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SUMMARY

The LBLT factorization of Bunch for solving linear systems involving a symmetric indefinite
tridiagonal matrix T is a stable, efficient method. It computes a unit lower triangular matrix L and a
block 1×1 and 2×2 matrix B such that T = LBLT . Choosing the pivot size requires knowing a priori
the largest element σ of T in magnitude. In some applications, it is required to factor T as it is formed
without necessarily knowing σ. In this paper, we present a modification of the Bunch algorithm that
can satisfy this requirement. We demonstrate that this modification exhibits the same bound on the
growth factor as the Bunch algorithm and is likewise normwise backward stable. Copyright c© 2000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Linear systems involving symmetric tridiagonal matrices can be solved in various ways.
Gaussian elimination with partial pivoting is a stable method for solving the linear system
Tx = b, where T ∈ <n×n is symmetric and tridiagonal and x and b ∈ <n. However, this
method does not take advantage of the symmetry property or sparsity structure of T . If T is
positive definite, the Cholesky factorization T = RRT , where R ∈ <n×n is lower triangular, can
be easily computed, and the linear system can be solved via the triangular systems RT y = b
and Rx = y, with y ∈ <n. A slightly more efficient method is to use the LDLT factorization of
T , where T = LDLT for some unit lower triangular matrix L and some diagonal matrix D with
positive entries. However, both of these factorizations are unstable or may not exist when T is
not positive definite. The block LDLT , also known as LBLT , factorizations with the various
pivoting strategies (e.g., [2, 4, 5]) are stable methods for solving linear systems with symmetric
indefinite matrices. These methods compute the factorization PT TP = LBLT , where P is a
permutation matrix, L is unit lower triangular, and B is block diagonal with 1× 1 and 2× 2
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2 J. R. BUNCH AND R. F. MARCIA

blocks. The row and column interchanges can create fill-in, thereby destroying the sparsity
structure of T in the Schur complement. The LBLT factorization of Bunch [3] for tridiagonal
matrices does not permute any row or column and preserves the tridiagonal structure in the
Schur complement. This method does not suffer from the disadvantages of the other methods:
it does not create fill-in and is shown to be normwise backward stable [8]. It is also easily
implemented. This paper focuses on a variation of the Bunch pivoting strategy for the LBLT

factorization of symmetric indefinite tridiagonal matrices.
In the LBLT factorization of Bunch, a 1× 1 pivot is chosen if the leading (1, 1) element is

sufficiently large relative to the sub-diagonal (1, 2) element (see Algorithm 2.1). This pivoting
strategy involves determining the largest element in magnitude in the matrix T . Thus, the
full matrix must be known a priori. Whereas the LDLT factorization can be computed as T
is formed, i.e., only the k-th diagonal and sub-diagonal elements are needed at the k-th step
of the factorization, the LBLT factorization of Bunch for indefinite matrices requires that
the whole matrix be known initially. In some applications, it is desired to form the LBLT

factorization as T is formed. For example, when the Lanczos method is applied to solve a
linear system involving a symmetric indefinite matrix, one must be able to factor the resulting
indefinite tridiagonal matrix Tk at each iteration k. In this situation, the LBLT factorization
of Bunch cannot be applied.

In this paper, we present an alternative pivoting strategy that is closely related to the Bunch
pivoting strategy. We show that the block structure of both pivoting strategies are similar and
that both algorithms exhibit the same bound on the growth factor. We demonstrate that an
LBLT factorization using this alternative pivoting strategy is normwise backward stable using
arguments similar to Higham’s proof [8] of the stability of the Bunch LBLT factorization. The
paper is organized as follows. In Section 2, we discuss the Bunch pivoting strategy and some of
its properties. In Section 3, we introduce an alternative pivoting strategy and present a proof
of its stability. We summarize the paper in Section 4.

Notation. We will denote the size of the pivot for the Bunch and alternative pivoting strategy
by sB and sA, respectively. For an exact value x, we denote the corresponding computed value
by x̂.

