆T2)x̂ = b,

where

‖∆Ti‖M ≤ cu‖T‖M + O(u2), i = 1, 2,

where c is a constant.
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