2. THE PIVOTING STRATEGY OF BUNCH

Let T ∈ <n×n be a symmetric tridiagonal matrix with αi, i = 1, . . . , n, on the diagonal and
βj , j = 2, . . . , n, on the off-diagonal:

T =



α1 β2 0 · · · 0

β2 α2 β3
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . βn

0 · · · 0 βn αn


.
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Denote the largest element of T in magnitude by σ, and partition T as

T =
s n−s

s

n−s

[
B1 TT

21

T21 T22

]
. (1)

The computation of the LBLT factorization involves choosing the dimension (s = 1 or 2) of
the pivot B1 at each stage. If B1 is singular for both choices of s, then α1 = 0 and β2 = 0,
which implies that T21 = 0. Therefore the first row and column of T are in diagonal form, and
the algorithm can proceed to the following stage. Thus B1 can be assumed to be nonsingular.
Then

T =
[

Is 0
T21B

−1
1 In−s

] [
B1 0
0 T22 − T21B

−1
1 TT

21

] [
Is B−1

1 TT
21

0 In−s

]
. (2)

Let S = T22 − T21B
−1
1 TT

21 ∈ <(n−s)×(n−s) be the Schur complement of B1 in T . If s = 1,
then T21 = β2e1, where the unit vector e1 ∈ <n−1, and

S = T22 − (β2
2/α1)e1e

T
1 .

The rank-one matrix e1e
T
1 is nonzero only in the (1, 1) entry. Thus, S differs from T22 only in

the leading entry, which is given by

α̃2 = α2 − (β2
2/α1) = ∆/α1,

where ∆ = α1α2 − β2
2 , which is the determinant of the leading 2× 2 block of T . If s = 2, then

the matrix T21 ∈ <(n−2)×2 can be written as T21 = β3e1e
T
2 with the unit vectors e1 ∈ <n−2

and e2 ∈ <2. Then

S = T22 −
1
∆

(
β3e1e

T
2

) [
α2 −β2

−β2 α1

] (
β3e2e

T
1

)
= T22 −

(
α1β

2
3

∆

)
e1e

T
1 .

Again, S differs from T22 only in the (1, 1) entry, which is given by

α̃3 = α3 − (α1β
2
3/∆).

In both choices of pivot size, the Schur complement differs from T22 only in the (1, 1) entry,
and, therefore, its tridiagonal structure is preserved. Thus, the LBLT factorization can then
be applied recursively.

The algorithm for determining the size sB of the pivot B1 using the Bunch pivoting strategy
at each stage can be described sufficiently in the first stage of the factorization.

Algorithm 2.1. (Bunch’s pivoting strategy).
σ = max{|αi|, |βj | : i, j = 2: n}
α = (

√
5− 1)/2 ≈ 0.62

if |α1|σ ≥ αβ2
2

sB = 1
else

sB = 2
end

The constant α is a root of the equation α2 + α − 1 = 0 and is chosen to equate the
maximal element growth for both pivot sizes. A recursive application of Algorithm 2.1 yields

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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4 J. R. BUNCH AND R. F. MARCIA

a factorization T = LBLT , where L is unit lower triangular and B is block diagonal with 1×1
and 2×2 blocks. Using Algorithm 2.1, we have the following properties for the Bunch pivoting
strategy.

Property 1. If sB = 2, then the determinant ∆ of the B1 satisfies ∆ ≤ (α− 1)β2
2 < 0. Thus,

|∆| ≥ (1− α)β2
2 .

This property implies that Algorithm 2.1 will choose a 2× 2 pivot only when its determinant
is bounded away from zero.

Property 2. The growth factor ρn of the LBLT factorization with the Bunch pivoting strategy
satisfies

ρn ≤
1
2
(
√

5 + 3) ≈ 2.62.

Although the growth factor is bounded, it does not imply that the LBLT factorization is stable
the way it does for Gaussian elimination (see [7]).

3. ALTERNATIVE PIVOTING STRATEGY

A new pivoting strategy for symmetric tridiagonal matrices was motivated by the need to
form the factors without having the full matrix. In other words, it is desired to factor T as its
elements are computed. Although stable, efficient, and easily implemented, Bunch’s pivoting
strategy cannot be used for such a factorization because the largest element σ in T must be
known a priori.

3.1. Algorithm

The pivot size at each step is chosen by minimizing the entry values in magnitude in the matrix
L. Let L1 = T21B

−1
1 in Equation (2). If a 1 × 1 pivot is used, then the (1, 1) element of L1

is β2/α1. If a 2 × 2 pivot is used, then the (1, 1) and (1, 2) elements of L1 are −β2β3/∆ and
α1β3/∆ respectively. With elements of L1 for a 2× 2 pivot scaled by the constant α from the
Bunch pivoting strategy, a 1× 1 pivot is chosen if

|β2|
|α1|

≤ max α

{
|β2β3|
|∆|

,
|α1β3|
|∆|

}
, (3)

and a 2× 2 pivot is chosen otherwise. The choice of pivot size is summarized as follows:

Algorithm 3.1. (Alternative pivoting strategy).
α = (

√
5− 1)/2 ≈ 0.62

∆ = α1α2 − β2
2

if |∆| ≤ α|α1β3| or |β2∆| ≤ α|α2
1β3|

sA = 1
else

sA = 2
end

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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A PIVOTING STRATEGY FOR SYMMETRIC TRIDIAGONAL MATRICES 5

Intuitively, Algorithm 3.1 chooses a 1 × 1 pivot if α1 is sufficiently large relative to the
determinant of the 2 × 2 pivot, i.e., a 1 × 1 pivot is chosen if a 2 × 2 pivot is relatively
closer to being singular than α1 is to zero. Like the Bunch pivoting strategy, Algorithm 3.1
avoids small (1, 1) pivots and nearly singular 2 × 2 pivots. Scaling by α in (3) provides two
properties that relate the two pivoting strategies.

Lemma 3. If sA = 1, then sB = 1.

Proof. If |α1| ≥ |β2|, then
|α1|σ ≥ |α1|2 ≥ |β2|2 ≥ α|β2|2.

Thus sB = 1. Otherwise, if |α1| < |β2|, then |α1
β2
||α1β3| ≤ |α1β3|. If sA = 1 with

|β2∆| ≤ α|α2
1β3|, then

|∆| ≤ α

∣∣∣∣α2
1

β2
β3

∣∣∣∣ ≤ α|α1β3|.

Thus |∆| ≤ α|α1β3| if sA = 1. Now,

α|α1||β3| ≥ |∆| = |α1α2 − β2
2 | ≥ β2

2 − |α1||α2|.

Thus,
β2

2 ≤ |α1|
(
α|β3|+ |α2|

)
≤ |α1|σ(α + 1).

Since 1/(α + 1) = α, then |α1|σ ≥ αβ2
2 . Therefore, sB = 1. �

This lemma implies that whenever our pivoting strategy chooses a 1 × 1 pivot, the Bunch
pivoting strategy chooses a 1×1 pivot as well. Lemma 3 also implies that if the Bunch pivoting
strategy chooses a 2× 2 block, the proposed pivoting strategy will choose a 2× 2 block. The
converse of Lemma 3 is not true, however, since for α1 = α2 = 2, β2 = 1, and β3 = 0, the
pivot size for Algorithm 3.1 is sA = 2 while sB = 1.

In the case where pivots of different sizes are chosen, i.e., sA = 2 and sB = 1, we have the
following lemma. Let s′B be the pivot size in the subsequent step in the Bunch algorithm.

Lemma 4. If sA = 2 and sB = 1, then s′B = 1.

Proof. Since sA = 2, then |∆| ≥ α|α1β3|. Recall that the Schur complement S differs from T22

in (1) only in the (1, 1) position and that the entry in that position is α̃2 = ∆/α1. Thus

|α̃2|σ = |∆/α1|σ ≥ α|β3|σ ≥ αβ2
3 .

Thus, s′B = 1. �

These two lemmas imply that the block structure of BA, the block-diagonal matrix from
using the alternative pivoting strategy, and BB , the block-diagonal matrix from using the
Bunch pivoting strategy, are indeed similar. (In particular, there exists a unit lower triangular
matrix LB such that BA = LBBBLT

B .) The difference arises only when the Bunch pivoting
strategy chooses two 1 × 1 blocks and Algorithm 3.1 chooses one 2 × 2 block. The Schur
complement resulting from two 1 × 1 pivots is identical to the Schur complement resulting
from one 2× 2 pivot [5].

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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6 J. R. BUNCH AND R. F. MARCIA

3.2. Growth factor

We have seen that the Schur complement S differs from T22 only in the (1, 1) element. Thus
we need only examine the possible element growth in this position.

If sA = 1, then sB = 1 by Lemma 3 and therefore, |β2
2/α1| ≤ σ/α. Thus

|α̃2| =
∣∣∣∣ α2 −

β2
2

α1

∣∣∣∣ ≤ σ +
σ

α
.

If sA = 2, then |∆| ≥ α|α1β3| and

|α̃3| =
∣∣∣∣ α3 −

α1β
2
3

∆

∣∣∣∣ ≤ σ +
σ

α
.

The (1, 1) element does not affect the bounds on subsequent Schur complement (1, 1) elements,
and therefore the growth is not cumulative. Thus, the growth factor ρn for this pivoting strategy
satisfies

ρn =
maxi,j,k |S(k)

i,j |
maxi,j |Ti,j |

≤ 1 +
1
α

= 2 + α ≈ 2.62,

which is the same bound on the growth factor as for the Bunch pivoting strategy. It can be
shown that this bound on the growth factor is tight, just as it is in the Bunch algorithm.

3.3. Error Analysis

The error analysis presented in this section is similar to those of Higham in [7] and [8]. In this
section, we introduce a method for solving 2× 2 linear systems to show that a general result
from [7] for an LBLT factorization is applicable to Algorithm 3.1. The usual model of floating
point arithmetic

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +, ∗, /,

is used, where u is the unit roundoff. The constant

γn ≡
nu

1− nu
,

is defined with the assumption that nu < 1. Note that for c > 1, cγn ≤ γcn.
Higham proves the following general result in [7]. Absolute values of matrices and inequalities

between matrices are to be interpreted componentwise.

Theorem 5. [Higham] Let block LDLT factorization with any pivoting strategy be applied to
a symmetric matrix A ∈ <n×n to yield the computed factorization PAPT ≈ L̂B̂L̂T , where P
is a permutation matrix and B̂ has diagonal blocks of dimensions 1 or 2. Let x̂ be the computed
solution to Ax = b obtained using the factorization. Assume that for all linear systems Ey = f
involving 2× 2 pivots E the computed solution ŷ satisfies

(E + ∆E)ŷ = f, |∆E| ≤ (cu + O(u2))|E|, (4)

where c is a constant. Then

P (A + ∆A1)PT = L̂B̂L̂T , (A + ∆A2)x̂ = b,

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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A PIVOTING STRATEGY FOR SYMMETRIC TRIDIAGONAL MATRICES 7

where

|∆Ai| ≤ p(n)u
(
|A|+ PT |L̂||B̂||L̂T |P

)
+ O(u2), i = 1, 2,

with p a linear polynomial.

If the matrix A in Theorem 5 has a fixed bandwidth (i.e., independent of n), then the
polynomial p(n) is of degree zero. In the case of the proposed pivoting strategy, since T is
tridiagonal, p(n) can be set to some constant c. Also, since row and column interchanges are
not used in the LBLT factorization, the permutation matrix P = I. We now discuss how
Condition (4) is satisfied. For simplicity of notation, we let E = B1 of size s = 2 in the
partition of T in (1).

Given a 2× 2 block B1, we solve the system B1y = f using the following algorithm:

Algorithm 3.2. (Solving the 2× 2 systems in Algorithm 3.1).
if |α1α2| ≥ α|β2

2 |
Use B1 = L1D1L

T
1 to solve B1y = f .

else
Use explicit inverse.

end

The following theorem shows that using Algorithm 3.2, Condition (4) is satisfied.

Theorem 6. If a 2×2 linear system Ey = b is solved using Algorithm 3.2, then the computed
solution ŷ satisfies Condition (4).

Proof. If |α1α2| ≥ α|β2
2 |, then sB = 1 when the Bunch pivoting strategy is applied to solve the

2 × 2 system. Thus the LDLT factorization is stable even if |α1| ≤ |β2|. For a 2 × 2 system,
the backward error result

(E + ∆E)ŷ = f, |∆E| ≤ (7u + O(u2))|L̂1||D̂1||L̂1| (5)

can be easily shown using a proof similar to ([9], Theorem 9.4). Since |L̂1||D̂1||L̂1| =
|L1||D1||LT

1 | + O(u), then ∆E must satisfy the inequality in (5) with the exact factors on
the right hand side. Now

|L1||D1||LT
1 | =

[
|α1| |β2|
|β2| |β2

2 |
|α1| +

∣∣∣α2 − β2
2

α1

∣∣∣
]
≤

[
|α1| |β2|
|β2|

(
2
α + 1

)
|α2|

]
≤ (

√
5 + 2)|E|.

Thus, if |α1α2| ≥ α|β2
2 | and Algorithm 3.2 is used to solve Ey = b, then Condition (4) holds

with c = 7(
√

5 + 2).
To show Condition (4) holds using an explicit inverse when |α1α2| ≤ α|β2

2 |, we give an
argument similar to that in [7]. Solving the linear system Ey = b using an explicit inverse
formula for E gives

y =
1

β2

(
α1

β2
· α2

β2
− 1

)
 α2

β2
−1

−1
α1

β2

 b, (6)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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8 J. R. BUNCH AND R. F. MARCIA

as done in LAPACK [1] and LINPACK [6]. A potential source of instability for this formula
is the term

µ =
(

α1

β2
· α2

β2
− 1

)
, (7)

whose computed value might be arbitrarily small. Thus, we must show that the relative error
in µ is bounded away from 0. Using the notation θ4 and δ4 as in [7], we have

µ̂ =
α1

β2
· α2

β2
(1 + θ4)− (1 + δ4), |θ4| ≤ γ4.

Now, since |α1α2| ≤ α|β2
2 |,

|α1α2|
β2

2

≤ α,

and (7) implies that |µ| ≥ 1− α. Thus

|µ− µ̂| ≤ γ4

(
|α1α2|

β2
2

+ 1
)
≤ γ4(α + 1) ≤ γ4

(
1 + α

1− α

)
|µ| ≤ 5γ4|µ|.

Let Z be the 2×2 matrix in (6). Then y = (β2µ)−1Zb. Thus we have the backward error result

ŷ = (β2µ)−1
(
Z + ∆Z

)
b, |∆Z| ≤ γ50|Z|.

Thus b− Eŷ = −E((β2µ)−1∆Z)b so that

|b− Eŷ| ≤ γ50|E||E−1||b|
≤ γ50|E||E−1||E||y|.

Now,

|E||E−1||E| ≤ 1
(1− α)


|α1α2|

β2
2

+ 1 2
|α1|
|β2|

2
|α2|
|β2|

|α1α2|
β2

2

+ 1


[
|α1| |β2|

|β2| |α2|

]

≤ 1
(1− α)

 α + 1 2
|α1|
|β2|

2
|α2|
|β2|

α + 1


[
|α1| |β2|

|β2| |α2|

]

=
1

(1− α)

 (α + 1)|α1|+ 2|α1| (α + 1)|β2|+ 2
|α1α2|
|β2|

2
|α1α2|
|β2|

+ (α + 1)|β2| 2|α2|+ (α + 1)|α2|


≤ 3 + α

(1− α)

[
|α1| |β2|

|β2| |α2|

]
≤ 10|E|.

Thus
|b− Eŷ| ≤ γ500|E||y| ≤ γ500|E|(|ŷ|+ O(u)).

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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By the Oettli-Prager Theorem [10], ([8] Theorem 7.3),

(E + ∆E)ŷ = b, |∆E| ≤ γ500|E|+ O(u2).

�

We have demonstrated that Condition (4) is satisfied when Algorithm 3.2 is used to solve
linear systems involving 2 × 2 pivots. Therefore, Theorem 5 holds for an LBLT factorization
using Algorithm 3.1 as a pivoting strategy.

3.4. Normwise analysis

To show the stability of the LBLT factorization using Algorithm 3.1, we must show that
|L̂||B̂||L̂T | is suitably bounded by T in some norm. Since |L̂||B̂||L̂T | = |L||B||LT |+ O(u), it is
sufficient to bound the product |L||B||LT | of the exact factors. We write

|L||B||LT | =
[

I
|L21| |LS |

] [
|B1|

|BS |

] [
I |LT

21|
|LT

S |

]
=

[
|B1| |B1||LT

21|
|L21||B1| |L21||B1||LT

21|+ |LS ||BS ||LT
S |

]
.

Let F = |L21||B1|. If sA = 1, then F ∈ <n−1 with ‖F‖∞ = |β2| ≤ σ. If sA = 2, then
F ∈ <(n−2)×2, which is all zeros except for the first row given by[

|β2β3|
|∆|

|α1β3|
|∆|

] |α1| |β2|

|β2| |α2|

 =
[
2|α1β2β3|

|∆|
|β2

2β3|
|∆|

+
|α1α2β3|

∆|

]
.

Thus

‖F‖∞ =
2|α1β2β3|

|∆|
+
|α1α2β3|
|∆|

+
|β2

2β3|
|∆|

.

Since sA = 2, |∆| ≥ α|α1β3|, and therefore

‖F‖∞ ≤ 2
α
|β2|+

|α1α2β3|
|∆|

+
|β2

2β3|
|∆|

(8)

≤ 2
α
|β2|+

1
α
|α2|+

|β2
2 |

α|α1|
.

If |α1|σ ≥ αβ2
2 , i.e., sB = 1, then

‖F‖∞ ≤ 2
α
|β2|+

1
α
|α2|+

1
α2

σ

≤ (4α + 5)σ.

Otherwise, sB = 2, and therefore |α1α2| ≤ αβ2
2 . By Property 1, |∆| ≥ (1 − α)β2

2 . Thus from
(8),

‖F‖∞ ≤ 2
α
|β2|+

α|β2
2β3|
|∆|

+
|β2

2β3|
|∆|

≤ 2
α
|β2|+

α

1− α
|β3|+

1
1− α

|β3|

≤ (4α + 5)σ.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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10 J. R. BUNCH AND R. F. MARCIA

Therefore, for both pivot sizes, ‖F‖∞ ≤ 8σ.
Now let G = |L21||B1||LT

21|. If sA = 1, then ‖G‖∞ = β2
2/|α1|. By Lemma 3, sB = 1 and

|α1|σ ≥ αβ2
2 . Therefore, ‖G‖∞ ≤ σ/α. If sA = 2, then |∆| ≥ α|α1β3| and

‖G‖∞ =
3|α1β

2
2β2

3 |
|∆|2

+
|α2

1α2β
2
3 |

|∆|2

≤ 3|β2
2β3|

α|∆|
+
|α1α2β3|

α|∆|
(9)

≤ 3|β2
2 |

α2|α1|
+
|α2|
α2

.

If |α1|σ ≥ αβ2
2 , i.e., sB = 1, then

‖G‖∞ ≤ 3|β2
2 |

α2|α1|
+
|α2|
α2

≤ 3
α3

σ +
σ

α2
= (7α + 11)σ.

Otherwise, sB = 2. Using Property 1, i.e., |∆| ≥ (1− α)β2
2 , and the inequality |∆| ≥ α|α1β3|,

we get from (9),

‖G‖∞ ≤ 3|β2
2β3|

α|∆|
+
|α1α2β3|

α|∆|
≤ 3

α(1− α)
|β3|+

1
α2
|α2| ≤ (7α + 11)σ.

Thus, for both pivot sizes, ‖G‖∞ ≤ 16σ. Note that the bounds for ‖F‖∞ and ‖G‖∞ are the
same as those in Higham’s analysis in [8].

Now the matrices LS and BS are the LBLT factors of the Schur complement S of B1 in T .
Now every Schur complement satisfies

‖S‖M ≤ ρn‖T‖M ,

where
‖A‖M = max

i,j
|aij |.

From Section 3.2, the growth factor for this pivoting strategy satisfies ρn ≤ 2.62. Using the
bounds for ‖F‖∞, ‖G‖∞, and ‖S‖∞ recursively, we obtain the bound

‖|L||B||LT |‖M ≤ 16× 2.62‖T‖M < 42‖T‖M .

The following result summarizes the stability of the LBLT factorization using the pivoting
strategy in Algorithm 3.1.

Theorem 7. Let LBLT factorization with the pivoting strategy of Algorithm 3.1 be applied
to a symmetric tridiagonal matrix T ∈ <n×n to yield the computed factorization T ≈ L̂B̂L̂T ,
and let x̂ be the computed solution to Tx = b obtained using the factorization. Assume that
all linear systems Ey = f involving 2× 2 pivots E are solved using Algorithm 3.2. Then

T + ∆T1 = L̂B̂L̂T , (T + ∆T2)x̂ = b,

where
‖∆Ti‖M ≤ cu‖T‖M + O(u2), i = 1, 2,

where c is a constant.
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4. CONCLUSION

We presented a normwise backward stable LBLT factorization based on the Bunch algorithm
for factoring a symmetric tridiagonal matrix T and solving a linear system Tx = b. Lemmas
3 and 4 showed that the proposed strategy for choosing the size of the pivots and the Bunch
pivoting strategy are related. We showed that the strategies have the same bound on the
growth factor, and using arguments similar to Higham’s in [8] to demonstrate the stability of
the Bunch factorization, we demonstrated the stability of the proposed algorithm as well. The
key difference between the two strategies, however, is that the proposed algorithm does not
need the largest entry in magnitude of the matrix to determine the pivot size.
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